JP2002036376A - Method for manufacturing modified polytetrafluoroethylene film - Google Patents

Method for manufacturing modified polytetrafluoroethylene film

Info

Publication number
JP2002036376A
JP2002036376A JP2000223981A JP2000223981A JP2002036376A JP 2002036376 A JP2002036376 A JP 2002036376A JP 2000223981 A JP2000223981 A JP 2000223981A JP 2000223981 A JP2000223981 A JP 2000223981A JP 2002036376 A JP2002036376 A JP 2002036376A
Authority
JP
Japan
Prior art keywords
film
ptfe
radiation
modified
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000223981A
Other languages
Japanese (ja)
Inventor
Tomoyuki Murakami
知之 村上
Junichi Moriyama
順一 森山
Tadao Seguchi
忠男 瀬口
Takeshi Suwa
武 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nitto Denko Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP2000223981A priority Critical patent/JP2002036376A/en
Publication of JP2002036376A publication Critical patent/JP2002036376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of manufacturing a modified PTFE film having good radiation resistance without a large equipment investment. SOLUTION: The method for manufacturing the modified PTFE film comprises the steps of compression molding a polytetrafluoroethylene powder in a lump state, then emitting a radioactive ray to a molding obtained by baking the compression molding at a temperature of a melting point or higher of a polytetrafluoroethylene in the absence of an oxygen to modify the molding, and then cutting the molding to a long-sized film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質ポリテトラフ
ルオロエチレン(以下、ポリテトラフルオロエチレンを
PTFEともいう)フィルムの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a modified polytetrafluoroethylene (hereinafter, polytetrafluoroethylene is also referred to as PTFE) film.

【0002】[0002]

【従来の技術】PTFEは耐薬品性、耐熱性に優れてお
り、産業用、民生用樹脂として広く利用されている。し
かし、PTFEはγ線、電子線などの放射線に対する感
受性が極めて大きく、放射線により分子切断が生じて機
械的特性が低下する。
2. Description of the Related Art PTFE is excellent in chemical resistance and heat resistance, and is widely used as industrial and consumer resin. However, PTFE has extremely high sensitivity to radiation such as γ-rays and electron beams, and molecular breaks occur due to the radiation, thereby deteriorating mechanical properties.

【0003】上記PTFEの耐放射線性に関する問題に
対して、特開平6−116423号公報には、短尺のP
TFEフィルムに、PTFEの結晶融点以上の温度で酸
素不在下において、1×103 Gy以上の電離性放射線
を照射して、当該PTFEフィルムを改質する方法が開
示されている。かかる方法によれば、耐放射線性の改質
されたPTFEフィルムが得られている。
[0003] To solve the above-mentioned problem concerning the radiation resistance of PTFE, Japanese Patent Application Laid-Open No. Hei 6-116423 discloses a short P
A method for modifying a PTFE film by irradiating the TFE film with ionizing radiation of 1 × 10 3 Gy or more in the absence of oxygen at a temperature equal to or higher than the crystal melting point of PTFE is disclosed. According to this method, a radiation-resistant modified PTFE film is obtained.

【0004】しかしながら、上記方法を、長尺PTFE
フィルムに適用する場合には、当該フィルムを連続する
ライン上でPTFEの融点以上の高温に保持しつつ、し
かも酸素不在下で連続的に放射線を照射しなければなら
ず、また腰のないフィルムを走行させるために複雑な設
備となるため多大な設備投資が必要となり、実用的な製
法とはいえなかった。
[0004] However, the above-mentioned method is not suitable for long PTFE.
When applied to a film, the film must be continuously irradiated in the absence of oxygen while maintaining the film at a high temperature equal to or higher than the melting point of PTFE on a continuous line. Since complicated equipment is required for running the vehicle, a large capital investment is required, and it cannot be said that this is a practical production method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐放射線性
の良好な改質PTFEフィルムを、多大な設備投資をす
ることなく製造しうる方法を提供することすることを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a modified PTFE film having good radiation resistance without a large capital investment.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、以下に示す方法に
より上記目的を達成できることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned object can be achieved by the following method, and have completed the present invention.

