JP2002036405A - Thermoformable core material and automobile ceiling material - Google Patents

Thermoformable core material and automobile ceiling material

Info

Publication number
JP2002036405A
JP2002036405A JP2000230887A JP2000230887A JP2002036405A JP 2002036405 A JP2002036405 A JP 2002036405A JP 2000230887 A JP2000230887 A JP 2000230887A JP 2000230887 A JP2000230887 A JP 2000230887A JP 2002036405 A JP2002036405 A JP 2002036405A
Authority
JP
Japan
Prior art keywords
heat
mat
resistant
core material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000230887A
Other languages
Japanese (ja)
Other versions
JP3654821B2 (en
Inventor
Rikizo Tanaka
利喜蔵 田中
Yukihiro Sugie
幸弘 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000230887A priority Critical patent/JP3654821B2/en
Publication of JP2002036405A publication Critical patent/JP2002036405A/en
Application granted granted Critical
Publication of JP3654821B2 publication Critical patent/JP3654821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight thermoformable core material excellent in rigidity, heat resistance, heat moldability, non-permeability and sound absorbing qualities, and suitable for an automobile ceiling material, and also provide the automobile ceiling material using the thermoformable core material. SOLUTION: A mat-like base is formed by mutually joining heat-resistant fibers by a thermoplastic resin. A heat-resistant rigid resin layer composed of a heat-resistant rigid resin having a melt temperature higher than that of the thermoplastic resin, and a heat-activated resin layer composed of a heat- activated resin are sequentially laminated on one face of the mat-like base, and through holes having aperture areas of 3 to 100 mm2 are dispersedly formed on the heat-resistant rigid resin layer and the heat-activated resin layer. A heat-resistant rigid resin layer composed of a heat-resistant rigid resin having a melt temperature higher than that of the thermoplastic resin, and a heat activated resin layer composed of a heat-activated resin are seauentially laminated on the other face of the base.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱成形に適した熱
成形性芯材及び該熱成形性芯材を使用した自動車用天井
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoformable core material suitable for thermoforming and an automotive ceiling material using the thermoformable core material.

【0002】[0002]

【従来の技術】従来、自動車などの車両の内装材、特に
自動車の熱成形天井の基材には、無機繊維からなる熱成
形性芯材が好適に使用されている。熱成形性芯材として
は、軽量で、剛性、耐熱性、熱成形性、非通気性等の性
能が優れていることが要求される。このような熱成形性
芯材としては、例えば、特開平7−60883号公報
に、無機繊維及び熱可塑性樹脂繊維からなるマット状基
材の少なくとも一面に耐熱剛性樹脂層を積層し、剛性、
耐熱性等に優れるとともに、非通気性にも優れた熱成形
性芯材が示されている。
2. Description of the Related Art Conventionally, thermoforming core materials made of inorganic fibers have been suitably used as interior materials for vehicles such as automobiles, particularly as base materials for thermoforming ceilings of automobiles. The thermoformable core material is required to be lightweight and have excellent properties such as rigidity, heat resistance, thermoformability, and air permeability. As such a thermoformable core material, for example, Japanese Patent Application Laid-Open No. 7-60883 discloses a heat-resistant rigid resin layer laminated on at least one surface of a mat-shaped base material composed of inorganic fibers and thermoplastic resin fibers.
A thermoformable core material which is excellent in heat resistance and the like and is also excellent in air permeability is disclosed.

【0003】しかしながら、上記熱成形性芯材は、その
一面に不織布などの表面材が積層され、自動車用天井材
とされるが、マット状基材の耐熱剛性樹脂層を形成した
側に表面材を積層すると、自動車用天井材の吸音性が不
足するといった問題があった。また、マット状基材の耐
熱剛性樹脂層を形成していない側に表面材を積層しよう
とすると、マット状基材と表面材との間に接着剤又は熱
活性樹脂が必要となるが、熱成形性芯材の製造途中或い
は熱成形性芯材を熱成形する工程において加熱圧縮した
際、接着剤又は熱活性樹脂がマット状基材に含浸してし
まうため、熱成形性芯材と表面材との接着強度が不足
し、接着不良、剥離等が生じ易く、深いプレス成形が困
難であり、また、得られる自動車天井材が使用中の高温
に対応できなくなるといった問題があった。
[0003] However, the thermoformable core material has a surface material such as nonwoven fabric laminated on one surface thereof and is used as a ceiling material for automobiles. However, there is a problem that the sound absorbing properties of the ceiling material for automobiles are insufficient when laminated. Also, if a surface material is to be laminated on the side of the mat-shaped substrate on which the heat-resistant and rigid resin layer is not formed, an adhesive or a thermo-active resin is required between the mat-shaped substrate and the surface material. The adhesive or thermoactive resin impregnates the mat-shaped base material during the production and compression of the moldable core material or during the step of thermoforming the thermoformable core material. However, there is a problem that the adhesive strength with the resin is insufficient, adhesion failure, peeling, and the like are likely to occur, deep press molding is difficult, and the obtained automobile ceiling material cannot cope with high temperatures during use.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、軽量
で、剛性、耐熱性、熱賦形性、非通気性等に優れるとと
もに、吸音性にも優れ、自動車用天井材として好適に使
用することのできる熱成形性芯材と、該熱成形性芯材を
使用した自動車用天井材を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lightweight ceiling material which is excellent in rigidity, heat resistance, heat shaping properties, non-breathability, etc., and has excellent sound absorption properties. It is an object of the present invention to provide a thermoformable core material that can be used and an automotive ceiling material using the thermoformable core material.

【0005】[0005]

【課題を解決するための手段】本発明の熱成形性芯材
は、耐熱性繊維が熱可塑性樹脂で相互に結着されてなる
マット状基材の一面(以下、「表面」と記す)に、前記
熱可塑性樹脂より溶融温度の高い耐熱剛性樹脂からなる
耐熱剛性樹脂層と、熱活性樹脂からなる熱活性樹脂層と
がこの順に積層され、かつ、該耐熱剛性樹脂層及び熱活
性樹脂層に開口面積が5〜100mm2の貫通孔が分散
して形成されており、他面(以下、「裏面」と記す)
に、前記熱可塑性樹脂より溶融温度の高い耐熱剛性樹脂
からなる耐熱剛性樹脂層と、熱活性樹脂からなる熱活性
樹脂層とがこの順に積層されてなることを特徴とする。
Means for Solving the Problems The thermoformable core material of the present invention is formed on one surface (hereinafter referred to as "surface") of a mat-like substrate in which heat-resistant fibers are mutually bonded by a thermoplastic resin. A heat-resistant rigid resin layer made of a heat-resistant rigid resin having a higher melting temperature than the thermoplastic resin, and a heat-active resin layer made of a heat-active resin are laminated in this order, and the heat-resistant rigid resin layer and the heat-active resin layer Through-holes having an opening area of 5 to 100 mm 2 are dispersedly formed, and the other surface (hereinafter, referred to as “back surface”)
Further, a heat-resistant stiff resin layer made of a heat-resistant stiff resin having a higher melting temperature than the thermoplastic resin and a heat-active resin layer made of a heat-active resin are laminated in this order.

【0006】本発明で使用されるマット状基材は、耐熱
性繊維が熱可塑性樹脂で相互に結着されてなり、全体に
わたって空隙を有しているものであれば特には限定され
ず、また、耐熱性繊維に熱可塑性樹脂繊維が混抄されて
いるものが好ましい。具体的には、例えば、耐熱性繊維
からなるマット又は耐熱性繊維と熱可塑性樹脂繊維との
混抄繊維からなるマットに熱可塑性樹脂を含浸させたも
の、耐熱性繊維と熱可塑性樹脂繊維との混抄繊維からな
るマットの熱可塑性樹脂繊維の一部又は全部を溶融させ
て耐熱性繊維を相互に結着させたもの、耐熱性繊維から
なるマット又は耐熱性繊維と熱可塑性樹脂繊維との混抄
繊維からなるマットに熱可塑性樹脂粉末を分散させ熱可
塑性樹脂粉末の一部又は全部を溶融させて耐熱性繊維を
相互に結着させたもの等が挙げられる。尚、マット状基
材の空隙率は、小さくなると、得られる熱成形性芯材の
吸音性及び軽量性が低下し、大きくなると、得られる熱
成形性芯材の機械的強度が低下するので、適宜調整する
のが好ましい。
[0006] The mat-like substrate used in the present invention is not particularly limited as long as the heat-resistant fibers are bonded to each other with a thermoplastic resin and have voids throughout. Preferably, a heat-resistant fiber mixed with a thermoplastic resin fiber is used. Specifically, for example, a mat made of a heat-resistant fiber or a mat made of a mixed fiber of a heat-resistant fiber and a thermoplastic resin fiber impregnated with a thermoplastic resin, a mixture of a heat-resistant fiber and a thermoplastic resin fiber A material made by melting some or all of the thermoplastic resin fibers of a mat made of fibers and binding heat-resistant fibers to each other, from a mat made of heat-resistant fibers or a mixed fiber of heat-resistant fibers and thermoplastic resin fibers The thermoplastic resin powder is dispersed in a mat, and a part or all of the thermoplastic resin powder is melted to bond heat resistant fibers to each other. In addition, the porosity of the mat-shaped base material is reduced, the sound absorption and lightness of the obtained thermoformable core material are reduced, and when the porosity is increased, the mechanical strength of the obtained thermoformable core material is reduced. It is preferable to adjust appropriately.

