JP2002028229A - Magnesium material for living body and method for manufacturing the same - Google Patents

Magnesium material for living body and method for manufacturing the same

Info

Publication number
JP2002028229A
JP2002028229A JP2000216768A JP2000216768A JP2002028229A JP 2002028229 A JP2002028229 A JP 2002028229A JP 2000216768 A JP2000216768 A JP 2000216768A JP 2000216768 A JP2000216768 A JP 2000216768A JP 2002028229 A JP2002028229 A JP 2002028229A
Authority
JP
Japan
Prior art keywords
magnesium
oxide layer
living body
layer
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000216768A
Other languages
Japanese (ja)
Other versions
JP3768388B2 (en
Inventor
Hideyuki Kuwabara
秀行 桑原
Naoko Mazaki
直子 間崎
Sadami Tsutsumi
定実 堤
Tatsuhiko Aizawa
龍彦 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000216768A priority Critical patent/JP3768388B2/en
Publication of JP2002028229A publication Critical patent/JP2002028229A/en
Application granted granted Critical
Publication of JP3768388B2 publication Critical patent/JP3768388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium material for a living body, which is improved in corrosion resistance by surface modifying. SOLUTION: This biological magnesium material consists of metal magnesium of >=99.9% in purity as a base material and is formed with a decomposition layer on its front surface by forming an oxide layer on the front surface of the base material, then removing the whole or part of the oxide layer. After the metal magnesium is worked to the biological member, the oxide layer is formed on the front surface of the biological member by heat treating the member in an oxidation atmosphere and further the whole or part of the oxide layer is removed, by which the decomposition layer is formed. Accordingly, when the metal magnesium formed with a rigid film is brought into contact with biological fluid, Ca, P, Cl, etc., penetrate the same and the film having the excellent corrosion resistance may be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、義歯,人工骨,インプ
ラント材等として使用される生体用マグネシウム材料及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body magnesium material used as a denture, an artificial bone, an implant material and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】人工歯根,歯冠,義歯床等の歯科用材料
や、人工関節,人工骨,骨折整復用材料等の生体内イン
プラント材料には、生体にかかる力や運動を支える構造
材料としての機能及び生体環境における生体適合性(生
体活性や生体不活性)が要求され、なかでも生体組織と
の変形特性の調和と強度が重要である。このようなこと
から、金属質生体材料としてステンレス鋼,Co−Cr
合金,Ti,Ti合金等が従来から使用されている(特
開平12−144287号公報,特開2000−116
673号公報)。しかし、ステンレス鋼からのFeイオ
ン,Crイオン,Niイオンの溶出、Co−Cr合金か
らのCoイオン,Crイオンの溶出、Ti又はTi合金
からのTiイオンやV等の合金成分イオンの溶出がアレ
ルギーや毒性を示すとの報告もある。
2. Description of the Related Art Dental materials such as artificial roots, crowns, and denture bases, and in vivo implant materials such as artificial joints, artificial bones, and materials for reducing bone fractures are used as structural materials to support forces and movements applied to a living body. Function and biocompatibility (bioactivity or bioactivity) in a biological environment are required. Above all, harmony and strength of deformation characteristics with biological tissue are important. Therefore, stainless steel, Co-Cr is used as the metallic biomaterial.
Alloys, Ti, Ti alloys and the like have been conventionally used (Japanese Patent Application Laid-Open Nos. 12-144287 and 2000-116).
No. 673). However, elution of Fe ion, Cr ion, and Ni ion from stainless steel, elution of Co ion and Cr ion from Co—Cr alloy, and elution of alloy ion such as Ti ion and V from Ti or Ti alloy are allergic. There are also reports that it shows toxicity.

【0003】[0003]

【発明が解決しようとする課題】この点、マグネシウム
は、生体必須元素であり、ステンレス鋼,Co−Cr合
金,Ti,Ti合金等に比較して生体親和性に一層優れ
ており、安全な材料でもある。しかも、比重が小さな材
料であることから、生体材料としての要求特性をもって
いる。しかし、耐食性に難点があることから、マグネシ
ウムを生体用に使用できない現状である。すなわち、体
液中にはClイオンが多く含まれており、このClイオ
ンがMgと反応すると塩化マグネシウム(MgCl2
を生成することは十分に推測される。生成した塩化マグ
ネシウムが金属Mgから離脱して生体液で搬送され、沈
着物を形成し、或いはMgイオンが血管中に浸透して高
濃度になり血栓を生じることが懸念される。
In this respect, magnesium is an essential element in living organisms, and is more excellent in biocompatibility than stainless steel, Co—Cr alloy, Ti, Ti alloy and the like, and is a safe material. But also. Moreover, since the material has a small specific gravity, it has the required characteristics as a biomaterial. However, at present, magnesium cannot be used for living organisms because of its difficulty in corrosion resistance. That is, the body fluid contains a large amount of Cl ions, and when the Cl ions react with Mg, magnesium chloride (MgCl 2 )
It is fully guessed that It is feared that the generated magnesium chloride is separated from the metallic Mg and transported by the biological fluid to form a deposit, or that Mg ions penetrate into the blood vessel and become high in concentration to cause thrombus.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、マグネシウム表
面を改質処理することにより、生体環境における腐食を
抑制し、生体親和性,機械的強度等のマグネシウム本来
の特性を活用した生体用マグネシウム材料を提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem. By modifying a magnesium surface, corrosion in a biological environment is suppressed, and biocompatibility is improved. Another object of the present invention is to provide a magnesium material for living organisms utilizing the inherent properties of magnesium such as mechanical strength.

【0005】本発明の生体用マグネシウム材料は、その
目的を達成するため、純度99.9%以上の金属マグネ
シウムを基材とし、基材表面に酸化物層を形成した後で
該酸化物層の全て又は一部を除去してすることにより変
質層が形成されていることを特徴とする。この生体用マ
グネシウム材料は、純度99.9%以上の金属マグネシ
ウムを生体用部材に加工した後、酸化雰囲気中で加熱処
理して生体用部材の表面に酸化物層を形成し、更に該酸
化物層の全て又は一部を除去して変質層を形成させるこ
とにより製造される。
[0005] In order to achieve the object, the magnesium material for living body of the present invention comprises a metal magnesium having a purity of 99.9% or more as a base material, and after forming an oxide layer on the surface of the base material, An altered layer is formed by removing all or a part of the altered layer. This biological magnesium material is obtained by processing metallic magnesium having a purity of 99.9% or more into a biological member, and then performing heat treatment in an oxidizing atmosphere to form an oxide layer on the surface of the biological member. It is manufactured by removing all or a part of the layer to form an altered layer.

【0006】[0006]

【作用】本発明者等は、生体用には不適当なアルミニウ
ムを含まない金属マグネシウムを用いて、生体材料とし
ての金属マグネシウムの使用可能性を種々の観点から調
査検討した。その過程で、金属マグネシウムの表面に酸
化物層を一旦形成した後で酸化物層の全て又は一部を除
去すると、金属マグネシウムの表面が変質し、この金属
マグネシウムをハンクス液(擬似生体液)に浸漬する
と、ハンクス液に含まれているCa,P,Cl等がマグ
ネシウム表面に析出・浸透し、表面改質されることを見
出した。
The present inventors have investigated and examined the possibility of using metallic magnesium as a biomaterial from various viewpoints using metallic magnesium which does not contain aluminum which is unsuitable for living bodies. In the process, if an oxide layer is formed once on the surface of the magnesium metal and then all or part of the oxide layer is removed, the surface of the magnesium metal is deteriorated, and this magnesium metal is converted into a Hanks solution (simulated biological fluid). It has been found that when immersed, Ca, P, Cl and the like contained in the Hanks solution are deposited and permeate on the magnesium surface, and the surface is modified.

【0007】改質表面は、硬質で且つ優れた保護作用を
呈し、従来マグネシウムを生体用に使用しようとする際
のネックであった耐食性不足を十分に解消することが判
った。表面改質により耐食性が改善される理由は現在の
ところ不明であるが、Mg(基材)の表面近傍にCa,
P,Cl等が検出されることからアパタイトが形成され
ていることに原因があるものと推察される。
[0007] It has been found that the modified surface is hard and exhibits an excellent protective action, and sufficiently ameliorates the lack of corrosion resistance which has conventionally been a bottleneck when trying to use magnesium for living bodies. The reason why the corrosion resistance is improved by the surface modification is unknown at present, but Ca,
Since P, Cl and the like are detected, it is presumed that the cause is due to the formation of apatite.

【0008】基材としては、生体材用として好ましくな
いAl,希土類元素(La,Ce,Pr,Nd,Sm,
Gd,Yb等),Y,Si,Cr等の成分を含まない純
度99.9%以上の金属マグネシウムが使用される。こ
の金属マグネシウムは、生体必須元素であるZn,C
a,P,Cu等を少量含んでいてもよい。金属マグネシ
ウムを必要形状に加工した後で酸化性雰囲気で加熱する
と、酸化反応によって表面に酸化物層が生成する。所定
厚み(具体的には5〜200μm)の酸化物層を形成す
るため、雰囲気:5%O2+95%Ar(N2),100
%O2又は大気雰囲気,加熱温度:400〜600℃,
加熱時間:3〜100時間の酸化処理条件が好ましい。
生成した酸化物層は、研磨,超音波洗浄等で基材マグネ
シウムから容易に除去される。
As the base material, Al and rare earth elements (La, Ce, Pr, Nd, Sm,
Gd, Yb, etc.), and metallic magnesium having a purity of 99.9% or more that does not contain components such as Y, Si, and Cr is used. This metallic magnesium is an essential element of living body, Zn, C
a, P, Cu, etc. may be contained in a small amount. When the metal magnesium is processed into the required shape and then heated in an oxidizing atmosphere, an oxide layer is formed on the surface by the oxidation reaction. Atmosphere: 5% O 2 + 95% Ar (N 2 ), 100 to form an oxide layer having a predetermined thickness (specifically, 5 to 200 μm)
% O 2 or air atmosphere, heating temperature: 400 to 600 ° C,
Heating time: oxidation treatment conditions of 3 to 100 hours are preferred.
The generated oxide layer is easily removed from the base magnesium by polishing, ultrasonic cleaning, or the like.

【0009】酸化物層の全て又は一部が除去された金属
マグネシウムは表面変質している。Ca,P,Cl等を
含むハンクス液(生体擬似液)に酸化物層の全て又は一
部を除去した後の金属マグネシウムを浸漬すると、最表
層にはMgO系の変質層が形成されるが、金属マグネシ
ウムの表面側に耐食性に優れた変質層が形成される。そ
のため、ハンクス液への浸漬時間が長くなっても、変質
層形成後は金属マグネシウムの腐食が進行しなくなる。
予めハンクス液に浸漬することによって新たな変質層を
形成してもよいが、生体液にはCa,P,Cl等が含ま
れていることから、酸化物層の全て又は一部を除去した
後の金属マグネシウム製生体用部材をそのまま生体に埋
め込みんでも変質層が形成される。この場合、金属マグ
ネシウムから溶出するMgイオンは、本来生体必須元素
であるため悪影響を及ぼすことはない。
The metal magnesium from which all or part of the oxide layer has been removed is surface-modified. When the metallic magnesium after removing all or a part of the oxide layer is immersed in a Hank's liquid (biological simulated liquid) containing Ca, P, Cl, etc., an MgO-based altered layer is formed on the outermost layer, An altered layer having excellent corrosion resistance is formed on the surface side of the metallic magnesium. Therefore, even if the immersion time in the Hanks solution is prolonged, the corrosion of the metallic magnesium does not progress after the formation of the altered layer.
A new altered layer may be formed by immersing in a Hanks solution in advance, but since the biological fluid contains Ca, P, Cl, etc., after removing all or a part of the oxide layer, The deteriorated layer is formed even when the metallic magnesium biomaterial is embedded in the living body as it is. In this case, the Mg ions eluted from the metallic magnesium do not adversely affect because they are essentially essential elements in living organisms.

【0010】[0010]

【実施例】純度99.9%の金属アルミニウムを10m
m×20mmのサイズで厚み2mmの試験片に加工し
た。試験片の表面状態を均一化するため、粒径0.1μ
mのアルミナパウダーを用いた研磨及びアセトンを用い
た超音波洗浄を施した。
Example: 10 m of 99.9% pure metal aluminum
It was processed into a test piece having a size of mx 20 mm and a thickness of 2 mm. In order to make the surface condition of the test piece uniform, the particle size is 0.1μ.
Then, polishing using alumina powder of m and ultrasonic cleaning using acetone were performed.

【0011】試験片を電気炉に装入し、20%O2+8
0%N2雰囲気中で530℃に9時間加熱した。加熱後
の試験片表面には厚さ47.4μmの酸化物層が形成さ
れていた。加熱後に酸化物層をアセトン中で超音波洗浄
して酸化物層を除去した後、試験片を切断し、粒径0.
1μmのアルミナ粒子を用いて試験片断面を研磨した。
研磨された試験片断面を走査型電子顕微鏡で観察したと
ころ、厚さ20μmの変質層が形成されていることが判
った。酸化物層が除去された試験片の表面硬度を測定し
たところ、母材硬度(40HV)に比較してビッカース
硬さが43HVと硬質の皮膜が形成されていた。
A test piece was charged into an electric furnace, and 20% O 2 +8
Heated to 530 ° C. for 9 hours in a 0% N 2 atmosphere. An oxide layer having a thickness of 47.4 μm was formed on the surface of the test piece after heating. After the heating, the oxide layer was ultrasonically cleaned in acetone to remove the oxide layer, and then the test piece was cut to obtain a particle size of 0.3.
The cross section of the test piece was polished using 1 μm alumina particles.
When the cross section of the polished test piece was observed with a scanning electron microscope, it was found that an altered layer having a thickness of 20 μm was formed. When the surface hardness of the test piece from which the oxide layer was removed was measured, a Vickers hardness of 43 HV was formed as compared with the base material hardness (40 HV).

【0012】次いで、温度30℃のハンクス液(1リッ
トルのH2O中にNaCl:8g,KCl:0.4g,Na2HPO4・2H
2O:0.06g,KH2PO4:0.06g,MgSO4・7H2O:0.2g,CaC
l2:0.14g,NaHCO3:0.35gを含む)に試験片を400時
間浸漬した。浸漬後の試験片表面を観察したところ、図
1に示すように基材マグネシウムと表層の酸化皮膜との
界面に中間層が検出された。この中間層は、化学分析の
結果P:24.58質量%、Cl:0.63質量%及び
Ca:38.51質量%を含んでいることが判った。
[0012] Next, Hanks' solution temperature 30 ° C. (1 liters NaCl in of H 2 O: 8g, KCl: 0.4g, Na 2 HPO 4 · 2H
2 O: 0.06g, KH 2 PO 4: 0.06g, MgSO 4 · 7H 2 O: 0.2g, CaC
l 2 : 0.14 g, containing NaHCO 3 : 0.35 g) for 400 hours. When the surface of the test piece after immersion was observed, an intermediate layer was detected at the interface between the magnesium base material and the surface oxide film as shown in FIG. As a result of chemical analysis, this intermediate layer was found to contain P: 24.58% by mass, Cl: 0.63% by mass, and Ca: 38.51% by mass.

【0013】比較のため、同じ金属マグネシウムを使用
し、酸化物層の生成及び除去を施すことなく、同様な条
件下でハンクス液に浸漬した。浸漬処理された試験片を
顕微鏡観察したところ、図1に示すような中間層が形成
されておらず、化学分析の結果もP,Cl,Ca等が検
出されなかった。
For comparison, the same metallic magnesium was used and immersed in a Hanks solution under similar conditions without forming and removing an oxide layer. When the test piece subjected to the immersion treatment was observed under a microscope, no intermediate layer as shown in FIG. 1 was formed, and P, Cl, Ca, and the like were not detected in the chemical analysis.

【0014】次いで、温度30℃の同じハンクス液に試
験片を浸漬し、浸漬時間の経過に応じた試験片の重量減
少を測定した。表1の測定結果にみられるように、本発
明に従って表面改質した試験片では、400時間浸漬し
た後でも重量増加率が6.29%であり、25時間で
4.30%の重量減少率,225時間で99.973%
の重量減少率となり、225時間でほぼ全てが腐食のた
めに溶解した。これに対し、改質処理を施していない試
験片では、浸漬時間が長くなるに応じて重量減少が増加
し、耐食性が不足することから生体用材用として不適当
なことが判った。
Next, the test piece was immersed in the same Hank's solution at a temperature of 30 ° C., and the weight loss of the test piece over the immersion time was measured. As can be seen from the measurement results in Table 1, in the test specimen surface-modified according to the present invention, the weight increase rate was 6.29% even after immersion for 400 hours, and the weight loss rate was 4.30% in 25 hours. , 99.973% in 225 hours
, And almost all dissolved due to corrosion in 225 hours. On the other hand, it was found that the test piece that had not been subjected to the modification treatment was unsuitable for use as a living body material because the weight loss increased as the immersion time became longer and the corrosion resistance was insufficient.