【0007】すなわち、本発明は、PTFE粉末を塊状
に圧縮成形した後、焼成して得られる成形物に、PTF
Eの融点以上の温度にて、放射線を照射して前記塊状成
形物を改質した後、これを切削して長尺フィルムとする
ことを特徴とする改質PTFEフィルムの製造方法、に
関する。
That is, the present invention relates to a method for compressing PTFE powder into a lump and then sintering the resulting PTFE powder to obtain a PTFE powder.
The present invention relates to a method for producing a modified PTFE film, which comprises irradiating radiation at a temperature equal to or higher than the melting point of E to modify the mass-formed product and cutting the mass to form a long film.

【0008】上記本発明の製造方法によれば、PTFE
の改質が、PTFEの塊状成形物に対して施されるた
め、特開平6−116423号公報で開示されているP
TFEフィルムに改質を施す方法に比べて非常に簡易な
方法であり、多大な投資を必要としない。また、上記本
発明の製造方法により得られる改質PTFEフィルム
は、特開平6−116423号公報で開示されているP
TFEフィルムに改質を施したものと同様にPTFEに
架橋構造等が付与されると思料され、優れた耐放射線性
を有する。
According to the production method of the present invention, PTFE
Is applied to the PTFE bulk molded product, so that P is disclosed in JP-A-6-116423.
This is a very simple method as compared with a method of modifying a TFE film, and does not require a large investment. The modified PTFE film obtained by the production method of the present invention is disclosed in Japanese Patent Application Laid-Open No. 6-116423.
It is considered that a crosslinked structure or the like is imparted to PTFE in the same manner as a modified TFE film, and has excellent radiation resistance.

【0009】また本発明は、PTFE粉末を塊状に圧縮
成形した後、焼成して得られる成形物に、酸素不在下、
PTFEの融点以上の温度にて、放射線を照射して前記
塊状成形物を改質した後、これを切削して長尺フィルム
とすることを特徴とする改質PTFEフィルムの製造方
法、に関する。
[0009] The present invention also provides a molded product obtained by compression-molding PTFE powder into a lump and then sintering the same in the absence of oxygen.
The present invention relates to a method for producing a modified PTFE film, which comprises irradiating radiation at a temperature equal to or higher than the melting point of PTFE to modify the massive molded product, and then cutting the modified molded product into a long film.

【0010】PTFEを圧縮成形すると塊状成形物内部
には酸素が殆ど存在しないので、照射雰囲気を酸素不存
在としなくても本発明の効果は得られるが、塊状成形物
表面は酸素の存在によって放射線劣化するので照射雰囲
気を酸素不存在とするのが好ましい。
When PTFE is compression molded, almost no oxygen is present inside the massive molded product. Therefore, the effect of the present invention can be obtained even if the irradiation atmosphere is not oxygen-free. It is preferable that the irradiation atmosphere be free of oxygen because it deteriorates.

【0011】本発明の改質PTFEフィルムの製造方法
は、長尺フィルムの厚さが1mm未満である場合に有用
である。特に前記改質PTFEフィルムの製造方法は、
長尺フィルムの厚さが0.5mm以下の場合に有用であ
る。厚さが1mm以上になると、切削の初期と終期に発
生するロスが多く、塊状成形物から切削して得られるフ
ィルムの長さが短くなる。上記本発明の製造方法では長
尺フィルムの厚さ調整は通常の切削と同様の方法により
に行うことができ容易である。本発明でいう長尺とは通
常10m以上をいう。
The method for producing a modified PTFE film of the present invention is useful when the length of a long film is less than 1 mm. In particular, the method for producing the modified PTFE film includes:
This is useful when the thickness of the long film is 0.5 mm or less. When the thickness is 1 mm or more, a large amount of loss occurs at the beginning and end of cutting, and the length of a film obtained by cutting from a lump-shaped product becomes short. In the manufacturing method of the present invention, the adjustment of the thickness of the long film can be easily performed by the same method as in ordinary cutting. The long length in the present invention usually means 10 m or more.

【0012】本発明における放射線の線質は、透過力を
有する線質が有用であり放射線のなかでもγ線もしくは
X線または電子線が本発明に適している。本発明におけ
る放射線として電子線を用いる場合には、透過力がよ
く、PTFEの塊状成形物の内部まで改質できる5×1
6 電子ボルト以上、さらには7×106 電子ボルト以
上のものが好ましい。上記のように放射線もしくは電子
線の線質を選択することにより効果的にPTFEフィル
ムの改質を行うことができる。
The radiation quality in the present invention is preferably a radiation quality having a transmitting power, and among radiations, γ-rays, X-rays or electron beams are suitable for the present invention. When an electron beam is used as the radiation in the present invention, the penetrating power is good, and 5 × 1 can be modified to the inside of the PTFE bulk molding.
0 6 eV or more, more preferably not less than 7 × 10 6 electron volts. As described above, the quality of the PTFE film can be effectively modified by selecting the radiation or electron beam quality.

【0013】[0013]

【発明の実施の形態】本発明の製造方法では、予めPT
FE粉末を圧縮成形した後、焼成して塊状の成形物を調
製しておく。
BEST MODE FOR CARRYING OUT THE INVENTION In the manufacturing method of the present invention, PT
After compression molding the FE powder, it is fired to prepare a lump-shaped molded product.

【0014】PTFE粉末の粒子径は特に制限されない
が、通常、0.1〜500μm程度、さらには20〜3
0μm程度とするのが好ましい。
The particle size of the PTFE powder is not particularly limited, but is usually about 0.1 to 500 μm, and more preferably 20 to 3 μm.
It is preferably about 0 μm.

【0015】圧縮成形は、所望形状の金型に前記原料粉
末を均一に充填し、通常、常温でプレスを挟んで100
〜1000kgf/cm2 程度で圧縮を行う。
In the compression molding, the above-mentioned raw material powder is uniformly filled in a mold having a desired shape, and is usually put into a mold at room temperature by a press.
Compression is performed at about 1000 kgf / cm 2 .

【0016】所望形状の金型は特に制限されず、得られ
る成形物が塊状となるようなものであれば、板上、円柱
状、円筒状等のいずれでもよいが、塊状成形物を切削す
ることによりフィルム化の容易な円筒状のものが好まし
い。また、放射線として電子線を採用するにその線質が
低い場合には、塊状成形物(PTFE)内部に電子がチ
ャージアップするおそれがあるので、チャージした電子
を逃す細工、たとえば、塊状成形物を中空状とし、内面
側にもアースを取ることは有効である。
The mold having a desired shape is not particularly limited, and may be any of a plate, a column, a cylinder, and the like as long as the obtained molded product is a lump. In this case, a cylindrical shape which is easy to form a film is preferable. In addition, when electron beams are used as radiation, if the quality of the radiation is low, electrons may be charged up inside the massive molded product (PTFE). It is effective to make it hollow and to ground the inner surface.

【0017】圧縮成形による予備圧縮の後には、当該予
備成形物を、金型から取り出し、炉に入れ340〜38
0℃程度に昇温し、その温度で焼結が全体に均一に完了
するまで保持する。これによりPTFEの焼結体である
塊状の成形物が得られる。
After the pre-compression by compression molding, the pre-formed product is taken out of the mold, put into a furnace, and stored at 340-38.
The temperature is raised to about 0 ° C. and maintained at that temperature until the sintering is completed uniformly over the whole. As a result, a massive molded product that is a sintered body of PTFE is obtained.

【0018】なお、上記は、PTFEの塊状の成形物の
圧縮成形法として、フリーベイキング法を代表させて説
明したが、圧縮成形法としては、ホットモールディング
法、自動圧縮成形法、等圧圧縮成形法等を適宜に応用す
ることもできる。
In the above description, the free baking method has been described as a representative example of the compression molding method of the PTFE bulk molding. However, the compression molding method includes a hot molding method, an automatic compression molding method, and a constant pressure compression molding method. A method or the like can be applied as appropriate.

【0019】次いで、上記の塊状成形物には、PTFE
の融点以上の温度にて、放射線を照射して改質する。前
述の通り、放射線照射にあたり照射環境は、酸素不在下
とするのが好ましい。放射線の照射環境の酸素不在下と
は、実質的な真空中(1Pa以下)ないしは窒素、ヘリ
ウム、アルゴン等の不活性ガス雰囲気下をいう。
Next, PTFE is added to the above-mentioned massive molding.
Irradiation at a temperature equal to or higher than the melting point of As described above, upon irradiation, the irradiation environment is preferably in the absence of oxygen. The absence of oxygen in the radiation irradiation environment refers to a substantial vacuum (1 Pa or less) or an atmosphere of an inert gas such as nitrogen, helium, or argon.

【0020】照射温度はPTFEの結晶融点(327
℃)以上であり、327℃〜360℃程度、好ましくは
335℃〜345℃である。照射温度が、327℃未満
では改質(架橋反応)が進行しない。一方、照射温度が
高くなりすぎるとPTFEの分解が進み、強度低下する
ため照射温度の上限は360℃とするのが好ましい。
The irradiation temperature is the crystal melting point of PTFE (327
° C) or more, and is about 327 ° C to 360 ° C, preferably 335 ° C to 345 ° C. If the irradiation temperature is lower than 327 ° C., the reforming (crosslinking reaction) does not proceed. On the other hand, if the irradiation temperature is too high, the decomposition of PTFE proceeds and the strength decreases, so the upper limit of the irradiation temperature is preferably set to 360 ° C.

【0021】通常、放射線量は、1×103 Gy〜1×
107 Gy程度とする。PTFEの改質(架橋物性)を
有効に出現させるには、放射線量は1×104 Gy以上
とするのが好ましい。一方、放射線量を多くしすぎると
PTFEの分解が進むため放射線量は1×106 Gy以
下とするのが好ましい。
Usually, the radiation dose is 1 × 10 3 Gy to 1 ×
It is about 10 7 Gy. In order for PTFE modification (cross-linking properties) to appear effectively, the radiation dose is preferably 1 × 10 4 Gy or more. On the other hand, if the radiation dose is too high, the decomposition of PTFE proceeds, so the radiation dose is preferably 1 × 10 6 Gy or less.

【0022】放射線照射により改質されたPTFEの塊
状成形物は、切削して長尺フィルムとする。切削方法は
特に制限されず、一般的なPTFEの切削工具を使用で
きる。また長尺フィルムの厚さに応じて、切削工具の種
類、使用条件等が適宜に選択される。
The PTFE mass formed by irradiation is cut into a long film. The cutting method is not particularly limited, and a general PTFE cutting tool can be used. Further, the type of the cutting tool, the use conditions, and the like are appropriately selected according to the thickness of the long film.

【0023】[0023]

【発明の効果】本発明の製造方法によれば、耐放射線性
の良好な改質PTFEフィルムを、多大な設備投資をす
ることなく製造することができる。特に、PTFEフィ
ルムの厚さが1mm未満のものを製造する場合に有用で
ある。
According to the production method of the present invention, a modified PTFE film having good radiation resistance can be produced without a large capital investment. In particular, it is useful when manufacturing a PTFE film having a thickness of less than 1 mm.

【0024】得られた改質PTFEフィルムは、未改質
のPTFEフィルムに比べて耐放射線性に優れている。
本発明により得られた改質PTFEフィルムは、これま
で使用が不可能であった放射線環境下での工業材料とし
て使用できる。
The resulting modified PTFE film has better radiation resistance than the unmodified PTFE film.
The modified PTFE film obtained according to the present invention can be used as an industrial material under a radiation environment, which has heretofore been impossible to use.

【0025】また、PTFEは耐放射線性に乏しいこと
から、前照射法での放射線グラフト共重合では強度低下
を来たすことから不向きであったが、本発明により得ら
れた改質PTFEフィルムは耐放射線性を有するので、
前照射法で放射線グラフト共重合してイオン交換膜や電
池隔膜の基材として採用しうる物性とすることもでき
る。
Further, PTFE is poor in radiation resistance, and is not suitable because radiation graft copolymerization by the pre-irradiation method causes a decrease in strength. However, the modified PTFE film obtained according to the present invention is not suitable for radiation resistance. Because it has the nature
Radiation graft copolymerization by a pre-irradiation method can provide physical properties that can be used as a base material of an ion exchange membrane or a battery membrane.

【0026】また改質PTFEフィルムは、未改質のP
TFEフィルムによりも降状点強度が向上している。ま
た、未改質のPTFEフィルムと同等の破断伸びを有
し、低磨耗量といった物性にも優れる。このように改質
PTFEフィルムはゴム特性を備えているので、シール
材料やパッキン材料として耐熱、耐薬品性、耐クリープ
性を具備した特性が要求させる各種用途へ利用できる。
The modified PTFE film is made of unmodified P
The yield point strength is higher than that of the TFE film. Further, it has an elongation at break equivalent to that of an unmodified PTFE film, and is excellent in physical properties such as low abrasion. Since the modified PTFE film has rubber properties as described above, it can be used for various applications that require properties having heat resistance, chemical resistance, and creep resistance as seal materials and packing materials.

【0027】[0027]

【実施例】以下、実施例にて本発明を詳述するが、本発
明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1 内径200mmφ、肉厚30mm、高さ800mmφの
金型にPTFEモールディングパウダー(ダイキン工業
(株)製,品番ポリフロンTFE M−12)を入れ、
230kg/cm2 の圧力で1時間圧縮して予備成形し
た。この予備成形品を金型から取り出し、360℃の炉
に48時間入れ、焼成し、外径約200mmφ、高さ5
00mmの円柱状ブロックを得た。
Example 1 A PTFE molding powder (manufactured by Daikin Industries, Inc., product number: Polyflon TFE M-12) was placed in a mold having an inner diameter of 200 mmφ, a wall thickness of 30 mm, and a height of 800 mmφ.
It was preformed by compressing at a pressure of 230 kg / cm 2 for 1 hour. The preformed product is taken out of the mold, placed in a furnace at 360 ° C. for 48 hours, fired, and has an outer diameter of about 200 mmφ and a height of 5 mm.
A 00 mm cylindrical block was obtained.

【0029】次いで、この円柱状ブロックを内径300
mmφ、高さ700mmのステンレス製の容器に入れ、
容器内部の空気を窒素に置換し、更に容器の外周にバン
ドヒータを巻き内部温度を340℃±5℃に設定した
後、20時間そのまま維持することで、円柱状ブロック
全体を340℃±5℃にした。温度を340℃±5℃に
維持しつつ、放射線を均一に照射するため、容器を毎分
1回転させながら、毎時2×103 Gyのコバルト60
γ線を50時間照射して(放射線量1×105 Gy)、
改質PTFEの円柱状ブロックを得た。
Next, this columnar block is set to an inner diameter of 300.
mmφ, put in a stainless steel container with a height of 700 mm,
The air inside the container was replaced with nitrogen, and a band heater was wrapped around the outer periphery of the container to set the internal temperature to 340 ° C ± 5 ° C, and then maintained for 20 hours, so that the entire columnar block was 340 ° C ± 5 ° C. I made it. In order to uniformly irradiate the radiation while maintaining the temperature at 340 ° C. ± 5 ° C., the container was rotated once per minute while 2 × 10 3 Gy / hour of cobalt 60 was used.
Irradiation with gamma rays for 50 hours (radiation dose 1 × 10 5 Gy)
A cylindrical block of modified PTFE was obtained.

【0030】この改質PTFEの円柱状ブロックを切削
旋盤にて切削し、厚さ0. 1mm、幅460mm、長さ
150mの長尺PTFEフィルムを得た。
The modified PTFE columnar block was cut by a cutting lathe to obtain a long PTFE film having a thickness of 0.1 mm, a width of 460 mm and a length of 150 m.

【0031】実施例2 実施例1において、コバルト60γ線の代わりに、平均
エネルギー5×105電子ボルトのX線を照射した(放
射線量1×105 Gy)こと以外は実施例1と同様に操
作して、改質PTFEの円柱状ブロックを得た。そし
て、実施例1と同様に切削し、厚さ0. 1mm、幅46
0mm、長さ150mの長尺PTFEフィルムを得た。
Example 2 In the same manner as in Example 1 except that X-rays having an average energy of 5 × 10 5 electron volts (irradiation dose 1 × 10 5 Gy) were used instead of cobalt 60γ rays. By operation, a cylindrical block of modified PTFE was obtained. Then, it was cut in the same manner as in Example 1 to have a thickness of 0.1 mm and a width of 46 mm.
A long PTFE film having a length of 0 mm and a length of 150 m was obtained.

【0032】実施例3 実施例1において、金型として内径100mmφ、肉厚
20mmのもの用い、当該金型の中心に外径80mm
φ、内径60mmφの鉄管を設置したこと以外は実施例
1と同様に操作して、外径100mmφ、内径80mm
φの円筒状ブロックを得た。そして、電子線を照射中に
電子チャージが逃げるように、80mmφの鉄管に内側
に厚さ0.1mmのステンレス金属箔からなる導体を設
置してアースを取り付け、1×107 電子ボルトの電子
線を照射した(放射線量1×105Gy)こと以外は実
施例1と同様に操作して、改質PTFEの円筒状ブロッ
クを得た。そして、実施例1と同様に切削し、厚さ0.
1mm、幅460mm、長さ18mの長尺PTFEフィ
ルムを得た。
Example 3 In Example 1, a mold having an inner diameter of 100 mmφ and a thickness of 20 mm was used, and an outer diameter of 80 mm was placed at the center of the mold.
The same operation as in Example 1 was performed except that an iron tube having a diameter of φ and an inner diameter of 60 mmφ was installed.
A cylindrical block of φ was obtained. As electronic charge from escaping during the electron beam irradiation, attach the ground by installing a conductor made of stainless steel metal foil having a thickness of 0.1mm inside the iron pipe of 80 mm, an electron beam of 1 × 10 7 electron volts Was performed (radiation dose: 1 × 10 5 Gy), and a cylindrical block of modified PTFE was obtained in the same manner as in Example 1. Then, it was cut in the same manner as in Example 1 to obtain a thickness of 0.5 mm.
A long PTFE film having a length of 1 mm, a width of 460 mm and a length of 18 m was obtained.