【0007】上記耐熱性繊維としては、例えば、無機繊
維、植物繊維等が挙げられ、得られる熱成形性芯材に要
求される物性に応じて適宜選択するのが好ましく、混抄
して使用してもよい。例えば、得られる熱成形性芯材の
曲げ強度、厚さ回復性等の機械的強度が重視される場合
には無機繊維を使用するのが好ましく、得られる熱成形
性芯材のサーマルリサイクル性が重視される場合には植
物繊維を使用するのが好ましい。
The heat-resistant fibers include, for example, inorganic fibers and vegetable fibers. It is preferable to appropriately select the heat-resistant fibers according to the physical properties required of the obtained thermoformable core material. Is also good. For example, when mechanical strength such as bending strength and thickness recovery of the obtained thermoformable core material is important, it is preferable to use inorganic fibers, and the thermal recyclability of the obtained thermoformable core material is high. When importance is attached, it is preferable to use vegetable fibers.

【0008】上記無機繊維としては、例えば、ガラス繊
維、炭素繊維、ロックウール、セラミック繊維等が挙げ
られ、これらは単独で使用しても2種以上併用してもよ
い。無機繊維の長さは、短すぎても長すぎても、得られ
る熱成形性芯材の熱成形性が低下するので、5〜250
mmが好ましく、50〜150mmのものが70重量%
以上含有されているのがより好ましい。また、無機繊維
の太さは、細くなると、得られる熱成形性芯材の曲げ強
度、厚み回復性などの機械的強度が低下し、太くなる
と、得られる熱成形性芯材の軽量性が低下するので、そ
の直径が5〜20μmであるのが好ましく、より好まし
くは7〜13μmである。
Examples of the inorganic fibers include glass fibers, carbon fibers, rock wool, and ceramic fibers. These may be used alone or in combination of two or more. If the length of the inorganic fiber is too short or too long, the thermoformability of the obtained thermoformable core material is reduced.
mm is preferred, and 50 to 150 mm is 70% by weight.
More preferably, it is contained. Also, as the thickness of the inorganic fiber becomes thinner, the mechanical strength such as bending strength and thickness recovery of the obtained thermoformable core material decreases, and as the thickness increases, the lightness of the obtained thermoformable core material decreases. Therefore, the diameter is preferably 5 to 20 μm, more preferably 7 to 13 μm.

【0009】上記植物繊維としては、例えば、ジュート
繊維、ケナフ繊維等が挙げられ、これらは単独で使用し
ても2種以上併用してもよい。植物繊維の長さは、短す
ぎても長すぎても、得られる熱成形性芯材の曲げ強度、
厚み回復性などの機械的強度が低下するので、3〜20
0mmが好ましく、より好ましくは5〜150mmであ
る。また、植物繊維の太さは、その直径が200μm以
下のものが一般的であり、好ましくは10〜150μm
である。
[0009] Examples of the plant fiber include jute fiber and kenaf fiber, and these may be used alone or in combination of two or more. The length of the vegetable fiber is too short or too long, the bending strength of the thermoformable core material obtained,
Since the mechanical strength such as the thickness recovery property is reduced, 3 to 20
0 mm is preferable, and more preferably 5 to 150 mm. The thickness of the plant fiber is generally 200 μm or less in diameter, preferably 10 to 150 μm
It is.

【0010】上記耐熱性繊維を相互に結着する熱可塑性
樹脂としては、溶融状態で耐熱性繊維間に含浸し易く、
かつ、耐熱性繊維と結着し易いものが好ましく、例え
ば、ポリエチレン、ポリプロピレン、ポリスチレン、エ
チレン−酢酸ビニル共重合体、飽和ポリエステル、これ
らの変性物等が挙げられる。
As the thermoplastic resin which binds the heat resistant fibers to each other, it is easy to impregnate the heat resistant fibers in a molten state,
Further, those which easily bind to heat-resistant fibers are preferable, and examples thereof include polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, saturated polyester, and modified products thereof.

【0011】上記熱可塑性樹脂繊維としては、溶融時に
上記耐熱性繊維と結着するものが好ましく、例えば、ポ
リエチレン、ポリプロピレン、ポリスチレン等からなる
繊維が挙げられる。熱可塑性樹脂繊維の長さ及び太さ
は、上記耐熱性繊維に分散し易く、均一に混抄される程
度が好ましい。具体的には、長さは5〜200mmが好
ましく、より好ましくは20〜100mmであり、太さ
は、直径が5〜70μmが好ましく、より好ましくは1
5〜40μmである。
The thermoplastic resin fibers preferably bind to the heat-resistant fibers at the time of melting, and include, for example, fibers made of polyethylene, polypropylene, polystyrene and the like. The length and thickness of the thermoplastic resin fibers are preferably such that they are easily dispersed in the heat-resistant fibers and are uniformly mixed. Specifically, the length is preferably from 5 to 200 mm, more preferably from 20 to 100 mm, and the thickness is preferably from 5 to 70 μm in diameter, more preferably from 1 to 70 μm.
5 to 40 μm.

【0012】上記耐熱性繊維或いは耐熱性繊維と熱可塑
性樹脂繊維との混抄繊維からなるマットを得る方法とし
ては、従来公知の任意の方法が採用されてよく、例え
ば、カードマシンに耐熱性繊維と必要に応じて熱可塑性
樹脂繊維を供給し、これらを解繊してマット状にした
後、ニードルパンチを打つ方法が一般的である。ニード
ルパンチは、得られる熱成形性芯材の機械的強度を向上
させるのに、1cm2あたり2〜100箇所打たれるの
が好ましく、より好ましくは1cm2あたり10〜50
箇所である。
As a method for obtaining a mat made of the heat-resistant fiber or a mixed fiber of the heat-resistant fiber and the thermoplastic resin fiber, any conventionally known method may be employed. Generally, a method of supplying thermoplastic resin fibers as necessary, defibrating the fibers into a mat shape, and punching a needle punch is used. Needle punch, to improve the mechanical strength of the thermoformable core material obtained is preferably beaten 1 cm 2 2 to 100 places per, more preferably per 1 cm 2 10 to 50
Part.

【0013】上記マット状基材中の耐熱性繊維と、熱可
塑性樹脂(熱可塑性樹脂繊維を含む)の配合割合は、耐
熱性繊維が少なくなると、得られる熱成形性芯材の耐熱
性が低下し、多くなると、耐熱性繊維相互の結着力が低
下し、得られる熱成形性芯材の剛性が低下するので、耐
熱性繊維と熱可塑性樹脂が重量比で5:1〜1:5であ
るのが好ましい。
The mixing ratio of the heat-resistant fiber and the thermoplastic resin (including the thermoplastic resin fiber) in the mat-like base material is such that as the heat-resistant fiber decreases, the heat resistance of the obtained thermoformable core material decreases. However, when the number increases, the binding force between the heat-resistant fibers decreases, and the rigidity of the obtained thermoformable core material decreases. Therefore, the weight ratio of the heat-resistant fibers to the thermoplastic resin is 5: 1 to 1: 5. Is preferred.

【0014】また、マット状基材の見掛け密度は、小さ
くなると、得られる熱成形性芯材の機械的強度が低下
し、大きくなると、得られる熱成形性芯材の吸音性及び
軽量性が低下するので、0.01〜0.2g/cm3
好ましく、マット状基材の坪量は、小さくなると、得ら
れる熱成形性芯材の機械的強度が低下し、大きくなる
と、得られる熱成形性芯材の軽量性が低下するので、2
00〜1500g/m2が好ましく、より好ましくは3
00〜800g/m2である。
Further, when the apparent density of the mat-shaped base material is reduced, the mechanical strength of the obtained thermoformable core material is reduced, and when the apparent density is increased, the sound absorbing property and light weight of the obtained thermoformable core material are reduced. Therefore, the weight is preferably 0.01 to 0.2 g / cm 3, and when the basis weight of the mat-like base material is small, the mechanical strength of the obtained thermoformable core material is reduced. Since the lightness of the conductive core material decreases,
00 to 1500 g / m 2 is preferable, and 3 is more preferable.
It is 00 to 800 g / m 2 .