【0015】 [0015]

【0016】[0016]

【発明の効果】以上に説明したように、本発明の生体用
マグネシウム材料は、酸化皮膜の形成及び除去により硬
質表面に改質されている。この硬質表面は、Ca,C
l,P等を含む生体液に接触する条件下ではCa,C
l,P等の拡散によって硬質で耐食性に優れた皮膜とな
る。そのため、生体親和性や強度に優れているものの、
従来では耐食性不足のために生体用に使用できなかった
マグネシウムの使用が可能となる。しかも、Mgが生体
必須元素であることから,ステンレス鋼,Co−Cr合
金,Ti,Ti合金のようにアレルギー,被毒等の悪影
響を及ぼさない生体用材料として使用される。
As described above, the magnesium material for living body of the present invention is modified into a hard surface by forming and removing an oxide film. This hard surface is made of Ca, C
Under the condition of contact with biological fluid containing l, P, etc., Ca, C
Due to the diffusion of l, P, etc., the film becomes hard and has excellent corrosion resistance. Therefore, although excellent in biocompatibility and strength,
Conventionally, magnesium that could not be used for living bodies due to lack of corrosion resistance can be used. Moreover, since Mg is an essential element in living organisms, it is used as a living body material that does not cause adverse effects such as allergy and poisoning like stainless steel, Co—Cr alloy, Ti, and Ti alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 改質処理された金属マグネシウムの表面層を
示す模式図
FIG. 1 is a schematic view showing a surface layer of modified metallic magnesium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 定実 京都府京都市左京区聖護院川原町53 京都 大学 再生医科学研究所内 (72)発明者 相澤 龍彦 東京都目黒区駒場4−6−1 東京大学 先端科学技術センター内 Fターム(参考) 4C081 AB01 BB08 CG08 DA01 EA04 EA11  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Sadami Tsutsumi 53, Shogoin Kawaharamachi, Sakyo-ku, Kyoto-shi, Kyoto Prefecture Inside Kyoto Institute of Regenerative Medicine (72) Inventor Tatsuhiko Aizawa 4-6-1 Komaba, Meguro-ku, Tokyo Tokyo F-term in the Center for Advanced Science and Technology (Reference) 4C081 AB01 BB08 CG08 DA01 EA04 EA11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 純度99.9%以上の金属マグネシウム
を基材とし、基材表面に酸化物層を形成した後で該酸化
物層の全て又は一部を除去することにより変質層が形成
されていることを特徴とする生体用マグネシウム材料。
An altered layer is formed by forming an oxide layer on the surface of a base material of a metal magnesium having a purity of 99.9% or more and then removing all or a part of the oxide layer. A magnesium material for living organisms, characterized in that:
【請求項2】 純度99.9%以上の金属マグネシウム
を生体用部材に加工した後、酸化雰囲気中で加熱処理し
て生体用部材の表面に酸化物層を形成し、更に該酸化物
層の全て又は一部を除去することにより変質層を形成さ
せることを特徴とする生体用マグネシウム材料の製造方
法。
2. After processing metallic magnesium having a purity of 99.9% or more into a living body member, heat treatment is performed in an oxidizing atmosphere to form an oxide layer on the surface of the living body member. A method for producing a magnesium material for a living body, wherein a deteriorated layer is formed by removing all or a part of the material.
JP2000216768A 2000-07-18 2000-07-18 Biological magnesium material and method for producing the same Expired - Fee Related JP3768388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216768A JP3768388B2 (en) 2000-07-18 2000-07-18 Biological magnesium material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216768A JP3768388B2 (en) 2000-07-18 2000-07-18 Biological magnesium material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002028229A true JP2002028229A (en) 2002-01-29
JP3768388B2 JP3768388B2 (en) 2006-04-19

Family

ID=18711973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216768A Expired - Fee Related JP3768388B2 (en) 2000-07-18 2000-07-18 Biological magnesium material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3768388B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361941A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Coating for the outer surface of a medical implant, especially a stent or electrode, comprises magnesium, a magnesium alloy or a magnesium salt
JP2006061381A (en) * 2004-08-26 2006-03-09 Terumo Corp Intravascular implant
DE102006011348A1 (en) * 2006-03-11 2007-09-13 Biotronik Vi Patent Ag Corrosion retardant layer production, involves handling surface of molded body with aqueous, fluoride infected conversion solution, where aqueous hydrofluoric acid solution is used as conversion solution
WO2007108450A1 (en) * 2006-03-20 2007-09-27 National Institute For Materials Science Biodegradable magnesium material for medical use
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2008125622A (en) * 2006-11-17 2008-06-05 National Institute For Materials Science Biodegradable magnesium material
DE102006060501A1 (en) * 2006-12-19 2008-06-26 Biotronik Vi Patent Ag Forming corrosion-inhibiting anodized coating on bio-corrodible magnesium alloy implant, treats implant in aqueous or alcoholic solution containing specified ion concentration
JP2010174363A (en) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg-BASED STRUCTURED MEMBER
JP5333886B2 (en) * 2005-11-16 2013-11-06 独立行政法人物質・材料研究機構 Magnesium-based biodegradable metal material
WO2015098071A1 (en) * 2013-12-25 2015-07-02 堤総研株式会社 Living body instrument

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361941A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Coating for the outer surface of a medical implant, especially a stent or electrode, comprises magnesium, a magnesium alloy or a magnesium salt
JP2006061381A (en) * 2004-08-26 2006-03-09 Terumo Corp Intravascular implant
JP5333886B2 (en) * 2005-11-16 2013-11-06 独立行政法人物質・材料研究機構 Magnesium-based biodegradable metal material
DE102006011348A1 (en) * 2006-03-11 2007-09-13 Biotronik Vi Patent Ag Corrosion retardant layer production, involves handling surface of molded body with aqueous, fluoride infected conversion solution, where aqueous hydrofluoric acid solution is used as conversion solution
WO2007108450A1 (en) * 2006-03-20 2007-09-27 National Institute For Materials Science Biodegradable magnesium material for medical use
JPWO2007108450A1 (en) * 2006-03-20 2009-08-06 独立行政法人物質・材料研究機構 Degradation time control method for medical biodegradable device
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2008125622A (en) * 2006-11-17 2008-06-05 National Institute For Materials Science Biodegradable magnesium material
JPWO2008059968A1 (en) * 2006-11-17 2010-03-04 独立行政法人物質・材料研究機構 Magnesium-based medical device and manufacturing method thereof
US9155816B2 (en) 2006-11-17 2015-10-13 National Institute For Materials Science Magnesium-based medical device and manufacturing method thereof
EP2204196A4 (en) * 2006-11-17 2012-11-07 Nat Inst For Materials Science Magnesium-based medical device and process for producing the same
DE102006060501A1 (en) * 2006-12-19 2008-06-26 Biotronik Vi Patent Ag Forming corrosion-inhibiting anodized coating on bio-corrodible magnesium alloy implant, treats implant in aqueous or alcoholic solution containing specified ion concentration
JP2010174363A (en) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg-BASED STRUCTURED MEMBER
WO2015098071A1 (en) * 2013-12-25 2015-07-02 堤総研株式会社 Living body instrument

Also Published As

Publication number Publication date
JP3768388B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
Shabalovskaya Physicochemical and biological aspects of Nitinol as a biomaterial
Tamura et al. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials
Hu et al. Corrosion products and mechanism on NiTi shape memory alloy in physiological environment
Yang et al. Mechanical properties and Young's modulus of plasma‐sprayed hydroxyapatite coating on Ti substrate in simulated body fluid
Koopaie et al. Advanced surface treatment techniques counteract biofilm-associated infections on dental implants
Lee et al. XPS study of bioactive graded layer in Ti–In–Nb–Ta alloy prepared by alkali and heat treatments
Yeung et al. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation–treated nickel‐titanium shape memory alloys
JP3768388B2 (en) Biological magnesium material and method for producing the same
JPH0148774B2 (en)
Wu et al. Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma‐implanted porous nickel titanium shape memory alloy
Mani et al. Surface finishing of N itinol for implantable medical devices: A review
JP5019346B2 (en) Bone-compatible implant and method for producing the same
Suzuki et al. Electrochemical property and corrosion behavior of multi-directionally forged titanium in fluoride solution
WO2020177382A1 (en) Treatment method for zirconium alloy and application
Elshamy et al. Electrochemical characteristics of a biomedical Ti70Zr20Nb7. 5Ta2. 5 refractory high entropy alloy in an artificial saliva solution
Rokaya et al. Modification of titanium alloys for dental applications
JP2003235954A (en) Bone conductive biomaterial and manufacturing method therefor
Akahori et al. Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment
Hattori et al. Effect of chromium content on mechanical properties of casting Ti-Cr alloys
Wang et al. Osteogenic comparison on selective laser melting printed and sandblasting-acid-etching Ti substrates for customized implant applications
JP3129041B2 (en) Implant and manufacturing method thereof
Takahashi et al. Calcium phosphate formation on Ti-Ag alloys in simulated body fluid
Lee et al. Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods
İbrahim Ünal Effect of fluoride added artificial saliva solution on orthodontic wires
JP2019154598A (en) Biocompatible member

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees