JP2002040085A - Method for locating fault point of branched parallel dual line - Google Patents

Method for locating fault point of branched parallel dual line

Info

Publication number
JP2002040085A
JP2002040085A JP2000229487A JP2000229487A JP2002040085A JP 2002040085 A JP2002040085 A JP 2002040085A JP 2000229487 A JP2000229487 A JP 2000229487A JP 2000229487 A JP2000229487 A JP 2000229487A JP 2002040085 A JP2002040085 A JP 2002040085A
Authority
JP
Japan
Prior art keywords
line
branch
distance
point
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000229487A
Other languages
Japanese (ja)
Inventor
Hideki Nakamori
英樹 中森
Tokuo Emura
徳男 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000229487A priority Critical patent/JP2002040085A/en
Publication of JP2002040085A publication Critical patent/JP2002040085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and precisely provide a fault point location result by adapting an approximation when one branch is short, compared with the other branch in a branched parallel dual line, or a three-terminal parallel dual transmission line. SOLUTION: On the basis of the zero phase current IO1 of a line 1L the zero phase current IO2 of a line 2L at a power source end A, and the zero phase current IO2' of the line 2L at a short branch end B, the distance x from a branch point to a 1L line ground fault point between the branch point and another load end C is determined according to the equation: x=2d(IO2-I02')/(IO 1+I02) (wherein d is the distance from the branch point to the load end C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、短い分岐のある平
行2回線系統の故障点標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a fault in a parallel two-line system having short branches.

【0002】[0002]

【従来の技術】電源端の電圧、電流に基づいて平行2回
線送電線の故障点を標定する方法として、地絡故障に対
する零相電流分流比方式、短絡故障に対するインピーダ
ンス方式が知られている。前者の零相電流分流比方式に
よれば、電源端の各回線1L,2Lの零相電流をそれぞ
れI01,I02とすると、電源端から1L回線の地絡故障
点までの距離xは x=d[2I02/(I01+I02)](dは送電線の距離) (1) で求められる。2L回線の地絡故障点までの距離xは x=d[2I01/(I01+I02)](dは送電線の距離) (2) で求められる。
2. Description of the Related Art As a method of locating a fault point of a parallel two-line transmission line based on a voltage and a current at a power supply terminal, a zero-phase current shunt ratio method for a ground fault and an impedance method for a short-circuit fault are known. According to the former zero-phase current shunt ratio method, assuming that the zero-phase currents of the lines 1L and 2L at the power supply end are I01 and I02, respectively, the distance x from the power supply end to the ground fault point of the 1L line is x = d [2I02 / (I01 + I02)] (d is the distance of the transmission line). The distance x of the 2L line to the ground fault point can be obtained by x = d [2I01 / (I01 + I02)] (d is the distance of the transmission line) (2).

【0003】後者のインピーダンス方式によれば、短絡
故障相を例えば1L回線のi相、j相とすると、電源端
の相電圧Vi,Vj、1L回線の相電流Ii1 ,Ij1、送電線
の単位長さ当たりの正相インピーダンスZを用いて、電
源端から1L回線短絡故障点までの距離Xは xIm[Z]=Im[(Vi−Vj)/(Ii1−Ij1)] (3) で求められる。Im[…]はリアクタンス成分を表す。
According to the latter impedance method, if the short-circuit fault phases are, for example, the i-phase and the j-phase of the 1L line, the phase voltages Vi and Vj at the power supply end, the phase currents Ii1 and Ij1 of the 1L line, and the unit length of the transmission line Using the positive phase impedance Z per unit, the distance X from the power supply end to the 1-L line short-circuit fault point can be obtained by xIm [Z] = Im [(Vi-Vj) / (Ii1-Ij1)] (3). Im [...] represents a reactance component.

【0004】[0004]

【発明が解決しようとする課題】ところで、分岐のある
平行2回線、すなわち3端子平行2回線送電線におい
て、1本の分岐が他の分岐に比べて短い系統がある。こ
のような系統で、短い分岐を無視して2端子平行2回線
送電線の故障点標定を行うと、短い分岐端に回り込む電
流の影響により誤差が大きく出るという問題がある。従
来から知られている3端子平行2回線送電線の故障点標
定方法を適用することが考えられるが(特開平2−19
779号公報、特開平3−211476号公報参照)、
これらの方法は、複雑な解法が求められ、ソフトウェア
を組むのに手間と時間がかかるという問題がある。
Incidentally, there is a system in which one branch is shorter than the other branches in a parallel two-branch transmission line with three branches, that is, a three-terminal parallel two-line transmission line. In such a system, if the fault location of the two-terminal parallel two-circuit transmission line is performed ignoring the short branch, there is a problem that a large error is caused due to the influence of the current flowing around the short branch end. It is conceivable to apply a conventionally known method for locating a fault on a three-terminal parallel two-circuit transmission line (Japanese Patent Laid-Open No. 2-19).
779, JP-A-3-21476),
These methods have a problem that a complicated solution is required and it takes time and effort to build software.

【0005】そこで、1本の分岐が他の分岐に比べて短
い場合に、適当な近似を取り入れて、前記(1)式や(2)式
を使うのと同様の手軽さで、かつ、正確に故障点標定結
果を出すことのできる故障点標定方法が求められてい
る。
Therefore, when one branch is shorter than the other branches, an appropriate approximation is adopted to make it as simple and accurate as using equations (1) and (2). There is a need for a method of locating a fault that can provide a fault locating result.

【0006】[0006]

【課題を解決するための手段】本発明の故障点標定方法
は、電源端Aの1L回線の零相電流I01、2L回線の零
相電流I02、短い分岐のある負荷端Bの2L回線の零相
電流I02′に基づいて、式 x=2d(I02−I02′)/(I01+I02) (dは分岐点から負荷端Cまでの距離)により、分岐点
から、分岐点と負荷端Cとの間の1L回線地絡故障点ま
での距離xを求める方法である(請求項1)。
The fault locating method according to the present invention comprises a zero-phase current I01 of a 1L line at a power supply terminal A, a zero-phase current I02 of a 2L line, and a zero-point current of a 2L line at a load terminal B having a short branch. Based on the phase current I02 ', the equation x = 2d (I02-I02') / (I01 + I02) (d is the distance from the branch point to the load end C), the distance between the branch point and the load end C is obtained. (Claim 1).

【0007】2L回線地絡故障であれば、負荷端Bの1
L回線の零相電流I01′を用いて、式 x=2d(I01−I01′)/(I01+I02) により、分岐点から、分岐点と負荷端Cとの間の2L回
線地絡故障点までの距離xを求めればよい(請求項
2)。前記の各方法によれば、従来の零相電流分流比方
式((1)(2)式)において、分子のI02に代えてI02−I
02′を用い、I01に代えてI01−I01′を用いている。
この補正により、短い分岐端に回り込む電流の影響を考
慮した、正確な地絡故障点の標定をすることができる。
If a 2L line ground fault occurs, one of the load terminals B
Using the zero-phase current I01 'of the L line, the equation x = 2d (I01-I01') / (I01 + I02), from the branch point to the 2L line ground fault point between the branch point and the load end C, The distance x may be obtained (claim 2). According to each of the above methods, in the conventional zero-phase current shunt ratio method (Equations (1) and (2)), I02-I is used instead of I02 of the numerator.
02 ', and I01-I01' is used in place of I01.
With this correction, it is possible to accurately locate the ground fault point in consideration of the influence of the current flowing to the short branch end.

【0008】また、本発明の故障点標定方法は、電源端
Aの相電流Ii,Ij、短い分岐のある負荷端Bの相電流
Ii′,Ij′、線間電圧Vij′に基づいて、式 yIm[Z]=Im[(Vij′)/(Ii+Ii′)−
(Ij+Ij′)] (Zは回線の正相インピーダンス、i,jは三相のうち
いずれかの相を表す。i≠j)により、分岐点から、分
岐点と負荷端Cとの間のij相間短絡故障点までの距離
yを求める方法である(請求項3)。
Further, the fault point locating method of the present invention is based on the phase currents Ii and Ij at the power supply end A, the phase currents Ii 'and Ij' at the load end B having a short branch, and the line voltage Vij '. yIm [Z] = Im [(Vij ') / (Ii + Ii')-
(Ij + Ij ')] (Z is the positive-phase impedance of the line, i and j represent one of the three phases, i ≠ j), and ij between the branch point and the load end C from the branch point This is a method for determining the distance y to the interphase short-circuit fault point (claim 3).

【0009】この方法によれば、従来のインピーダンス
方式((3)式)において、分子のVi−Vj=Vijに代え
て、短い分岐端の線間電圧Vij′を用い、電源端の相電
流Ii,Ijに代えて、短い分岐端Bの相電流Ii′,Ij′
を考慮したIi+Ii′,Ij+Ij′を用いている。この
補正により、分岐点の電圧を推定するとともに、短い分
岐端に回り込む電流の影響を考慮して、正確な短絡故障
点の標定をすることができる。
According to this method, in the conventional impedance system (Equation (3)), the line voltage Vij 'at the short branch end is used instead of Vi-Vj = Vij of the numerator, and the phase current Ii at the power supply end is used. , Ij instead of the phase currents Ii ', Ij' at the short branch end B.
Ii + Ii 'and Ij + Ij' are used. By this correction, the voltage at the branch point can be estimated, and the short-circuit fault point can be accurately located in consideration of the influence of the current flowing to the short branch end.

【0010】なお、前記相電流Ii,Ijは、1L回線の短
絡故障であれば、1L回線の相電流であり、2L回線の
短絡故障であれば、2L回線の相電流である。以上の発
明において、「短い分岐」とは、分岐点と負荷端Bとの
距離d2が、分岐点と負荷端Cとの距離d3の2%または
それ以下であることをいう(請求項4)。つまり、短い
分岐の距離が、長い方の分岐の距離の1/50以下であ
る。この2%という値は、後に示すように、3端子平行
2回線を2端子平行2回線に近似するときに、実際の計
算値の誤差が少なく、標定結果に影響がないと考えられ
る値となっている。
The phase currents Ii and Ij are the phase currents of the 1L line if the short-circuit fault occurs on the 1L line, and the phase currents of the 2L line if the short-circuit fault occurs on the 2L line. In the above invention, the "short branch" means that the distance d2 between the branch point and the load end B is 2% or less of the distance d3 between the branch point and the load end C (claim 4). . That is, the distance of the short branch is 1/50 or less of the distance of the longer branch. This value of 2% is a value that is considered to have a small error in the actual calculated value and to have no effect on the orientation result when the three-terminal parallel two lines are approximated to the two-terminal parallel two lines, as described later. ing.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面を参照しながら詳細に説明する。 −地絡故障点標定− 図1は、短い分岐のある3端子平行2回線送電線の回路
図である。送電線の電源端Aには抵抗接地された電源1
が設置される。電源端Aには電流検知部2が設置されて
いるとともに、短い分岐の負荷端Bにも電流検知部3が
設置されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a circuit diagram of a three-terminal parallel two-circuit transmission line having a short branch. A power supply 1 with a resistance ground is connected to the power supply end A of the transmission line.
Is installed. The current detection unit 2 is installed at the power supply end A, and the current detection unit 3 is also installed at the short branch load end B.

【0012】電流検知部2と電流検知部3とは、専用回
線4で結ばれていて、電流検知部3の検知データは、電
流検知部2に集約されるようになっている。集約された
データは、パーソナルコンピュータ5に入力され、ここ
で故障点標定演算が行われる。送電線の単位距離あたり
のインピーダンスは、実際には、鉄塔構造の相違により
一様とはいえないが、計算上は平均値を用い、場所によ
らず一様であるとした。
The current detector 2 and the current detector 3 are connected by a dedicated line 4, and the detection data of the current detector 3 is collected in the current detector 2. The aggregated data is input to the personal computer 5, where a fault locating operation is performed. Although the impedance per unit distance of the transmission line is not actually uniform due to the difference in the structure of the tower, the average value was used for calculation and was assumed to be uniform regardless of the location.

【0013】電源端Aと分岐点Tとの距離をd1、負荷
端Bと分岐点Tとの距離をd2、負荷端Cと分岐点Tと
の距離をd3とする。電源端Aでの1L,2L回線の測
定電流をそれぞれI01,I02とし、負荷端Bでの1L,
2L回線の測定電流をそれぞれI01′,I02′とする。
分岐点以遠の負荷端Cと分岐点Tとの区間に地絡故障が
発生したとし、地絡故障点をFと表示する。この地絡故
障点Fに流入する電流を、図1に符号Ifa,Ifb,Ifc
で示している。電流Ifaは、電源端Aから故障点Fに直
接流れる電流、電流Ifcは、電源端Aから負荷端Cを経
由して故障点Fに流れる電流である。電流Ifbは、電源
端Aから分岐点T、負荷端Bを経由して分岐点Tに戻
り、故障点Fに流れ込む電流である。図1より、 I01′=Ifb, I02′=−Ifb, I01′=−I02′ である。
The distance between the power supply end A and the branch point T is d1, the distance between the load end B and the branch point T is d2, and the distance between the load end C and the branch point T is d3. The measured currents of the 1L and 2L lines at the power supply end A are I01 and I02, respectively,
The measured currents of the 2L line are I01 'and I02', respectively.
It is assumed that a ground fault has occurred in the section between the load end C and the branch point T beyond the branch point, and the ground fault point is indicated by F. The current flowing into the ground fault point F is shown by reference numerals Ifa, Ifb, Ifc in FIG.
Indicated by. The current Ifa is a current flowing directly from the power supply terminal A to the failure point F, and the current Ifc is a current flowing from the power supply terminal A to the failure point F via the load terminal C. The current Ifb is a current that returns from the power supply terminal A to the branch point T via the branch point T and the load terminal B, and flows into the fault point F. From FIG. 1, I01 '= Ifb, I02' =-Ifb, I01 '=-I02'.

【0014】図1の3端子平行2回線送電線の分岐点以
遠の等価回路を、図2に示す。この図2の等価回路の導
き方を、図3を用いて解説する。図3(a)は、3端子回
路を示し、各分岐のインピーダンスをZ1,Z2,Z3と
する。A端の電圧をV1、B端の電圧をV2、分岐端Tの
電圧をV、分岐端TからC端に流れる電流をIとする
と、関係式 V=[(V2Z1+V1Z2)/(Z1+Z2)]−Z1Z2I
/(Z1+Z2) が成り立つ。図3(b)に示す2端子回路において、A端
の電圧をV′、分岐端Tの電圧をV、分岐端TからC端
に流れる電流をI、A端と分岐端Tとの間のインピーダ
ンスをZとすると、関係式 V=V′−ZI が成り立つ。両式の、電流Iに係る係数を等しいとおけ
ば、 Z=Z1Z2/(Z1+Z2)=1/(1/Z1+1/Z2) となる。したがって、図3(a)の3端子回路は、図3(b)
に示すように、2端子回路に置き換えられ、この2端子
回路のインピーダンスは、図3(c)に示すように、 (Z1//Z2)+Z3 となる。ただし、Z1//Z2=1/(1/Z1+1/Z
2)である。
FIG. 2 shows an equivalent circuit beyond the branch point of the three-terminal parallel two-circuit transmission line of FIG. How to derive the equivalent circuit of FIG. 2 will be described with reference to FIG. FIG. 3A shows a three-terminal circuit, and the impedance of each branch is Z1, Z2, Z3. Assuming that the voltage at the terminal A is V1, the voltage at the terminal B is V2, the voltage at the terminal T is V, and the current flowing from the terminal T to the terminal C is I, the relational expression V = [(V2Z1 + V1Z2) / (Z1 + Z2)]- Z1Z2I
/ (Z1 + Z2) holds. In the two-terminal circuit shown in FIG. 3B, the voltage at the terminal A is V ', the voltage at the terminal T is V, the current flowing from the terminal T to the terminal C is I, and the voltage between the terminal A and the terminal T is Assuming that the impedance is Z, the relational expression V = V'-ZI holds. If the coefficients related to the current I in both equations are equal, then Z = Z1Z2 / (Z1 + Z2) = 1 / (1 / Z1 + 1 / Z2). Therefore, the three-terminal circuit of FIG.
As shown in FIG. 3, the circuit is replaced by a two-terminal circuit, and the impedance of this two-terminal circuit is (Z1 // Z2) + Z3, as shown in FIG. However, Z1 // Z2 = 1 / (1 / Z1 + 1 / Z
2).

【0015】送電線の距離あたりのインピーダンスを一
定としたので、以上のインピーダンスZをそのまま距離
dと読み変えても、前記の等価回路は成り立つ。すなわ
ち、2端子回路の距離dは、 d=(d1//d2)+d3 (4) となる。以上の考察から、図1の3端子平行2回線送電
線の等価回路を、図2のように書くことができる。
Since the impedance per distance of the transmission line is fixed, the above equivalent circuit is established even if the above impedance Z is read as the distance d. That is, the distance d of the two-terminal circuit is as follows: d = (d1 // d2) + d3 (4) From the above considerations, an equivalent circuit of the three-terminal parallel two-circuit transmission line of FIG. 1 can be written as shown in FIG.

【0016】ここで、負荷端Bと分岐点Tとの距離d2
が、距離d1よりも短いとすると、 d1//d2=1/(1/d1+1/d2) =d1d2/d1+d2 =d1d2/d1 =d2 と近似できる。したがって、 d=d2+d3 となるが、距離d2が、距離d3よりも短いとすると、式
はさらに近似でき、 d=d3 (5) となる。
Here, the distance d2 between the load end B and the branch point T
Is shorter than the distance d1, it can be approximated that d1 // d2 = 1 / (1 / d1 + 1 / d2) = d1d2 / d1 + d2 = d1d2 / d1 = d2. Therefore, d = d2 + d3. If the distance d2 is shorter than the distance d3, the equation can be further approximated, and d = d3 (5).

【0017】ここで、数値により、近似の評価を行う。
d1:d2:d3=50:1:50である場合、(4)式を計
算すると、 d=(d1//d2)+d3=50.98 となる。このdに対して、(5)式のd3は、2%減となっ
ている。従って、この程度ならば、標定結果に大きく影
響を与えないで、(6)式の近似を使うことができる。し
たがって、短い分岐の距離は、長い分岐の距離の2%ま
たはそれ以下であることが好ましい。
Here, approximation is evaluated by numerical values.
When d1: d2: d3 = 50: 1: 50, the equation (4) is calculated, and d = (d1 // d2) + d3 = 50.98. With respect to d, d3 in equation (5) is reduced by 2%. Therefore, to this extent, the approximation of equation (6) can be used without significantly affecting the orientation result. Therefore, the distance of the short branch is preferably 2% or less of the distance of the long branch.

【0018】この図2の2端子平行2回線送電線におけ
る、分岐点Tから地絡故障点までの距離xは、d=d3
として、 x=2d3(I02+I02′)/[(I01+I01′)+
(I02+I02′)] で求められる。ここで、前述したように、I01′=−I
02′であるから、 x=2d3(I02+I02′)/[(I01+I02)] となる。I02′は、負の値をとるので、I02′を絶対値
で書くと、 x=2d3(I02−I02′)/[(I01+I02)] (6) となる。この(6)式により、既知の値d3、電源端Aで
の電流測定値I01,I02、及び負荷端Bでの電流測定値
I02′に基づいて、分岐点から故障点までの距離xを求
めることができる。電源端Aからの距離であれば、xに
d1を加算する。
In the two-terminal parallel two-circuit transmission line of FIG. 2, the distance x from the branch point T to the ground fault point is d = d3
X = 2d3 (I02 + I02 ') / [(I01 + I01') +
(I02 + I02 ')]. Here, as described above, I01 '=-I
02 ', x = 2d3 (I02 + I02') / [(I01 + I02)]. Since I02 'takes a negative value, if I02' is written as an absolute value, x = 2d3 (I02-I02 ') / [(I01 + I02)] (6) Based on the known value d3, the current value I01, I02 at the power supply terminal A, and the current measurement value I02 'at the load terminal B, the distance x from the branch point to the fault point is obtained by the equation (6). be able to. If the distance is from the power supply terminal A, d1 is added to x.

【0019】回線2Lに地絡故障が発生した場合は、 x=2d3(I01−I01′)/[(I01+I02)] (7) となる。次に、分岐点より手前の電源端Aと分岐点Tと
の区間に地絡故障が発生した場合の故障点標定方法を説
明する。この場合は、等価回路は、図4に示すように、
2端子回路に置き換えられる。この2端子回路の導き方
は、図5(a)(b)に示すように、3端子回路の端子Bと端
子Cとを接続して、2端子回路に置き換える。2端子回
路のインピーダンスは、図4(c)に示すように、 Z1+(Z2//Z3) となる。ただし、Z2//Z3=1/(1/Z2+1/Z
3)である。
If a ground fault occurs in the line 2L, x = 2d3 (I01-I01 ') / [(I01 + I02)] (7) Next, a fault point locating method when a ground fault occurs in a section between the power supply terminal A and the branch point T before the branch point will be described. In this case, the equivalent circuit is as shown in FIG.
Replaced by a two-terminal circuit. As shown in FIGS. 5A and 5B, this two-terminal circuit is connected by connecting the terminals B and C of the three-terminal circuit and replacing it with a two-terminal circuit. The impedance of the two-terminal circuit is Z1 + (Z2 // Z3) as shown in FIG. However, Z2 // Z3 = 1 / (1 / Z2 + 1 / Z
3).

【0020】送電線の距離に換算すると、2端子回路の
距離dは、 d=d1+(d2//d3) となる。距離d2が距離d3よりも短いとすると、 d=d1+d2 と近似でき、さらに、距離d2が距離d1よりも短いとす
ると、 d=d1 と近似できる。
When converted into the distance of the transmission line, the distance d of the two-terminal circuit is as follows: d = d1 + (d2 // d3). If the distance d2 is shorter than the distance d3, it can be approximated as d = d1 + d2, and if the distance d2 is shorter than the distance d1, it can be approximated as d = d1.

【0021】したがって、電源端Aから地絡故障点まで
の距離xは、d=d1と書けば、 x=2d1I02/(I01+I02) (8) で求められる。回線2Lに地絡故障が発生した場合は、 x=2d1I01/(I01+I02) (9) となる。
Accordingly, if d = d1, the distance x from the power supply terminal A to the ground fault point can be obtained as follows: x = 2d1I02 / (I01 + I02) (8) When a ground fault occurs in the line 2L, x = 2d1I01 / (I01 + I02) (9)

【0022】−短絡故障点標定− 図6は、短い分岐のある3端子平行2回線送電線の回路
図である。送電線の電源端Aには電源1が設置されると
ともに、電流電圧検知部2aが設置され、短い分岐の負
荷端Bには電流電圧検知部3aが設置されている。電流
電圧検知部2aと電流電圧検知部3aとは、専用回線4
で結ばれていて、電流電圧検知部3aの検知データは、
電流電圧検知部2aに集約されるようになっている。集
約されたデータは、パーソナルコンピュータ5に入力さ
れ、ここで故障点標定演算が行われる。
FIG. 6 is a circuit diagram of a three-terminal parallel two-circuit transmission line having a short branch. A power supply 1 is installed at a power supply end A of the transmission line, and a current / voltage detection unit 2a is installed. A current / voltage detection unit 3a is installed at a short branch load end B. The current / voltage detector 2a and the current / voltage detector 3a are connected to a dedicated line 4
And the detection data of the current / voltage detector 3a is
It is arranged to be collected in the current / voltage detector 2a. The aggregated data is input to the personal computer 5, where a fault locating operation is performed.

【0023】送電線の単位距離あたりのインピーダンス
は、場所によらず一様であるとする。電源端Aと分岐点
Tとの距離をd1、負荷端Bと分岐点Tとの距離をd2、
負荷端Cと分岐点Tとの距離をd3とする。電源端Aで
の1L回線のa相電流をIa,b相電流をIbとし、線間
電圧をVabとする。負荷端Bでの1L回線のa相電流を
Ia′,b相電流をIb′とし、線間電圧をVab′とす
る。
It is assumed that the impedance per unit distance of the transmission line is uniform regardless of the location. The distance between the power supply end A and the branch point T is d1, the distance between the load end B and the branch point T is d2,
The distance between the load end C and the branch point T is d3. The a-phase current of the 1L line at the power supply terminal A is Ia, the b-phase current is Ib, and the line voltage is Vab. The a-phase current of the 1L line at the load end B is Ia ', the b-phase current is Ib', and the line voltage is Vab '.

【0024】分岐点以遠の負荷端Cと分岐点Tとの区間
に1L回線で短絡故障が発生したとし、短絡故障点を×
で表示する。分岐点Tからこの短絡故障点×に流入する
電流は、a相については、電源端Aから流れる1L回線
の電流Iaと、負荷端Bから流れる1L回線の電流Ia′
との和(Ia+Ia′)、b相についてはIbとIb′との
和(Ib+Ib′)である。図6の3端子平行2回線送電
線の等価回路は、図7に示すとおり2端子平行2回線と
なり、その端子間距離dが、d3で近似できることは、
前述したとおりである。
It is assumed that a short-circuit fault has occurred in the 1L line in the section between the load terminal C and the branch point T farther than the branch point.
To display. The current flowing from the branch point T to the short-circuit fault point x is, for the phase a, the current Ia of the 1L line flowing from the power supply end A and the current Ia 'of the 1L line flowing from the load end B.
(Ia + Ia '), and for the b-phase, the sum of Ib and Ib' (Ib + Ib '). The equivalent circuit of the three-terminal parallel two-line transmission line in FIG. 6 is a two-terminal parallel two line as shown in FIG. 7, and the distance d between the terminals can be approximated by d3.
As described above.

【0025】この図7の2端子平行2回線における、分
岐点Tから短絡故障点×までの距離yは、 yIm[Z]=Im[(Vab″)/(Ia+Ia′)−
(Ib+Ib′)] で求められる。ただし、Vab″は、分岐点Tにおける線
間電圧である。Vab″は直接測定できないので、本発明
においては負荷端Bの線間電圧Vab′で近似する。この
近似は、負荷端Bと分岐点Tとの距離(インピーダン
ス)が短いことに基づいている。
The distance y from the branch point T to the short-circuit fault point x in the two-terminal parallel two circuit shown in FIG. 7 is yIm [Z] = Im [(Vab ") / (Ia + Ia ')-
(Ib + Ib ')]. However, Vab "is the line voltage at the branch point T. Since Vab" cannot be measured directly, it is approximated by the line voltage Vab 'at the load end B in the present invention. This approximation is based on the fact that the distance (impedance) between the load end B and the branch point T is short.

【0026】したがって、分岐点Tから短絡故障点×ま
での距離yは、yIm[Z] =Im[(Vab′)/(Ia+Ia′)−(Ib+Ib′)](10) となる。電源端Aからの距離であれば、yにd1を加算
する。次に、分岐点より手前の電源端Aと分岐点Tとの
区間に短絡故障が発生した場合の故障点標定方法を説明
する。
Therefore, the distance y from the branch point T to the short-circuit fault point x is yIm [Z] = Im [(Vab ') / (Ia + Ia')-(Ib + Ib ')] (10). If it is a distance from the power supply terminal A, d1 is added to y. Next, a fault point locating method when a short-circuit fault occurs in a section between the power supply terminal A and the branch point T before the branch point will be described.

【0027】この場合は、等価回路は、図8に示すよう
に、2端子回路に置き換えられる。この2端子回路の導
き方は、図5を用いて説明したとおりである。2端子回
路の距離dは、d1と近似できる。したがって、電源端
Aから短絡故障点までの距離yは、 yIm[Z]=Im[(Vab)/(Ia−Ib)] (11) で求められる。
In this case, the equivalent circuit is replaced by a two-terminal circuit as shown in FIG. The method of leading the two-terminal circuit is as described with reference to FIG. The distance d of the two-terminal circuit can be approximated to d1. Therefore, the distance y from the power supply terminal A to the short-circuit fault point is obtained by yIm [Z] = Im [(Vab) / (Ia-Ib)] (11).

【0028】なお、三線短絡故障の場合は、相間差電流
(Ia−Ib),(Ib−Ic),又は(Ic−Ia)の一番
大きな相の二線短絡故障と考えて、標定する。例えば、
(Ia−Ib)が一番大きければ、ab相で標定する。
In the case of a three-wire short-circuit fault, the fault is determined as a two-wire short-circuit fault of the phase having the largest phase difference current (Ia-Ib), (Ib-Ic), or (Ic-Ia). For example,
If (Ia-Ib) is the largest, standardize in ab phase.

【0029】[0029]

【実施例】短い分岐のある3端子平行2回線送電線系統
を対象として本発明の故障点標定演算を行った。この系
統は、実際に敷設されている電圧77kVの、100Ω
抵抗接地系統であり、電源端Aと分岐点Tとの距離d1
は6.5km、負荷端Bと分岐点Tとの距離d2は0.
02km、負荷端Cと分岐点Tとの距離d3は10.5
kmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The fault locating calculation of the present invention was performed for a three-terminal parallel two-circuit transmission line system having a short branch. This system has a voltage of 77 kV, 100 Ω
It is a resistance grounding system, and the distance d1 between the power supply terminal A and the branch point T
Is 6.5 km, and the distance d2 between the load end B and the branch point T is 0.3 km.
02 km, and the distance d3 between the load end C and the branch point T is 10.5.
km.

【0030】まず、EMTP(Electromagnetic Transie
nts Program)により故障点を設定して故障解析(シミュ
レーション)を行い、故障電圧、故障電流を求めた。そ
の故障電圧、故障電流を使って、(1)式(2)式を使う従来
の方法と、本発明の故障点標定方法とで故障点を求め、
それぞれ故障解析結果と比較した。
First, EMTP (Electromagnetic Transie)
nts Program) to set fault points and perform fault analysis (simulation) to determine fault voltage and fault current. Using the fault voltage and the fault current, a fault point is obtained by the conventional method using the formula (1) and the formula (2) and the fault point locating method of the present invention,
Each was compared with the failure analysis result.

【0031】[0031]

【表1】 [Table 1]

【0032】表1は、一線地絡故障の場合を示す。シミ
ュレーション上の故障点は、電源端Aから7.55k
m、11.75km、15.95kmの地点とした。故
障相で、「2L B,G」とあるのは、2L回線のb相
が地絡したという意味、「1L C,G」とあるのは、
1L回線のc相が地絡したという意味、「2L A,
G」とあるのは、2L回線のa相が地絡したという意味
である。演算結果の「補正無」は、前記(1)式を使って
故障点標定をした結果を示し、「補正有」とあるのは、
本発明の(6)式または(7)式を使って故障点標定をした
結果を示す。
Table 1 shows the case of a single-line ground fault. The failure point in the simulation is 7.55 k from the power supply terminal A.
m, 11.75 km and 15.95 km. In the failure phase, “2L B, G” means that the b phase of the 2L line is grounded, and “1L C, G” means
Meaning that the c phase of the 1L line was grounded, "2L A,
“G” means that the a-phase of the 2L line is grounded. `` No correction '' of the calculation result indicates the result of fault location using the equation (1), and `` with correction '' means
The result of fault location using Equation (6) or (7) of the present invention is shown.

【0033】補正無の結果によれば、分岐点以遠に故障
点があっても、分岐点よりも手前と計算してしまうが、
本発明によれば、分岐点以遠の故障点を極めて精度よく
標定している。
According to the result without correction, even if there is a fault point beyond the branch point, the fault point is calculated before the branch point.
According to the present invention, fault points beyond the branch point are located with extremely high accuracy.

【0034】[0034]

【表2】 [Table 2]

【0035】表2は、二線または三線短絡故障の場合を
示す。シミュレーション上の故障点は、電源端Aから
7.55km、11.75km、15.95kmの地点
とした。故障相で、「2L C−A,S」とあるのは、
2L回線のa相とc相が短絡したという意味、「1L
A−B,S」とあるのは、1L回線のa相とb相が短絡
したという意味、「2L A−B−C,S」とあるの
は、2L回線のa,b,cの3相が短絡したという意味
である。
Table 2 shows the case of a two-wire or three-wire short-circuit fault. The failure points in the simulation were 7.55 km, 11.75 km, and 15.95 km from the power supply terminal A. In the failure phase, "2L CA, S" is
"1L" means that the phases a and c of the 2L line are short-circuited.
“AB, S” means that the a-phase and b-phase of the 1L line are short-circuited, and “2L ABC, S” means that 3 is the a, b, c of the 2L line. This means that the phases have short-circuited.

【0036】演算結果の「補正無」は、前記(10)式を
使って故障点標定をした結果を示し、「補正有」とある
のは、本発明の式を使って故障点標定をした結果を示
す。補正無の結果によれば、故障点を実際より遠く計算
してしまうが、本発明によれば、分岐点以遠の故障点を
極めて精度よく標定している。
"No correction" in the calculation result indicates the result of fault location using the equation (10), and "corrected" means that the fault location was performed using the formula of the present invention. The results are shown. According to the result without correction, the fault point is calculated farther than the actual point. However, according to the present invention, the fault points beyond the branch point are located with extremely high accuracy.

【0037】[0037]

【発明の効果】以上のように本発明の故障点標定方法に
よれば、電源端の電流を測定するとともに、短い分岐端
の電流を測定することにより、簡単な演算により、分岐
点以遠の一線地絡故障点を正確に標定することができ
る。また、本発明の故障点標定方法によれば、電源端の
電流を測定するとともに、短い分岐端の電流、電圧を測
定することにより、簡単な演算により、分岐点以遠の短
絡故障点を正確に標定することができる。
As described above, according to the fault locating method of the present invention, the current at the power supply end is measured and the current at the short branch end is measured. The ground fault point can be accurately located. According to the fault point locating method of the present invention, the current at the power supply end is measured, and the current and voltage at the short branch end are measured. Can be oriented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】地絡故障点標定に用いる、短い分岐のある3端
子平行2回線送電線の回路図である。
FIG. 1 is a circuit diagram of a short-branched three-terminal parallel two-circuit transmission line used for ground fault fault location.

【図2】3端子平行2回線送電線の分岐点以遠の2端子
等価回路図である。
FIG. 2 is a two-terminal equivalent circuit diagram of a three-terminal parallel two-circuit transmission line beyond a branch point;

【図3】図2の等価回路の導き方を解説するための図で
ある。
FIG. 3 is a diagram for explaining how to derive the equivalent circuit of FIG. 2;

【図4】分岐点より手前で地絡故障が発生した場合の2
端子等価回路図である。
FIG. 4 illustrates a case where a ground fault occurs before a branch point.
It is a terminal equivalent circuit diagram.

【図5】図4の等価回路の導き方を解説するための図で
ある。
FIG. 5 is a diagram for explaining how to derive the equivalent circuit of FIG. 4;

【図6】短絡故障点標定に用いる、短い分岐のある3端
子平行2回線送電線の回路図である
FIG. 6 is a circuit diagram of a three-terminal parallel two-circuit transmission line with short branches used for short-circuit fault point location.

【図7】図6の3端子平行2回線送電線の2端子等価回
路である。
FIG. 7 is a two-terminal equivalent circuit of the three-terminal parallel two-circuit transmission line of FIG. 6;

【図8】分岐点より手前で短絡故障が発生した場合の2
端子等価回路である。
FIG. 8 illustrates a case where a short-circuit failure occurs before a branch point.
It is a terminal equivalent circuit.

【符号の説明】[Explanation of symbols]

1 電源 2 電流検知部 2a 電流電圧検知部 3 電流検知部 3a 電流電圧検知部 4 専用回線 5 パーソナルコンピュータ DESCRIPTION OF SYMBOLS 1 Power supply 2 Current detection part 2a Current voltage detection part 3 Current detection part 3a Current voltage detection part 4 Dedicated line 5 Personal computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】短い分岐のある平行2回線の故障点標定方
法であって、 電源端Aの1L回線の零相電流I01、2L回線の零相電
流I02、短い分岐のある負荷端Bの2L回線の零相電流
I02′に基づいて、式 x=2d(I02−I02′)/(I01+I02) (dは分岐点から負荷端Cまでの距離)により、分岐点
から、分岐点と負荷端Cとの間の1L回線地絡故障点ま
での距離xを求めることを特徴とする、分岐のある平行
2回線の故障点標定方法。
1. A fault point locating method for two parallel lines having a short branch, comprising: a zero-phase current I01 of a 1L line at a power supply terminal A, a zero-phase current I02 of a 2L line, and a 2L of a load terminal B having a short branch. Based on the zero-phase current I02 'of the line, the equation x = 2d (I02-I02') / (I01 + I02) (d is the distance from the branch point to the load end C). And determining a distance x to a 1L line ground fault point between the two points.
【請求項2】短い分岐のある平行2回線の故障点標定方
法であって、 電源端Aの1L回線の零相電流I01、2L回線の零相電
流I02、短い分岐のある負荷端Bの1L回線の零相電流
I01′に基づいて、式 x=2d(I01−I01′)/(I01+I02) (dは分岐点から負荷端Cまでの距離)により、分岐点
から、分岐点と負荷端Cとの間の2L回線地絡故障点ま
での距離xを求めることを特徴とする、分岐のある平行
2回線の故障点標定方法。
2. A fault locating method for two parallel lines having a short branch, comprising: a zero-phase current I01 of a 1L line of a power supply terminal A, a zero-phase current I02 of a 2L line, and a 1L of a load terminal B having a short branch. Based on the zero-phase current I01 'of the line, the equation x = 2d (I01-I01') / (I01 + I02) (d is the distance from the branch point to the load end C) And determining a distance x to a 2L line ground fault point between the two points.
【請求項3】短い分岐のある平行2回線の故障点標定方
法であって、 電源端Aの相電流Ii,Ij、短い分岐のある負荷端Bの
相電流Ii′,Ij′、線間電圧Vij′に基づいて、式 yIm[Z]=Im[(Vij′)/(Ii+Ii′)−
(Ij+Ij′)] (Zは回線の正相インピーダンス、i,jは三相のうち
いずれかの相を表す。i≠j)により、分岐点から、分
岐点と負荷端Cとの間のij相間短絡故障点までの距離
yを求めることを特徴とする、分岐のある平行2回線の
故障点標定方法。
3. A method for locating a fault in two parallel lines having short branches, comprising: phase currents Ii and Ij at a power supply end A, phase currents Ii 'and Ij' at a load end B having a short branch, and line voltage. Based on Vij ', the expression yIm [Z] = Im [(Vij') / (Ii + Ii ')-
(Ij + Ij ')] (Z is the positive-phase impedance of the line, i and j represent one of the three phases, i ≠ j), and ij between the branch point and the load end C from the branch point A method for locating a fault point of two parallel lines having a branch, wherein a distance y to an interphase short-circuit fault point is obtained.
【請求項4】分岐点と負荷端Bとの距離d2が、分岐点
と負荷端Cとの距離d3の2%またはそれ以下であるこ
とを特徴とする請求項1、請求項2または請求項3記載
の故障点標定方法。
4. A distance d2 between a branch point and a load end B is equal to or less than 2% of a distance d3 between a branch point and a load end C. 3. The failure point locating method described in 3.
JP2000229487A 2000-07-28 2000-07-28 Method for locating fault point of branched parallel dual line Pending JP2002040085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229487A JP2002040085A (en) 2000-07-28 2000-07-28 Method for locating fault point of branched parallel dual line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229487A JP2002040085A (en) 2000-07-28 2000-07-28 Method for locating fault point of branched parallel dual line

Publications (1)

Publication Number Publication Date
JP2002040085A true JP2002040085A (en) 2002-02-06

Family

ID=18722600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229487A Pending JP2002040085A (en) 2000-07-28 2000-07-28 Method for locating fault point of branched parallel dual line

Country Status (1)

Country Link
JP (1) JP2002040085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907677A (en) * 2010-07-02 2010-12-08 华北电力大学 High voltage cable-overhead line hybrid line fault phase ranging method
JP2012191779A (en) * 2011-03-11 2012-10-04 Meidensha Corp Voltage controller of power distribution system
JP2015148610A (en) * 2014-02-07 2015-08-20 三菱電機株式会社 Method and system for determining location of fault in ungrounded power distribution system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907677A (en) * 2010-07-02 2010-12-08 华北电力大学 High voltage cable-overhead line hybrid line fault phase ranging method
JP2012191779A (en) * 2011-03-11 2012-10-04 Meidensha Corp Voltage controller of power distribution system
JP2015148610A (en) * 2014-02-07 2015-08-20 三菱電機株式会社 Method and system for determining location of fault in ungrounded power distribution system

Similar Documents

Publication Publication Date Title
Das et al. Transmission line fault detection and location using wide area measurements
CA2489178A1 (en) Fault location using measurements of current and voltage from one end of a line
CN111983510B (en) Single-phase ground fault phase selection method and system based on phase voltage and current abrupt change
CN109964136B (en) Method and control system for fault direction detection
CN111426908B (en) Single-phase earth fault protection method, device and system for small current earthing system
CN103604991A (en) Device and method for measuring bus voltage phase of capacitor voltage transformer
CN111141995B (en) Line double-end steady-state distance measuring method and system based on amplitude comparison principle
CN109709441B (en) Low-current grounding line selection method and device
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
CN109270405B (en) Zero sequence parameter calculation method and system based on double-circuit line characteristic equation
CN110024249B (en) Method for detecting a fault in an electric power transmission line and protection system using the method
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
JP2002040085A (en) Method for locating fault point of branched parallel dual line
CN109669096B (en) Single-loop single-phase earth fault positioning method for double-loop power transmission line on same pole
US10310017B2 (en) Detection of generator stator inter-circuit faults
CN113295970B (en) Resistive phase detection method for isolating single-phase earth fault on site
Lopes et al. Real-time evaluation of PMU-based fault locators
Jamali et al. Impedance based fault location method for single phase to earth faults in transmission systems
Rajić et al. Zero-sequence longitudinal differential protection of transmission lines
Zheng et al. Robustness of one-terminal fault location algorithm based on power frequency quantities
Kawady et al. An accurate fault locator for underground distribution networks using modified apparent-impedance calculation
CN112684288A (en) Method for realizing small-current single-phase grounding line selection by utilizing three-phase fault signal current
LV13922B (en) Method for determination of distance to fault place by phase-to-earth fault in distribution networks
CN109669093A (en) A kind of non-effectively earthed system line-to-ground fault detection method
JPH10132890A (en) Method and device for locating failure point