【0015】上記マット状基材の表面には、貫通孔を有
する、耐熱剛性樹脂層(以下、「耐熱剛性樹脂層
(1)」と記す)及び熱活性樹脂層(以下、「熱活性樹
脂層(1)」と記す)とがこの順に積層されている。
On the surface of the mat-like base material, a heat-resistant rigid resin layer (hereinafter referred to as "heat-resistant rigid resin layer (1)") and a heat-active resin layer (hereinafter, referred to as "heat-active resin layer") having through holes are provided. (1) ") are stacked in this order.

【0016】上記耐熱剛性樹脂層(1)を構成する耐熱
剛性樹脂は、マット状基材中の熱可塑性樹脂より溶融温
度の高いものであり、30℃以上高いものが好ましく、
50℃以上高いものがより好ましい。これにより、後述
するように、得られる熱成形性芯材全体を加熱して、該
耐熱剛性樹脂以外の樹脂を溶融させることができる。こ
のような耐熱剛性樹脂としては、例えば、ポリブチレン
テレフタレート、ポリエチレンテレフタレート、ポリカ
ーボネート、ポリアミド、これらの変性物等が挙げられ
る。
The heat-resistant rigid resin constituting the heat-resistant rigid resin layer (1) has a higher melting temperature than the thermoplastic resin in the mat-like base material, and preferably has a higher temperature by 30 ° C. or more.
Those having a temperature higher than 50 ° C. are more preferable. Thereby, as described later, the entire thermoformable core material obtained can be heated to melt resins other than the heat-resistant rigid resin. Examples of such a heat-resistant rigid resin include polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyamide, and modified products thereof.

【0017】耐熱剛性樹脂層(1)の厚さは、薄くなる
と、熱成形性芯材の製造過程における加熱圧縮時、得ら
れる熱成形性芯材の熱成形時などにマット状基材中の耐
熱性繊維が耐熱剛性樹脂層(1)を突き破り易くなり、
厚くなると、得られる熱成形性芯材の軽量性が低下する
ので、3〜25μmが好ましい。
When the thickness of the heat-resistant and rigid resin layer (1) is reduced, the thickness of the mat-shaped base material during heating and compression in the production process of the thermoformable core material and during thermoforming of the obtained thermoformable core material is reduced. The heat-resistant fiber easily breaks through the heat-resistant rigid resin layer (1),
When the thickness is large, the lightness of the obtained thermoformable core material is reduced, so that the thickness is preferably 3 to 25 μm.

【0018】上記熱活性樹脂層(1)を構成する熱活性
樹脂は、その熱活性発現温度が上記耐熱剛性樹脂の溶融
温度より低いものであり、20℃以上低いものが好まし
く、マット状基材中の熱可塑性樹脂の溶融温度と同程度
であるのがより好ましい。これにより、得られる熱成形
性芯材全体を加熱した際、耐熱剛性樹脂を溶融させるこ
となく、表面の熱活性樹脂を溶融活性化することができ
るので、熱成形性芯材の製造途中或いは熱成形性芯材を
熱成形する工程において加熱圧縮した際、熱活性樹脂が
マット状基材に含浸してしまうことがなく、後述する表
面材を強固に接着することができる。
The heat-active resin constituting the heat-active resin layer (1) has a heat activation temperature lower than the melting temperature of the heat-resistant rigid resin, preferably 20 ° C. or more. More preferably, it is about the same as the melting temperature of the thermoplastic resin therein. With this, when the entire thermoformable core material obtained is heated, the heat-active resin on the surface can be melt-activated without melting the heat-resistant rigid resin. When heat-compressed in the step of thermoforming the moldable core material, the heat-active resin does not impregnate the mat-shaped base material, and the surface material described below can be firmly bonded.

【0019】このような熱活性樹脂としては、例えば、
ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル
共重合体、飽和ポリエステル、変性ポリエチレン、共重
合ポリアミド等が挙げられる。
Examples of such a heat-active resin include, for example,
Examples include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, saturated polyester, modified polyethylene, and copolyamide.

【0020】熱活性樹脂のメルトフローレート(以下、
「MFR」と記す)は、小さくなると、後述する表面材
を積層する際、熱活性樹脂を溶融活性化させても、熱活
性樹脂が表面材内部に含浸せずアンカー効果が得られ
ず、大きくなると、後述する表面材を積層する際、熱活
性樹脂のほとんどが表面材内部に含浸してしまい、いず
れの場合も表面材と熱活性樹脂層(1)との接着強度が
低下するので、0.5〜20が好ましく、より好ましく
は2〜15である。尚、上記MFRは、JIS K 7
210に準拠し、温度190℃、荷重21.2Nで測定
した値である。
The melt flow rate of the heat-activated resin (hereinafter referred to as the melt flow rate)
When "MFR" is reduced, when the surface material described below is laminated, even if the heat-activated resin is melt-activated, the heat-activated resin does not impregnate the interior of the surface material, and the anchor effect is not obtained, and the value becomes large. In this case, when laminating a surface material described later, most of the thermoactive resin impregnates the inside of the surface material, and in any case, the adhesive strength between the surface material and the thermoactive resin layer (1) is reduced. It is preferably from 0.5 to 20, more preferably from 2 to 15. The above MFR is based on JIS K7
This is a value measured at a temperature of 190 ° C. and a load of 21.2 N in accordance with No. 210.

【0021】熱活性樹脂層(1)の厚さは、薄くなる
と、後述する表面材を積層する際、表面材内部に含浸す
る熱活性樹脂の量が少なくなり、表面材と熱活性樹脂層
(1)との接着強度が低下し、厚くなると、得られる熱
成形性芯材の軽量性が低下し、また、後述する表面材を
積層する際、表面材内部に含浸する熱活性樹脂の量が多
くなり、表面材の風合が固くなるので、20〜100μ
mが好ましい。
When the thickness of the heat-active resin layer (1) is reduced, the amount of the heat-active resin impregnated inside the surface material when laminating the surface material described later decreases, and the surface material and the heat-active resin layer (1) are laminated. When the adhesive strength with 1) is reduced and the thickness is increased, the lightness of the obtained thermoformable core material is reduced, and when laminating a surface material described later, the amount of the thermoactive resin impregnated inside the surface material is reduced. More, the texture of the surface material becomes harder, so 20 ~ 100μ
m is preferred.

【0022】上記貫通孔の大きさは、小さくなると、得
られる熱成形性芯材の吸音性が低下し、大きくなると、
熱活性樹脂層(1)と後述する表面材との接着強度が低
下するので、貫通孔1つの開口面積が3〜100mm2
に限定され、好ましくは12〜50mm2である。貫通
孔の形成割合は、少なくなると、得られる熱成形性芯材
の吸音性が低下し、多くなると、得られる熱成形性芯材
の曲げ強度や熱活性樹脂層と後述する表面材との接着強
度が低下するので、開口面積合計が、マット状基材一面
の面積に対して5〜80%であるのが好ましく、より好
ましくは10〜30%であり、全体に均一に分散して形
成されているのが好ましい。
When the size of the through hole is reduced, the sound absorbability of the obtained thermoformable core material is reduced.
Since the adhesive strength between the heat-active resin layer (1) and the surface material described below decreases, the opening area of one through hole is 3 to 100 mm 2.
And preferably 12 to 50 mm 2 . When the formation ratio of the through-holes decreases, the sound absorption of the obtained thermoformable core material decreases, and when the ratio increases, the bending strength of the obtained thermoformable core material and the adhesion between the thermoactive resin layer and the surface material described below. Since the strength is reduced, the total opening area is preferably from 5 to 80%, more preferably from 10 to 30%, with respect to the area of one surface of the mat-shaped base material. Is preferred.

【0023】また、貫通孔の形状は特には限定されない
が、形成が容易であるので、開口形状が円形であるのが
好ましく、規則的に形成されているのが、後述する表面
材を接着した際、外観を損なうことがないので、より好
ましい。貫通孔の開口形状が円形である場合、その直径
は、2〜15mmが好ましく、より好ましくは4〜8m
mであり、異なる大きさの貫通孔を組み合わせてもよ
い。
The shape of the through-hole is not particularly limited, but it is preferable that the shape of the opening is circular because it is easy to form. At this time, the appearance is more preferable because the appearance is not impaired. When the opening shape of the through hole is circular, the diameter is preferably 2 to 15 mm, more preferably 4 to 8 m.
m, and through holes of different sizes may be combined.