【0033】(評価)実施例で得られた改質PTFEフ
ィルムについて、空気中、室温で、電子線を1×104
Gy照射した前後の降伏点強度および破断伸びを万能引
張り試験機にて、20℃で、200mm/分の引張り速
度で測定した。また、比較例1として、実施例1におい
て焼成後、放射線照射せずに切削したフィルムについて
も同様の評価を行った。評価結果を表1に示す。
(Evaluation) The modified PTFE film obtained in the example was exposed to an electron beam at 1 × 10 4 in air at room temperature.
The yield point strength and breaking elongation before and after Gy irradiation were measured with a universal tensile tester at 20 ° C. at a pulling speed of 200 mm / min. Further, as Comparative Example 1, the same evaluation was performed on a film cut in Example 1 after firing without irradiation. Table 1 shows the evaluation results.

【0034】[0034]

【表1】 表1に示したように、改質PTFEフィルムでは、空気
中で放射線を照射しても降伏点強度、破断伸びの低下が
殆どなく耐放射線性に優れていることが認められる。
[Table 1] As shown in Table 1, it is recognized that the modified PTFE film has almost no reduction in yield point strength and elongation at break even when irradiated with radiation in the air, and has excellent radiation resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 27:18 C08L 27:18 (72)発明者 森山 順一 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 瀬口 忠男 群馬県高崎市綿貫町1233 日本原子力研究 所高崎研究所内 (72)発明者 諏訪 武 群馬県高崎市綿貫町1233 日本原子力研究 所高崎研究所内 Fターム(参考) 4F071 AA27 AG14 AG28 AH19 BB03 BB13 BC01 4F073 AA32 BA16 BB02 CA41 CA42 4F213 AA16 AC04 AG01 WA04 WA22 WA43 WA54 WA63 WA86 WB02 WW02 WW05 WW23 WW34 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 27:18 C08L 27:18 (72) Inventor Junichi Moriyama 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Tadao Seguchi 1233 Watanuki-cho, Takasaki City, Gunma Prefecture Japan Atomic Energy Research Institute Takasaki Research Institute (72) Inventor Takeshi Suwa 1233 Watanuki-cho, Takasaki City, Gunma Prefecture Japan Nuclear Research Institute Takasaki Research Institute F-term ( 4F071 AA27 AG14 AG28 AH19 BB03 BB13 BC01 4F073 AA32 BA16 BB02 CA41 CA42 4F213 AA16 AC04 AG01 WA04 WA22 WA43 WA54 WA63 WA86 WB02 WW02 WW05 WW23 WW34

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリテトラフルオロエチレン粉末を塊状
に圧縮成形した後、焼成して得られる成形物に、ポリテ
トラフルオロエチレンの融点以上の温度にて、放射線を
照射して前記塊状成形物を改質した後、これを切削して
長尺フィルムとすることを特徴とする改質ポリテトラフ
ルオロエチレンフィルムの製造方法。
1. A method for compressing a polytetrafluoroethylene powder into a lump and then irradiating a molded article obtained by firing at a temperature equal to or higher than the melting point of the polytetrafluoroethylene, thereby reforming the lump. And producing a long film by cutting the modified polytetrafluoroethylene film.
【請求項2】 ポリテトラフルオロエチレン粉末を塊状
に圧縮成形した後、焼成して得られる成形物に、酸素不
在下、ポリテトラフルオロエチレンの融点以上の温度に
て、放射線を照射して前記塊状成形物を改質した後、こ
れを切削して長尺フィルムとすることを特徴とする改質
ポリテトラフルオロエチレンフィルムの製造方法。
2. A compact obtained by compressing and molding a polytetrafluoroethylene powder into a lump, and then irradiating a molded product obtained by firing at a temperature not lower than the melting point of the polytetrafluoroethylene in the absence of oxygen. A method for producing a modified polytetrafluoroethylene film, comprising modifying a molded product and cutting the molded product into a long film.
【請求項3】 長尺フィルムの厚さが1mm未満である
請求項1または2記載の改質ポリテトラフルオロエチレ
ンフィルムの製造方法。
3. The method for producing a modified polytetrafluoroethylene film according to claim 1, wherein the length of the long film is less than 1 mm.
【請求項4】 放射線が、γ線またはX線である請求項
1、2または3記載の改質ポリテトラフルオロエチレン
フィルムの製造方法。
4. The method for producing a modified polytetrafluoroethylene film according to claim 1, wherein the radiation is γ-ray or X-ray.
【請求項5】 放射線が、5×106 電子ボルト以上の
エネルギーを有する電子線である請求項1、2または3
記載の改質ポリテトラフルオロエチレンフィルムの製造
方法。
5. The radiation according to claim 1, wherein the radiation is an electron beam having an energy of 5 × 10 6 electron volts or more.
The method for producing the modified polytetrafluoroethylene film described in the above.
JP2000223981A 2000-07-25 2000-07-25 Method for manufacturing modified polytetrafluoroethylene film Pending JP2002036376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223981A JP2002036376A (en) 2000-07-25 2000-07-25 Method for manufacturing modified polytetrafluoroethylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223981A JP2002036376A (en) 2000-07-25 2000-07-25 Method for manufacturing modified polytetrafluoroethylene film

Publications (1)

Publication Number Publication Date
JP2002036376A true JP2002036376A (en) 2002-02-05

Family

ID=18718012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223981A Pending JP2002036376A (en) 2000-07-25 2000-07-25 Method for manufacturing modified polytetrafluoroethylene film

Country Status (1)

Country Link
JP (1) JP2002036376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664585A (en) * 2018-12-26 2019-04-23 江苏金由新材料有限公司 A kind of PTFE compound seal backing plate and its preparation process
CN114288663A (en) * 2022-01-05 2022-04-08 腾讯科技(深圳)有限公司 Game data processing method, device, equipment and computer readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664585A (en) * 2018-12-26 2019-04-23 江苏金由新材料有限公司 A kind of PTFE compound seal backing plate and its preparation process
CN114288663A (en) * 2022-01-05 2022-04-08 腾讯科技(深圳)有限公司 Game data processing method, device, equipment and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP5860521B2 (en) Polytetrafluoroethylene resin that can be molded, applied products, and manufacturing method thereof
JP5014528B2 (en) Molding process of ultra-high molecular weight cross-linked polyethylene medical implant with improved balance of wear and oxidation resistance
EP0189674A2 (en) Formation of porous bodies
US3050386A (en) Method of producing sinter electrodes
JP2020534424A (en) Methods for Producing Polymeric Materials
JP4846496B2 (en) Cross-linked polytetrafluoroethylene resin and method for producing the same
JP3337785B2 (en) Method for producing modified polytetrafluoroethylene
JP2002036376A (en) Method for manufacturing modified polytetrafluoroethylene film
US3838030A (en) Process for preparing of polytetrafluoroethylene resin wax
US3001238A (en) Method of making metal bonded carbon bodies
JP2004338208A (en) Method for manufacturing modified polytetrafluoroethylene film
JP2004339344A (en) Method for producing modified polytetrafluoroethylene film
JP2007314645A (en) Compression-molded article of highly crystalline tetrafluoroethylene resin having high strength
JPS63146908A (en) Production of fine powder of polytetrafluoroethylene having low molecular weight by radiation
US3170858A (en) Process for making tetrafluoroethylene polymers
JP3750326B2 (en) Insulated wires and hoses
US5019330A (en) Method of forming improved tungsten ingots
CN113956528A (en) High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JP2001341138A (en) Polytetrafluoroethylene molded body and producing method for the same
JPH10287733A (en) Production of crosslinked polycaprolactone
JPS6161827A (en) Manufacture of semi-sintered polytetrafluoroethylene product
JPS61146522A (en) Preparation of porous body made of polytetrafluoroethylene resin
JP4639373B2 (en) Radiation-modified polytetrafluoroethylene and method for producing the same
JP2946972B2 (en) Method for producing sealed Fe-based sintered alloy part with excellent airtightness

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070202