JP2002031533A - Gyro sensor - Google Patents

Gyro sensor

Info

Publication number
JP2002031533A
JP2002031533A JP2000247076A JP2000247076A JP2002031533A JP 2002031533 A JP2002031533 A JP 2002031533A JP 2000247076 A JP2000247076 A JP 2000247076A JP 2000247076 A JP2000247076 A JP 2000247076A JP 2002031533 A JP2002031533 A JP 2002031533A
Authority
JP
Japan
Prior art keywords
circuit
temperature
vibration
gyro sensor
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000247076A
Other languages
Japanese (ja)
Inventor
Norihiko Shiratori
典彦 白鳥
Yoshiya Okada
恵也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2000247076A priority Critical patent/JP2002031533A/en
Publication of JP2002031533A publication Critical patent/JP2002031533A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve temperature compensation at stable and easy-to-adjust measuring sensitivity by means of a relatively simple arrangement of a two-axis disc type vibrating gyro sensor self-excited for vibration under a steady state in a predetermined main vibration mode. SOLUTION: A differential frequency between the oscillating frequency of self-excited vibration and a natural frequency in another vibration mode is controlled to be held approximately constant relative to temperature changes, by causing the circuit constant of an oscillating circuit for the self-excited vibration to vary depending on temperature. Alternatively, the driving voltage of the oscillating circuit is controlled according to temperature for fine adjustment of the temperature compensation. In one embodiment, the oscillating circuit is a reverse amplification circuit and a feedback circuit determining its gain includes a temperature sensing element; or the temperature sensing element is used in a voltage dividing circuit which an AGC circuit includes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転角速度を検出す
る振動ジャイロセンサにおける測定感度の温度補償技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensation technique for measuring sensitivity in a vibration gyro sensor for detecting a rotational angular velocity.

【0002】[0002]

【従来の技術】 近年登場した振動ジャイロセンサはカ
メラの手ぶれ検知、自動車等の運動の検知を始めとし
て、ロボット技術やバーチャルリアリテイ技術その他に
向けて益々用途が拡大する趨勢にある。それと共に、セ
ンサ振動体や駆動、検出回路を含めて、多軸化(1個の
センサによって複数の回転軸まわりの角速度が検出可能
であること)、性能の安定化、小型化、簡素化、低コス
ト化、構成や調整の合理化、容易化が一層求められてい
る。
2. Description of the Related Art Vibrating gyro sensors, which have recently appeared, have been increasingly used for robot technology, virtual reality technology, and the like, including detection of camera shake, detection of movement of an automobile, and the like. At the same time, including the sensor vibrator, drive and detection circuit, multi-axis (one sensor can detect angular velocities around multiple rotation axes), stable performance, miniaturization, simplification, There is a need for further cost reduction, rationalization and simplification of configuration and adjustment.

【0003】特に多軸センサであることと、使用環境に
おける特性の安定化、とりわけ使用温度に対するセンサ
感度の変化を減少させることを両立させることが重要で
ある。センサ感度に影響する要因としては、振動体の振
動数の安定さと駆動・検出回路の動作の安定さが求めら
れる。このため、センサ振動体の構造、材質、駆動に用
いられる圧電素子の材質(製造方法を含む)を吟味して
振動状態の変化を極力抑え、また温度変化に関しては検
出回路の増幅率等の特性変化を補償するセンサ回路方式
が種々工夫されているが、必ずしも満足な成果を挙げて
いない。
[0003] It is important to achieve both a multi-axis sensor and a stabilization of characteristics in a use environment, in particular, a reduction in a change in sensor sensitivity to a use temperature. Factors affecting the sensor sensitivity include the stability of the frequency of the vibrating body and the stability of the operation of the drive / detection circuit. For this reason, the structure and material of the sensor vibrator and the material of the piezoelectric element used for driving (including the manufacturing method) are examined to minimize the change in the vibration state, and the temperature change is characterized by the characteristics such as the amplification factor of the detection circuit. Various sensor circuit methods have been devised to compensate for the change, but they have not always produced satisfactory results.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、2軸
の振動ジャイロセンサにおいて、センサ感度の温度補償
を、簡単な回路構成で容易かつ確実に行うことのできる
技術を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a technique for easily and reliably performing temperature compensation of sensor sensitivity with a simple circuit configuration in a two-axis vibration gyro sensor. .

【0005】[0005]

【課題を解決するための手段】上記の目的を実現するた
め、本発明のジャイロセンサの構成は下記の特徴を有す
る。
In order to achieve the above object, the configuration of the gyro sensor according to the present invention has the following features.

【0006】(1)中心軸上板面から離れた位置に負荷
質量を有する円板型振動体を、その表面に設けたリング
状電極膜によって圧電的に凹凸方向に駆動して主振動モ
ードを与え、前記円板型振動体が前記板面に平行な直交
2軸の回りに回転するとき前記付加質量に作用するコリ
オリ力により生起される前記円板の他のモードの振動を
前記表面に備えた2組の扇形電極により圧電的に検出し
て、前記2軸に関する回転角速度を検出するべく構成さ
れた2軸ジャイロセンサにおいて、前記主振動を行わせ
る発振回路における回路定数を温度の関数とすることに
よって前記主振動モードの発振周波数に温度変化を与
え、前記他の振動モードの固有周波数の温度変化に追従
させてこれら両周波数の差を温度変化に対してほぼ一定
に制御し、前記角速度の測定感度の温度補償を行う温度
補償回路を備えたこと。
(1) A disk-shaped vibrator having a load mass at a position distant from the plate surface on the central axis is piezoelectrically driven in a concave-convex direction by a ring-shaped electrode film provided on its surface to set a main vibration mode. And providing, in the surface, vibration of the disk in another mode caused by Coriolis force acting on the additional mass when the disk-type vibrator rotates around two orthogonal axes parallel to the plate surface. In a two-axis gyro sensor configured to piezoelectrically detect two sets of sector electrodes to detect a rotational angular velocity with respect to the two axes, a circuit constant in an oscillation circuit for performing the main vibration is a function of temperature. By giving a temperature change to the oscillation frequency of the main vibration mode, and following the temperature change of the natural frequency of the other vibration mode, the difference between these two frequencies is controlled to be substantially constant with respect to the temperature change, and the angular velocity Further comprising a temperature compensation circuit for performing temperature compensation of the measurement sensitivity.

【0007】また本発明のジャイロセンサの構成は更に
以下の特徴の少なくとも一つを有することがある。 (2)更に前記発振回路の駆動電圧を温度により制御す
ることによって、前記温度補償の更なる調整を行うこ
と。
The configuration of the gyro sensor according to the present invention may further have at least one of the following features. (2) Further adjusting the temperature compensation by controlling the drive voltage of the oscillation circuit based on the temperature.

【0008】(3)前記発振回路は全体として反転増幅
回路であって、そのゲインを決定する帰還回路に感温素
子を含んでいること。
(3) The oscillation circuit is an inverting amplifier circuit as a whole, and the feedback circuit for determining the gain includes a temperature sensitive element.

【0009】(4)前記発振回路に含まれるAGC回路
において駆動電圧の決定に関与している分圧回路に感温
素子を用いて駆動電圧を温度により制御すること。
(4) In the AGC circuit included in the oscillation circuit, the drive voltage is controlled by temperature using a temperature-sensitive element in a voltage dividing circuit involved in determining the drive voltage.

【0010】(5)前記センサ振動体の駆動電極と参照
電極に対し、それぞれ温度に対して異なる関数を与えた
回路を接続したこと。
(5) A circuit having different functions with respect to temperature is connected to the drive electrode and the reference electrode of the sensor vibrator.

【0011】[0011]

【発明の実施の形態】図1および図2は本発明のジャイ
ロセンサの第1の実施の形態を説明する図で図1は本発
明を適用する2軸検出型のセンサ振動体、図2はその駆
動、検出のための回路図を示している。図1(a)はセ
ンサ振動体の平面図、(b)は断面図、(c)は基本振
動の撓みの概形、(d)はコリオリ力による撓みの概形
を示す。まず図2によりセンサ振動体について説明す
る。このセンサ振動体の構造は基本的には公知であると
言える。
1 and 2 are diagrams for explaining a first embodiment of a gyro sensor according to the present invention. FIG. 1 is a two-axis detection type sensor vibrator to which the present invention is applied, and FIG. It shows a circuit diagram for the driving and detection. FIG. 1A is a plan view of a sensor vibrator, FIG. 1B is a cross-sectional view, FIG. 1C shows a schematic shape of a fundamental vibration, and FIG. 1D shows a general shape of a Coriolis force. First, the sensor vibrator will be described with reference to FIG. It can be said that the structure of the sensor vibrator is basically known.

【0012】図1(a)、(b)において、1は振動円
板で、固有振動数の温度変化を小さくするため、エリン
バのような恒弾性金属材料より成っている。2はPZT
等の圧電性磁器板でやや小径の円板状をなし、センサの
駆動・検出用の膜状の電極を両面に備え、接着剤層3に
よって振動円板1の片面に同心に接着されている。4は
負荷質量で金属球であり、振動円板1の他面中央に設け
たリング状の座に溶接されている。振動円板1、圧電性
磁器板2、負荷質量4は一体化されたセンサ振動体とし
て作動する。これらの厚さは図示の都合上かなり誇張さ
れている。5はセンサ振動体をプリント基板6上に支持
するシリコンゴム製の支柱である。センサ振動体のノー
ドは振動円板1の外径の約0.6倍の同心円をなすの
で、支柱5はその円周に沿って等間隔に8個置かれてい
る。
In FIGS. 1 (a) and 1 (b), reference numeral 1 denotes a vibrating disk, which is made of a constant elastic metal material such as an elinvar in order to reduce the temperature change of the natural frequency. 2 is PZT
And the like, are formed in a small disk shape by a piezoelectric porcelain plate, and have film-shaped electrodes for driving and detecting the sensor on both sides, and are adhered concentrically to one surface of the vibration disk 1 by an adhesive layer 3. . Reference numeral 4 denotes a metal ball as a load mass, which is welded to a ring-shaped seat provided at the center of the other surface of the vibrating disk 1. The vibrating disk 1, the piezoelectric porcelain plate 2, and the load mass 4 operate as an integrated sensor vibrator. These thicknesses are exaggerated for the sake of illustration. Reference numeral 5 denotes a silicon rubber support for supporting the sensor vibrator on the printed circuit board 6. Since the nodes of the sensor vibrator form a concentric circle of about 0.6 times the outer diameter of the vibrating disk 1, eight columns 5 are arranged at equal intervals along the circumference.

【0013】圧電性磁器板2の片面(振動円板側)には
全面に参照電極Rを設ける。他面にはそれぞれリング状
のフィードバック電極Fと駆動電極Dを、またその内側
に4個の扇形の検出電極X1、X2、Y1、Y2を設け
る。圧電性磁器板2の分極は板厚方向で、磁器板の板面
に平行な伸縮に対して参照電極Rとそれ以外の各電極の
間に圧電効果を生ずるようにされている。
A reference electrode R is provided on the entire surface of one side of the piezoelectric ceramic plate 2 (on the side of the vibrating disk). A ring-shaped feedback electrode F and a drive electrode D are provided on the other surface, and four fan-shaped detection electrodes X1, X2, Y1, and Y2 are provided on the inner side. The polarization of the piezoelectric porcelain plate 2 is such that a piezoelectric effect is generated between the reference electrode R and each of the other electrodes for expansion and contraction parallel to the plate surface of the porcelain plate in the thickness direction.

【0014】図1(c)は発振回路で励振されるセンサ
振動体の主振動モード(発振モード)の振動姿態を示
し、振動円板1を水平にして横から見た略図であり、Z
軸に関し対称である。太線は中立状態であり、細線は片
側に変位した状態である。即ち参照電極Rと駆動電極D
との間に電圧をかければ圧電性磁器板2は拡大または縮
小し振動円板1は上に凸または凹に変形し、またその変
形に対してフィードバック電極Fは参照電極Rに対して
正または負の方向に電位が変化し、発振回路に自励発振
を持続させるための情報を与える。
FIG. 1 (c) shows a vibration mode of a main vibrating mode (oscillation mode) of the sensor vibrating body which is excited by the oscillating circuit. FIG.
Symmetric about the axis. The thick line is a neutral state, and the thin line is a state displaced to one side. That is, the reference electrode R and the drive electrode D
When a voltage is applied to the piezoelectric ceramic plate 2, the piezoelectric ceramic plate 2 expands or contracts, and the vibrating disk 1 is deformed to be convex or concave upward. The potential changes in the negative direction, and gives information to the oscillation circuit to maintain the self-excited oscillation.

【0015】図1(d)は角速度検出に対応する振動モ
ード(検出モード)を示す。X軸(あるいはY軸)の回
りにセンサ振動体が回転すると、上下の基本振動をして
いる負荷質量4に角速度と振動速度と質量に比例する大
きさで、角速度と振動速度の両ベクトルに直交する方向
のコリオリ力が作用し、負荷質量4を基本振動に同期し
て(位相は略90°異なる)Y方向(あるいはX方向)
に動かす。そのため図示のように波形の変形(Z軸に関
して非対称)成分が基本振動に混じって生ずる。この変
形に対する圧電性磁器板2の伸縮は中心の両側で逆なの
で、電極X1と電極X2(または電極Y1と電極Y2)
には逆符号の電圧が生ずる。なお検出モードの固有振動
数は、円板型のセンサ振動体が実質的に軸対称であるた
め、X、Yいずれの軸を含む断面についても等しい。
FIG. 1D shows a vibration mode (detection mode) corresponding to the angular velocity detection. When the sensor vibrator rotates around the X-axis (or Y-axis), the load mass 4 that is vibrating up and down has a magnitude proportional to the angular velocity, the vibration velocity, and the mass. A Coriolis force acts in the orthogonal direction, and the load mass 4 is synchronized with the fundamental vibration (the phase is different by approximately 90 °) in the Y direction (or the X direction).
Move to Therefore, as shown in the figure, a waveform deformation (asymmetric with respect to the Z axis) component occurs in addition to the fundamental vibration. Since the expansion and contraction of the piezoelectric ceramic plate 2 with respect to this deformation is opposite on both sides of the center, the electrodes X1 and X2 (or the electrodes Y1 and Y2)
Produces a voltage of the opposite sign. Note that the natural frequency in the detection mode is the same for a cross section including any of the X and Y axes because the disk-shaped sensor vibrator is substantially axially symmetric.

【0016】この検出モードの振幅を大きくするために
は、その振動の固有周波数を主振動モード(発振モー
ド)の発振周波数に近づけておくことが有利である。し
かし両モードの周波数を一致させ共振させると縮退を起
し、感度は最大となるもののセンサ感度の温度特性や周
波数応答性が悪くなるので僅かな周波数差(例えば励振
周波数約31kHzの場合、250Hz前後の差)をつ
けておく。しかし各周波数は振動モードが違うのでそれ
ぞれの温度特性が異なるため、使用温度範囲全域に渡っ
てその差が一定にはならず、かなり変化し、そのままで
は結果として温度に対するセンサ感度が安定しない。こ
の現象が本発明に強く関係してくる。
In order to increase the amplitude of the detection mode, it is advantageous to make the natural frequency of the vibration close to the oscillation frequency of the main vibration mode (oscillation mode). However, if the frequencies of both modes are matched and resonated, degeneration occurs, and although the sensitivity is maximized, the temperature characteristics and the frequency response of the sensor sensitivity deteriorate, so a slight frequency difference (for example, when the excitation frequency is about 31 kHz, about 250 Hz) The difference). However, since each frequency has a different vibration mode, each temperature characteristic is different. Therefore, the difference does not become constant over the entire operating temperature range, changes considerably, and as a result, the sensitivity of the sensor to temperature becomes unstable as it is. This phenomenon is strongly related to the present invention.

【0017】図2の回路とその動作を説明する。図の上
半分、即ちフィードバック電極F、参照電極R、駆動電
極Dの右方に連なる回路は発振回路である。発振回路は
全体としてフィードバック電極F上に(参照電極Rに対
して)検出される電圧を増幅して駆動電極Dおよび参照
電極Rに与え、駆動電極Dと参照電極Rの差電圧で基本
振動を自励振動させる作用をする。また図の下半、検出
電極X1、X2、Y1、Y2の右方に連なる回路は検出
回路である。検出回路は本実施の形態が2軸ジャイロセ
ンサであるからX検出回路、Y検出回路の2組を有す
る。
The circuit of FIG. 2 and its operation will be described. The circuit connected to the upper half of the figure, that is, to the right of the feedback electrode F, the reference electrode R, and the drive electrode D is an oscillation circuit. The oscillation circuit as a whole amplifies the voltage detected on the feedback electrode F (relative to the reference electrode R) and supplies the amplified voltage to the drive electrode D and the reference electrode R, and the fundamental vibration is generated by the difference voltage between the drive electrode D and the reference electrode R. Acts as self-excited vibration. In the lower half of the figure, a circuit connected to the right of the detection electrodes X1, X2, Y1, Y2 is a detection circuit. The detection circuit has two sets of an X detection circuit and a Y detection circuit because the present embodiment is a two-axis gyro sensor.

【0018】X検出回路はX軸に平行な軸の回りの回転
の角速度成分を検出する。電極X1、X2に異符号の電
荷が角速度成分に比例して発生するので、各電位を前置
増幅器31、32で増幅したあと差動増幅器41で差電
圧を作り、これを同期検波回路により基本振動に同期さ
せたタイミングで検波して直流化する。検波出力をLP
F61を通し、直流増幅器71によってX軸方向の角速
度成分に比例する直流電圧として検出出力Xoutを得
る。この手法は基本的に公知である。検出出力Yout
を得るY検出回路も同じ構成であって、前置増幅器3
3、34、差動増幅器42、同期検波回路52、LPF
62、直流増幅器72の作用も同じである。
The X detection circuit detects an angular velocity component of rotation about an axis parallel to the X axis. Since charges having different signs are generated in the electrodes X1 and X2 in proportion to the angular velocity components, each potential is amplified by the preamplifiers 31 and 32, and then a differential voltage is generated by the differential amplifier 41, which is basically controlled by a synchronous detection circuit. Detect and convert to DC at timing synchronized with vibration. LP detection output
Through F61, the DC amplifier 71 obtains a detection output Xout as a DC voltage proportional to the angular velocity component in the X-axis direction. This technique is basically known. Detection output Yout
Has the same configuration, and the preamplifier 3
3, 34, differential amplifier 42, synchronous detection circuit 52, LPF
The operation of the DC amplifier 72 is the same.

【0019】発振回路において、11、13、21、2
2はそれぞれ演算増幅器、R1〜R16は通常の抵抗素
子、RT1、RT2はサーミスタのような感温抵抗素
子、C1〜C5は容量素子である。枠で囲んだ回路10
の内部は反転増幅器を構成する。12はAGC回路であ
り、反転増幅器10のゲインを制御する。枠で囲んだ感
温帰還抵抗回路8、感温分圧回路9はそれぞれ本発明の
温度補償技術の核心をなす感温回路部分である。
In the oscillation circuit, 11, 13, 21, 2
2 is an operational amplifier, R1 to R16 are ordinary resistance elements, RT1 and RT2 are temperature-sensitive resistance elements such as thermistors, and C1 to C5 are capacitance elements. Circuit 10 surrounded by a frame
Inside constitutes an inverting amplifier. An AGC circuit 12 controls the gain of the inverting amplifier 10. The temperature-sensitive feedback resistor circuit 8 and the temperature-sensitive voltage dividing circuit 9 surrounded by a frame are each a temperature-sensitive circuit part which forms the core of the temperature compensation technology of the present invention.

【0020】本発明の温度補償技術の説明に移る。本実
施の形態においては温度補償効果の精・粗2段の調節が
可能である。粗調節においては反転増幅器10と共に働
き、フィードバック電極Fの検出電圧波形を反転増幅し
て参照電極Rに電圧出力を与え、非反転増幅器として動
作する演算増幅器21のゲインを感温抵抗素子RT1を
含む感温帰還抵抗回路8によって温度の関数として変え
てやり、そのゲインが温度で変わる。
Turning now to the description of the temperature compensation technique of the present invention. In the present embodiment, it is possible to adjust the temperature compensation effect in two stages, fine and coarse. In the coarse adjustment, it works together with the inverting amplifier 10 to invert and amplify the detection voltage waveform of the feedback electrode F to give a voltage output to the reference electrode R, and to adjust the gain of the operational amplifier 21 operating as a non-inverting amplifier including the temperature-sensitive resistance element RT1. The temperature-sensitive feedback resistor 8 changes the gain as a function of temperature, and the gain changes with temperature.

【0021】そしてそのゲイン変化に伴って基本振動の
発振周波数が僅か(例えば数十Hz)変わる性質がある
(変化の原因は必ずしも十分明確にされてはいないが、
ゲイン変化を与える回路定数の変化によって振動体の電
極端子から回路を見た場合の負荷インピーダンスが変化
するためであろう。あるいはゲイン変化により振動体の
振幅が変化し、振幅に対する振動の非線形性によるかも
知れない。)ことを利用し、基本振動の発振周波数を温
度により変化させて検出振動モードの固有振動数の温度
変化(これは振動体の構成材料の特性に任せ、回路的な
補償はしない)に追従させ、両モードの周波数の僅かな
差を広い温度範囲内で略一定値に維持する。こうして感
度の温度変化は補正される。
The oscillation frequency of the fundamental vibration changes slightly (for example, several tens of Hz) with the change in the gain (the cause of the change is not necessarily sufficiently clarified,
This may be because the load impedance when the circuit is viewed from the electrode terminal of the vibrating body changes due to the change in the circuit constant giving the gain change. Alternatively, the amplitude of the vibrating body may change due to a change in gain, which may be due to the non-linearity of vibration with respect to the amplitude. ), The oscillation frequency of the fundamental vibration is changed depending on the temperature to follow the temperature change of the natural frequency of the detected vibration mode (this depends on the characteristics of the constituent materials of the vibrating body, and does not compensate for the circuit). The slight difference between the frequencies of the two modes is maintained at a substantially constant value within a wide temperature range. Thus, the temperature change of the sensitivity is corrected.

【0022】センサ感度の温度特性の精調整、即ち微細
調節は以下のようにして行う。角速度の検出電圧はコリ
オリ力に比例し、コリオリ力は基本振動の振幅に比例す
る。従って駆動電圧を上げて振幅を増すと検出感度も上
がる。これを利用して駆動電極Dに印加される駆動電圧
に温度変化を与えて粗調整で補正しきれなかった感度補
正を行っている。具体例では、駆動電圧を安定化してい
るAGC回路において駆動電圧振幅を決めている、電源
電圧の分圧回路を感温抵抗素子RT2を含めた構成とし
感温分圧回路9として駆動電圧を温度の関数とすること
により、2次的補正を行っている。
Fine adjustment of the temperature characteristics of the sensor sensitivity, that is, fine adjustment, is performed as follows. The detected voltage of the angular velocity is proportional to the Coriolis force, and the Coriolis force is proportional to the amplitude of the fundamental vibration. Therefore, when the drive voltage is increased to increase the amplitude, the detection sensitivity is also increased. By utilizing this, a temperature change is applied to the drive voltage applied to the drive electrode D to perform sensitivity correction that cannot be corrected by the coarse adjustment. In a specific example, the power supply voltage dividing circuit that determines the drive voltage amplitude in the AGC circuit that stabilizes the drive voltage includes the temperature-sensitive resistance element RT2, and the drive voltage is temperature-divided as the temperature-sensitive voltage divider 9. , A secondary correction is performed.

【0023】以上本発明の実施の形態の一例について述
べたが、本発明の趣旨を保って他の種々の実施の形態が
得られることはもちろんである。センサ振動体の容器や
容器内での支持・接続構造についても同様である。また
上記の実施の形態の駆動回路はフィードバック電極F、
参照電極R、駆動電極Dの3端子であるが、一般に振動
体の励振によく用いられる2端子発振回路でも、回路定
数の温度変化による発振周波数変化と駆動電圧変化によ
る感度の温度補償の思想が適用できることは明らかであ
る。
Although an example of the embodiment of the present invention has been described above, it is needless to say that various other embodiments can be obtained while maintaining the spirit of the present invention. The same applies to the container of the sensor vibrator and the support / connection structure in the container. Further, the driving circuit of the above embodiment has a feedback electrode F,
Although there are three terminals of the reference electrode R and the drive electrode D, the idea of the temperature compensation of the sensitivity by the change of the oscillation frequency due to the change of the circuit constant and the change of the drive voltage in the two-terminal oscillation circuit generally used for the excitation of the vibrator is also considered. Clearly applicable.