【0024】貫通孔は、耐熱剛性樹脂層(1)及び熱活
性樹脂層(1)を積層した後に形成するのが、形成が容
易であるとともに、貫通孔形成割合などが調整し易いの
で好ましい。貫通孔を形成する方法としては、例えば、
耐熱剛性樹脂層(1)及び熱活性樹脂層(1)とその他
必要に応じて積層された各層からなる積層シートを、凹
部を有するダイスと凸部を有するダイスとの間に供給
し、前記凸部により積層シートを打ち抜く機械的パンチ
ング法、前記積層シートを、耐熱剛性樹脂層(1)を構
成する耐熱剛性樹脂の溶融温度以上に加熱し、ロッドが
埋め込まれたロールと通常のロールとの間に該積層シー
トを供給し、溶融開口する方法、前記積層シートにレー
ザー光線を照射し、溶融開口する方法等が挙げられ、中
でも機械的パンチング法が、任意の大きさの貫通孔を精
度よく安定的に形成することができるので好ましい。
It is preferable to form the through-holes after laminating the heat-resistant rigid resin layer (1) and the heat-active resin layer (1), because the formation is easy and the through-hole formation ratio is easily adjusted. As a method of forming a through hole, for example,
A laminated sheet composed of the heat-resistant rigid resin layer (1) and the heat-active resin layer (1) and other layers laminated as necessary is supplied between a dice having a concave portion and a dice having a convex portion. Mechanical punching method in which a laminated sheet is punched by a part, wherein the laminated sheet is heated to a temperature equal to or higher than the melting temperature of the heat-resistant rigid resin constituting the heat-resistant rigid resin layer (1), and between a roll in which a rod is embedded and a normal roll. The laminated sheet is supplied and melt-opened, a method of irradiating the laminated sheet with a laser beam and melt-opened, and the like, among which mechanical punching method is capable of accurately and stably forming through holes of any size. It is preferable because it can be formed into

【0025】上記マット状基材の裏面には、耐熱剛性樹
脂層(以下、「耐熱剛性樹脂層(2)」と記す)と、熱
活性樹脂層(以下、「熱活性樹脂層(2)」と記す)と
がこの順に積層されている。
The heat-resistant rigid resin layer (hereinafter referred to as “heat-resistant rigid resin layer (2)”) and the heat-active resin layer (hereinafter referred to as “heat-active resin layer (2)”) Are stacked in this order.

【0026】上記耐熱剛性樹脂層(2)を構成する耐熱
剛性樹脂は、表面の耐熱剛性樹脂層(1)を構成する耐
熱剛性樹脂と同様ものが挙げられる。耐熱剛性樹脂層
(2)の厚さは、薄くなると、熱成形性芯材の製造過程
における加熱圧縮時、得られる熱成形性芯材の熱成形時
などにマット状基材中の耐熱性繊維が耐熱剛性樹脂層
(2)を突き破り易くなるため、非通気性が低下し、厚
くなると、得られる熱成形性芯材の軽量性が低下するの
で、3〜25μmが好ましい。
The heat-resistant rigid resin constituting the heat-resistant rigid resin layer (2) is the same as the heat-resistant rigid resin constituting the surface heat-resistant rigid resin layer (1). When the thickness of the heat-resistant stiff resin layer (2) is reduced, the heat-resistant fiber in the mat-shaped base material is used at the time of heat compression in the production process of the thermoformable core material, thermoforming of the obtained thermoformable core material, and the like. Is preferably 3 to 25 [mu] m, because the air permeability is reduced because the heat-resistant rigid resin layer (2) is easily pierced.

【0027】上記熱活性樹脂層(2)を構成する熱活性
樹脂は、表面の熱活性樹脂層(1)を構成する熱活性樹
脂と同様のものが挙げられ、これにより、得られる熱成
形性芯材全体を加熱した際、耐熱剛性樹脂を溶融させる
ことなく、裏面の熱活性樹脂を溶融活性化することがで
きるので、自動車用天井材等の成形品の通気遮断性を損
なうことなく、部材等に強固に熱接着することができ
る。尚、熱成形性芯材を部材等に固定する必要がない場
合は、熱活性樹脂層(2)のMFR等が上記範囲外のも
のでも好ましく使用される。熱活性樹脂層(2)の厚さ
は、20〜100μmが好ましい。
The heat-active resin constituting the heat-active resin layer (2) may be the same as the heat-active resin constituting the heat-active resin layer (1) on the surface. When the entire core material is heated, the heat-active resin on the back surface can be melt-activated without melting the heat-resistant stiff resin, so that the air-blocking properties of molded articles such as automotive ceiling materials are not impaired. Can be firmly heat bonded. When it is not necessary to fix the thermoformable core material to a member or the like, it is preferable to use a thermoactive resin layer (2) having an MFR or the like outside the above range. The thickness of the thermoactive resin layer (2) is preferably 20 to 100 μm.

【0028】また、上記熱成形性芯材に積層された耐熱
剛性樹脂及び熱活性樹脂は、表面と裏面とで同一であっ
てもよく、異なっていてもよい。また、耐熱剛性樹脂層
及び熱活性樹脂層の厚さも、表面と裏面とで同一であっ
てもよく、異なっていてもよい。
The heat-resistant rigid resin and the heat-active resin laminated on the thermoformable core material may be the same on the front surface and the back surface, or may be different. Further, the thickness of the heat-resistant rigid resin layer and the thickness of the heat-active resin layer may be the same on the front surface and the back surface, or may be different.

【0029】さらに、上記熱成形性芯材の各層の間に
は、適宜他の樹脂層が形成されていてもよい。例えば、
層間接着強度を上げるためには、各層の間に接着性熱可
塑性樹脂層が形成されているのが好ましい。接着性熱可
塑性樹脂層を構成する接着性熱可塑性樹脂としては、各
層と接着可能なものであれば特には限定されず、例え
ば、酸変性ポリエチレン、共重合ポリアミド、共重合ポ
リエステル等が挙げられる。
Further, another resin layer may be appropriately formed between the layers of the thermoformable core material. For example,
In order to increase the interlayer adhesive strength, it is preferable that an adhesive thermoplastic resin layer is formed between the layers. The adhesive thermoplastic resin constituting the adhesive thermoplastic resin layer is not particularly limited as long as it can adhere to each layer, and examples thereof include acid-modified polyethylene, copolymerized polyamide, and copolymerized polyester.

【0030】本発明の熱成形性芯材の製造方法として
は、例えば、以下の方法が挙げられる。第1の方法とし
ては、熱可塑性樹脂、耐熱剛性樹脂及び熱活性樹脂をこ
の順に積層してなる積層シートを2枚作成し、2枚の積
層シートのうち1枚に貫通孔を形成し、耐熱性繊維から
なるマット或いは耐熱性繊維と熱可塑性樹脂繊維との混
抄繊維からなるマットの両面に、各積層シートの熱可塑
性樹脂層がマット側になるように配置し、耐熱剛性樹脂
の溶融温度以下の温度に加熱して、熱可塑性樹脂及び熱
活性樹脂を溶融させるとともに全体を厚さ方向に圧縮
し、耐熱剛性樹脂及びその外側にある熱活性樹脂をマッ
ト内に含浸させることなく、マット両面の熱可塑性樹脂
をマット内に含浸させた後、厚さ方向に拡開させる方法
が挙げられる。
The method for producing the thermoformable core material of the present invention includes, for example, the following method. As a first method, two laminated sheets are formed by laminating a thermoplastic resin, a heat-resistant rigid resin, and a thermoactive resin in this order, and a through-hole is formed in one of the two laminated sheets to form a heat-resistant sheet. On both sides of a mat made of conductive fibers or a mat made of mixed fibers of heat-resistant fibers and thermoplastic resin fibers, so that the thermoplastic resin layer of each laminated sheet is on the mat side, the melting temperature of the heat-resistant rigid resin or less Heat to the temperature of, melt the thermoplastic resin and the thermo-active resin and compress the whole in the thickness direction, without impregnating the heat-resistant rigid resin and the thermo-active resin outside the mat inside the mat, After impregnating the mat with the thermoplastic resin, the mat may be expanded in the thickness direction.

