JP2002026384A - Integrated nitride semiconductor light emitting element - Google Patents

Integrated nitride semiconductor light emitting element

Info

Publication number
JP2002026384A
JP2002026384A JP2000203988A JP2000203988A JP2002026384A JP 2002026384 A JP2002026384 A JP 2002026384A JP 2000203988 A JP2000203988 A JP 2000203988A JP 2000203988 A JP2000203988 A JP 2000203988A JP 2002026384 A JP2002026384 A JP 2002026384A
Authority
JP
Japan
Prior art keywords
layer
light emitting
long side
ohmic electrode
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000203988A
Other languages
Japanese (ja)
Inventor
Takeshi Kususe
健 楠瀬
Tatsunori Toyoda
達憲 豊田
Isamu Niki
勇 仁木
Hirobumi Shono
博文 庄野
Takakatsu Wakagi
貴功 若木
Seiichiro Mori
誠一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2000203988A priority Critical patent/JP2002026384A/en
Publication of JP2002026384A publication Critical patent/JP2002026384A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an integrated nitride semiconductor light emitting element having a large area and high efficiency. SOLUTION: A plurality of light emitting elements are juxtaposed on a substrate. Each light emitting element has a rectangular n-type layer isolated from an n-type gallium nitride compound semiconductor layer formed on the substrate by an isolating groove, a p-type layer provided on the n-type layer so that a rectangular p-type gallium nitride compound semiconductor is such that its one long side and its two short sides respectively approach the one long side and the two short sides of the n-type layer, an n-type side ohmic electrode provided on the n-type layer between the other long side of the n-type layer and the other long side of the p-type layer and having substantially the same length as the long side of the p-type layer, a p-type ohmic electrode formed on substantially overall surface of the p-type layer, and a p-type pad electrode provided along the one long side of the p-type layer on the p-type ohmic electrode in such a manner that an interval between the one long side of the p-type layer and the n-type side ohmic electrode is set to 250 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化物半導体素子、
特に大面積の窒化物半導体発光素子に関する。
The present invention relates to a nitride semiconductor device,
In particular, it relates to a large-area nitride semiconductor light emitting device.

【0002】[0002]

【従来の技術】近年、窒化ガリウム系化合物半導体を用
いて構成された発光素子が、青色発光が可能に発光素子
として種々の用途に使用されるようになってきている。
この窒化ガリウム系化合物半導体を用いて構成された窒
化物半導体発光素子は、通常、サファイア基板の上にn
型窒化ガリウム系化合物半導体層、窒化ガリウム系化合
物半導体活性層、p型窒化ガリウム系化合物半導体層が
順次積層され、p側の層及び活性層の一部を除去して露
出させたn型窒化ガリウム系化合物半導体層上にn側オ
ーミック電極が形成され、p型窒化ガリウム系化合物半
導体層上にp側オーミック電極が形成されて構成され
る。
2. Description of the Related Art In recent years, light emitting devices formed using gallium nitride-based compound semiconductors have been used for various purposes as light emitting devices capable of emitting blue light.
A nitride semiconductor light emitting device constituted by using this gallium nitride-based compound semiconductor usually has n on a sapphire substrate.
N-type gallium nitride in which a p-type gallium nitride-based compound semiconductor layer, a gallium nitride-based compound semiconductor active layer, and a p-type gallium nitride-based compound semiconductor layer are sequentially stacked, and a p-side layer and a part of the active layer are removed and exposed. An n-side ohmic electrode is formed on the base compound semiconductor layer, and a p-side ohmic electrode is formed on the p-type gallium nitride based compound semiconductor layer.

【0003】ここで、特に窒化物半導体発光素子では、
p型窒化ガリウム系化合物半導体の抵抗が比較的高いた
めに、p型窒化ガリウム系化合物半導体層のほぼ全面に
p側のオーミック電極を形成することにより活性層全体
に電流が注入されるように構成している。また、窒化物
半導体発光素子では、上述のようにn型窒化ガリウム系
化合物半導体層上の一部にn側の電極を形成する必要が
あるため、活性層全体に電流が注入されるようにn型窒
化ガリウム系化合物半導体層の1つの隅部にn側のオー
ミック電極を形成し、その1つの隅部と対角を成すp側
オーミック電極の他の隅部にp側のパッド電極を形成し
ている。
Here, in particular, in a nitride semiconductor light emitting device,
Since the resistance of the p-type gallium nitride-based compound semiconductor is relatively high, a current is injected into the entire active layer by forming a p-side ohmic electrode on almost the entire surface of the p-type gallium nitride-based compound semiconductor layer. are doing. Further, in the nitride semiconductor light emitting device, as described above, it is necessary to form an n-side electrode on a part of the n-type gallium nitride-based compound semiconductor layer. Forming an n-side ohmic electrode at one corner of the p-type gallium nitride-based compound semiconductor layer, and forming a p-side pad electrode at the other corner of the p-side ohmic electrode which is diagonal to the one corner. ing.

【0004】すなわち、窒化物半導体発光素子では、絶
縁性のサファイア基板を用いて構成されていること、及
びp型窒化ガリウム系化合物半導体の抵抗値が比較的大
きいという、例えば、GaAs系等の他の発光素子とは
異なる事情があるために、p側オーミック電極をp型窒
化ガリウム系半導体層のほぼ全面に設けかつn側のオー
ミック電極とp側のパッド電極を対角を成す位置に形成
するという独特の構成により、活性層全体に電流が注入
されるようにしている。
That is, the nitride semiconductor light emitting device is formed using an insulating sapphire substrate, and the p-type gallium nitride based compound semiconductor has a relatively large resistance value. Since there is a situation different from that of the light emitting element, the p-side ohmic electrode is provided on almost the entire surface of the p-type gallium nitride based semiconductor layer, and the n-side ohmic electrode and the p-side pad electrode are formed at diagonal positions. Current is injected into the entire active layer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
構成(電極構成)は、1つの発光素子チップが、例え
ば、300μm×300μm以下の大きさである場合に
は活性層にほぼ均一に電流を注入することができるが、
300μm×300μmを越える大きさになると活性層
に注入される電流が不均一になるという問題点があり、
上記構成を相似形で大きくすることによって大面積の発
光素子を構成することはできなかった。そこで、大面積
の窒化物半導体発光素子は、1つの基板上に、300μ
m×300μm程度の発光素子を線形又はアレイ状に複
数個配列することにより構成していた。しかしながら、
発光素子を複数個配列してなる大面積の窒化物半導体発
光素子は、隣接する発光素子間に、素子間を電気的に分
離するための溝を形成する必要があるために格子状に非
発光部分が形成され、発光効率を向上させることが困難
であるという問題点があった。
However, in the above-described configuration (electrode configuration), when one light-emitting element chip has a size of, for example, 300 μm × 300 μm or less, current is almost uniformly injected into the active layer. Can be
If the size exceeds 300 μm × 300 μm, there is a problem that the current injected into the active layer becomes non-uniform,
It was not possible to construct a large-area light emitting element by increasing the above configuration in a similar manner. Therefore, a large-area nitride semiconductor light emitting device can be formed on one substrate by 300 μm.
It was configured by arranging a plurality of light emitting elements of about m × 300 μm in a linear or array. However,
A large-area nitride semiconductor light-emitting element in which a plurality of light-emitting elements are arranged does not emit light in a grid pattern because it is necessary to form a groove between adjacent light-emitting elements to electrically separate the elements. There is a problem that a portion is formed and it is difficult to improve luminous efficiency.

【0006】そこで、本発明は、大面積でかつ発光効率
の良い集積型窒化物半導体発光素子を提供することを目
的とする。
Accordingly, an object of the present invention is to provide an integrated nitride semiconductor light emitting device having a large area and high luminous efficiency.

