JP2002035750A - Sewage filtering method - Google Patents

Sewage filtering method

Info

Publication number
JP2002035750A
JP2002035750A JP2000227089A JP2000227089A JP2002035750A JP 2002035750 A JP2002035750 A JP 2002035750A JP 2000227089 A JP2000227089 A JP 2000227089A JP 2000227089 A JP2000227089 A JP 2000227089A JP 2002035750 A JP2002035750 A JP 2002035750A
Authority
JP
Japan
Prior art keywords
ozone
membrane module
filtration
containing gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000227089A
Other languages
Japanese (ja)
Inventor
Isao Somiya
功 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000227089A priority Critical patent/JP2002035750A/en
Publication of JP2002035750A publication Critical patent/JP2002035750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the lowering of flux caused by the deterioration or fouling (clogging) of a membrane is not avoided when membrane separation is adapted to the treatment of sewage and, as a means for restoring this defect, a washing means of every kind for applying aeration or the like to a filter membrane module from the lower part thereof is used but it is difficult to perfectly restore the lowering of flux and, further, a method for taking out the filter membrane module from a membrane separation tank to wash the same with a chemical liquid is employed but it is extremely difficult to take the whole of the filter membrane module out of the membrane separation tank in such a case that the scale of the membrane separation tank is large. SOLUTION: Raw water is supplied into a reaction tank in which the filter membrane module equipped with a metal membrane is arranged and the pressure in the filter membrane module immersed in raw water is made lower than that outside the filter membrane module to apply filtering pressure to perform filtering and ozone or ozone-containing gas is intermittently injected in the filter membrane module to backwash the membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚水を生物反応処理
する反応槽内に濾過膜モジュールを設けた浸漬型膜分離
装置による汚水の濾過方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for filtering sewage by a submerged type membrane separation apparatus provided with a filtration membrane module in a reaction tank for biologically treating sewage.

【0002】[0002]

【従来の技術】膜分離方式は、これを下水処理施設等に
使用した場合は汚泥の沈降性に左右されることのない安
定した処理水が得られること、浮遊性固形物がほとんど
存在しない高度処理水にも適用できること、最終沈殿池
が不要で省スペースが計れること、等の長所を有するこ
とは良く知られているところである。しかし膜分離を下
水処理に適用するにあたっては膜の劣化やファウリング
(閉塞)によるフラックス(流束)の低下が避けられな
い。これを回復させる手段として濾過膜モジュールの下
部から曝気など各種の洗浄手段がとられるが、これだけ
ではフラックスの低下を完全に回復させることは困難で
ある。そのため濾過膜モジュールを膜分離槽から取り出
して薬液洗浄する方法が取られるが、膜分離槽の規模が
大きい場合は濾過膜モジュールを全て槽から取り出すこ
とは非常に困難なことである。これを解決する手段とし
て例えば特開平10−66844号公報や特開平11−
57431号公報に記載されているように濾過膜モジュ
ールの透過水側に薬液である次亜塩素酸ソーダを注入し
て逆洗浄するもの、あるいは特開平4−305230号
公報に記載されているように濾過膜モジュールの透過水
側にオゾンを注入して逆洗浄するものがある。そして上
記両者は次亜塩素酸ソーダあるいはオゾンの強い酸化力
により、膜内に拘束された目詰まり物質を分解しようと
するものである。
2. Description of the Related Art Membrane separation systems, when used in sewage treatment facilities, provide stable treated water that is not affected by the sedimentation of sludge, and have a high level of free solids. It is well known that it can be applied to treated water, has no need for a final sedimentation basin, and can save space. However, when membrane separation is applied to sewage treatment, deterioration of membrane and reduction of flux due to fouling (clogging) are inevitable. As a means for recovering this, various cleaning means such as aeration are taken from the lower part of the filtration membrane module, but it is difficult to completely recover the reduction of the flux only by this. For this reason, a method of taking out the filtration membrane module from the membrane separation tank and washing with a chemical solution is adopted. However, if the scale of the membrane separation tank is large, it is very difficult to take out the entire filtration membrane module from the tank. As means for solving this, for example, JP-A-10-66844 and JP-A-11-
No. 57431 discloses a method in which sodium hypochlorite, which is a chemical solution, is injected into the permeated water side of a filtration membrane module for back washing, or as described in JP-A-4-305230. There is a type in which ozone is injected into the permeated water side of a filtration membrane module to perform back washing. Both of these are intended to decompose the clogged substance restrained in the film by the strong oxidizing power of sodium hypochlorite or ozone.