【0031】また、第2の方法としては、耐熱性繊維か
らなるマット或いは耐熱性繊維と熱可塑性樹脂繊維との
混抄繊維からなるマットの両面に熱可塑性樹脂を積層し
ておき、一方で、耐熱剛性樹脂及び熱活性樹脂を積層し
てなる積層シートを2枚作成し、2枚の積層シートのう
ち1枚に貫通孔を形成し、マットに積層した熱可塑性樹
脂層面に、各積層シートの耐熱剛性樹脂層が熱可塑性樹
脂層側になるように配置し、耐熱剛性樹脂の溶融温度以
下の温度に加熱して、熱可塑性樹脂及び熱活性樹脂を溶
融させるとともに全体を厚さ方向に圧縮し、耐熱剛性樹
脂及びその外側にある熱活性樹脂をマット内に含浸させ
ることなく、マット両面の熱可塑性樹脂をマット内に含
浸させた後、厚さ方向に拡開させる方法が挙げられる。
As a second method, a thermoplastic resin is laminated on both sides of a mat made of heat-resistant fiber or a mat made of a mixed fiber of heat-resistant fiber and thermoplastic resin fiber. Two laminated sheets made by laminating a rigid resin and a thermo-active resin are created, a through hole is formed in one of the two laminated sheets, and the heat resistance of each laminated sheet is formed on the surface of the thermoplastic resin layer laminated on the mat. The rigid resin layer is arranged so as to be on the thermoplastic resin layer side, and is heated to a temperature equal to or lower than the melting temperature of the heat-resistant rigid resin to melt the thermoplastic resin and the thermoactive resin and compress the whole in the thickness direction, There is a method of impregnating the mat with the thermoplastic resin on both sides of the mat without impregnating the mat with the heat-resistant rigid resin and the thermoactive resin on the outside thereof, and then expanding the mat in the thickness direction.

【0032】上記製造方法において、マット両面の熱可
塑性樹脂はマット内に含浸し、マットの耐熱性繊維を相
互に結着する。含浸工程において、熱可塑性樹脂全てを
マット内に含浸させる必要はなく、一部は含浸させずに
残しておいてもよい。そうすることにより、マットと耐
熱剛性樹脂層との接着強度、得られる熱成形性芯材の機
械的強度等を向上させることができる。上記第1の方法
は、マット両面の熱可塑性樹脂の一部を含浸させずに残
しておいても、表面の熱可塑性樹脂層に貫通孔が形成さ
れているので、得られる熱成形性芯材の吸音性を損なう
ことがなく、好ましい。
In the above manufacturing method, the thermoplastic resin on both sides of the mat is impregnated in the mat and binds the heat resistant fibers of the mat to each other. In the impregnation step, it is not necessary to impregnate the entire thermoplastic resin into the mat, and a part of the mat may be left unimpregnated. By doing so, it is possible to improve the adhesive strength between the mat and the heat-resistant rigid resin layer, the mechanical strength of the obtained thermoformable core material, and the like. In the first method, even if a part of the thermoplastic resin on both sides of the mat is left without being impregnated, the through-hole is formed in the thermoplastic resin layer on the surface. This is preferable without impairing the sound absorbing property.

【0033】マット両面の熱可塑性樹脂層の厚さは、薄
くなると、マット内に含浸しても耐熱性繊維相互の結着
力が不足し、得られる熱成形性芯材の機械的強度が低下
し、厚くなると、得られる熱成形性芯材の軽量性が低下
するので、50〜500μmが好ましく、より好ましく
は70〜300μmである。
When the thickness of the thermoplastic resin layer on both sides of the mat is reduced, the bonding strength between the heat-resistant fibers becomes insufficient even when impregnated in the mat, and the mechanical strength of the obtained thermoformable core material decreases. When the thickness is large, the lightness of the obtained thermoformable core material is reduced. Therefore, the thickness is preferably 50 to 500 μm, more preferably 70 to 300 μm.

【0034】上記熱可塑性樹脂、耐熱剛性樹脂及び熱活
性樹脂からなる積層シート、又は、耐熱剛性樹脂及び熱
活性樹脂からなる積層シートを得る方法としては、特に
は限定されず、従来公知の任意の方法が採用されてよ
く、例えば、共押出法、押出ラミネート法、ドライラミ
ネート法等が挙げられる。中でも、各層を構成する樹脂
をダイ内に同時押出した後、Tダイ等から吐出させる共
押出法が、経済的であり、好ましい。
The method for obtaining the laminated sheet comprising the thermoplastic resin, the heat-resistant rigid resin and the heat-active resin, or the laminated sheet comprising the heat-resistant rigid resin and the heat-active resin is not particularly limited, and any conventionally known arbitrary method can be used. A method may be adopted, and examples thereof include a coextrusion method, an extrusion lamination method, and a dry lamination method. Among them, a co-extrusion method in which the resin constituting each layer is simultaneously extruded into a die and then discharged from a T-die or the like is economical and preferable.

【0035】また、マットの両面に熱可塑性樹脂を積層
する方法としては、特には限定されず、従来公知の任意
の方法が採用されてよく、例えば、マットに熱可塑性樹
脂を押出ラミネートする方法、熱可塑性樹脂からなるフ
ィルムをマットに熱ラミネートする方法等が挙げられ
る。
The method of laminating the thermoplastic resin on both sides of the mat is not particularly limited, and any conventionally known method may be employed. For example, a method of extrusion laminating the thermoplastic resin on the mat, A method of thermally laminating a film made of a thermoplastic resin on a mat may be used.

【0036】上記圧縮の条件は特には限定されず、適宜
決定してよいが、圧縮圧力が0.2〜1MPaであり、
圧縮時間が2〜10秒であるのが好ましい。
The conditions for the above-mentioned compression are not particularly limited and may be appropriately determined, but the compression pressure is 0.2 to 1 MPa,
The compression time is preferably between 2 and 10 seconds.

【0037】上記拡開の方法としては、耐熱性繊維の弾
力で自然回復させてもよく、強制的に回復させてもよ
い。強制的に回復させる方法としては、例えば、テフロ
ン(登録商標)コーティングされた鋼板やガラスクロス
シートなどでマット全体を挟み、その両表面を真空吸引
する方法が挙げられる。拡開の程度は、得られる熱成形
性芯材の所望の空隙率、見掛け密度等により、適宜調整
するのが好ましい。
As the above-mentioned spreading method, natural recovery may be performed by the elasticity of the heat-resistant fiber, or recovery may be forcibly performed. As a method of forcibly recovering, for example, a method of sandwiching the entire mat with a steel plate or a glass cloth sheet coated with Teflon (registered trademark) and vacuum-suctioning both surfaces thereof can be mentioned. The degree of expansion is preferably adjusted as appropriate depending on the desired porosity, apparent density, and the like of the obtained thermoformable core material.

【0038】上記製造方法により得られた熱成形性芯材
は、従来公知の任意の方法により冷却される。冷却は自
然冷却又は強制冷却のいずれでもよいが、冷却速度、生
産性、冷却による熱可塑性樹脂の硬化の安定性等が調整
し易いので、強制冷却が好ましい。また、拡開の後に冷
却しても、拡開と冷却とを略同時に行ってもよい。
The thermoformable core material obtained by the above production method is cooled by any conventionally known method. Cooling may be either natural cooling or forced cooling, but forced cooling is preferred because the cooling rate, productivity, and stability of the thermoplastic resin during cooling can be easily adjusted. Further, cooling may be performed after the expansion, or the expansion and the cooling may be performed substantially simultaneously.

【0039】上記熱成形性芯材は、その貫通孔を有する
熱活性樹脂層面に、表面材が積層され、熱成形されて自
動車用天井材となされる。表面材の積層一体化は、熱成
形性芯材の熱成形時に同時に行ってもよく、熱成形の前
に行ってもよい。上記表面材としては、例えば、天然繊
維、合成繊維、これらの混抄繊維等からなる不織布が好
適に使用される。天然繊維としては、例えば、綿、羊
毛、麻等が挙げられ、合成繊維としては、例えば、ポリ
エステル、ポリアミド、ポリウレタン等が挙げられる。
The thermoformable core material is formed by laminating a surface material on the surface of the thermoactive resin layer having the through-holes, and is thermoformed to form an automobile ceiling material. The lamination and integration of the surface material may be performed simultaneously with the thermoforming of the thermoformable core material, or may be performed before the thermoforming. As the surface material, for example, a non-woven fabric composed of natural fibers, synthetic fibers, and mixed fibers thereof is preferably used. Examples of the natural fiber include cotton, wool, hemp, and the like, and examples of the synthetic fiber include polyester, polyamide, and polyurethane.

【0040】表面材として不織布を使用することによ
り、熱成形性芯材表面の熱活性樹脂の一部が表面材内部
に含浸されるので、アンカー効果により、熱活性樹脂層
と表面材との接着強度が優れたものとなる。
By using a nonwoven fabric as the surface material, a part of the thermoactive resin on the surface of the thermoformable core material is impregnated inside the surface material. The strength becomes excellent.

【0041】熱成形性芯材に表面材を積層する方法とし
ては、例えば、熱成形性芯材の熱活性樹脂層面に表面材
を重ね、加熱状態にてプレスする方法が挙げられる。ま
た、熱活性樹脂層と表面材との間に接着性熱可塑性樹脂
層を形成してもよい。
As a method of laminating the surface material on the thermoformable core material, for example, there is a method in which the surface material is overlaid on the surface of the thermoactive resin layer of the thermoformable core material and pressed in a heated state. Further, an adhesive thermoplastic resin layer may be formed between the thermoactive resin layer and the surface material.

【0042】[0042]

【発明の実施の形態】以下に実施例を掲げて本発明の態
様を更に詳しく説明するが、本発明はこれら実施例のみ
に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0043】(実施例1)長さ40〜75mm、直径9
μmのガラス繊維と、長さ64mm、太さ35μm、溶
融温度162℃のポリプロピレン繊維とを、重量比が
3:2となるように混合し、カードマシンに供給して、
混抄繊維をマット状とし、20箇所/cm2でニードル
パンチを打ち、坪量約550g/cm2、厚さ約7.5
mmの混抄マットを得た。得られた混抄マットの両面
に、溶融温度135℃、MFR7の、少量の無水マレイ
ン酸変性ポリエチレンを含有する高密度ポリエチレンか
らなる厚さ120μmの高密度ポリエチレンフィルムを
積層し、3層マットを得た。
(Example 1) Length 40-75 mm, diameter 9
μm glass fiber and polypropylene fiber having a length of 64 mm, a thickness of 35 μm and a melting temperature of 162 ° C. are mixed so that the weight ratio becomes 3: 2, and supplied to a card machine,
The mixed fiber was made into a mat shape, and a needle punch was punched at 20 points / cm 2 to obtain a basis weight of about 550 g / cm 2 and a thickness of about 7.5.
mm was obtained. A 120 μm thick high-density polyethylene film made of high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene having a melting temperature of 135 ° C. and an MFR of 7 was laminated on both sides of the obtained mixed mat to obtain a three-layer mat. .

【0044】一方、溶融温度230℃の6−ナイロン
と、溶融温度125℃、MFR10のマレイン酸変性直
鎖状低密度ポリエチレンとを共押出し、2枚の2層フィ
ルムを得た。2枚の2層フィルムはいずれも6−ナイロ
ン層の厚さが20μm、マレイン酸変性直鎖状低密度ポ
リエチレン層の厚さが60μmであった。得られた2層
フィルムのうち1枚に、開口面積28mm2(開口形状
は直径6mmの円)の貫通孔を10mm間隔でパンチン
グにより打ち抜いた。
Separately, 6-nylon having a melting temperature of 230 ° C. and maleic acid-modified linear low density polyethylene having a MFR of 10 and a melting temperature of 125 ° C. were co-extruded to obtain two two-layer films. In each of the two two-layer films, the thickness of the 6-nylon layer was 20 μm, and the thickness of the maleic acid-modified linear low-density polyethylene layer was 60 μm. One of the obtained two-layer films was punched out with through holes having an opening area of 28 mm 2 (the opening shape was a circle having a diameter of 6 mm) at intervals of 10 mm.

【0045】次に、上記3層マットの一面に上記貫通孔
が形成された2層フィルムを、他面にもう1枚の2層フ
ィルムを、それぞれ6−ナイロン層側が3層マットに接
するように積層し、坪量約850g/m2、厚さ約8m
mの7層マットを得た。
Next, the two-layer film having the through-holes formed on one surface of the three-layer mat and the other two-layer film on the other surface, so that the 6-nylon layer side is in contact with the three-layer mat. Laminated, basis weight about 850 g / m 2 , thickness about 8 m
m-layer mat was obtained.

【0046】得られた7層マットを、テフロンコーティ
ングされたガラスクロスシートの間に挟み、約200℃
の熱風式加熱炉に供給し、5分間放置した。その後、7
層マットをガラスクロスシートで挟んだまま平板プレス
に移し、厚さが1mmになるまで圧縮して、圧縮状態で
5秒間保持した後、平板プレスから取り外し、両面のガ
ラスクロスシート側から真空吸引して、厚さ方向に0.
5mm/秒で引っ張り、厚さ5.5mmになるまで拡開
した。この拡開状態で3分間空冷した後にガラスクロス
シートを取り除き、熱成形性芯材を得た。得られた熱成
形性芯材は、厚さ約5.0mm、坪量約850g/m2
で、貫通孔の開口面積合計は、マット状基材一面の面積
に対して約28%であり、上記7層マットの高密度ポリ
エチレンフィルムは、そのほとんどが混抄マット内に含
浸していたが、6―ナイロン層は含浸していなかった。
The obtained seven-layer mat is sandwiched between glass cloth sheets coated with Teflon, and is heated at about 200 ° C.
And then left for 5 minutes. Then 7
The layer mat is transferred to a flat plate press while being sandwiched by glass cloth sheets, compressed to a thickness of 1 mm, kept in a compressed state for 5 seconds, removed from the flat plate press, and vacuum sucked from both sides of the glass cloth sheet. In the thickness direction.
It was pulled at a rate of 5 mm / sec and expanded to a thickness of 5.5 mm. After air cooling for 3 minutes in the expanded state, the glass cloth sheet was removed to obtain a thermoformable core material. The obtained thermoformable core material had a thickness of about 5.0 mm and a basis weight of about 850 g / m 2.
The total opening area of the through holes is about 28% of the area of one surface of the mat-like base material, and most of the seven-layer mat high-density polyethylene film was impregnated in the mixed mat. The 6-nylon layer was not impregnated.

【0047】図1は、得られた熱成形性芯材を示した断
面模式図であり、熱成形性芯材1は、混抄マットに高密
度ポリエチレンフィルムが含浸してなるマット状基材2
の表面に、貫通孔3が形成された6−ナイロン層4及び
マレイン酸変性直鎖状低密度ポリエチレン層5がこの順
に積層一体化され、裏面に、貫通孔が形成されず、非通
気性の6−ナイロン層6及びマレイン酸変性直鎖状低密
度ポリエチレン層7がこの順に積層一体化されてなる。
FIG. 1 is a schematic cross-sectional view showing the obtained thermoformable core material. The thermoformable core material 1 is a mat-like base material 2 obtained by impregnating a mixed mat with a high-density polyethylene film.
A 6-nylon layer 4 having a through hole 3 formed thereon and a maleic acid-modified linear low-density polyethylene layer 5 are laminated and integrated in this order on the front surface, and no through hole is formed on the back surface, and the air-impermeable material A 6-nylon layer 6 and a maleic acid-modified linear low-density polyethylene layer 7 are laminated and integrated in this order.

【0048】(実施例2)溶融温度135℃、MFR7
の、少量の無水マレイン酸変性ポリエチレンを含有する
高密度ポリエチレンと、溶融温度230℃の6−ナイロ
ンと、溶融温度80〜115℃の共重合ポリアミドとを
この順に共押出し、2枚の3層フィルムを得た。2枚の
3層フィルムはいずれも高密度ポリエチレン層の厚さが
120μm、6−ナイロン層の厚さが20μm、共重合
ポリアミド層の厚さが60μmであった。得られた3層
フィルムのうち1枚に、開口面積28mm2(開口形状
は直径6mmの円)の貫通孔を10mm間隔でパンチン
グにより打ち抜いた。
Example 2 Melting temperature 135 ° C., MFR 7
High-density polyethylene containing a small amount of maleic anhydride-modified polyethylene, 6-nylon having a melting temperature of 230 ° C., and copolyamide having a melting temperature of 80 to 115 ° C. in this order, and extruding two three-layer films. I got In each of the two three-layer films, the high-density polyethylene layer had a thickness of 120 µm, the 6-nylon layer had a thickness of 20 µm, and the copolymerized polyamide layer had a thickness of 60 µm. One of the obtained three-layer films was punched out with through holes having an opening area of 28 mm 2 (the opening shape was a circle having a diameter of 6 mm) at intervals of 10 mm.

【0049】次に、実施例1と同様の混抄マットの一面
に上記貫通孔が形成された3層フィルムを、他面にもう
1枚の3層フィルムを、それぞれ高密度ポリエチレン層
側が混抄マットに接するように積層し、坪量約850g
/m2、厚さ約8mmの7層マットを得た。得られた7
層マットから、実施例1と同様にして熱成形性芯材を得
た。得られた熱成形性芯材は、厚さ約5.0mm、坪量
約850g/m2で、貫通孔の開口面積合計は、マット
状基材一面の面積に対して約28%であり、上記7層マ
ットの高密度ポリエチレン層は、そのほとんどが混抄マ
ット内に含浸していたが、6―ナイロン層は含浸してい
なかった。
Next, a three-layer film having the above-mentioned through-holes formed on one surface of the same mixing mat as in Example 1, another three-layer film on the other surface, and the high-density polyethylene layer side as the mixing mat. Laminated to be in contact with each other, weighing about 850 g
/ M 2 and a 7-layer mat having a thickness of about 8 mm. 7 obtained
From the layer mat, a thermoformable core material was obtained in the same manner as in Example 1. The obtained thermoformable core material had a thickness of about 5.0 mm, a basis weight of about 850 g / m 2 , and the total opening area of the through holes was about 28% with respect to the area of one surface of the mat-like base material. Most of the high-density polyethylene layer of the seven-layer mat was impregnated in the mixed mat, but the 6-nylon layer was not impregnated.

【0050】(比較例1)実施例1と同様の混抄マット
の両面に、溶融温度135℃、MFR7の、少量の無水
マレイン酸変性ポリエチレンを含有する高密度ポリエチ
レンからなる厚さ100μmの高密度ポリエチレンフィ
ルムを積層し、3層マットを得た。
Comparative Example 1 A high-density polyethylene having a melting temperature of 135 ° C., a MFR of 7, and a high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene and a thickness of 100 μm was formed on both sides of the same mixed mat as in Example 1. The films were laminated to obtain a three-layer mat.

【0051】一方、溶融温度135℃、MFR2の、少
量の無水マレイン酸変性ポリエチレンを含有する高密度
ポリエチレンと、溶融温度125℃、MFR10のマレ
イン酸変性直鎖状低密度ポリエチレンとを共押出し、2
枚の2層フィルムを得た。2枚の2層フィルムはいずれ
も高密度ポリエチレン層の厚さが130μm、マレイン
酸変性直鎖状低密度ポリエチレン層の厚さが60μmで
あった。
On the other hand, a high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene having a melting temperature of 135 ° C. and MFR2 and a maleic acid-modified linear low-density polyethylene having a melting temperature of 125 ° C. and MFR10 are coextruded.
Two bilayer films were obtained. In each of the two two-layer films, the thickness of the high-density polyethylene layer was 130 μm, and the thickness of the maleic acid-modified linear low-density polyethylene layer was 60 μm.

【0052】次に、上記3層マットの両面に上記2層フ
ィルムを、それぞれ高密度ポリエチレン層側が3層マッ
トに接するように積層し、坪量約920g/m2、厚さ
約8.3mmの7層マットを得た。得られた7層マット
から、実施例1と同様にして熱成形性芯材を得た。得ら
れた熱成形性芯材は、厚さ約5.0mm、坪量約920
g/m2であり、上記7層マットの高密度ポリエチレン
フィルムは、そのほとんどが混抄マット内に含浸してお
り、その上の高密度ポリエチレン層及びマレイン酸変性
直鎖状低密度ポリエチレン層も1部含浸していた。
Next, the two-layer film was laminated on both sides of the three-layer mat so that the high-density polyethylene layer side was in contact with the three-layer mat, respectively, and had a basis weight of about 920 g / m 2 and a thickness of about 8.3 mm. A seven-layer mat was obtained. From the obtained seven-layer mat, a thermoformable core material was obtained in the same manner as in Example 1. The obtained thermoformable core material had a thickness of about 5.0 mm and a basis weight of about 920.
g / m 2 , and most of the seven-layer mat high-density polyethylene film is impregnated in the blending mat, and the high-density polyethylene layer and the maleic acid-modified linear low-density polyethylene layer on the mat also have one layer. Part was impregnated.

【0053】自動車用天井材の作成 実施例及び比較例で得られた熱成形性芯材の、実施例1
及び2については貫通孔が形成された面に、比較例1に
ついてはその一面に、ポリエステル繊維からなる坪量約
200g/m2の不織布を配置し、周縁8箇所をホッチ
キスで仮固定した。次に、遠赤外線ヒーター式加熱炉に
より、不織布の表面温度が約190℃、その反対側の表
面温度が約180℃になるように加熱して、常温状態の
プレス機に移した後、プレス成形するとともに熱成形性
芯材と不織布とを積層一体化し、この状態で20秒間保
持した後、プレス機から取り出し、自動車用天井材を得
た。
Preparation of ceiling material for automobile Example 1 of the thermoformable core material obtained in Examples and Comparative Examples.
In Nos. 2 and 3, a nonwoven fabric made of polyester fiber having a basis weight of about 200 g / m 2 was arranged on the surface where the through-holes were formed, and on one surface in Comparative Example 1, and eight peripheral edges were temporarily fixed with a stapler. Next, the non-woven fabric is heated by a far-infrared heater type heating furnace so that the surface temperature of the non-woven fabric is about 190 ° C. and the surface temperature on the opposite side is about 180 ° C., transferred to a press at room temperature, and then press-molded. At the same time, the thermoformable core material and the nonwoven fabric were laminated and integrated, and held in this state for 20 seconds, and then taken out of the press to obtain an automobile ceiling material.

【0054】表面材と熱成形性芯材の接着強度の評価 得られた自動車用天井材のフラット部位から四角形の試
料を切り出し、その一角の不織布を把持し、熱成形性芯
材から不織布を90°剥離して、その結果を表1に示し
た。 ○:熱成形性芯材と不織布との接着強度が強く、不織布
が材料破壊した。 ×:熱成形性芯材と不織布との間で剥離した。
Evaluation of Adhesive Strength between Surface Material and Thermoformable Core Material A rectangular sample was cut out from a flat portion of the obtained ceiling material for an automobile, and the nonwoven fabric of one corner was gripped. The film was peeled off and the results are shown in Table 1. :: The adhesive strength between the thermoformable core material and the nonwoven fabric was strong, and the nonwoven fabric was destroyed. ×: Peeled between the thermoformable core material and the nonwoven fabric.

【0055】自動車用天井材の吸音性の評価 得られた自動車用天井材の不織布側からの吸音特性を、
JIS A 1405に準拠して測定し、2.5kH
z、4kHz及び6.3kHzでの吸音率を表1に示し
た。
Evaluation of Sound Absorption of Automotive Ceiling Material The sound absorbing characteristics of the obtained automotive ceiling material from the nonwoven fabric side were
Measured in accordance with JIS A 1405, 2.5 kHz
Table 1 shows the sound absorption coefficients at z, 4 kHz and 6.3 kHz.

【0056】自動車用天井材の非通気性の評価 得られた自動車用天井材のフラット部位の透気度(cm
3/cm2・秒)を、デンソメータにより測定し、その値
を表1に示した。
Evaluation of non-breathability of automotive ceiling material Air permeability (cm) of the flat portion of the obtained automotive ceiling material
3 / cm 2 · sec) was measured with a densometer, and the value is shown in Table 1.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】本発明の熱成形性芯材は、軽量で、剛
性、耐熱性、熱賦形性に優れるとともに、裏面に、製造
過程、熱成形過程において溶融しない耐熱剛性樹脂層を
有しているので、非通気性にも優れている。さらに、表
面側からの音は熱成形性芯材の貫通孔を通じて多孔質体
であるマット状基材に到達するので、効果的に音を減衰
させることができ、優れた吸音性を有している。また、
表面にも、製造過程、熱成形過程において溶融しない耐
熱剛性樹脂層が形成されているので、表面材を接着する
ための熱活性樹脂層がマット状基材に含浸してしまうこ
とがなく、表面材との接着強度を損なうことがない。本
発明の熱成形性芯材は、上記の通りの構成であるので、
特に自動車用天井材として好適に使用することができ
る。
The thermoformable core material of the present invention is lightweight, excellent in rigidity, heat resistance and heat shaping properties, and has a heat-resistant rigid resin layer on the back surface which does not melt in the manufacturing process and thermoforming process. It is also excellent in non-breathability. Furthermore, since the sound from the surface side reaches the mat-shaped base material which is a porous body through the through holes of the thermoformable core material, the sound can be effectively attenuated, and has excellent sound absorbing properties. I have. Also,
A heat-resistant rigid resin layer that does not melt during the manufacturing process and thermoforming process is also formed on the surface, so the mat-type base material is not impregnated with the thermoactive resin layer for bonding the surface material. There is no loss of adhesive strength with the material. Since the thermoformable core material of the present invention has the configuration as described above,
In particular, it can be suitably used as a ceiling material for automobiles.

【0059】[0059]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた本発明の熱成形性芯材の断
面模式図である。
FIG. 1 is a schematic sectional view of a thermoformable core material of the present invention obtained in Example 1.

【符号の説明】[Explanation of symbols]

1 熱成形性芯材 2 マット状基材 3 貫通孔 4、6 6−ナイロン層 5、7 マレイン酸変性直鎖状低密度ポリエチレン層 DESCRIPTION OF SYMBOLS 1 Thermoformable core material 2 Matt-shaped base material 3 Through hole 4, 66 6-nylon layer 5, 7 Maleic acid-modified linear low density polyethylene layer

フロントページの続き Fターム(参考) 3D023 BA01 BB03 BC00 BD01 BE04 BE06 BE09 BE19 BE31 4F100 AA00A AC00A AG00A AJ02A AK01A AK01B AK01D AK05A AK48B AK48D AK63C AK63E AL07C AL07E AR00C AR00E BA05 BA06 BA10C BA10E BA25 BA32 DC11B DC11C DG01A DG06A DG18A EC09A EH41A EJ82A GB33 HB00E JA04B JA04D JB16A JH01 JJ03 JJ03A JJ03B JJ03D JK01 JK01B JL01 JL03 JL12C JL12E YY00B YY00CContinued on the front page F-term (reference) 3D023 BA01 BB03 BC00 BD01 BE04 BE06 BE09 BE19 BE31 4F100 AA00A AC00A AG00A AJ02A AK01A AK01B AK01D AK05A AK48B AK48D AK63C AK63E AL07C AL07E AR10CBA10A06 BA01 DC GB33 HB00E JA04B JA04D JB16A JH01 JJ03 JJ03A JJ03B JJ03D JK01 JK01B JL01 JL03 JL12C JL12E YY00B YY00C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性繊維が熱可塑性樹脂で相互に結着
されてなるマット状基材の一面に、前記熱可塑性樹脂よ
り溶融温度の高い耐熱剛性樹脂からなる耐熱剛性樹脂層
と、熱活性樹脂からなる熱活性樹脂層とがこの順に積層
され、かつ、該耐熱剛性樹脂層及び熱活性樹脂層に開口
面積が3〜100mm2の貫通孔が分散して形成されて
おり、他面に、前記熱可塑性樹脂より溶融温度の高い耐
熱剛性樹脂からなる耐熱剛性樹脂層と、熱活性樹脂から
なる熱活性樹脂層とがこの順に積層されてなることを特
徴とする熱成形性芯材。
1. A heat-resistant stiff resin layer made of a heat-resistant stiff resin having a higher melting temperature than the thermoplastic resin, on one surface of a mat-shaped base material in which heat-resistant fibers are bonded to each other with a thermoplastic resin. A heat-active resin layer made of a resin is laminated in this order, and through-holes having an opening area of 3 to 100 mm 2 are dispersedly formed in the heat-resistant rigid resin layer and the heat-active resin layer. A thermoformable core material comprising: a heat-resistant stiff resin layer made of a heat-resistant stiff resin having a higher melting temperature than the thermoplastic resin; and a heat-active resin layer made of a heat-active resin, laminated in this order.
【請求項2】 貫通孔の開口面積合計が、マット状基材
一面の面積に対して5〜80%であることを特徴とす
る、請求項1に記載の熱成形性芯材。
2. The thermoformable core material according to claim 1, wherein the total opening area of the through holes is 5 to 80% with respect to the area of one surface of the mat-shaped base material.
【請求項3】 耐熱性繊維が無機繊維又は植物繊維であ
ることを特徴とする、請求項1又は2に記載の熱成形性
芯材。
3. The thermoformable core material according to claim 1, wherein the heat-resistant fiber is an inorganic fiber or a vegetable fiber.
【請求項4】 耐熱性繊維に熱可塑性樹脂繊維が混抄さ
れていることを特徴とする、請求項1〜3のいずれか1
項に記載の熱成形性芯材。
4. The method according to claim 1, wherein a thermoplastic resin fiber is mixed with the heat-resistant fiber.
Item 6. The thermoformable core material according to item 1.
【請求項5】 請求項1〜4のいずれか1項に記載の熱
成形性芯材の貫通孔を有する熱活性樹脂層面に表面材が
積層され、熱成形されてなることを特徴とする自動車用
天井材。
5. An automobile obtained by laminating a surface material on a surface of a thermoactive resin layer having a through hole of the thermoformable core material according to claim 1 and thermoforming. Ceiling material.
JP2000230887A 2000-07-31 2000-07-31 Thermoformable core material and manufacturing method thereof Expired - Fee Related JP3654821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230887A JP3654821B2 (en) 2000-07-31 2000-07-31 Thermoformable core material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230887A JP3654821B2 (en) 2000-07-31 2000-07-31 Thermoformable core material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002036405A true JP2002036405A (en) 2002-02-05
JP3654821B2 JP3654821B2 (en) 2005-06-02

Family

ID=18723786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230887A Expired - Fee Related JP3654821B2 (en) 2000-07-31 2000-07-31 Thermoformable core material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3654821B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097547A1 (en) * 2004-04-09 2005-10-20 Hayashi Engineering Inc. Molded spreading interior trim material for automobile
JP2007055306A (en) * 2005-08-22 2007-03-08 Sanwa Kogyo Kk Interior material for vehicle and its manufacturing method
WO2008155962A1 (en) * 2007-06-19 2008-12-24 Hayashi Engineering Inc. Fender liner and process for producing the same
JP2012106422A (en) * 2010-11-18 2012-06-07 Sekisui Techno Seikei Kk Thermoplastic resin foam molding and method of manufacturing the same
JP2016028893A (en) * 2008-04-14 2016-03-03 スリーエム イノベイティブ プロパティズ カンパニー Multilayer sound absorbing sheet
WO2020261352A1 (en) * 2019-06-25 2020-12-30 河西工業株式会社 Interior component for automobile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097547A1 (en) * 2004-04-09 2005-10-20 Hayashi Engineering Inc. Molded spreading interior trim material for automobile
CN100450823C (en) * 2004-04-09 2009-01-14 株式会社林技术研究所 Molded spreading interior trim material for automobile
AU2005230324B2 (en) * 2004-04-09 2010-02-25 Hayashi Engineering Inc. Molded Interior Trim Installation Material for Automobile
JP2007055306A (en) * 2005-08-22 2007-03-08 Sanwa Kogyo Kk Interior material for vehicle and its manufacturing method
JP4660318B2 (en) * 2005-08-22 2011-03-30 三和工業株式会社 Interior material for vehicle and method for manufacturing the same
WO2008155962A1 (en) * 2007-06-19 2008-12-24 Hayashi Engineering Inc. Fender liner and process for producing the same
JP2009001045A (en) * 2007-06-19 2009-01-08 Hayashi Engineering Inc Fender liner and its manufacturing method
US8167335B2 (en) 2007-06-19 2012-05-01 Hayashi Engineering Inc. Fender liner and process for producing the same
CN101711208B (en) * 2007-06-19 2012-05-30 株式会社林技术研究所 Fender liner and process for producing the same
JP2016028893A (en) * 2008-04-14 2016-03-03 スリーエム イノベイティブ プロパティズ カンパニー Multilayer sound absorbing sheet
JP2012106422A (en) * 2010-11-18 2012-06-07 Sekisui Techno Seikei Kk Thermoplastic resin foam molding and method of manufacturing the same
WO2020261352A1 (en) * 2019-06-25 2020-12-30 河西工業株式会社 Interior component for automobile

Also Published As

Publication number Publication date
JP3654821B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
JP2011521130A (en) Sound absorbing material and method for producing sound absorbing material
CN1954126A (en) Decorative interior sound absorbing panel
EP1574326A1 (en) Laminated surface skin material and laminate for interior material
JP2002144976A (en) Molded ceiling for car and its manufacturing method
JP2002036405A (en) Thermoformable core material and automobile ceiling material
JP2882740B2 (en) Molded composite and method for producing the same
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JPH08276446A (en) Manufacture of molding composite material
JP3379851B2 (en) Lightweight stampable sheet molded product and lightweight stampable sheet skin bonded product
JP4180433B2 (en) Interior material for automobile and manufacturing method thereof
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JP3574209B2 (en) Lightweight stampable sheet skin bonded product
US20010018306A1 (en) Vacuum formed coated fibrous mat and laminate structures made therefrom
JP3853077B2 (en) Dispersion method stampable sheet expansion molded body and dispersion method stampable sheet
JP2005186334A (en) Porous stampable sheet, its manufacturing method, expanded molded product of porous stampable sheet and its manufacturing method
JP3095503B2 (en) Thermoformable core material and method for producing the same
JP3004183B2 (en) Manufacturing method of molded composite
JP3773044B2 (en) Porous material
JPH01308623A (en) Manufacture of fiber molded form
JP3730177B2 (en) Porous material and method for producing the same
JPH0776052A (en) Laminated structure and interior material
JP2003316366A (en) Acoustic material and method for manufacturing the same
JPH07102650B2 (en) Lightweight composite material manufacturing method
JP2005178030A (en) Multilayered skin material and laminate for trim material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R151 Written notification of patent or utility model registration

Ref document number: 3654821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees