JP2002038361A - Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith - Google Patents

Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith

Info

Publication number
JP2002038361A
JP2002038361A JP2000223998A JP2000223998A JP2002038361A JP 2002038361 A JP2002038361 A JP 2002038361A JP 2000223998 A JP2000223998 A JP 2000223998A JP 2000223998 A JP2000223998 A JP 2000223998A JP 2002038361 A JP2002038361 A JP 2002038361A
Authority
JP
Japan
Prior art keywords
hydrogen ion
polymer membrane
radical
fiber structure
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000223998A
Other languages
Japanese (ja)
Inventor
Satoshi Nishikawa
聡 西川
Takahiro Omichi
高弘 大道
Sadamitsu Murayama
定光 村山
Kenichi Kawaguchi
健一 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000223998A priority Critical patent/JP2002038361A/en
Publication of JP2002038361A publication Critical patent/JP2002038361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing material comprising a non-fluorine polymer capable of keeping mechanical strengths even under a radical generating environment, and to use the reinforcing material as a hydrogen ion-conducting polymer membrane-reinforcing material for fuel batteries. SOLUTION: This fiber structure, such as a nonwoven fabric, characterized by consisting mainly of fibers comprising polyvinyl chloride as a main polymer and having a thickness of 10 to 50 μm and an air permeability (JIS P8117) of <=10 sec/100 cc.in2, and the hydrogen ion-conducting polymer membrane using the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主としてポリ塩化ビ
ニル繊維からなる繊維構造物に関する。さらに詳しく
は、主としてポリ塩化ビニル繊維からなる耐ラジカル性
を有する繊維構造物、及びこれを用いた固体高分子型燃
料電池用に好適な水素イオン伝導性高分子膜に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure mainly comprising polyvinyl chloride fibers. More specifically, the present invention relates to a radical resistant fiber structure mainly composed of polyvinyl chloride fiber and a hydrogen ion conductive polymer membrane suitable for a polymer electrolyte fuel cell using the same.

【0002】[0002]

【従来の技術】従来から電気分解、一次電池や二次電池
におけるセパレータ、あるいは燃料電池に用いられる水
素イオン伝導性高分子膜の補強材に合成繊維の不織布、
織布、短繊維等の繊維質基材を使用することが検討され
ている。特に近年、環境問題からクリーンで高効率な電
源として燃料電池が注目されている背景もあり、低温作
動や小型化の観点から自動車用途を中心に固体高分子型
燃料電池(PEFC)の開発が活発におこなわれているが、こ
れに用いられる水素イオン伝導性高分子膜の補強技術の
開発も重要になっている。
2. Description of the Related Art Conventionally, a nonwoven fabric of synthetic fiber is used as a separator in a primary battery or a secondary battery or a reinforcing material of a hydrogen ion conductive polymer membrane used in a fuel cell.
The use of fibrous base materials such as woven fabrics and short fibers has been studied. In particular, in recent years, fuel cells have been attracting attention as clean and highly efficient power sources due to environmental issues, and the development of polymer electrolyte fuel cells (PEFCs) has been active mainly in automotive applications from the viewpoint of low-temperature operation and miniaturization. However, the development of a technique for reinforcing the proton conductive polymer membrane used for this purpose is also important.

【0003】PEFCの用いる高分子電解質膜はナフィオン
(Nafion、デュポン社の登録商標。以下同様。)に代表さ
れるパーフルオロアルキルスルホン酸膜や米国特許第
5,362,836号に記載されているスルホン酸基で
置換したポリエーテルエーテルケトン、特開平10−4
5913号公報に記載されているポリエーテルスルホン
等がある。
[0003] The polymer electrolyte membrane used by PEFC is Nafion.
(Nafion, a registered trademark of DuPont; hereinafter the same). A perfluoroalkylsulfonic acid membrane represented by US Pat. No. 5,362,836, and a polyetheretherketone substituted with a sulfonic acid group described in US Pat. Kaihei 10-4
And polyethersulfone described in JP-A-5913.

【0004】上記のような高分子膜において、水素イオ
ン伝導性を発現させるためには水による膨潤が必須であ
る。しかし、水により膨潤させると十分な機械的強度が
保てないという問題がある。また、水素イオン伝導性を
向上させるためにはスルホン酸基をより多く導入する必
要があるが、高いスルホン酸基置換量においては膜が溶
解してしまうという問題も有している。以上のような理
由から上記のような高分子膜単独では、燃料電池を作製
した際耐久性が悪く、十分な性能が引き出せないという
のが実情である。
[0004] In the above-mentioned polymer membrane, swelling with water is essential for developing hydrogen ion conductivity. However, there is a problem that sufficient mechanical strength cannot be maintained when swelled with water. Further, in order to improve the hydrogen ion conductivity, it is necessary to introduce more sulfonic acid groups, but there is a problem that the membrane is dissolved at a high sulfonic acid group substitution amount. For the above reasons, it is a fact that the polymer membrane alone as described above has poor durability when a fuel cell is manufactured, and cannot provide sufficient performance.

【0005】また、経済的な観点及び性能の面から高分
子膜はより薄膜化した方が好ましいが、機械的強度の問
題から高分子膜単独では限界がある。
Further, it is preferable to make the polymer film thinner from the viewpoint of economy and performance, but there is a limit to the polymer film alone due to the problem of mechanical strength.

【0006】このような背景から高分子膜を補強する技
術が重要であり、膜補強技術としてテトラフルオロエチ
レン延伸多孔膜(特開平8-162132号公報)と複合化させる
というものがある。また、第三回国際燃料電池会議(1
999年)要項集A4−1、A4−2等に記載されてい
るように、テトラフルオロエチレンの織物、短繊維分散
による補強技術が検討されている。
[0006] Against this background, the technique of reinforcing a polymer membrane is important, and as a membrane reinforcing technique, there is a technique of combining with a tetrafluoroethylene stretched porous membrane (Japanese Patent Laid-Open No. 8-162132). In addition, the 3rd International Fuel Cell Conference (1
(1999) As described in essential points A4-1, A4-2, etc., a reinforcing technique by dispersion of woven fabric and short fibers of tetrafluoroethylene is being studied.

【0007】しかし、テトラフルオロエチレンによる補
強は燃料電池を普及させることを考えると経済的に困難
であり、また表面張力が小さいことによる濡れ性の問題
から電解質ドープの含浸が難しいという問題を有してい
る。
However, reinforcement with tetrafluoroethylene is economically difficult considering the spread of fuel cells, and has the problem that it is difficult to impregnate with an electrolyte dope due to the problem of wettability due to low surface tension. ing.

【0008】しかし、PEFC用水素イオン伝導性高分子膜
補強基材には耐久性といった観点から耐ラジカル性に対
する要求は強く、テトラフルオロエチレンに代表される
フッ素系樹脂しか用いられていないのが現状である。
However, there is a strong demand for radical resistance from the viewpoint of durability in the hydrogen ion conductive polymer membrane reinforcing substrate for PEFC, and only a fluororesin represented by tetrafluoroethylene is currently used. It is.

【0009】[0009]

【発明が解決しようとする課題】上記のような理由か
ら、燃料電池用水素イオン伝導性高分子膜補強基材とし
てテトラフルオロエチレンに代表されるようなフッ素系
ポリマーを用いることは好ましくない。
For the reasons described above, it is not preferable to use a fluorine-based polymer such as tetrafluoroethylene as the hydrogen ion conductive polymer membrane reinforcing substrate for a fuel cell.

【0010】我々はこのような課題に対して、耐熱性の
高いアラミド樹脂からなる基材にポリテトラフルオロエ
チレン微粒子を添着後、ポリテトラフルオロエチレンの
溶融温度以上に加熱し添着粒子を溶解して均一に塗膜化
する技術を検討している。
[0010] In order to solve such a problem, after adhering polytetrafluoroethylene fine particles to a substrate made of aramid resin having high heat resistance, the mixture is heated to a temperature higher than the melting temperature of polytetrafluoroethylene to dissolve the adhered particles. We are studying a technique for forming a uniform coating.

【0011】また、我々は、有機極性溶媒にフッ素化ポ
リアルキレンを溶解した溶液を用いて非フッ素系高分子
重合体繊維からなる繊維質基材を被覆することも提案し
ている。
We have also proposed coating a fibrous substrate made of non-fluorinated high molecular weight polymer fibers with a solution of a fluorinated polyalkylene dissolved in an organic polar solvent.

【0012】本発明の目的は、耐ラジカル環境下におい
ても十分に機械的強度を維持できるような非フッ素系ポ
リマーからなる補強基材を提供し、燃料電池用水素イオ
ン伝導性高分子膜補強基材に用いることである。
An object of the present invention is to provide a reinforcing substrate made of a non-fluorinated polymer capable of maintaining sufficient mechanical strength even in a radical-resistant environment, and a hydrogen ion conductive polymer membrane reinforcing substrate for a fuel cell. It is used for materials.

【0013】また本発明の目的は、上記補強基材を用い
た燃料電池用として好適な水素イオン伝導性高分子膜を
提供することにある。
It is another object of the present invention to provide a hydrogen ion conductive polymer membrane suitable for a fuel cell using the above-mentioned reinforcing substrate.

【0014】[0014]

【課題を解決するための手段】我々はこの課題について
検討をかさねた結果、ポリ塩化ビニルが十分な耐ラジカ
ル性を有することを見出した。しかし、PEFC用水素
イオン伝導性高分子膜補強材として好適に用いることが
できるようなポリ塩化ビニルの形態は厚さ等の点で望ま
しくなかった。そこで、我々はポリ塩化ビニルを主体と
する繊維を主体とした厚さが薄い繊維構造物が、PEF
C用水素イオン伝導性高分子膜の補強基材として重要で
あることを見出し開発することで本発明に至った。
As a result of studying this problem, we have found that polyvinyl chloride has sufficient radical resistance. However, a form of polyvinyl chloride that can be suitably used as a hydrogen ion conductive polymer membrane reinforcing material for PEFC is not desirable in terms of thickness and the like. Therefore, we have developed a thin fiber structure mainly composed of polyvinyl chloride fibers, PEF.
The present invention has been achieved by finding out and developing it as important as a reinforcing base material of the hydrogen ion conductive polymer membrane for C.

【0015】すなわち本発明は、主としてポリ塩化ビニ
ルからなる繊維を主体とした厚さ10〜50μmであ
り、透気度(JIS P8117)が10sec/10
0cc・in2以下であることを特徴とした繊維構造物
である。また、上記繊維構造物が不織布である繊維構造
物である。さらに、上記繊維構造物により補強されたこ
と水素イオン伝導性高分子膜である。
That is, the present invention has a thickness of 10 to 50 μm mainly composed of fibers mainly composed of polyvinyl chloride and an air permeability (JIS P8117) of 10 sec / 10.
It is a fiber structure characterized by being 0 cc · in 2 or less. Further, the fibrous structure is a nonwoven fabric. Further, it is a hydrogen ion conductive polymer membrane reinforced by the fiber structure.

【0016】[0016]

【発明の実施の形態】以下、本発明の耐ラジカル性繊維
構造物及びそれにより補強された水素イオン伝導性高分
子膜複合体を詳細に説明する。本発明の繊維構造物は、
耐ラジカル性を有し、ポリ塩化ビニルを主体にした繊維
を主体とした厚さが10〜50μmであり、透気度(J
IS P8117)が10sec/100cc・in2
以下であることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a radical-resistant fiber structure of the present invention and a hydrogen ion conductive polymer membrane composite reinforced by the same will be described in detail. The fiber structure of the present invention,
It has radical resistance, a thickness mainly composed of a fiber mainly composed of polyvinyl chloride is 10 to 50 μm, and an air permeability (J
IS P8117) is 10 sec / 100 cc in 2
It is characterized by the following.

【0017】ここで耐ラジカル性とはヒドロキシルラジ
カルのような活性なラジカル存在かで物性が低下しない
ことを意味する。この特性はPEFC用水素イオン伝導性高
分子膜補強基材としては重要な特性である。燃料電池作
動時に該高分子膜中にはヒドロキシルラジカルが発生
し、このヒドロキシルラジカルによる劣化が燃料電池の
耐久性に悪影響を及ぼすからである。故に該高分子膜補
強基材はヒドロキシルラジカル存在下においても物性を
維持する必要がある。
Here, radical resistance means that physical properties do not decrease due to the presence of an active radical such as a hydroxyl radical. This property is an important property as a hydrogen ion conductive polymer membrane reinforcement base material for PEFC. This is because hydroxyl radicals are generated in the polymer membrane during operation of the fuel cell, and the deterioration due to the hydroxyl radicals adversely affects the durability of the fuel cell. Therefore, it is necessary for the polymer film reinforcing substrate to maintain physical properties even in the presence of a hydroxyl radical.

【0018】この耐ラジカル性は次のように評価するこ
とができる。まず、ラジカル処理であるが、これは
「膜」10(1)(1985年)42頁に記載されてい
るように、ヒドロキシルラジカルを発生するフェントン
試薬中に基材を浸漬するという、ラジカル劣化促進処理
により行うことができる。具体的には、まず、30重量
%濃度の過酸化水素100重量部に第二鉄イオンが20
ppmとなるように硫酸鉄(II)・七水和物を0.00
996重量部添加溶解してフェントン試薬を調製し、そ
して評価材料をその試薬に浸漬し、68℃で24時間放
置する。なお、フェントン試薬のヒドロキシルラジカル
発生量は時間と共に低下するため、途中の5時間経過し
た時点で、新たなフェントン試薬に浸漬し直して68℃
で19時間放置する。このようにラジカル劣化促進処理
を行った後、評価材料を充分な超純水中で洗浄し、過剰
に付着した水分を拭き取り、劣化度を評価する。
The radical resistance can be evaluated as follows. First, the radical treatment is performed. As described in “Membrane” 10 (1) (1985), p. 42, the substrate is immersed in a Fenton reagent that generates hydroxyl radicals. It can be performed by processing. Specifically, first, 20 parts of ferric ion was added to 100 parts by weight of hydrogen peroxide having a concentration of 30% by weight.
ppm iron (II) sulfate heptahydrate to 0.00 ppm
The Fenton reagent is prepared by adding and dissolving 996 parts by weight, and the evaluation material is immersed in the reagent and left at 68 ° C. for 24 hours. Since the amount of hydroxyl radical generated by the Fenton reagent decreases with time, when 5 hours have passed on the way, the Fenton reagent is immersed again in a new Fenton reagent and the temperature is reduced to 68 ° C.
And leave for 19 hours. After the radical deterioration promotion treatment is performed as described above, the evaluation material is washed in a sufficient amount of ultrapure water, excess moisture is wiped off, and the degree of deterioration is evaluated.

【0019】劣化度は各種の手段で評価できるが、ここ
では引張試験による機械強度から評価した。この引張試
験による劣化度の測定は以下にようにして行う。引張試
験は、JIS規格K7127に準じて、25℃で10c
m/分の引張速度で行い、測定サンプルは測定方向に、
長さ20cmになるように切り出し、10cm間隔で引
張試験を実施する。この測定における最大点荷重をパラ
メータにし、ラジカル劣化促進処理前の値に対する処理
後の値の割合をラジカル処理後維持率とし劣化度の指標
とした。ここでは、このラジカル処理後維持率が90%
以上のもの耐ラジカル性材料と定義する。このとき、ポ
リ塩化ビニルは耐ラジカル性材料の部類に含まれる。
The degree of deterioration can be evaluated by various means. Here, the degree of deterioration is evaluated from mechanical strength by a tensile test. The measurement of the degree of deterioration by the tensile test is performed as follows. Tensile test is 10c at 25 ° C according to JIS K7127.
The measurement is performed at a tensile speed of m / min.
Cut out to a length of 20 cm, and a tensile test is performed at 10 cm intervals. The maximum point load in this measurement was used as a parameter, and the ratio of the value after the treatment to the value before the radical deterioration promotion treatment was taken as the maintenance rate after the radical treatment and used as an index of the degree of deterioration. Here, the maintenance rate after the radical treatment is 90%.
These are defined as radical-resistant materials. At this time, polyvinyl chloride is included in the class of radical-resistant materials.

【0020】織物や不織布といった繊維構造物は水素イ
オン伝導性高分子膜複合体を製膜する際に、水素イオン
伝導性高分子を溶解したドープ含浸が容易であるため、
PEFC用水素イオン伝導性高分子膜の補強基材として
は、このような繊維構造物が好適である。
When a hydrogen ion conductive polymer membrane composite is formed into a fibrous structure such as a woven or nonwoven fabric, it is easy to impregnate a dope in which the hydrogen ion conductive polymer is dissolved.
Such a fiber structure is suitable as a reinforcing base material of the hydrogen ion conductive polymer membrane for PEFC.

【0021】該繊維構造物は厚さが10〜50μmのシ
ート状が好適である。50μmを超えると内部抵抗が大
きくなり電池特性が低下する。また、燃料電池スタック
をより小型化するという観点からも厚さが大きいことは
好ましくない。また、10μm未満であるとガスリーク
の問題が顕著になり十分な燃料電池特性が得られない。
また、水素イオン伝導性高分子膜と電極を一体化すると
き加熱プレスするが、厚さが薄すぎると短絡の問題が生
じ燃料電池作製が困難となる。
The fibrous structure is preferably a sheet having a thickness of 10 to 50 μm. If it exceeds 50 μm, the internal resistance increases and the battery characteristics deteriorate. Further, it is not preferable that the thickness is large from the viewpoint of further reducing the size of the fuel cell stack. On the other hand, if it is less than 10 μm, the problem of gas leak becomes remarkable and sufficient fuel cell characteristics cannot be obtained.
In addition, when the hydrogen ion conductive polymer membrane and the electrode are integrated with each other, they are heated and pressed. However, if the thickness is too small, a short circuit problem occurs, and it becomes difficult to manufacture a fuel cell.