【0007】[0007]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明に係る集積型窒化物半導体発光素子は、基
板上に複数の発光素子が並置されてなり、上記発光素子
はそれぞれ、上記基板上に形成されたn型窒化ガリウム
系化合物半導体層が分離溝によって分離されてなる長方
形のn層と、長方形のp型窒化ガリウム系化合物半導体
が、その一方の長辺と2つの短辺とがそれぞれ上記n層
の一方の長辺と2つの短辺と近接するように上記n層上
に設けられて成るp層と、上記各n層の他方の長辺と上
記p層の他方の長辺との間のn層上に設けられ、上記p
層の長辺と実質的に同一の長さを有するn側オーミック
電極と、上記p層上のほぼ全面に形成されたpオーミッ
ク電極と、上記pオーミック電極上に、上記p層の一方
の長辺に沿って設けられたpパッド電極とを備え、上記
p層の一方の長辺と上記n側オーミック電極との間隔を
250μm以下に設定したことを特徴とする。
In order to achieve the above object, an integrated nitride semiconductor light emitting device according to the present invention comprises a plurality of light emitting devices juxtaposed on a substrate. A rectangular n-layer in which the n-type gallium nitride-based compound semiconductor layer formed on the substrate is separated by a separation groove and a rectangular p-type gallium nitride-based compound semiconductor have one long side and two short sides. Are provided on the n layer so as to be close to one long side and two short sides of the n layer, respectively, the other long side of each n layer and the other of the p layer Provided on the n layer between the long side and
An n-side ohmic electrode having substantially the same length as the long side of the layer; a p-ohmic electrode formed over substantially the entire surface of the p-layer; A p pad electrode provided along the side, and a distance between one long side of the p layer and the n-side ohmic electrode is set to 250 μm or less.

【0008】以上のように構成された本発明に係る集積
型窒化物半導体発光素子は、上記p層の一方の長辺と上
記n側オーミック電極との間隔を250μm以下に設定
しているので、各発光素子の活性層全体にほぼ均一に電
流を注入することができ、均一に発光させることができ
るので、各発光素子における発光効率を良好にできる。
また、本発明に係る集積型窒化物半導体発光素子におい
ては、均一発光及び発光効率を劣化させることなく、各
発光素子を一方向(長手方向)に十分長くすることがで
きるので、発光面積を大きくできかつ発光効率を高くで
きる。
In the integrated nitride semiconductor light emitting device according to the present invention having the above-described structure, the distance between one long side of the p layer and the n-side ohmic electrode is set to 250 μm or less. A current can be almost uniformly injected into the entire active layer of each light emitting element, and light can be emitted uniformly, so that the light emitting efficiency of each light emitting element can be improved.
Further, in the integrated nitride semiconductor light emitting device according to the present invention, each light emitting device can be made sufficiently long in one direction (longitudinal direction) without deteriorating uniform light emission and light emission efficiency. And the luminous efficiency can be increased.

【0009】また、本発明に係る集積型窒化物半導体発
光素子では、各発光素子においてより均一な発光を可能
にしかつより発光効率を高くするために、上記p層の一
方の長辺と上記n側オーミック電極との間隔を220μ
m以下に設定することがさらに好ましい。
In the integrated nitride semiconductor light emitting device according to the present invention, one long side of the p-layer and n 220μ spacing from the side ohmic electrode
m is more preferably set to m or less.

【0010】また、本発明に係る集積型窒化物半導体発
光素子では、上記複数の発光素子を直列に接続するよう
に構成してもよい。
In the integrated nitride semiconductor light emitting device according to the present invention, the plurality of light emitting devices may be connected in series.

【0011】また、本発明に係る集積型窒化物半導体発
光素子では、上記複数の発光素子を並列に接続するよう
に構成してもよい。
In the integrated nitride semiconductor light emitting device according to the present invention, the plurality of light emitting devices may be connected in parallel.

【0012】さらに、上記基板として透光性を有する基
板を用い、上記各発光素子で発光された光を上記基板を
介して出力するように構成してもよい。
Further, a light-transmitting substrate may be used as the substrate, and light emitted by each of the light-emitting elements may be output through the substrate.

【0013】また、本発明に係る集積型窒化物半導体発
光素子では、上記n層を複数の窒化ガリウム系半導体層
で構成し、その複数の窒化ガリウム系半導体層のうちの
少なくとも1つが5.5〜7.2×10−3Ωcmの抵
抗率と膜厚2μm以上のn型層であることが好ましい。
In the integrated nitride semiconductor light emitting device according to the present invention, the n-layer is composed of a plurality of gallium nitride based semiconductor layers, and at least one of the plurality of gallium nitride based semiconductor layers is 5.5. An n-type layer having a resistivity of about 7.2 × 10 −3 Ωcm and a film thickness of 2 μm or more is preferable.

【0014】[0014]

【発明の実施の形態】以下、図面を参照しながら本発明
に係る実施の形態の集積型窒化物半導体発光素子につい
て説明する。 実施の形態1.本実施の形態1の集積型窒化物半導体発
光素子は、図1に示すように、例えば、1000μm×
1000μmのサファイア基板11上に長方形の3つの
発光素子1,2,3を互いに平行に配置しかつ、各発光
素子の幅をある一定の値以下に設定することにより各素
子の活性層にそれぞれ均一に電流が流れるようにして、
全体としての発光効率を向上させたことを特徴としてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an integrated nitride semiconductor light emitting device according to an embodiment of the present invention will be described with reference to the drawings. Embodiment 1 FIG. As shown in FIG. 1, the integrated nitride semiconductor light emitting device of the first embodiment has, for example, 1000 μm ×
By arranging three rectangular light emitting elements 1, 2 and 3 in parallel on a 1000 μm sapphire substrate 11 and setting the width of each light emitting element to a certain value or less, the active layer of each element is uniformly formed. So that the current flows through
It is characterized by improving the luminous efficiency as a whole.

【0015】本実施の形態1の集積型窒化物半導体素子
は、窒化ガリウム系化合物半導体の特有の構成におい
て、本発明者らにより見出された次のような知見に基づ
いてなされたものである。すなわち、窒化ガリウム系化
合物半導体を用いて構成された発光素子は、従来技術の
欄において説明したように、n層上の一部にn側オーミ
ック電極を形成し、そのn側オーミック電極に近接して
n層上に活性層を介してp層を形成し、さらにそのp層
の上のほぼ全面にp側オーミック電極を形成するという
独特の構造を有する。このような独特の構成において
は、n側オーミック電極から250μm以内の距離にあ
る活性層に注入される電流はほぼ一定であるが、250
μm以上離れると急激に減少する。実際には220μm
より離れると活性層に注入される電流は徐徐に減少しは
じめるが、250μmまでは電流値は実質的に一定とみ
なすことができる。また、この現象(活性層が250μ
m以上離れると注入される電流が急激に減少するという
現象)は、n層の抵抗値に起因して生じると考えられる
が、通常、用いられるn層の抵抗値の範囲においては、
変わらないことが確認されている。
The integrated nitride semiconductor device according to the first embodiment is based on the following findings discovered by the present inventors in a specific configuration of a gallium nitride-based compound semiconductor. . That is, a light-emitting element formed using a gallium nitride-based compound semiconductor has an n-side ohmic electrode formed on a part of the n-layer and is close to the n-side ohmic electrode as described in the section of the prior art. Thus, a p-layer is formed on the n-layer via an active layer, and a p-side ohmic electrode is formed on almost the entire surface of the p-layer. In such a unique configuration, the current injected into the active layer within a distance of 250 μm or less from the n-side ohmic electrode is substantially constant.
When the distance is more than μm, it decreases rapidly. Actually 220 μm
As the distance increases, the current injected into the active layer starts to decrease gradually, but the current value can be regarded as substantially constant up to 250 μm. In addition, this phenomenon (when the active layer is 250 μm)
is considered to be caused by the resistance value of the n-layer, but usually, in the range of the resistance value of the n-layer used,
It has been confirmed that it has not changed.

【0016】上述の知見から次のことが言える。n型窒
化ガリウム系化合物半導体層の上に、一方向に長い長方
形の活性層及びp型窒化ガリウム系化合物半導体層を形
成した場合であっても、n側オーミック電極からの距離
を250μm以内とすれば、活性層全体にほぼ均一に電
流を注入することができる。具体的には、長方形の活性
層及びp型窒化ガリウム系化合物半導体層の1つの長辺
に沿って活性層及びp型窒化ガリウム系化合物半導体層
と同じ長さのn側オーミック電極を形成し、そのn側オ
ーミック電極と活性層及びp型窒化ガリウム系化合物半
導体層の他の長辺との間の距離を250μm以下、より
好ましくは220μm以下にすれば、活性層にほぼ均一
に電流を注入することができる。本実施の形態1の集積
型窒化物半導体発光素子は、上述の考えに基いて構成さ
れたものである。
The following can be said from the above findings. Even when a rectangular active layer and a p-type gallium nitride-based compound semiconductor layer that are long in one direction are formed on the n-type gallium nitride-based compound semiconductor layer, the distance from the n-side ohmic electrode is within 250 μm. If this is the case, the current can be injected almost uniformly over the entire active layer. Specifically, an n-side ohmic electrode having the same length as the active layer and the p-type gallium nitride-based compound semiconductor layer is formed along one long side of the rectangular active layer and the p-type gallium nitride-based compound semiconductor layer, When the distance between the n-side ohmic electrode and the other long side of the active layer and the p-type gallium nitride-based compound semiconductor layer is 250 μm or less, more preferably 220 μm or less, current is injected almost uniformly into the active layer. be able to. The integrated nitride semiconductor light emitting device according to the first embodiment is configured based on the above-described concept.

【0017】詳細に説明すると、実施の形態1の集積型
窒化物半導体発光素子の発光素子1,2,3において、
各半導体層及び電極はそれぞれ以下のように形成され
る。 (1)n型窒化ガリウム系化合物半導体層12(n層1
2)は、例えば、サファイアからなる基板11上のほぼ
全面に成長されたn型窒化ガリウム系化合物半導体層が
分離溝41により分離されて、平面形状が長方形になる
ように形成される。ここで、本実施の形態1において、
n型窒化ガリウム系化合物半導体層12(n層12)
は、好ましくは、図4に示すように、サファイア基板1
1上に形成された膜厚1.5μmのアンドープGaN層
121、膜厚2.2μmのSiドープGaN層122、
膜厚3000ÅのアンドープGaN層123、膜厚30
0ÅのSiドープGaN層124、膜厚50Åのアンド
ープGaN層125、多層膜層126の積層構造とす
る。このようにn層12を上記積層構造とすることによ
り、順方向電圧Vfを低くできかつ発光効率を良くでき
る。尚、多層膜層126は、好ましくは、アンドープG
aNよりなり膜厚40Åの第1の層と、アンドープIn
0.13Ga0.87Nよりなり膜厚20Åの第2の層
を交互にそれぞれ10層になるように積層することによ
り構成する。
More specifically, in the light emitting devices 1, 2, and 3 of the integrated nitride semiconductor light emitting device of the first embodiment,
Each semiconductor layer and each electrode are formed as follows. (1) n-type gallium nitride-based compound semiconductor layer 12 (n-layer 1
In the case of 2), for example, the n-type gallium nitride-based compound semiconductor layer grown on almost the entire surface of the substrate 11 made of sapphire is separated by the separation groove 41 so that the planar shape becomes rectangular. Here, in the first embodiment,
n-type gallium nitride-based compound semiconductor layer 12 (n-layer 12)
Is preferably a sapphire substrate 1 as shown in FIG.
1, an undoped GaN layer 121 having a thickness of 1.5 μm, a Si-doped GaN layer 122 having a thickness of 2.2 μm,
Undoped GaN layer 123 of thickness 3000 °, thickness of 30
A laminated structure of a 0 ° Si-doped GaN layer 124, an undoped GaN layer 125 with a thickness of 50 °, and a multilayer film layer 126 is adopted. By thus forming the n-layer 12 with the above-described laminated structure, the forward voltage Vf can be reduced and the luminous efficiency can be improved. The multilayer film 126 is preferably made of undoped G
a first layer made of aN and having a thickness of 40 °;
It is constituted by alternately laminating the second layers of 0.13Ga0.87N and having a film thickness of 20 ° so as to have 10 layers each.

【0018】また、本実施の形態1の積層構造のn層1
2全体としての抵抗率は、実質的には膜厚2.2μmの
SiドープGaN層122により決まり、本実施の形態
1においてはこの層122の抵抗率を5.5〜7.2×
10-3Ωcmの範囲でかつ膜厚が2.0μm以上に設定
することが好ましく、このようにすると発光層10全体
により均一に電流を注入することができ、より均一な発
光が得られる。尚、GaN層において、3×1018〜6
×1018cm-3の範囲でSiをドープすることにより、
抵抗率が5.5〜7.2×10-3Ωcmの範囲のSiド
ープGaN膜を構成できる。
The n-layer 1 of the laminated structure of the first embodiment
2 as a whole is substantially determined by the Si-doped GaN layer 122 having a thickness of 2.2 μm, and in the first embodiment, the resistivity of this layer 122 is set to 5.5 to 7.2 ×
It is preferable to set the thickness within the range of 10 −3 Ωcm and the thickness of 2.0 μm or more. In this case, the current can be more uniformly injected into the entire light emitting layer 10 and more uniform light emission can be obtained. In the GaN layer, 3 × 10 18 to 6
By doping Si in a range of × 10 18 cm -3 ,
A Si-doped GaN film having a resistivity in the range of 5.5 to 7.2 × 10 −3 Ωcm can be formed.

【0019】(2)活性層10は、n層12とほぼ同一
の長さとn層12より狭い幅を有する長方形であって、
その1つの長辺がn層12の1つの長辺に実質的に一致
するようにn層12上に形成される。このように形成す
ることにより、n層12上に活性層10に沿ってn側オ
ーミック電極を形成するための領域が確保される。ここ
で、本実施の形態1では、活性層10の幅は、n側オー
ミック電極から離れた側に位置する長辺とn側オーミッ
ク電極との距離L1,L2,L3が220μmになるよ
うに設定した。また、本実施の形態1において、活性層
10はGaNの一部をInで置き換えたInxGa1-x
層により構成することができる。また、活性層10は、
InxGa1-xN層を少なくとも1層含むように構成する
こともできる。このようにすると、InxGa1-xN層に
おけるInの含有量を変化させることにより発光波長を
変えることができる。
(2) The active layer 10 is a rectangle having substantially the same length as the n-layer 12 and a width smaller than that of the n-layer 12,
The long side is formed on n layer 12 such that one long side substantially coincides with one long side of n layer 12. By forming in this manner, a region for forming an n-side ohmic electrode on the n-layer 12 along the active layer 10 is secured. Here, in the first embodiment, the width of the active layer 10 is set such that the distances L1, L2, and L3 between the long sides located on the side remote from the n-side ohmic electrode and the n-side ohmic electrode are 220 μm. did. In the first embodiment, the active layer 10 is formed of In x Ga 1 -xN in which a part of GaN is replaced by In.
It can be composed of layers. Further, the active layer 10
It may be configured to include at least one In x Ga 1 -xN layer. In this case, the emission wavelength can be changed by changing the In content in the In x Ga 1 -xN layer.

【0020】(3)n側オーミック電極14(14a)
は、活性層10とほぼ同一の長さを有し、n層12上
に、活性層10に沿ってかつ活性層10と近接して形成
される。このn側オーミック電極14と活性層10との
間の間隔は、製造上の制約により10〜20μmに設定
されるが、本発明においては間隔を10μm以下にする
ことが好ましく、このようにすると、均一に電流を注入
することができる幅を大きくすることができる。すなわ
ち、n側オーミック電極14と活性層10との間隔を2
0μmにすると、均一に電流を注入することができる活
性層の幅は最大で200μmであるが、n側オーミック
電極14と活性層10との間隔を5μmにすると、均一
に電流を注入することができる活性層の幅は最大で21
5μmにできる。また、n側オーミック電極14(14
a)は、n層12とのオーミック接触を良好にするため
に、WとAlを含む層とすることが好ましく、さらに好
ましくは、W層(200Å)、Al層(1000Å)、
W層(500Å)、Pt層(3000Å)、Ni層(6
0Å)を順次積層することにより形成する。
(3) n-side ohmic electrode 14 (14a)
Has substantially the same length as the active layer 10 and is formed on the n-layer 12 along the active layer 10 and in proximity to the active layer 10. The distance between the n-side ohmic electrode 14 and the active layer 10 is set to 10 to 20 μm due to manufacturing restrictions. In the present invention, the distance is preferably set to 10 μm or less. The width over which current can be injected uniformly can be increased. That is, the distance between the n-side ohmic electrode 14 and the active layer 10 is set to 2
When the width is 0 μm, the width of the active layer that can uniformly inject current is 200 μm at the maximum. However, when the distance between the n-side ohmic electrode 14 and the active layer 10 is 5 μm, the current can be injected uniformly. The maximum width of the active layer is 21
It can be 5 μm. Further, the n-side ohmic electrode 14 (14
a) is preferably a layer containing W and Al in order to improve the ohmic contact with the n-layer 12, more preferably a W layer (200 °), an Al layer (1000 °),
W layer (500 °), Pt layer (3000 °), Ni layer (6
0 °) are sequentially laminated.

【0021】(4)p型窒化ガリウム系半導体層13
は、活性層10と同一平面形状を有し活性層10上に重
ねて形成される。実際には、活性層10及びp型窒化ガ
リウム系半導体層13は、n層12上に活性層10及び
p層13を重ねて形成した後、n側オーミック電極14
を形成するn層12表面を露出させるために一括してエ
ッチングすることにより形成する。尚、本実施の形態1
では、p型窒化ガリウム系半導体層13は1500Åの
厚さに形成した。
(4) P-type gallium nitride based semiconductor layer 13
Has the same planar shape as the active layer 10, and is formed on the active layer 10. Actually, the active layer 10 and the p-type gallium nitride based semiconductor layer 13 are formed by superposing the active layer 10 and the p-layer 13 on the n-layer 12 and then forming the n-side ohmic electrode 14.
Is formed by etching all at once in order to expose the surface of the n-layer 12 for forming. The first embodiment
Then, the p-type gallium nitride based semiconductor layer 13 was formed to a thickness of 1500 °.

【0022】(5)p側オーミック電極15は、p型窒
化ガリウム系半導体層13上のほぼ全面に形成され、p
層13と良好なオーミック接触を得るために、Ni層と
Pt層とを積層することにより構成することが好まし
く、より好ましくは、Ni層100ÅとPt層500Å
を積層することにより構成する
(5) The p-side ohmic electrode 15 is formed on almost the entire surface of the p-type gallium nitride-based semiconductor layer 13.
In order to obtain good ohmic contact with the layer 13, it is preferable that the Ni layer and the Pt layer are stacked, and more preferably, the Ni layer and the Pt layer are stacked.
By stacking

【0023】(6)そして、pパッド電極16(16
a)は、例えば、膜厚3000ÅのPtからなり、p側
オーミック電極15上において、n側オーミック電極1
4とは離れた側に位置するp側オーミック電極15の長
辺に沿って形成される。
(6) Then, the p pad electrode 16 (16
a) is composed of, for example, Pt having a film thickness of 3000 ° and is formed on the p-side ohmic electrode 15 on the n-side ohmic electrode 1.
4 is formed along the long side of the p-side ohmic electrode 15 located on the side distant from 4.

【0024】さらに、本実施の形態1の集積型窒化物半
導体発光素子において、上述のように構成された発光素
子1,2,3は、絶縁保護膜17により素子間が分離さ
れ、接続電極21により以下のように接続される。絶縁
保護膜17は、各発光素子のpパッド電極16(16
a)上及びn側オーミック電極14(14a)上を除い
て素子全体を覆うように形成される。接続電極21は、
発光素子1のn側オーミック電極14a上、分離溝41
に形成された絶縁膜17上及び発光素子2のp側オーミ
ック電極16a上に連続して間の形成され、これによ
り、発光素子1のn側オーミック電極14aと発光素子
2のp側オーミック電極16aが接続される。また、接
続電極21は、発光素子2と発光素子3との間において
も同様に形成され、これにより、発光素子2のn側オー
ミック電極14aと発光素子3のp側オーミック電極1
6aが接続される。接続電極21は、Pt又はAu等、
種々の金属で構成することができるが、p及びnパッド
電極との密着性を良好にするために、Ti(例えば、4
00Å)、Pt(例えば、6000Å)、Au(例え
ば、1000Å)、Ni(例えば、60Å)を順に積層
した構造とすることが好ましい。
Further, in the integrated nitride semiconductor light emitting device according to the first embodiment, the light emitting devices 1, 2, and 3 configured as described above are separated from each other by the insulating protective film 17, and the connection electrodes 21 are formed. Are connected as follows. The insulating protective film 17 serves as a p-pad electrode 16 (16
a) It is formed so as to cover the entire device except on the upper side and the n-side ohmic electrode 14 (14a). The connection electrode 21
On the n-side ohmic electrode 14a of the light emitting element 1, the separation groove 41
Is continuously formed on the insulating film 17 formed on the p-side ohmic electrode 16a of the light-emitting element 2 and the n-side ohmic electrode 14a of the light-emitting element 1 and the p-side ohmic electrode 16a of the light-emitting element 2. Is connected. The connection electrode 21 is similarly formed between the light emitting element 2 and the light emitting element 3, whereby the n-side ohmic electrode 14 a of the light emitting element 2 and the p-side ohmic electrode 1
6a is connected. The connection electrode 21 is made of Pt, Au, or the like.
Although it can be made of various metals, in order to improve the adhesion to the p and n pad electrodes, Ti (for example, 4
00 °), Pt (eg, 6000 °), Au (eg, 1000 °), and Ni (eg, 60 °) are preferably stacked in this order.

【0025】尚、本実施の形態1ではさらに、発光素子
1のpパッド電極16上に接続電極21と同様の材料か
らなる外部接続用電極26が形成され、発光素子3のn
パッド電極14上に接続電極21と同様の材料からなる
外部接続用電極24が形成される。
In the first embodiment, an external connection electrode 26 made of the same material as the connection electrode 21 is further formed on the p pad electrode 16 of the light emitting element 1,
An external connection electrode 24 made of the same material as the connection electrode 21 is formed on the pad electrode 14.

【0026】以上のように構成された実施の形態1の集
積型窒化物半導体発光素子の各発光素子1,2,3にお
いて、活性層10を長方形に形成し、活性層10の一方
の長辺に沿って近接するようにn側オーミック電極を形
成し、活性層10の他方の長辺とn側オーミック電極と
の距離L1,L2,L3を220μmに設定しているの
で、活性層10全体に略均一に電流を注入することがで
きる。このように構成したことにより、本実施の形態1
の集積型窒化物半導体素子は、各発光素子1,2,3の
活性層10全体に渡って均一に発光させることができる
ので、各発光素子における発光効率を高くすることがで
き、全体としての発光効率をよくできる。
In each of the light emitting devices 1, 2, 3 of the integrated nitride semiconductor light emitting device of the first embodiment configured as described above, the active layer 10 is formed in a rectangular shape, and one long side of the active layer 10 is formed. The n-side ohmic electrode is formed so as to be close to along, and the distances L1, L2, and L3 between the other long side of the active layer 10 and the n-side ohmic electrode are set to 220 μm. The current can be injected substantially uniformly. With this configuration, the first embodiment
Can emit light uniformly over the entire active layer 10 of each of the light emitting elements 1, 2, and 3, so that the light emitting efficiency of each light emitting element can be increased, and Luminous efficiency can be improved.

【0027】また、本実施の形態1の集積型窒化物半導
体素子においては、一方向のみに互いに平行な分離溝4
1を形成することにより各素子を分離しているので、格
子状に溝を形成して各素子を分離した従来例に比較し
て、基板11全体の面積に対する分離溝41の占める面
積の割合を少なくすることができる。これにより、集積
型窒化物半導体素子の全体の面積に対する活性層10が
占める面積(発光素子1,2,3の活性層10を合計し
た面積)の割合を増加させることができ、発光効率を向
上させることができる。
In the integrated nitride semiconductor device according to the first embodiment, the separation grooves 4 parallel to each other only in one direction.
1, the respective elements are separated from each other, so that the ratio of the area occupied by the separation grooves 41 to the entire area of the substrate 11 is smaller than that in the conventional example in which the grooves are formed in a lattice shape and the respective elements are separated. Can be reduced. Thereby, the ratio of the area occupied by the active layer 10 (the total area of the active layers 10 of the light emitting elements 1, 2, and 3) to the entire area of the integrated nitride semiconductor element can be increased, and the luminous efficiency is improved. Can be done.

【0028】実施の形態1の変形例.本変形例の集積型
窒化物半導体発光素子は、素子の静電耐圧特性を良くす
るために、SiドープGaN層122を4.2μmにな
るように形成し、かつp層13を3500Åの厚さにな
るように形成した以外は、実施の形態1と同様に構成さ
れる。以上のように構成された変形例の集積型窒化物半
導体発光素子は、実施の形態1と同様、活性層10全体
に均一に電流を注入することができ、均一でかつ発光効
率の良好な素子とできる。また、本変形例の集積型窒化
物半導体発光素子は、SiドープGaN層122及びp
層13をそれぞれ実施の形態1に比較して厚くしている
ので、実施の形態1の素子に比較して静電耐圧を向上さ
せることができる。
Modification of Embodiment 1 In the integrated nitride semiconductor light emitting device of the present modification, in order to improve the electrostatic withstand voltage characteristics of the device, the Si-doped GaN layer 122 is formed to have a thickness of 4.2 μm, and the p-layer 13 has a thickness of 3500 °. The configuration is the same as that of the first embodiment, except that it is formed so that The integrated nitride semiconductor light emitting device of the modified example configured as described above is capable of uniformly injecting a current into the entire active layer 10 as in the first embodiment, and is a device having uniform and good luminous efficiency. And can be. Further, the integrated nitride semiconductor light emitting device of the present modified example has the Si doped GaN layer 122 and the p-type
Since the thickness of each of the layers 13 is larger than that of the first embodiment, the electrostatic breakdown voltage can be improved as compared with the element of the first embodiment.

【0029】実施の形態2.次に、本発明に係る実施の
形態2の集積型窒化物半導体発光素子について、図5を
参照しながら説明する。本実施の形態2の集積型窒化物
半導体発光素子は、以下の点で実施の形態1の集積型窒
化物半導体発光素子と異なる。 相違点1.実施の形態1の集積型窒化物半導体発光素子
において、接続電極21及び外部接続電極24,26を
形成することなく、素子全体を覆うように絶縁保護膜3
0を形成し、発光素子1,2,3のpパッド電極上にそ
れぞれ絶縁保護膜30を貫通するスルーホール61を形
成し、発光素子1,2,3の各n側オーミック電極上に
それぞれ絶縁保護膜30を貫通するスルーホール62を
形成する。
Embodiment 2 Next, an integrated nitride semiconductor light emitting device according to a second embodiment of the present invention will be described with reference to FIG. The integrated nitride semiconductor light emitting device of the second embodiment differs from the integrated nitride semiconductor light emitting device of the first embodiment in the following points. Difference 1. In the integrated nitride semiconductor light emitting device of the first embodiment, the insulating protection film 3 is formed so as to cover the entire device without forming the connection electrode 21 and the external connection electrodes 24 and 26.
0 is formed, and through holes 61 are formed on the p-pad electrodes of the light emitting elements 1, 2, 3 through the insulating protective film 30, respectively, and the insulating holes are formed on the n-side ohmic electrodes of the light emitting elements 1, 2, 3 respectively. A through hole 62 penetrating through the protective film 30 is formed.

【0030】相違点2.絶縁保護膜30に形成されたス
ルーホール61を介して、発光素子1,2,3のpパッ
ド電極間を互いに接続電極51で接続する。 相違点3.絶縁保護膜30に形成されたスルーホール6
2を介して、発光素子1,2,3のn側オーミック電極
間を互いに接続電極52で接続する。以上の相違点1,
2,3以外は、実施の形態1の集積型窒化物半導体発光
素子と同様に構成する。すなわち、実施の形態2の集積
型窒化物半導体発光素子は、実施の形態1の素子におい
て発光素子1,2,3を並列に接続したものである。以
上のように構成された実施の形態2の集積型窒化物半導
体発光素子は、実施の形態1と同様、発光効率を向上さ
せることができる。
Difference 2. The connection electrodes 51 connect the p pad electrodes of the light emitting elements 1, 2, and 3 to each other via the through holes 61 formed in the insulating protection film 30. Difference 3. Through hole 6 formed in insulating protection film 30
The n-side ohmic electrodes of the light emitting elements 1, 2 and 3 are connected to each other via the connection electrode 52 through the connection electrode 52. Difference 1 above
Except for 2 and 3, the configuration is the same as that of the integrated nitride semiconductor light emitting device of the first embodiment. That is, the integrated nitride semiconductor light emitting device of the second embodiment is obtained by connecting the light emitting devices 1, 2, and 3 in parallel with the device of the first embodiment. The integrated nitride semiconductor light-emitting device according to the second embodiment configured as described above can improve the luminous efficiency similarly to the first embodiment.

【0031】以上の実施の形態1,2では、発光素子が
3つの場合について説明したが、本発明はこれに限られ
るものではなく、2つの発光素子を用いて構成した物で
あっても良いし、3以上の発光素子で構成したものであ
ってもよい。
In Embodiments 1 and 2 described above, the case where three light emitting elements are used has been described. However, the present invention is not limited to this, and may be configured using two light emitting elements. Alternatively, the light emitting element may be formed of three or more light emitting elements.

【0032】また、実施の形態1,2では、最も好まし
い例として、活性層10(p層13)の外側の長辺とn
側オーミック電極との距離L1,L2,L3を220μ
mに設定した場合について説明したが、本発明はこれに
限られるものではなく、250μm以下、好ましくは2
20μm以下に設定すればよい。
In the first and second embodiments, as the most preferable example, the long side outside the active layer 10 (p layer 13) and n
The distance L1, L2, L3 from the side ohmic electrode is 220μ.
Although the description has been given of the case where m is set to m, the present invention is not limited to this.
It may be set to 20 μm or less.

【0033】[0033]

【実施例】以下、本発明に係る実施例を示す。尚、本発
明はこれに限定されるものではない。 [実施例1] (基板11)サファイア(C面)よりなる基板11をM
OVPEの反応容器内にセットし、水素を流しながら、
基板の温度を1050℃まで上昇させ、基板のクリーニ
ングを行う。この基板11としては他にR面、A面を主
面とするサファイア基板、スピネル(MgAl24)の
ような絶縁性基板などでもよい。
Embodiments of the present invention will be described below. Note that the present invention is not limited to this. [Example 1] (Substrate 11) The substrate 11 made of sapphire (C-plane) was M
Set in the OVPE reaction vessel, while flowing hydrogen,
The temperature of the substrate is raised to 1050 ° C., and the substrate is cleaned. The substrate 11 may be a sapphire substrate having an R surface or an A surface as a main surface, or an insulating substrate such as spinel (MgAl 2 O 4 ).

【0034】(n型窒化ガリウム系化合物半導体層1
2)基板をクリーニング後、n型窒化ガリウム系化合物
半導体層12を次の構成で成長させる。基板の温度を5
10℃まで下げ、基板11上にGaNよりなるバッファ
層を100Å成長させる。次にバッファ層成長後、温度
を1050℃まで上昇させ、アンドープGaN層121
を1.5μmの膜厚で成長させる。続いて1050℃
で、Siを4.5×1018/cm3ドープしたGaN層
122を2.2μmの膜厚で成長させる。
(N-type gallium nitride-based compound semiconductor layer 1
2) After cleaning the substrate, an n-type gallium nitride-based compound semiconductor layer 12 is grown in the following configuration. Substrate temperature 5
The temperature is lowered to 10 ° C., and a GaN buffer layer is grown on the substrate 11 by 100 °. Next, after growing the buffer layer, the temperature is increased to 1050 ° C., and the undoped GaN layer 121 is grown.
Is grown to a thickness of 1.5 μm. Then 1050 ° C
Then, a GaN layer 122 doped with 4.5 × 10 18 / cm 3 of Si is grown to a thickness of 2.2 μm.

【0035】続いて1050℃で、アンドープGaN層
123を3000Åの膜厚で、さらにSiを4.5×1
18/cm3ドープしたGaN層124を300Å、さ
らにアンドープGaN層125を50Åの膜厚で成長さ
せる。続いて同様の温度で、アンドープGaNよりなる
第1の層を40Å、温度を800℃にして、続いてアン
ドープIn0.13Ga0.87Nよりなる第2の層を20Åの
膜厚で成長させ、これらの操作を繰り返し、第1+第2
+の順で交互に10層ずつ積層させ、最後に第1の層を
積層させた、n型多層膜層126を成長させる。
Subsequently, at 1050 ° C., the undoped GaN layer 123 was formed to a thickness of 3000
The GaN layer 124 doped with 0 18 / cm 3 is grown to a thickness of 300 °, and the undoped GaN layer 125 is grown to a thickness of 50 °. Subsequently, at the same temperature, the first layer made of undoped GaN is heated to 40 ° C. and the temperature is set to 800 ° C., and then the second layer made of undoped In 0.13 Ga 0.87 N is grown to a thickness of 20 °. Repeat the operation, 1st + 2nd
An n-type multilayer layer 126 having ten layers stacked alternately in the order of + and the first layer stacked last is grown.

【0036】(活性層13)次にn型窒化ガリウム系化
合物半導体層12を成長後、アンドープGaNよりなる
障壁層を200Åの膜厚で成長させ、続いて温度を80
0℃にして、Siを5×1017/cm3ドープしたIn
0.3Ga0.7Nよりなる井戸層を30Åの膜厚で成長させ
る。そして障壁+井戸+障壁+井戸・・・・の順で障壁
層を6層と、井戸層5層を交互に積層して、総膜厚13
50Åの多重量子井戸よりなる活性層13を積層させ
る。
(Active Layer 13) Next, after growing the n-type gallium nitride-based compound semiconductor layer 12, a barrier layer made of undoped GaN is grown to a thickness of 200.degree.
0 ° C., and 5 × 10 17 / cm 3 doped In
A well layer of 0.3 Ga 0.7 N is grown to a thickness of 30 °. Then, six barrier layers and five well layers are alternately stacked in the order of barrier + well + barrier + well.
An active layer 13 composed of a multiple quantum well of 50 ° is laminated.

【0037】(p型窒化ガリウム系化合物半導体層1
4)活性層13成長後、p型窒化ガリウム系化合物半導
体14を次の構成で成長させる。次に1050℃で、M
gを5×1019/cm3ドープしたp型Al0.1Ga0.9
Nよりなる第3の層を25Åの膜厚で成長させ、続いて
アンドープGaNよりなる第4の層を25Åの膜厚で成
長させ、これらの操作を繰り返し、第3+第4の順で交
互に4層ずつ積層した超格子よりなるp型多層膜層を2
00Åの膜厚で成長させる。続いて1050℃で、Mg
を1×1020/cm3ドープしたp型GaNよりなる層
を2700Åの膜厚で成長させる。反応終了後、温度を
室温まで下げ、窒素雰囲気中で700℃でアニーリング
を行い、p型層をさらに低抵抗化する。
(P-type gallium nitride-based compound semiconductor layer 1
4) After the growth of the active layer 13, a p-type gallium nitride-based compound semiconductor 14 is grown in the following configuration. Then at 1050 ° C., M
g × 5 × 10 19 / cm 3 doped p-type Al 0.1 Ga 0.9
A third layer made of N is grown to a thickness of 25 °, a fourth layer made of undoped GaN is grown to a thickness of 25 °, and these operations are repeated, and alternately in the third + fourth order. A p-type multilayer film layer consisting of a superlattice laminated four by four
It is grown to a thickness of 00 °. Subsequently, at 1050 ° C., Mg
Is grown at a thickness of 2700 ° from a p-type GaN doped with 1 × 10 20 / cm 3 . After the completion of the reaction, the temperature is lowered to room temperature, and annealing is performed at 700 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type layer.

【0038】以上のようにして窒化ガリウム系化合物半
導体を成長させたウエハーを反応容器から取り出し、分
離溝を形成する部分を除きウエハ全体にSiO2マスク
を形成し、RIEによって、サファイア基板に到達する
までエッチングを行うことにより分離溝を形成する。さ
らに分離溝の形成に用いたSiO2マスクを剥離し、n
型窒化ガリウム系化合物半導体層12を露出するため
に、露出させる部分を除くp型窒化ガリウム系化合物半
導体層14の上にSiO2マスクを形成し、RIEによ
って、エッチングを行い、n型窒化ガリウム系化合物半
導体層12(SiドープGaN層122)の表面を露出
させる。
The wafer on which the gallium nitride-based compound semiconductor has been grown as described above is taken out of the reaction vessel, and a SiO 2 mask is formed on the entire wafer except for a portion where a separation groove is to be formed, and reaches the sapphire substrate by RIE. The isolation groove is formed by performing the etching up to this point. Further, the SiO 2 mask used for forming the separation groove is peeled off, and n
In order to expose the n-type gallium nitride-based compound semiconductor layer 12, an SiO 2 mask is formed on the p-type gallium nitride-based compound semiconductor layer 14 excluding the exposed portion, and the n-type gallium nitride-based compound semiconductor layer is etched by RIE. The surface of the compound semiconductor layer 12 (Si-doped GaN layer 122) is exposed.

【0039】次にp型窒化ガリウム系化合物半導体層1
4のほぼ全面を開口させ、他の部分を覆うようにレジス
ト塗布し、開口させたp型窒化ガリウム系化合物半導体
層上にNiを100Å、Ptを500Å積層後、アニー
ルしてp側オーミック電極15を形成する。さらにp側
オーミック電極の一部にPtを3000Å、Niを60
Åからなるp側パッド電極16a(16)を形成する。
次にレジストを除去し、今度はn型窒化ガリウム系化合
物半導体層上にWを200Å、Alを1000Å、Wを
500Å、Ptを3000Å、Niを60Åの順で積層
したn側オーミック電極14を形成する。
Next, the p-type gallium nitride compound semiconductor layer 1
4 is coated with a resist so as to cover almost the entire surface, and the other portions are covered. Ni is deposited on the opened p-type gallium nitride-based compound semiconductor layer at 100 ° and Pt at 500 °, and then annealed to form a p-side ohmic electrode 15. To form Further, a part of the p-side ohmic electrode is made of Pt 3000 ° and Ni 60
A p-side pad electrode 16a (16) made of Å is formed.
Next, the resist is removed, and an n-side ohmic electrode 14 is formed on the n-type gallium nitride-based compound semiconductor layer, in which W is stacked in the order of 200 °, Al is 1000 °, W is 500 °, Pt is 3000 °, and Ni is 60 °. I do.

【0040】次に全面にSiO2よりなる絶縁保護膜1
7を1.5μmの膜厚で形成し、p側パッド電極とn側
オーミック電極の一部をRIEにより露出させる。さら
に表面に接続電極を形成する部分を開口させるようにマ
スク形成して分離溝を挟むp側パッド電極とn側オーミ
ック電極とを電気的に接続する接続電極として、Tiを
400Å、Ptを6000Å、Auを1000Å、Ni
を60Åの膜厚で形成する。最後にSiO2からなる絶
縁保護膜30を1.5μmの膜厚で形成し、外部と電気
的に接続できるように接続電極24、26上の絶縁保護
膜30をRIEでエッチングすることにより除去して集
積型窒化物半導体素子を完成させる。
Next, an insulating protective film 1 made entirely of SiO 2
7 is formed with a thickness of 1.5 μm, and a part of the p-side pad electrode and the n-side ohmic electrode is exposed by RIE. Further, as a connection electrode for electrically connecting a p-side pad electrode and an n-side ohmic electrode sandwiching a separation groove by forming a mask so as to open a portion where a connection electrode is formed on the surface, Ti is 400 °, Pt is 6000 °, Au 1000Å, Ni
Is formed with a thickness of 60 °. Finally, an insulating protective film 30 made of SiO 2 is formed with a thickness of 1.5 μm, and the insulating protective film 30 on the connection electrodes 24 and 26 is removed by RIE so as to be electrically connected to the outside. To complete an integrated nitride semiconductor device.

【0041】以上のような工程で、1000μm×10
00μmの基板上に3つの窒化物半導体素子が直列に接
続された図1の素子を作製したところ、動作電圧が1
0.5V、従来の300μm×300μm(動作電圧
3.5V)と同等の発光効率を示し、かつ各素子におい
てほぼ均一な発光が得られた。この素子は、動作電圧が
10.5Vであるために、抵抗等の制御装置を介するこ
とでバッテリー電源(12V)での使用が可能になる。
In the above steps, 1000 μm × 10
When the device of FIG. 1 in which three nitride semiconductor devices were connected in series on a substrate of 00 μm was manufactured, the operating voltage was 1
The luminous efficiency was 0.5 V, equivalent to the conventional 300 μm × 300 μm (operating voltage 3.5 V), and almost uniform light emission was obtained in each element. Since this element has an operating voltage of 10.5 V, it can be used on a battery power supply (12 V) through a control device such as a resistor.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明に係
る集積型窒化物半導体発光素子は、上記p層の一方の長
辺と上記n側オーミック電極との間隔を250μm以下
に設定しているので、各発光素子の活性層全体にほぼ均
一に電流を注入することができので、均一に発光させる
ことができ、各発光素子における発光効率を良好にでき
る。また、本発明に係る集積型窒化物半導体発光素子に
おいては、均一発光及び発光効率を劣化させることな
く、各発光素子を一方向(長手方向)に十分長くするこ
とができるので、発光面積を大きくできかつ発光効率を
高くできるので、大面積でかつ発光効率の良い窒化物半
導体発光素子を提供することができる。
As described above in detail, in the integrated nitride semiconductor light emitting device according to the present invention, the distance between one long side of the p layer and the n-side ohmic electrode is set to 250 μm or less. Therefore, current can be injected almost uniformly into the entire active layer of each light emitting element, so that light can be emitted uniformly and the light emitting efficiency of each light emitting element can be improved. Further, in the integrated nitride semiconductor light emitting device according to the present invention, each light emitting device can be made sufficiently long in one direction (longitudinal direction) without deteriorating uniform light emission and light emission efficiency. Therefore, a nitride semiconductor light emitting device having a large area and high luminous efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る実施の形態1の集積型窒化物半
導体発光素子の平面図である。
FIG. 1 is a plan view of an integrated nitride semiconductor light emitting device according to a first embodiment of the present invention.

【図2】 図1のA−A’線についての部分断面図(発
光素子1,2の部分)である。
FIG. 2 is a partial cross-sectional view (portion of light-emitting elements 1 and 2) taken along line AA ′ of FIG.

【図3】 図1のA−A’線についての部分断面図(発
光素子3の部分)である。
FIG. 3 is a partial cross-sectional view (portion of a light emitting element 3) taken along line AA ′ of FIG.

【図4】 n型窒化ガリウム系化合物半導体層の積層構
造を示す断面図である。
FIG. 4 is a cross-sectional view showing a stacked structure of an n-type gallium nitride-based compound semiconductor layer.

【図5】 本発明に係る実施の形態2の集積型窒化物半
導体発光素子の平面図である。
FIG. 5 is a plan view of an integrated nitride semiconductor light emitting device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3…発光素子、 10…活性層、 11…サファイア基板、 12…n型窒化ガリウム系化合物半導体層、 13…p型窒化ガリウム系半導体層、 14,14a…n側オーミック電極、 15…p側オーミック電極、 16,16a…pパッド電極、 17…絶縁保護膜、 21,51,52…接続電極、 24,26…外部接続電極、 30…絶縁保護膜、 61,62…スルーホール、 41…分離溝、 121…アンドープGaN層、 122…SiドープGaN層、 123…アンドープGaN層、 124…SiドープGaN層、 125…アンドープGaN層、 126…多層膜層。 1, 2, 3 ... light emitting element, 10 ... active layer, 11 ... sapphire substrate, 12 ... n-type gallium nitride based compound semiconductor layer, 13 ... p-type gallium nitride based semiconductor layer, 14, 14a ... n-side ohmic electrode, 15 ... p-side ohmic electrode, 16, 16a ... p pad electrode, 17 ... insulating protective film, 21, 51, 52 ... connecting electrode, 24, 26 ... external connecting electrode, 30 ... insulating protective film, 61, 62 ... through hole, 41: separation groove, 121: undoped GaN layer, 122: Si-doped GaN layer, 123: undoped GaN layer, 124: Si-doped GaN layer, 125: undoped GaN layer, 126: multilayer film layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仁木 勇 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 庄野 博文 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 若木 貴功 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 森 誠一郎 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 Fターム(参考) 5F041 AA03 AA05 CA34 CA40 CA46 CA57 CA65 CA73 CA82 CA92 CB23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isamu Niki 491-1100 Kamikanakamachi Oka, Anan City, Tokushima Prefecture Inside Nichika Gaku Kogyo Co., Ltd. Within Aka Kagaku Kogyo Co., Ltd. (72) Takakazu Wakagi, Inventor 491-1100 Kaminakamachi Oka, Anan City, Tokushima Prefecture Inside Nika Kagaku Kogyo Co., Ltd. F-term (reference) in Nichia Chemical Industry Co., Ltd. 5F041 AA03 AA05 CA34 CA40 CA46 CA57 CA65 CA73 CA82 CA92 CB23

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に複数の発光素子が並置されてな
り、 上記発光素子はそれぞれ、 上記基板上に形成されたn型窒化ガリウム系化合物半導
体層が分離溝によって分離されてなる長方形のn層と、 長方形のp型窒化ガリウム系化合物半導体が、その一方
の長辺と2つの短辺とがそれぞれ上記n層の一方の長辺
と2つの短辺と近接するように上記n層上に設けられて
成るp層と、 上記各n層の他方の長辺と上記p層の他方の長辺との間
のn層上に設けられ、上記p層の長辺と実質的に同一の
長さを有するn側オーミック電極と、 上記p層上のほぼ全面に形成されたpオーミック電極
と、 上記pオーミック電極上に、上記p層の一方の長辺に沿
って設けられたpパッド電極とを備え、上記p層の一方
の長辺と上記n側オーミック電極との間隔を250μm
以下に設定したことを特徴とする集積型窒化物半導体発
光素子。
A plurality of light emitting elements are juxtaposed on a substrate. Each of the light emitting elements has a rectangular n-type gallium nitride compound semiconductor layer formed on the substrate and separated by a separation groove. And a rectangular p-type gallium nitride-based compound semiconductor on the n-layer such that one long side and two short sides thereof are close to one long side and two short sides of the n layer, respectively. The p layer provided is provided on the n layer between the other long side of each of the n layers and the other long side of the p layer, and has a length substantially equal to the long side of the p layer. An n-side ohmic electrode having a thickness, a p-ohmic electrode formed over substantially the entire surface of the p-layer, and a p-pad electrode provided on the p-ohmic electrode along one long side of the p-layer. And a distance between one long side of the p-layer and the n-side ohmic electrode. 250 μm
An integrated nitride semiconductor light emitting device characterized by the following settings.
【請求項2】 上記p層の一方の長辺と上記n側オーミ
ック電極との間隔を220μm以下に設定した請求項1
記載の集積型窒化物半導体発光素子
2. The distance between one long side of the p-layer and the n-side ohmic electrode is set to 220 μm or less.
Integrated nitride semiconductor light emitting device
【請求項3】 上記複数の発光素子が直列に接続された
請求項1又は2記載の集積型窒化物半導体発光素子。
3. The integrated nitride semiconductor light emitting device according to claim 1, wherein said plurality of light emitting devices are connected in series.
【請求項4】 上記複数の発光素子が並列に接続された
請求項1又は2記載の集積型窒化物半導体発光素子。
4. The integrated nitride semiconductor light emitting device according to claim 1, wherein said plurality of light emitting devices are connected in parallel.
【請求項5】 上記基板は透光性を有し、上記各発光素
子で発光された光を上記基板を介して出力する請求項1
〜4のうちのいずれか1項に記載の集積型窒化物半導体
発光素子。
5. The light-emitting device according to claim 1, wherein the substrate has a light-transmitting property, and outputs light emitted from each of the light-emitting elements through the substrate.
5. The integrated nitride semiconductor light-emitting device according to any one of items 1 to 4,
【請求項6】 上記n層は複数の窒化ガリウム系半導体
層からなり、その複数の窒化ガリウム系半導体層のうち
の少なくとも1つが5.5〜7.2×10−3Ωcmの
抵抗率と膜厚2μm以上のn型層である請求項1〜5の
うちのいずれか1つに記載の集積型窒化物半導体発光素
子。
6. The n-layer comprises a plurality of gallium nitride-based semiconductor layers, and at least one of the plurality of gallium nitride-based semiconductor layers has a resistivity and a film thickness of 5.5 to 7.2 × 10 −3 Ωcm. The integrated nitride semiconductor light emitting device according to claim 1, wherein the integrated nitride semiconductor light emitting device is an n-type layer having a thickness of 2 μm or more.
JP2000203988A 2000-07-05 2000-07-05 Integrated nitride semiconductor light emitting element Pending JP2002026384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203988A JP2002026384A (en) 2000-07-05 2000-07-05 Integrated nitride semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203988A JP2002026384A (en) 2000-07-05 2000-07-05 Integrated nitride semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2002026384A true JP2002026384A (en) 2002-01-25

Family

ID=18701322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203988A Pending JP2002026384A (en) 2000-07-05 2000-07-05 Integrated nitride semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2002026384A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324915A (en) * 2001-04-24 2002-11-08 Nichia Chem Ind Ltd Integrated nitride semiconductor light emitting device
JP2005019874A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Led, led chip, led module, and lighting system
JP2006005215A (en) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method therefor
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
WO2007091432A1 (en) 2006-02-08 2007-08-16 Mitsubishi Chemical Corporation Light emitting element
WO2007126091A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Etching method, etching mask and method for manufacturing semiconductor device using the same
WO2007126092A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Integrated semiconductor light emitting device and method for manufacturing same
WO2007126093A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Integrated semiconductor light-emitting device and its manufacturing method
US7417259B2 (en) 2002-08-29 2008-08-26 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements
WO2009057764A1 (en) 2007-10-31 2009-05-07 Mitsubishi Chemical Corporation Etching method and method for manufacturing optical/electronic device using the same
JP2009522803A (en) * 2006-01-09 2009-06-11 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
JP2013102192A (en) * 2013-01-10 2013-05-23 Toshiba Corp Semiconductor light-emitting element and manufacturing method of the same
JP2014116604A (en) * 2012-12-06 2014-06-26 Lg Innotek Co Ltd Light emitting device
EP2750194A1 (en) * 2005-06-22 2014-07-02 Seoul Viosys Co., Ltd. Light emitting device comprising a plurality of light emitting diode cells
JP2015056666A (en) * 2013-09-11 2015-03-23 廣▲ジャー▼光電股▲ふん▼有限公司 Light emitting module and illuminating device relating to the same
US9070837B2 (en) 2008-08-28 2015-06-30 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method for manufacturing same
US20150270444A1 (en) * 2003-05-13 2015-09-24 Bridgelux, Inc. HIGH POWER AllnGaN BASED MULTI-CHIP LIGHT EMITTING DIODE
KR101826206B1 (en) 2016-06-03 2018-02-07 주식회사 세미콘라이트 Semiconductor light emitting device
JP2019149474A (en) * 2018-02-27 2019-09-05 日亜化学工業株式会社 Light-emitting element
JP2020205454A (en) * 2010-08-30 2020-12-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324915A (en) * 2001-04-24 2002-11-08 Nichia Chem Ind Ltd Integrated nitride semiconductor light emitting device
US7569861B2 (en) 2002-08-29 2009-08-04 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US8735918B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with polygonal shape
US7646031B2 (en) 2002-08-29 2010-01-12 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US7667237B2 (en) 2002-08-29 2010-02-23 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US7615793B2 (en) 2002-08-29 2009-11-10 Seoul Semiconductor Co., Ltd. AC driven light—emitting device
US9947717B2 (en) 2002-08-29 2018-04-17 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US7956367B2 (en) 2002-08-29 2011-06-07 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements connected in series
US8129729B2 (en) 2002-08-29 2012-03-06 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements and an air bridge line
US7417259B2 (en) 2002-08-29 2008-08-26 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements
US7897982B2 (en) 2002-08-29 2011-03-01 Seoul Semiconductor Co., Ltd. Light emitting device having common N-electrode
US8097889B2 (en) 2002-08-29 2012-01-17 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements with a shared electrode
US8680533B2 (en) 2002-08-29 2014-03-25 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with a shared electrode
US8735911B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light emitting device having shared electrodes
US8084774B2 (en) 2002-08-29 2011-12-27 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US20150270444A1 (en) * 2003-05-13 2015-09-24 Bridgelux, Inc. HIGH POWER AllnGaN BASED MULTI-CHIP LIGHT EMITTING DIODE
JP2005019874A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Led, led chip, led module, and lighting system
JP4699681B2 (en) * 2003-06-27 2011-06-15 パナソニック株式会社 LED module and lighting device
JP2006005215A (en) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method therefor
JP4632697B2 (en) * 2004-06-18 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
EP2750194A1 (en) * 2005-06-22 2014-07-02 Seoul Viosys Co., Ltd. Light emitting device comprising a plurality of light emitting diode cells
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
US7998761B2 (en) 2006-01-09 2011-08-16 Seoul Opto Device Co., Ltd. Light emitting diode with ITO layer and method for fabricating the same
JP2009522803A (en) * 2006-01-09 2009-06-11 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
JP4861437B2 (en) * 2006-01-09 2012-01-25 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
US7977682B2 (en) 2006-02-08 2011-07-12 Mitsubishi Chemical Corporation Light emitting device
WO2007091432A1 (en) 2006-02-08 2007-08-16 Mitsubishi Chemical Corporation Light emitting element
US8581274B2 (en) 2006-05-01 2013-11-12 Mitsubishi Chemical Corporation Integrated semiconductor light-emitting device and its manufacturing method
WO2007126091A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Etching method, etching mask and method for manufacturing semiconductor device using the same
WO2007126093A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Integrated semiconductor light-emitting device and its manufacturing method
WO2007126092A1 (en) 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation Integrated semiconductor light emitting device and method for manufacturing same
WO2009057764A1 (en) 2007-10-31 2009-05-07 Mitsubishi Chemical Corporation Etching method and method for manufacturing optical/electronic device using the same
US9070837B2 (en) 2008-08-28 2015-06-30 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method for manufacturing same
JP2020205454A (en) * 2010-08-30 2020-12-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting device
JP7186754B2 (en) 2010-08-30 2022-12-09 晶元光電股▲ふん▼有限公司 light emitting device
JP2014116604A (en) * 2012-12-06 2014-06-26 Lg Innotek Co Ltd Light emitting device
JP2013102192A (en) * 2013-01-10 2013-05-23 Toshiba Corp Semiconductor light-emitting element and manufacturing method of the same
JP2015056666A (en) * 2013-09-11 2015-03-23 廣▲ジャー▼光電股▲ふん▼有限公司 Light emitting module and illuminating device relating to the same
KR101826206B1 (en) 2016-06-03 2018-02-07 주식회사 세미콘라이트 Semiconductor light emitting device
JP2019149474A (en) * 2018-02-27 2019-09-05 日亜化学工業株式会社 Light-emitting element

Similar Documents

Publication Publication Date Title
JP2002026384A (en) Integrated nitride semiconductor light emitting element
US7884377B2 (en) Light emitting device, method of manufacturing the same and monolithic light emitting diode array
US8552455B2 (en) Semiconductor light-emitting diode and a production method therefor
JP4091049B2 (en) Nitride semiconductor light emitting device having electrostatic discharge prevention function
KR101428053B1 (en) Semiconductor light emitting device and fabrication method thereof
JP5193048B2 (en) Light emitting device having vertically stacked light emitting diodes
JP5055678B2 (en) Nitride semiconductor light emitting device
JP4273928B2 (en) III-V nitride semiconductor device
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
JP2009502043A (en) Blue light-emitting diode with uneven high refractive index surface for improved light extraction efficiency
CN101431092B (en) Semiconductor light-emitting device, and method of fabrication
JPWO2013161208A1 (en) Light emitting element
JP2008529297A (en) Light emitting device having a plurality of light emitting cells connected in series and method for manufacturing the same
KR20170104401A (en) Light-emitting device
WO2006030733A1 (en) Semiconductor light emitting device
JPH10163531A (en) Light-emitting diode having electrode at periphery
CN101479861B (en) Semiconductor light emitting element and method for manufacturing same
JP2013089974A (en) Nitride semiconductor light-emitting element
JP2014045108A (en) Semiconductor light-emitting element
CN102544290A (en) Nitirde semiconductor light emitting diode
KR20110043282A (en) Light emitting device and method for fabricating the same
KR20090073949A (en) Manufacturing method of iii-nitride semiconductor light emitting device
JP3356034B2 (en) Nitride semiconductor light emitting device
KR101568809B1 (en) Semiconductor device for emitting light and method for fabricating the same
US20210036049A1 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016