【0003】[0003]

【発明が解決しようとする課題】しかし次亜塩素酸ソー
ダ等の薬液による洗浄においては薬液の補充やその濃度
調整を比較的頻繁に行なわねばならないという膜分離に
おける運用上の課題がある。またオゾンによる洗浄にお
いては、その強い酸化力のため通常の樹脂膜では耐える
ことができず、耐オゾン性膜やセラミック膜といった高
価な膜を使用せねばならないという課題がある。本発発
明は上記課題を解決して、膜分離における運用を簡易に
し且つ比較的低廉な膜を使用して膜分離を行い得る汚水
の濾過方法を提供することを目的とする。
However, in cleaning with a chemical such as sodium hypochlorite, there is an operational problem in membrane separation that replenishment of the chemical and adjustment of its concentration must be performed relatively frequently. Further, in cleaning with ozone, there is a problem that an ordinary resin film cannot endure due to its strong oxidizing power, and an expensive film such as an ozone-resistant film or a ceramic film must be used. An object of the present invention is to solve the above-mentioned problems and to provide a method for filtering wastewater that can simplify operation in membrane separation and can perform membrane separation using a relatively inexpensive membrane.

【0004】[0004]

【課題を解決するための手段】有機物の酸化分解作用
の強いオゾンが膜洗浄に有効であること。金属膜は耐
オゾン性に優れており高濃度オゾン含有ガスに長時間曝
露されてもその影響を受けないこと。濾過膜とオゾン
ガスの接触を十分に行うために濾過膜を透過するように
オゾンガスを供給すること。金属膜は膜の機械的強度
に優れるため逆洗浄を行っても損傷を受け難いこと。こ
れらのことから本発明者は、金属膜を用いて濾過を行
い、洗浄はオゾン含有ガスで逆洗浄を行う濾過方法が高
フラックスを維持するのに有効であることを見出した。
Means for Solving the Problems Ozone having a strong oxidative decomposition action of organic substances is effective for film cleaning. The metal film has excellent ozone resistance and should not be affected by prolonged exposure to high-concentration ozone-containing gas. Supply ozone gas so as to permeate the filtration membrane in order to sufficiently contact the filtration membrane with the ozone gas. Since the metal film has excellent mechanical strength, it is not easily damaged by back washing. From these facts, the present inventor has found that a filtration method in which filtration is performed using a metal film and back washing is performed with an ozone-containing gas is effective for maintaining a high flux.

【0005】すなわち本発明者は前記課題を解決し目的
を達成するため、金属膜を備えた濾過膜モジュールを内
部に配置した反応槽内に原水を供給し、原水に浸漬され
た濾過膜モジュール内の圧力を濾過膜モジュール外の圧
力より小さくすることにより濾過圧力を印加して濾過を
行い、濾過膜モジュール内にオゾン又はオゾン含有ガス
を間欠的に注入して膜を逆洗浄するという技術的手段を
採用した。本発明ではオゾン又はオゾン含有ガスの注入
は少なくとも1時間に一度実施することが好ましい。1
時間を超える時間実施しないと流束の回復に長時間の逆
洗浄が必要になる。本発明ではオゾン又はオゾン含有ガ
スの注入は1乃至10分間続けて行うことが好ましい。
10分間より長く続けても洗浄効果は変わらず、1分間
未満では不十分である。また、本発明では濾過圧力は6
0〜90KPaとすることが好ましい。更に本発明は、注
入するオゾンの濃度は20mgO/L(オゾン含有ガ
ス)以上であり、かつ注入するオゾンの量は金属膜の1
当たり1300mg/サイクル以上であることが好
ましい。
That is, in order to solve the above-mentioned problems and achieve the object, the present inventor supplies raw water into a reaction tank in which a filtration membrane module provided with a metal membrane is disposed, and supplies the raw water into a filtration membrane module immersed in the raw water. The technical means of applying a filtration pressure by making the pressure of the filtration membrane smaller than the pressure outside the filtration membrane module to perform filtration and intermittently injecting ozone or an ozone-containing gas into the filtration membrane module to backwash the membrane. It was adopted. In the present invention, the injection of ozone or ozone-containing gas is preferably performed at least once every hour. 1
If not carried out for longer than a period of time, a long backwash is required to recover the flux. In the present invention, the injection of ozone or ozone-containing gas is preferably performed continuously for 1 to 10 minutes.
The cleaning effect does not change even if it is continued for more than 10 minutes, and less than 1 minute is insufficient. In the present invention, the filtration pressure is 6
The pressure is preferably set to 0 to 90 KPa. Further, according to the present invention, the concentration of ozone to be injected is 20 mg O 3 / L (ozone-containing gas) or more, and the amount of ozone to be injected is 1% of the metal film.
m is preferably 2 per 1300 mg / cycle over.

【0006】本発明におけるオゾン含有ガスを膜の透過
水側から原水側へ噴出させることで、膜のフラックス回
復が優れたものとなり、特にオゾン量を1300mg以
上とすることでその効果がより発揮できるものである。
また本発明における金属膜は前記したセラミック膜に比
して約1/3の価格で製造することができる。又該金属
膜は耐食性の優れたSUS316ステンレス鋼で構成さ
れているから、オゾンに対して耐久性を有している。
By jetting the ozone-containing gas in the present invention from the permeated water side to the raw water side of the membrane, the flux recovery of the membrane becomes excellent. In particular, the effect can be more exhibited by setting the ozone amount to 1300 mg or more. Things.
Further, the metal film according to the present invention can be manufactured at a price that is about 1/3 of the above-mentioned ceramic film. Since the metal film is made of SUS316 stainless steel having excellent corrosion resistance, it has durability against ozone.

【0007】[0007]

【発明の実施の形態】以下に図面を参照して本発明の濾
過装置の洗浄方法に係わる実施の形態について説明す
る。図1は本発明の濾過装置の洗浄方法に使用した実験
装置を示した概略模式図であり、図2は本発明の濾過装
置に使用した濾過膜モジュールの概略斜視図である。図
中1は分離槽でその中に濾過膜モジュール2が取付けら
れて、原水3中に浸漬するように設けられている。濾過
膜モジュール2の直下には散気管4が設けられて、この
散気管4からオゾン含有ガスを噴出してそのバブリング
により濾過膜モジュール2の原水側面を洗浄しようとす
るものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a filter apparatus according to an embodiment of the present invention; FIG. 1 is a schematic diagram showing an experimental device used in the method for cleaning a filtration device of the present invention, and FIG. 2 is a schematic perspective view of a filtration membrane module used in the filtration device of the present invention. In the figure, reference numeral 1 denotes a separation tank in which a filtration membrane module 2 is mounted and provided so as to be immersed in raw water 3. An air diffuser 4 is provided directly below the filtration membrane module 2, and an ozone-containing gas is blown out from the air diffuser 4 to clean the raw water side surface of the filtration membrane module 2 by bubbling.