【0024】また振動体の材質も金属と圧電性磁器との
複合体でなくても、主要部全体がバイモルフ型などの圧
電性磁器、あるいは水晶その他圧電性結晶材料で構成さ
れていてもよい。電極構成もセンサ振動体の特性に合わ
せて変更が可能である。また回路構成も図1と異なる構
成が採用されても差し支えない。感温素子もサーミスタ
抵抗素子に限られず、他の素子例えば半導体能動素子の
温度特性を利用してもよい。。
The material of the vibrating body is not necessarily a composite of metal and piezoelectric porcelain, and the entire main part may be made of a piezoelectric porcelain such as a bimorph type, quartz or other piezoelectric crystal material. The electrode configuration can also be changed according to the characteristics of the sensor vibrator. The circuit configuration may be different from that shown in FIG. The temperature sensing element is not limited to the thermistor resistance element, but may use the temperature characteristics of another element such as a semiconductor active element. .

【0025】[0025]

【発明の効果】(1)主振動モードの発振周波数を制御
して検出モードの振動数に追従させる構成により、2軸
に対応する2個の検出回路の各々の温度特性を補償する
ことなく、両軸の検出感度を一挙に同等に温度補償する
ことができ、比較的簡単な回路構成及び容易な調整手法
でジャイロセンサの温度補償を達成できた効果がある。
(1) The configuration in which the oscillation frequency of the main vibration mode is controlled to follow the frequency of the detection mode without compensating the temperature characteristics of each of the two detection circuits corresponding to the two axes. The detection sensitivity of both axes can be compensated for at the same temperature at once, and there is an effect that the temperature compensation of the gyro sensor can be achieved by a relatively simple circuit configuration and an easy adjustment method.

【0026】(2)更に発振回路の駆動電圧を温度によ
り変化させて感度の微調整を行うことにより、微調整を
粗調整と独立にかつ容易に行うことができる。 (3)増幅器の帰還回路定数を温度の関数とすることに
より、簡素な構成で温度補償効果を達成することができ
る利点がある。 (4)AGC回路に温度変化を与えることも簡素な構成
で容易に実施できる効果がある。
(2) Further, by finely adjusting the sensitivity by changing the drive voltage of the oscillation circuit depending on the temperature, the fine adjustment can be performed easily and independently of the coarse adjustment. (3) By making the feedback circuit constant of the amplifier a function of temperature, there is an advantage that a temperature compensation effect can be achieved with a simple configuration. (4) There is an effect that giving a temperature change to the AGC circuit can be easily implemented with a simple configuration.

【0027】(5)参照電極と駆動電極に対して別個の
温度関数を与えた回路を接続することにより、温度補償
の調整を容易に行うことができる。
(5) By connecting a circuit having different temperature functions to the reference electrode and the drive electrode, it is possible to easily adjust the temperature compensation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のジャイロセンサの第1の実施の形態に
おけるセンサ振動体を示し、(a)は平面図、(b)は
断面図、(c)は基本振動の撓みの概形、(d)はコリ
オリ力による撓みの概形を示す。
1A and 1B show a sensor vibrator according to a first embodiment of the gyro sensor of the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a cross-sectional view, FIG. d) shows the general shape of the deflection due to the Coriolis force.

【図2】本発明のジャイロセンサの第1の実施の形態に
おける回路図である。
FIG. 2 is a circuit diagram of the gyro sensor according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 振動円板 2 圧電性磁器板 3 接着剤層 4 負荷質量 5 シリコン支柱 6 プリント基板 8 感温帰還抵抗回路 9 感温分圧回路 10 反転増幅器 11、13、21、22 演算増幅器 12 AGC回路 31、32、33、34 前置増幅器 41、42 差動増幅器 51、52 同期検波回路 61、62 LPF 71、72 直流増幅器 D 駆動電極 F フィードバック電極 R 参照電極 X1、X2、Y1、Y2 検出電極 X、Y、Z 座標軸 RT1、RT2 感温抵抗素子 C1、C2、C3、C4、C5 容量素子 R1、R2、R3、R4、R5、R6、R7、R8、R
9、R10、R11、R12、R13、R14、R1
5、R16 抵抗素子
DESCRIPTION OF SYMBOLS 1 Vibration disk 2 Piezoelectric porcelain plate 3 Adhesive layer 4 Load mass 5 Silicon support column 6 Printed circuit board 8 Temperature-sensitive feedback resistor circuit 9 Temperature-sensitive voltage dividing circuit 10 Inverting amplifier 11, 13, 21, 22 Operational amplifier 12 AGC circuit 31 , 32, 33, 34 Preamplifier 41, 42 Differential amplifier 51, 52 Synchronous detection circuit 61, 62 LPF 71, 72 DC amplifier D Drive electrode F Feedback electrode R Reference electrode X1, X2, Y1, Y2 Detection electrode X, Y, Z coordinate axes RT1, RT2 Thermosensitive resistance elements C1, C2, C3, C4, C5 Capacitance elements R1, R2, R3, R4, R5, R6, R7, R8, R
9, R10, R11, R12, R13, R14, R1
5, R16 resistance element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中心軸上板面から離れた位置に負荷質量
を有する円板型振動体を、その表面に設けたリング状電
極膜によって圧電的に凹凸方向に駆動して主振動モード
を与え、前記円板型振動体が前記板面に平行な直交2軸
の回りに回転するとき前記付加質量に作用するコリオリ
力により生起される前記円板の検出モードの振動を前記
表面に備えた2組の扇形電極により圧電的に検出して、
前記2軸に関する回転角速度を検出するべく構成された
2軸ジャイロセンサにおいて、前記主振動を行わせる発
振回路における回路定数を温度の関数とすることによっ
て前記主振動モードの発振周波数に温度変化を与え、前
記他の振動モードの固有周波数の温度変化に追従させて
これら両周波数の差を温度変化に対してほぼ一定に制御
し、前記角速度の測定感度の温度補償を行う温度補償回
路を備えたことを特徴とするジャイロセンサ。
1. A disk type vibrator having a load mass at a position distant from an upper central axis plate surface is piezoelectrically driven by a ring-shaped electrode film provided on its surface in a concave and convex direction to provide a main vibration mode. A vibration in a detection mode of the disk caused by Coriolis force acting on the additional mass when the disk-type vibrator rotates around two orthogonal axes parallel to the plate surface; Detected piezoelectrically by a set of sector electrodes,
In a two-axis gyro sensor configured to detect a rotational angular velocity about the two axes, a temperature change is given to an oscillation frequency of the main oscillation mode by setting a circuit constant of an oscillation circuit for performing the main oscillation as a function of temperature. A temperature compensation circuit for following the temperature change of the natural frequency of the other vibration mode, controlling the difference between these two frequencies substantially constant with respect to the temperature change, and performing temperature compensation of the measurement sensitivity of the angular velocity. A gyro sensor characterized by the following.
【請求項2】 更に前記発振回路の駆動電圧を温度によ
り制御する回路を設けて、前記温度補償の更なる調整を
行ったことを特徴とする請求項1のジャイロセンサ。
2. The gyro sensor according to claim 1, further comprising a circuit for controlling a drive voltage of said oscillation circuit based on a temperature to further adjust said temperature compensation.
【請求項3】 前記発振回路は全体として反転増幅回路
であって、そのゲインを決定する帰還回路に感温素子を
含んでいることを特徴とする請求項1あるいは2のジャ
イロセンサ。
3. The gyro sensor according to claim 1, wherein the oscillating circuit is an inverting amplifier circuit as a whole, and a feedback circuit for determining a gain includes a temperature-sensitive element.
【請求項4】 前記発振回路に含まれるAGC回路にお
いて駆動電圧の決定に関与している分圧回路に感温素子
を用いて駆動電圧を温度により制御することを特徴とす
る請求項1、2あるいは3のジャイロセンサ。
4. The driving voltage is controlled by temperature using a temperature sensing element in a voltage dividing circuit involved in determining a driving voltage in an AGC circuit included in the oscillation circuit. Or 3 gyro sensors.
【請求項5】 前記センサ振動体の駆動電極と参照電極
に対し、それぞれ温度に対して異なる関数を与えた回路
を接続したことを特徴とする請求項1ないし4のいずれ
かのジャイロセンサ。
5. The gyro sensor according to claim 1, wherein a circuit giving a different function with respect to temperature is connected to the drive electrode and the reference electrode of the sensor vibrator.
JP2000247076A 2000-07-13 2000-07-13 Gyro sensor Pending JP2002031533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247076A JP2002031533A (en) 2000-07-13 2000-07-13 Gyro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247076A JP2002031533A (en) 2000-07-13 2000-07-13 Gyro sensor

Publications (1)

Publication Number Publication Date
JP2002031533A true JP2002031533A (en) 2002-01-31

Family

ID=18737250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247076A Pending JP2002031533A (en) 2000-07-13 2000-07-13 Gyro sensor

Country Status (1)

Country Link
JP (1) JP2002031533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105659A (en) * 2004-10-01 2006-04-20 Nec Tokin Corp Piezoelectric vibration gyro, and sensitivity regulation method therefor
JP2012215503A (en) * 2011-04-01 2012-11-08 Citizen Holdings Co Ltd Sensor drive circuit and physical quantity sensor using the same
JP2013137321A (en) * 2013-02-19 2013-07-11 Wacoh Corp Angular velocity sensor
JP2013253958A (en) * 2012-05-08 2013-12-19 Mitsubishi Precision Co Ltd Vibration gyro having bias correction function
JP2014178195A (en) * 2013-03-14 2014-09-25 Mitsubishi Precision Co Ltd Vibration type gyro having bias correcting function

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180409A (en) * 1988-12-31 1990-07-13 Nippon Dempa Kogyo Co Ltd Temperature sensitive voltage generating circuit and temperature compensating element using same
JPH07167660A (en) * 1993-12-16 1995-07-04 Honda Motor Co Ltd Vibrating gyroscope
JPH08293738A (en) * 1995-04-21 1996-11-05 Sony Corp Temperature compensation controller
JPH0926321A (en) * 1995-03-28 1997-01-28 Miyota Kk Electrode structure for angular velocity sensor
JPH0983309A (en) * 1995-09-14 1997-03-28 Denso Corp Temperature compensation type ring oscillator
JPH09292231A (en) * 1996-04-26 1997-11-11 Murata Mfg Co Ltd Vibrating gyroscope
JPH10135738A (en) * 1997-12-01 1998-05-22 Kyocera Corp Temperature compensation crystal oscillator
JPH1127047A (en) * 1997-06-27 1999-01-29 Kyocera Corp Production of temperature compensation crystal oscillator
JPH11281372A (en) * 1997-11-04 1999-10-15 Ngk Insulators Ltd Vibrator, vibration gyroscope, linear accelerator, and method for measuring rotary angular velocity
JPH11281371A (en) * 1998-03-30 1999-10-15 Miyota Kk Temperature correction circuit of piezoelectric biaxial angular velocity sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180409A (en) * 1988-12-31 1990-07-13 Nippon Dempa Kogyo Co Ltd Temperature sensitive voltage generating circuit and temperature compensating element using same
JPH07167660A (en) * 1993-12-16 1995-07-04 Honda Motor Co Ltd Vibrating gyroscope
JPH0926321A (en) * 1995-03-28 1997-01-28 Miyota Kk Electrode structure for angular velocity sensor
JPH08293738A (en) * 1995-04-21 1996-11-05 Sony Corp Temperature compensation controller
JPH0983309A (en) * 1995-09-14 1997-03-28 Denso Corp Temperature compensation type ring oscillator
JPH09292231A (en) * 1996-04-26 1997-11-11 Murata Mfg Co Ltd Vibrating gyroscope
JPH1127047A (en) * 1997-06-27 1999-01-29 Kyocera Corp Production of temperature compensation crystal oscillator
JPH11281372A (en) * 1997-11-04 1999-10-15 Ngk Insulators Ltd Vibrator, vibration gyroscope, linear accelerator, and method for measuring rotary angular velocity
JPH10135738A (en) * 1997-12-01 1998-05-22 Kyocera Corp Temperature compensation crystal oscillator
JPH11281371A (en) * 1998-03-30 1999-10-15 Miyota Kk Temperature correction circuit of piezoelectric biaxial angular velocity sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105659A (en) * 2004-10-01 2006-04-20 Nec Tokin Corp Piezoelectric vibration gyro, and sensitivity regulation method therefor
JP2012215503A (en) * 2011-04-01 2012-11-08 Citizen Holdings Co Ltd Sensor drive circuit and physical quantity sensor using the same
JP2013253958A (en) * 2012-05-08 2013-12-19 Mitsubishi Precision Co Ltd Vibration gyro having bias correction function
JP2013137321A (en) * 2013-02-19 2013-07-11 Wacoh Corp Angular velocity sensor
JP2014178195A (en) * 2013-03-14 2014-09-25 Mitsubishi Precision Co Ltd Vibration type gyro having bias correcting function

Similar Documents

Publication Publication Date Title
JPH05312579A (en) Gyrocompass
JPH0674774A (en) Drive circuit for gyro
JPH063455B2 (en) Vibrating gyro
JP3036145B2 (en) Vibrating gyro
JP2002228453A (en) Oscillatory gyro and temperature drift adjusting method therefor
JPH08278146A (en) Vibrating gyro
KR100361118B1 (en) Vibrator for detecting angular velocities about two axes and vibrating gyroscope having the same
JP2900341B2 (en) Piezoelectric rotation sensor for simultaneous measurement of two axes and its measurement circuit
JP2002031533A (en) Gyro sensor
JP3601822B2 (en) Double tone type vibration gyro sensor
JPH11304494A (en) Vibration gyro and method of its use
JPH0650761A (en) Vibrating gyro
JP2531021B2 (en) Oscillator
EP0717263B1 (en) Vibrating gyroscope
JP2000018951A (en) Angular velocity detecting method and device thereof
JPH09105637A (en) Vibrating gyro
JPH09222326A (en) Vibration gyro
JP2814891B2 (en) Vibrating gyro
JP3440812B2 (en) Vibrating gyro
JPH0650762A (en) Vibrating gyro
JPH08184444A (en) Oscillation gyro and manufacture thereof
JPH08189834A (en) Piezoelectric oscillation gyroscope
JPH09145380A (en) Oscillation gyro and method for adjusting its characteristics
JPH07318354A (en) Vibrating gyro
JPH09292231A (en) Vibrating gyroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921