【0022】このような範囲の厚さの繊維構造物を得る
ためには不織布の形態が好適である。ただ、織物でもこ
のような厚さになればよいので特に不織布には限定しな
い。
In order to obtain a fibrous structure having a thickness in such a range, the form of a nonwoven fabric is preferable. However, the fabric is not particularly limited to a non-woven fabric as long as it has such a thickness.

【0023】この繊維構造物は、JIS P8117に
準拠した測定法で測定された透気度が10sec/10
0cc・in2以下であることも特徴である。この透気
度が10sec/100cc・in2を超えると目がつ
まり過ぎているため水素イオン伝導性高分子との複合化
が困難になるばかりでなく、該繊維構造物で補強された
ことにより複合化された水素イオン伝導性高分子膜にお
いても実用的な水素イオン伝導性が得られない。
This fiber structure has an air permeability of 10 sec / 10 measured by a measuring method according to JIS P8117.
It is also a feature that it is 0 cc · in 2 or less. If the air permeability exceeds 10 sec / 100 cc · in 2 , the eyes are too clogged, which makes it difficult to form a composite with the hydrogen ion conductive polymer, and also makes the composite reinforced by the fiber structure. Practical hydrogen ion conductivity cannot be obtained even with the hydrogenated proton conductive polymer membrane.

【0024】上記のようなポリ塩化ビニルを主体にした
繊維構造物を得るには例えば以下に示すような方法があ
る。ただし、以下に示すものはあくまで例であり、本発
明を限定するものではない。
To obtain a fibrous structure mainly composed of polyvinyl chloride as described above, for example, there are the following methods. However, what is shown below is merely an example and does not limit the present invention.

【0025】例えば、不織布の製造法としては、例えば
カードとニードル加工を組みあわせたニードルパンンチ
法や接着剤で繊維を結合するケミカルボンド法、熱可塑
性樹脂を用いるサーマルボンド法、エアーを用いるエア
ーレイ法、高圧ジェット水流で繊維を絡ませるスパーン
レース法、繊維を吹き出しながら直接不織布を作製する
メルトブローン法、湿式抄造法等種々の方法が知られて
いるがこれらに限定されるものではない。
For example, the nonwoven fabric may be produced by, for example, a needle punching method in which carding and needle processing are combined, a chemical bonding method in which fibers are bonded with an adhesive, a thermal bonding method using a thermoplastic resin, or an airlay using air. Various methods are known, including, but not limited to, a spunlace method in which fibers are entangled with a high-pressure jet stream, a melt blown method in which a nonwoven fabric is directly produced while blowing fibers, and a wet papermaking method.

【0026】湿式抄造法においてはバインダー繊維を用
いることも可能であるが、用いなくても作製可能であ
る。また、バインダー繊維としてはポリエステル繊維、
ポリエチレン等のオレフィン系繊維等が好適に用いられ
る。ここで、バインダー繊維の含有量は50重量%以下
が好適であり、さらに好適には25重量%以下が好適で
ある。バインダー繊維は一般にポリ塩化ビニルより耐ラ
ジカル性が低いため、50重量%を超えるとラジカル環
境化に曝されたとき十分な物性を維持することが困難と
なる。
In the wet papermaking method, it is possible to use a binder fiber, but it is possible to produce without using a binder fiber. Also, polyester fibers as binder fibers,
Olefin fibers such as polyethylene are preferably used. Here, the content of the binder fiber is preferably 50% by weight or less, more preferably 25% by weight or less. Since binder fibers generally have lower radical resistance than polyvinyl chloride, if the content exceeds 50% by weight, it becomes difficult to maintain sufficient physical properties when exposed to a radical environment.

【0027】しかして本発明によれば、上記繊維構造物
によって補強された水素イオン伝導性高分子膜が提供さ
れる。すなわち、上記繊維構造物を水素イオン伝導性高
分子膜と複合化することにより、補強された水素イオン
伝導性高分子膜が提供される。補強された水素イオン伝
導性高分子膜複合体の膜厚は15〜100μmの範囲が
好適である。
According to the present invention, there is provided a proton conductive polymer membrane reinforced by the above-mentioned fibrous structure. That is, by reinforcing the fibrous structure with a hydrogen ion conductive polymer membrane, a reinforced hydrogen ion conductive polymer membrane is provided. The thickness of the reinforced proton-conductive polymer membrane composite is preferably in the range of 15 to 100 μm.

【0028】ここで、補強される水素イオン伝導性高分
子としては、「ナフィオン」に代表されるパーフルオロ
アルキルスルホン酸膜やスルホン酸基で置換したポリエ
ーテルエーテルケトン、ポリエーテルスルホン等が挙げ
られる。
Here, as the hydrogen ion conductive polymer to be reinforced, a perfluoroalkylsulfonic acid membrane represented by "Nafion", a polyetheretherketone substituted by a sulfonic acid group, a polyethersulfone, and the like can be mentioned. .

【0029】上記の水素イオン伝導性高分子と該繊維構
造物の複合化は、例えば、該水素イオン伝導性高分子を
溶媒に溶解したドープを該繊維構造物に含浸させ、つい
で乾燥する等の方法がある。
The composite of the hydrogen ion conductive polymer and the fibrous structure is performed by, for example, impregnating the fiber structure with a dope in which the hydrogen ion conductive polymer is dissolved in a solvent, and then drying the dope. There is a way.

【0030】[0030]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0031】[実施例1]帝人(株)製のポリ塩化ビニ
ル繊維「テビロン」(56dtex)の極細糸を用い、
目付量20g/m2、厚み45μmとなるように平織り
した織物を作製した。この織物の透気度は0.08se
c/100cc・in2であった。この織物について、
耐ラジカル性を評価した結果、ラジカル処理後維持率は
92.3%であった。
[Example 1] Using an ultra-fine thread of polyvinyl chloride fiber "Tevilon" (56 dtex) manufactured by Teijin Limited,
A plain woven fabric having a basis weight of 20 g / m 2 and a thickness of 45 μm was prepared. The air permeability of this fabric is 0.08 sec
c / 100 cc · in 2 . About this fabric,
As a result of evaluating the radical resistance, the retention rate after the radical treatment was 92.3%.

【0032】[実施例2]帝人(株)製のポリ塩化ビニ
ル繊維「テビロン」(1.65dtex、6mm)と帝
人(株)製のポリエステル繊維(1.65dtex、5
mm)を重量比で80:20になるようにパルパー(又
はリファイナー)を用いて水に混合し、単繊維状に離
解、分散して単繊維濃度が0.25重量%の均一な湿式
抄造用のスラリーを作成した。次に、当該抄造用スラリ
ーを用いてタッピー式角型手抄き機で抄紙し、重量が約
130g/m2の水分を多量に含んだ湿紙を得た、この
湿紙を乾燥して得た不織布状シート(抄造紙)の坪量
(目付量)は12g/m2であった。次いで、得られた
不織布シートを直径250mmの硬質表面金属ロールと
直径350mmの耐熱性弾性ロールからなるカレンダー
機を用いて、温度;140℃、圧力;100kg/cm
2の条件で加熱、加圧してカレンダー加工を実施し、厚さ
が23.5μm、引張強力が0.42kg/15mmであ
る目的とする不織布シートを作製した。この不織布の透
気度は0.04sec/100cc・in2であった。
この不織布シートについて耐ラジカル性を評価した結
果、ラジカル処理後維持率は101%であった。
[Example 2] Polyvinyl chloride fiber "Tevilon" (1.65 dtex, 6 mm) manufactured by Teijin Limited and polyester fiber (1.65 dtex, 5 mm) manufactured by Teijin Limited.
mm) with water using a pulper (or refiner) so that the weight ratio becomes 80:20, and disintegrated and dispersed into single fibers to form a uniform single fiber concentration of 0.25% by weight. Was prepared. Next, using the slurry for papermaking, papermaking was carried out with a tappy-type square-shaped papermaking machine to obtain a wet paper containing a large amount of water having a weight of about 130 g / m 2. The wet paper was obtained by drying. The basis weight (weight per unit area) of the obtained non-woven sheet (papermaking) was 12 g / m 2 . Then, the obtained nonwoven fabric sheet was heated at a temperature of 140 ° C. and a pressure of 100 kg / cm using a calender comprising a hard surface metal roll having a diameter of 250 mm and a heat-resistant elastic roll having a diameter of 350 mm.
Under the conditions of 2 , heating and pressurization were performed to perform calendering, thereby producing a target nonwoven fabric sheet having a thickness of 23.5 μm and a tensile strength of 0.42 kg / 15 mm. The air permeability of this nonwoven fabric was 0.04 sec / 100 cc · in 2 .
As a result of evaluating the radical resistance of the nonwoven fabric sheet, the retention rate after the radical treatment was 101%.

【0033】[比較例1]ポリプロピレン不織布(ユニ
セル製、BT−102、目付量24g/m2、膜厚76
μm)について耐ラジカル性を評価した結果、ラジカル
処理後維持率は74.7%であった。
[Comparative Example 1] Polypropylene nonwoven fabric (manufactured by Unicell, BT-102, basis weight 24 g / m 2 , film thickness 76)
As a result of evaluating the radical resistance with respect to μm), the retention rate after the radical treatment was 74.7%.

【0034】[実施例3]実施例2で作製した不織布を
ポリエチレンテレフタレートフィルム上に置き、その上
から10wt.%のナフィオン溶液(Aldrich社)
を200μmのクリアランスのドクターナイフでキャス
トした。風乾することで該不織布で補強された膜厚30
μmの水素イオン伝導性高分子膜を作製した。
Example 3 The nonwoven fabric prepared in Example 2 was placed on a polyethylene terephthalate film, and 10 wt. % Nafion solution (Aldrich)
Was cast with a doctor knife with a clearance of 200 μm. Thickness 30 reinforced with the nonwoven fabric by air drying
A μm hydrogen ion conductive polymer membrane was produced.

【0035】[実施例4]ガス拡散電極として0.38
mg/cm2の白金を担持させた米国E−TEKINC
製の電極を用い、これを30mmφに打ち抜きガス拡散
電極とした。実施例3にて作製した水素イオン伝導性高
分子膜を沸騰したイオン交換水中に2時間浸漬し、膜を
含水状態とした後、表面の過剰な水を拭き取り、ガス拡
散電極2枚で挟み込み、110℃にて10MPaで3分間
加圧し電極接合体を得た。得られた電極接合体につい
て、加湿水素及び酸素を供給し80℃加熱下で燃料電池
出力特性を評価した。10ケの単セルを作製したが、短
絡やガスリークなどの欠陥は一つもなく、0.7A/c
2で0.65Vの性能が得られた。
Example 4 0.38 as a gas diffusion electrode
U.S.A. E-TEKINC supporting mg / cm 2 of platinum
This was punched out to 30 mmφ and used as a gas diffusion electrode. The hydrogen ion conductive polymer membrane prepared in Example 3 was immersed in boiling ion-exchanged water for 2 hours to make the membrane water-containing, and then excess water on the surface was wiped off and sandwiched between two gas diffusion electrodes. Pressure was applied at 110 ° C. and 10 MPa for 3 minutes to obtain an electrode assembly. With respect to the obtained electrode assembly, the output characteristics of the fuel cell were evaluated while supplying humidified hydrogen and oxygen and heating at 80 ° C. Although 10 single cells were produced, there was no defect such as short circuit or gas leak, and 0.7 A / c
A performance of 0.65 V was obtained at m 2 .

【0036】[0036]

【発明の効果】本発明によれば、非フッ素系ポリマーで
あるポリ塩化ビニルを主体とした繊維構造物は有意な耐
ラジカル性を有し、経済的な燃料電池用水素イオン伝導
性高分子膜補強基材が提供される。
According to the present invention, a fibrous structure mainly composed of polyvinyl chloride, which is a non-fluorinated polymer, has significant radical resistance and is an economical hydrogen ion conductive polymer membrane for fuel cells. A reinforced substrate is provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 定光 大阪府茨木市耳原3丁目4番1号 帝人株 式会社大阪研究センター内 (72)発明者 河口 健一 山口県岩国市日の出町2番1号 帝人株式 会社岩国事業所内 Fターム(参考) 4F100 AK01B AK15A AK42 AK54 AK55 AK56 BA02 BA03 DG10 DG12 DG15A DH00 EJ82 GB48 JB20B JD02A YY00A 4L047 AA15 AB02 BA03 BA04 CB08 CB10 CC12 5H026 AA06 BB03 CX03 CX04 EE18 HH00 HH03  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Sadamitsu Murayama 3-4-1, Amihara, Ibaraki-shi, Osaka Teijin Limited Osaka Research Center (72) Inventor Kenichi Kawaguchi 2-1 Hinodemachi, Iwakuni-shi, Yamaguchi Prefecture Teijin Co., Ltd. Iwakuni Office F-term (reference) 4F100 AK01B AK15A AK42 AK54 AK55 AK56 BA02 BA03 DG10 DG12 DG15A DH00 EJ82 GB48 JB20B JD02A YY00A 4L047 AA15 AB02 BA03 BA04 CB08 C03 H03 C03 H03 CB10 A03H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主としてポリ塩化ビニルからなる繊維を
主体とした厚さ10〜50μmであり、透気度(JIS
P8117)が10sec/100cc・in2以下
であることを特徴とした繊維構造物。
The present invention has a thickness of 10 to 50 μm mainly composed of fibers mainly composed of polyvinyl chloride, and an air permeability (JIS).
P8117) is 10 sec / 100 cc · in 2 or less.
【請求項2】 該繊維構造物が不織布である請求項1記
載の繊維構造物。
2. The fiber structure according to claim 1, wherein said fiber structure is a nonwoven fabric.
【請求項3】 請求項1または2記載の繊維構造物によ
り補強されたことを特徴とする水素イオン伝導性高分子
膜。
3. A proton conductive polymer membrane reinforced by the fibrous structure according to claim 1 or 2.
JP2000223998A 2000-07-25 2000-07-25 Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith Pending JP2002038361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223998A JP2002038361A (en) 2000-07-25 2000-07-25 Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223998A JP2002038361A (en) 2000-07-25 2000-07-25 Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith

Publications (1)

Publication Number Publication Date
JP2002038361A true JP2002038361A (en) 2002-02-06

Family

ID=18718026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223998A Pending JP2002038361A (en) 2000-07-25 2000-07-25 Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith

Country Status (1)

Country Link
JP (1) JP2002038361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529451A (en) * 2002-04-03 2005-09-29 スリーエム イノベイティブ プロパティズ カンパニー Laminating apparatus and method
WO2007145176A1 (en) * 2006-06-12 2007-12-21 Toyota Jidosha Kabushiki Kaisha Electrolyte film and method of selecting the same
US8268511B2 (en) 2003-05-28 2012-09-18 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529451A (en) * 2002-04-03 2005-09-29 スリーエム イノベイティブ プロパティズ カンパニー Laminating apparatus and method
US8309218B2 (en) 2002-04-03 2012-11-13 3M Innovative Properties Company Lamination apparatus and methods
US8480838B2 (en) 2002-04-03 2013-07-09 3M Innovative Properties Company Lamination apparatus and methods
US8268511B2 (en) 2003-05-28 2012-09-18 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
US8828620B2 (en) 2003-05-28 2014-09-09 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
WO2007145176A1 (en) * 2006-06-12 2007-12-21 Toyota Jidosha Kabushiki Kaisha Electrolyte film and method of selecting the same
JPWO2007145176A1 (en) * 2006-06-12 2009-10-29 トヨタ自動車株式会社 Electrolyte membrane and selection method thereof
US8128836B2 (en) 2006-06-12 2012-03-06 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and method of selecting the same

Similar Documents

Publication Publication Date Title
KR100821027B1 (en) Reinforcing material for proton conductive membrane, proton conductive membrane using same and fuel cell
US20140120431A1 (en) Composite polymer electrolyte membrane
JP6982220B2 (en) Polyelectrolyte membrane, its manufacturing method and membrane electrode assembly including it
JP6707519B2 (en) film
CA2813564A1 (en) Fluorine-based polymer electrolyte membrane
KR20130114187A (en) Porous nano-fiber mats to reinforce proton conducting membranes for pem applications
JPWO2006043394A1 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
US11705569B2 (en) Composite polymer electrolyte membrane
JP4198009B2 (en) Solid polymer electrolyte membrane and fuel cell
JP5189394B2 (en) Polymer electrolyte membrane
JP2016089197A (en) Base material for alkali water electrolysis diaphragm
JP2005285549A (en) Electrolyte film for solid polymer fuel cell
JP2002038361A (en) Radical-resistant fiber structure and hydrogen ion- conducting polymer membrane reinforced therewith
KR20210038388A (en) Ionomer Dispersion Having High Disperse Stability, Method for Manufacturing The Same, and Polymer Electrolyte Membrane Manufactured Using The Same
JP2003297394A (en) Electrolyte membrane for solid high polymer fuel cell and its manufacturing method
JP2004288495A (en) Electrolyte film for polymer electrolyte fuel cell and manufacturing method of the same
JP4365139B2 (en) Proton conductive membrane reinforcing material, proton conductive membrane and fuel cell using the same
JP3891484B2 (en) Electrolyte membrane and fuel cell comprising the membrane
JP5164569B2 (en) Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell
JPH06342667A (en) High molecular type fuel cell
JP2004185973A (en) Electrolyte film
JP2001113141A (en) High polymer electrolyte membrane reinforced substrate and high polymer electrolyte membrane
JPH06342666A (en) Solid high molecular type fuel cell
Wang et al. Electrospun Nanofiber-Based Cardo Poly (aryl ether sulfone) Containing Zwitterionic Side Groups as Novel Proton Exchange Membranes
JP2022015656A (en) Polyelectrolyte membrane and polymer electrolyte fuel cell