【0008】濾過膜モジュール2の上部には濾過膜モジ
ュール2を透過した透過水5を吸引するための吸引管6
が接続され、この吸引管6の端部には吸引ポンプ7が取
付けられて、吸引ポンブ7により透過水5を排出すると
共に濾過膜モジュール2内を負圧に維持するものであ
る。この負圧によって原水の固液分離を効率的におこな
い得る。8はオゾン注入装置で、前記した散気管4と濾
過膜モジュール2の透過液5側にオゾン含有ガスを選択
的に注入できるようにした。オゾン注入装置8はプラズ
マ装置を内蔵して、プラズマにより空気中の酸素をオゾ
ンに変換するものである。9は仕切板で、分離槽1の略
中央部に立設されて、供給される原水3が図の矢印方向
に回遊し易くするためのものである。
[0008] A suction pipe 6 for sucking permeated water 5 that has passed through the filtration membrane module 2 is provided above the filtration membrane module 2.
A suction pump 7 is attached to the end of the suction pipe 6 to discharge the permeated water 5 by the suction pump 7 and to maintain the inside of the filtration membrane module 2 at a negative pressure. By this negative pressure, solid-liquid separation of raw water can be efficiently performed. Reference numeral 8 denotes an ozone injecting device so that an ozone-containing gas can be selectively injected into the air diffuser 4 and the permeate 5 side of the filtration membrane module 2. The ozone injection device 8 has a built-in plasma device, and converts oxygen in the air into ozone by plasma. Reference numeral 9 denotes a partition plate which is provided upright at a substantially central portion of the separation tank 1 so that the supplied raw water 3 can easily move in the direction of the arrow in the figure.

【0009】図2に示すように濾過膜モジュール2は濾
過板22の両面に金属膜21が貼り付けられた箱型構造
をしており、濾過板22の上部には前記吸引管6と接続
される吸引口23が設けられて、金属膜21を透過して
濾過板22内に至った透過液5を吸引口23及び吸引管
6を経由して濾過膜モジュール2外に吸引排出するもの
である。また濾過板22の下部には注入口24が設けら
れて、これが前記オゾン注入装置8に連結されて濾過膜
モジュール2の透過水側にオゾン含有ガスを注入するよ
うにした。本実験では金属膜21の有効濾過面積は両面
合計で0.12mとし、膜の公称孔径は0.2μmの
ものとした。又使用した金属膜は市販されているステン
レン鋼の金網にステンレス鋼粉を塗布して焼結したもの
である。
As shown in FIG. 2, the filtration membrane module 2 has a box-shaped structure in which metal films 21 are adhered to both sides of a filtration plate 22, and is connected to the suction pipe 6 above the filtration plate 22. The suction port 23 is provided to suck and discharge the permeated liquid 5 that has passed through the metal membrane 21 and reached the inside of the filter plate 22 to the outside of the filtration membrane module 2 via the suction port 23 and the suction pipe 6. . An injection port 24 is provided below the filter plate 22, and is connected to the ozone injection device 8 so that an ozone-containing gas is injected into the permeated water side of the filtration membrane module 2. In this experiment, the effective filtration area of the metal membrane 21 was 0.12 m 2 in total on both sides, and the nominal pore diameter of the membrane was 0.2 μm. The metal film used is obtained by applying a stainless steel powder to a commercially available stainless steel wire mesh and sintering it.

【0010】次に上記した膜分離槽を使用して濾過実験
及び洗浄実験を行なった結果について説明する。表1は
洗浄によるフラックスの回復状況を知るために濾過・洗
浄実験を行なった際の各実験条件を示したものである。
Run1〜3のものは濾過膜モジュール2の下の散気管4
から空気またはオゾン含有ガスを噴出させたものであ
り、Run4〜11のものはオゾン注入装置8から空気ま
たはオゾン含有ガスを濾過膜モジュール2の透過水側
(内側)に注入して、金属膜21の原水側(外側)へ噴
出させたものである。尚、このときオゾン含有ガスが吸
引管6から排出されることはない。
Next, the results of a filtration experiment and a washing experiment performed using the above-mentioned membrane separation tank will be described. Table 1 shows conditions of each experiment when a filtration / washing experiment was performed in order to know the flux recovery state by the washing.
Runs 1 to 3 are air diffusers 4 below the membrane module 2.
In Runs 4-11, air or ozone-containing gas is injected from the ozone injection device 8 into the permeated water side (inside) of the filtration membrane module 2, and the metal film 21 is injected. It was ejected to the raw water side (outside). At this time, the ozone-containing gas is not discharged from the suction pipe 6.

【0011】[0011]

【表1】 [Table 1]

【0012】表1においてオゾン濃度(mg/L)はオ
ゾン含有ガス1リットル当たりのオゾン量(mg)を示
し、注入流量(L/min)はオゾン含有ガスの供給流
量を示す。また注入サイクルはRun1〜3のものは20
分間に5分間膜の外側から曝気を行い、これを1サイク
ルとして1時間に3サイクル行なったものである。Run
4〜11のものは30分のうち6分間濾過を休止し、こ
の6分間で濾過膜モジュール2内の透過水を排出し2分
間オゾン含有ガスの注入を行い更に次ぎの濾過開始に備
えて濾過膜モジュール2内のエアー抜きを行う。これを
1サイクルとして1時間に2サイクル行なったものであ
る。本発明におけるサイクルとは、濾過操作と洗浄操作
を各々1回組み合わせたものとする。
In Table 1, the ozone concentration (mg / L) indicates the amount of ozone (mg) per liter of the ozone-containing gas, and the injection flow rate (L / min) indicates the supply flow rate of the ozone-containing gas. The injection cycle was 20 for Runs 1-3.
Aeration was performed from the outside of the film for 5 minutes per minute, and this was performed as one cycle, and three cycles were performed per hour. Run
For samples 4 to 11, the filtration was suspended for 6 minutes out of 30 minutes, the permeated water in the filtration membrane module 2 was discharged in these 6 minutes, and the ozone-containing gas was injected for 2 minutes, and the filtration was started in preparation for the next filtration. The air inside the membrane module 2 is vented. This is one cycle, and two cycles are performed in one hour. The cycle in the present invention is a combination of a filtration operation and a washing operation once each.

【0013】図3は上記表1に示した操作因子による洗
浄を行なった際のフラックスの経時変化を示した図であ
る。例えば図3中のRun1は表1に示したRun1に
示した条件で濾過・洗浄を3時間にわたって実施し、そ
の間におけるフラックスの変化を測定したものである。
図3において表1のRun1〜Run4の操作因子にお
ける洗浄は定常状態でのフラックスが初期段階のフラッ
クスの50%以下に低下し、この操作因子での洗浄は実
用には耐え得ないことが判明した。Run5〜Run1
1では定常状態でのフラックスが初期段階のフラックス
に比較的近い値を維持することができ、Run5では
2.0(m/m・d)の最も高い定常フラックスが得られ
た。
FIG. 3 is a diagram showing the change over time of the flux when cleaning is performed with the operating factors shown in Table 1 above. For example, Run1 in FIG. 3 is obtained by performing filtration and washing for 3 hours under the conditions shown in Run1 shown in Table 1 and measuring the change in flux during that time.
In FIG. 3, the cleaning in the operating factors of Run 1 to Run 4 in Table 1 reduced the flux in the steady state to 50% or less of the flux in the initial stage, and it was found that cleaning with this operating factor was not practical. . Run5 to Run1
In No. 1, the flux in the steady state could maintain a value relatively close to the flux in the initial stage, and in Run 5, the highest steady flux of 2.0 (m 3 / m 2 · d) was obtained.

【0014】図4は前記した表の濾過圧力が同じである
Run5〜Run9に示した操作因子による濾過・洗浄
によって、定常状態でのフラックス(Fs)と初期段階
のフラックス(Fi)の比(Fs/Fi)が如何になる
かを示したものである。
FIG. 4 shows the ratio (Fs) of the flux (Fs) in the steady state to the flux (Fi) in the initial stage by the filtration and washing with the operating factors shown in Run 5 to Run 9 having the same filtration pressure in the above table. / Fi) is shown.

【0015】図4に示した結果ではオゾン注入量が多い
ほど(Fs/Fi)は高くなる傾向を示し、(Fs/F
i)が90%以上を示す操作因子は、オゾン濃度が40
mg/Lの場合はオゾン含有ガス流量が2L/min以
上、オゾン濃度が20mg/Lの場合はオゾン含有ガス
流量が4L/min以上、であることがことが判り或い
は類推できる。この結果を踏まえて整理すると、 イ)注入されるオゾン量は1300mg/m以上 より好ましくは1300mg/m/サイクル以上 ロ)注入されるオゾン濃度は20mg/L以上 の要件がそろっていれば、フラックスの(Fs/Fi)
は実用的限界である90%を越えることができることが
判断される。
In the results shown in FIG. 4, (Fs / Fi) tends to increase as the ozone injection amount increases, and (Fs / F
The operating factor in which i) is 90% or more is that the ozone concentration is 40%.
In the case of mg / L, the ozone-containing gas flow rate is 2 L / min or more, and in the case of the ozone concentration of 20 mg / L, the ozone-containing gas flow rate is 4 L / min or more. Based on these results, a) The amount of injected ozone is 1300 mg / m 2 or more, more preferably 1300 mg / m 2 / cycle or more. B) The concentration of injected ozone is 20 mg / L or more. , Flux (Fs / Fi)
Can exceed the practical limit of 90%.

【0016】図5は前記した表の濾過圧力以外の操作因
子が同じであるRun5、10、11に示した操作因子
による濾過・洗浄によって、定常状態でのフラックス
(Fs)と初期段階のフラックス(Fi)の比(Fs/
Fi)が如何になるかを示したものである。
FIG. 5 shows that the flux (Fs) in the steady state and the flux (Fs) in the initial stage are obtained by the filtration and washing with the operating factors shown in Runs 5, 10, and 11 in which the operating factors other than the filtration pressure are the same. Fi) (Fs /
Fi) is shown.

【0017】図5に示したように濾過圧力が高いほど
(Fs/Fi)が小さくなり、濾過圧力の印加に要する
エネルギーの効率が悪いことが分かる。したがって濾過
圧力はいたずらに大きくせず実用的なフラックスが得ら
れる圧力にとどめることが望ましい。このことから濾過
圧力は60〜90KPaの範囲が好ましく、65〜85KPa
の範囲が更に好ましい。60KPa未満では(Fs/F
i)は1に近い値になるものの初期段階のフラックス自
体が不十分となる。
As shown in FIG. 5, the higher the filtration pressure, the smaller (Fs / Fi), and the lower the efficiency of the energy required to apply the filtration pressure. Therefore, it is desirable that the filtration pressure is not increased unnecessarily and is kept at a pressure at which a practical flux can be obtained. From this, the filtration pressure is preferably in the range of 60 to 90 KPa, and 65 to 85 KPa
Is more preferable. If it is less than 60 KPa, (Fs / F
Although i) is close to 1, the flux itself in the initial stage is insufficient.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に実験期間における流入下水と膜濾過
液の平均水質および除去率を示す。膜濾過水質で浮遊性
固形物質の流出が見られず、一般細菌も本研究で使用し
た金属膜孔径の0.2μmでは検出されなかった。濁度はほ
ぼ100%に近い除去率が得られたが、色度の除去率は平
均68%で濁度より除去率が低いことが分かった。T−N、
T-PやTOCは固形性物質の除去に伴い、それぞれ50%前後
の除去率を示したが、NH -Nのような溶解性物質は除
去率が低く、適用膜孔径では除去され難いことが分かっ
た。
Table 2 shows the average water quality and the removal rate of the inflow sewage and the membrane filtrate during the experimental period. No outflow of suspended solids was observed in the membrane filtration water quality, and no general bacteria were detected at the metal membrane pore size of 0.2 μm used in this study. The turbidity was almost 100%, but the chromaticity was 68% on average, which was lower than the turbidity. T-N,
TP and TOC showed a removal rate of around 50%, respectively, with the removal of solid substances, but soluble substances such as NH 4 + -N have a low removal rate, and it is difficult to remove them with the applicable membrane pore size. Do you get it.

【0020】また実験が終了した時点で金属膜の外観目
視検査をしたが、オゾンによって樹脂膜等に現れる酸化
破損はいっさい現れておらず、金属膜がオゾンに対して
十分な耐性を有していることが判明した。
At the end of the experiment, the metal film was visually inspected for external appearance. Ozone did not show any oxidative damage on the resin film or the like, and the metal film had sufficient resistance to ozone. Turned out to be.

【0021】[0021]

【発明の効果】本発発明は上記の構成としたから、膜分
離における運用を簡易にし且つ比較的低廉な膜を使用し
て膜分離を行い得る汚水の濾過方法を提供することがで
きる。
According to the present invention having the above-described structure, it is possible to provide a method of filtering wastewater which can simplify operation in membrane separation and can perform membrane separation using a relatively inexpensive membrane.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わる実験装置の概略模
式図である。
FIG. 1 is a schematic diagram of an experimental apparatus according to an embodiment of the present invention.

【図2】本発明の濾過膜モジュールを示す概略斜視図で
ある。
FIG. 2 is a schematic perspective view showing a filtration membrane module of the present invention.

【図3】本発明に係わる洗浄方法の操作因子とフラック
スの経時変化を示す図である。
FIG. 3 is a diagram showing the change over time of the operating factors and the flux of the cleaning method according to the present invention.

【図4】本発明に係わる洗浄方法の操作因子とフラック
スの(Fs/Fi)との関連を示す線図である。
FIG. 4 is a diagram showing the relationship between the operation factor of the cleaning method according to the present invention and the flux (Fs / Fi).

【図5】本発明に係わる洗浄方法の操作因子とフラック
スの(Fs/Fi)との関連を示す線図である。
FIG. 5 is a diagram showing the relationship between operating factors of a cleaning method according to the present invention and (Fs / Fi) of flux.

【符号の説明】[Explanation of symbols]

1 分離槽、2 濾過膜モジュール、3 原水、4 散
気管、5 透過水、6 吸引管、7 吸引ポンプ、8
オゾン注入装置、21 金属膜、22 濾過板、23
吸引口、24 注入口
1 Separation tank, 2 Filtration membrane module, 3 Raw water, 4 Aeration tube, 5 Permeated water, 6 Suction tube, 7 Suction pump, 8
Ozone injection device, 21 metal film, 22 filter plate, 23
Suction port, 24 injection ports

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属膜を備えた濾過膜モジュールを内部
に配置した反応槽内に原水を供給し、原水に浸漬された
濾過膜モジュール内の圧力を濾過膜モジュール外の圧力
より小さくすることにより濾過圧力を印加して濾過を行
い、濾過膜モジュール内にオゾン又はオゾン含有ガスを
間欠的に注入して膜を逆洗浄することを特徴とする汚水
の濾過方法。
1. Raw water is supplied into a reaction tank in which a filtration membrane module provided with a metal membrane is disposed, and the pressure in the filtration membrane module immersed in the raw water is made smaller than the pressure outside the filtration membrane module. A method for filtering sewage, comprising applying filtration pressure to perform filtration, intermittently injecting ozone or an ozone-containing gas into a filtration membrane module to backwash the membrane.
【請求項2】 オゾン又はオゾン含有ガスの注入は少な
くとも1時間に一度実施することを特徴とする請求項1
記載の汚水の濾過方法。
2. The injection of ozone or ozone-containing gas is performed at least once an hour.
The method for filtering sewage according to the above.
【請求項3】 オゾン又はオゾン含有ガスの注入は1乃
至10分間続けて行うことを特徴とする請求項1又は2
記載の汚水の濾過方法。
3. The injection of ozone or an ozone-containing gas is performed continuously for 1 to 10 minutes.
The method for filtering sewage according to the above.
【請求項4】 濾過圧力は60〜90KPaとすることを
特徴とする請求項1乃至3何れか記載の汚水の濾過方
法。
4. The method for filtering sewage according to claim 1, wherein the filtration pressure is 60 to 90 KPa.
【請求項5】 注入するオゾンの濃度は20mgO
L(オゾン含有ガス)以上であり、かつ注入するオゾン
の量は金属膜の1m当たり1300mg/サイクル以
上であることを特徴とする請求項1乃至4何れか記載の
汚水の濾過方法。
5. The concentration of ozone to be injected is 20 mgO 3 /
5. The method for filtering sewage water according to claim 1, wherein the amount of ozone to be injected is not less than L (ozone-containing gas) and the amount of injected ozone is not less than 1300 mg / cycle per 1 m 2 of the metal film.
JP2000227089A 2000-07-27 2000-07-27 Sewage filtering method Pending JP2002035750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227089A JP2002035750A (en) 2000-07-27 2000-07-27 Sewage filtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227089A JP2002035750A (en) 2000-07-27 2000-07-27 Sewage filtering method

Publications (1)

Publication Number Publication Date
JP2002035750A true JP2002035750A (en) 2002-02-05

Family

ID=18720592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227089A Pending JP2002035750A (en) 2000-07-27 2000-07-27 Sewage filtering method

Country Status (1)

Country Link
JP (1) JP2002035750A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419830B1 (en) * 2001-05-12 2004-02-25 주식회사 에코썸 Advanced wastewater treatment apparatus and method using metal membrance combined with intermittent back-ozonation
WO2005058969A1 (en) * 2003-12-18 2005-06-30 Lenzing Aktiengesellschaft Method for purifying aggregates that are contaminated with macromolecular carbohydrates and/or the degradation products thereof
CN100431981C (en) * 2004-08-26 2008-11-12 娄性义 Technology and special equipment for preparing regenerated water using sewage
KR101088120B1 (en) 2009-06-01 2011-12-02 유네코개발 주식회사 MBR for treatment of wastewater using metal membrane with macro pore size
KR101270647B1 (en) * 2010-01-27 2013-06-03 한국기계연구원 Membrane filter system having function for preventing fouling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419830B1 (en) * 2001-05-12 2004-02-25 주식회사 에코썸 Advanced wastewater treatment apparatus and method using metal membrance combined with intermittent back-ozonation
WO2005058969A1 (en) * 2003-12-18 2005-06-30 Lenzing Aktiengesellschaft Method for purifying aggregates that are contaminated with macromolecular carbohydrates and/or the degradation products thereof
CN100431981C (en) * 2004-08-26 2008-11-12 娄性义 Technology and special equipment for preparing regenerated water using sewage
KR101088120B1 (en) 2009-06-01 2011-12-02 유네코개발 주식회사 MBR for treatment of wastewater using metal membrane with macro pore size
KR101270647B1 (en) * 2010-01-27 2013-06-03 한국기계연구원 Membrane filter system having function for preventing fouling

Similar Documents

Publication Publication Date Title
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
JP2001205055A (en) Method for operating membrane separation apparatus and apparatus therefor
JPH07313850A (en) Method for backward washing immersion-type ceramic membrane separator
JPH09313902A (en) Chemical cleaning method for immersion type ceramic membrane separation device
WO2013111826A1 (en) Desalination method and desalination device
JP4867180B2 (en) Immersion membrane separator and chemical cleaning method therefor
JP5181987B2 (en) Cleaning method for submerged membrane module
JP2002035750A (en) Sewage filtering method
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP2011041907A (en) Water treatment system
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP2002035556A (en) Method for filtering sewage
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
WO2012057176A1 (en) Water-treatment method and desalinization method
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
JP3430385B2 (en) Cleaning method of membrane
JP3880251B2 (en) Backwash method for submerged membrane separator
JPH0631270A (en) Film cleaning process for water and operation of the device
JP3866393B2 (en) Cleaning method for hollow fiber membrane module
JPH1057958A (en) Chlorine supply device in dip type membrane treating equipment and device therefor
JP2003230895A (en) Method and apparatus for treating manganese-containing water
JP2002177982A (en) Cleaning method and equipment for filter element
JPH11244673A (en) Washing of membrane
JPH09117646A (en) Cleaning liquid for filter membrane and anaerobic digestion process for sludge containing organic material
JP2006239609A (en) Operation method of hollow fiber membrane module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041213