JP2002025863A - Solid electrolytic capacitor device and its manufacturing method - Google Patents

Solid electrolytic capacitor device and its manufacturing method

Info

Publication number
JP2002025863A
JP2002025863A JP2000207172A JP2000207172A JP2002025863A JP 2002025863 A JP2002025863 A JP 2002025863A JP 2000207172 A JP2000207172 A JP 2000207172A JP 2000207172 A JP2000207172 A JP 2000207172A JP 2002025863 A JP2002025863 A JP 2002025863A
Authority
JP
Japan
Prior art keywords
layer
capacitor element
solid electrolytic
electrolytic capacitor
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000207172A
Other languages
Japanese (ja)
Other versions
JP4655339B2 (en
Inventor
Atsushi Sakai
厚 坂井
Yuji Furuta
雄司 古田
Katsuhiko Yamazaki
勝彦 山崎
Takashi Ichimura
孝志 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000207172A priority Critical patent/JP4655339B2/en
Priority to US09/899,992 priority patent/US6449140B1/en
Publication of JP2002025863A publication Critical patent/JP2002025863A/en
Application granted granted Critical
Publication of JP4655339B2 publication Critical patent/JP4655339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which has a structure for reducing thermal stress, prevents leakage current and exhibits a low impedance and high reliability. SOLUTION: With respect to the solid electrolytic capacitor device, which is provided with an anode consisting of an end of a valve action metal substrate cut into a prescribed shape and having a dielectric film on its surface, an insulating layer of a prescribed width around the valve action metal substrate and a cathode, made by forming a solid electrolytic layer and a conductive paste layer composed of a carbon paste layer and a conductive layer containing metal powder thereon in sequence over the whole surface located opposite to the anode of the substrate bordered by the insulating layer, the conductive layer containing the metal powder is provided in the region of the carbon paste layer and the conductive layer containing metal powder is also placed separated by a space to the end of the insulating layer on the side of the cathode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に誘電体皮膜
を有する弁作用金属基板の端部を陽極とし、前記陽極部
に接して基板上に所定の幅の絶縁層を周設し、その絶縁
層を境に前記陽極の反対側の基板上全面に導電性重合体
等の有機物、あるいは金属酸化物等の無機物からなる固
体電解質層、さらにその上に導電体層を順次形成して陰
極とするコンデンサ素子、その製造方法及びその素子を
用いた固体電解コンデンサに関する。
BACKGROUND OF THE INVENTION The present invention relates to a valve metal substrate having a dielectric film on its surface as an anode, and an insulating layer having a predetermined width is provided on the substrate in contact with the anode portion. An organic material such as a conductive polymer, or a solid electrolyte layer made of an inorganic material such as a metal oxide on the entire surface of the substrate on the side opposite to the anode with the insulating layer as a boundary, and further, a conductive layer is further formed thereon to form a cathode and a cathode. The present invention relates to a capacitor element, a method of manufacturing the same, and a solid electrolytic capacitor using the element.

【0002】[0002]

【従来の技術】最近の電子機器は小型化、省電力化等の
ためデジタル化、高周波化が進み、高周波で低インピー
ダンス、高信頼性でかつ高容量の固体電解コンデンサの
需要が増大している。これらの性能を保有するコンデン
サとしては、タンタル焼結体或いはアルミニウム箔を陽
極とし、高導電性の導電性重合体や無機酸化物の固体電
解質を陰極とするコンデンサが商品化されている。特に
電子回路基板に表面実装するチップ型コンデンサではリ
フロー半田の熱に耐える高耐熱性材料の採用、熱応力を
緩和する構造等の工夫がなされている。しかし、上記の
固体電解質は、低抵抗であるが誘電体皮膜の修復性能が
弱いため熱応力等により誘電体皮膜がミクロ的な破壊を
起こして漏れ電流が増大する場合がある。
2. Description of the Related Art In recent years, electronic devices have been digitized and operated at higher frequencies for miniaturization and power saving, and the demand for high-frequency, low-impedance, high-reliability and high-capacity solid electrolytic capacitors has been increasing. . As capacitors having these performances, capacitors using a tantalum sintered body or aluminum foil as an anode and a solid electrolyte of a highly conductive polymer or inorganic oxide as a cathode have been commercialized. In particular, chip-type capacitors that are surface-mounted on electronic circuit boards have been devised by adopting a high heat-resistant material that can withstand the heat of reflow soldering and a structure that alleviates thermal stress. However, the above-mentioned solid electrolyte has a low resistance, but has poor repairing performance of the dielectric film, so that the dielectric film may be microscopically broken due to thermal stress or the like, and the leakage current may increase.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、固体
電解コンデンサ素子の構造を、リフロー半田付け等で発
生する熱応力を緩和する構造とすることにより漏れ電流
の増大を防ぎ、低インピーダンスで信頼性の高い固体電
解コンデンサを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid electrolytic capacitor element having a structure in which a thermal stress generated by reflow soldering or the like is relieved to prevent an increase in leakage current and achieve a low impedance. An object of the present invention is to provide a highly reliable solid electrolytic capacitor.

【0004】[0004]

【課題を解決するための手段】本発明の固体電解コンデ
ンサ素子の概要を、断面を示す図1を参照して説明す
る。図1において、1は表面に誘電体皮膜(2)を有す
る弁作用金属基板(陽極基体)であり、3は前記弁作用
金属基板に周設された所定幅の絶縁層、4は固体電解質
層、5はカーボンペースト層、6は金属粉含有導電性層
を表わす。
The outline of the solid electrolytic capacitor element of the present invention will be described with reference to FIG. In FIG. 1, 1 is a valve metal substrate (anode substrate) having a dielectric film (2) on the surface, 3 is an insulating layer of a predetermined width provided around the valve metal substrate, and 4 is a solid electrolyte layer Reference numeral 5 indicates a carbon paste layer, and reference numeral 6 indicates a metal powder-containing conductive layer.

【0005】上記課題を解決する本発明の固体電解コン
デンサは、陰極部を形成している金属粉含有導電性層
(6)の抵抗の増大を防ぎながら、陽極部との境界とな
る絶縁層(3)に金属粉含有導電性層(6)が接触しな
いようにすること、すなわち金属粉含有導電性層(6)
がカーボンペースト層(5)の領域よりはみ出さないよ
うに、絶縁層の陰極側端部(3a)と金属粉含有導電性
層の絶縁側端部(6a)との間に間隔(t1)を設ける
ことで、その付近での導通を少なくし、漏れ電流が増加
することを防いだ構造としている。
According to the solid electrolytic capacitor of the present invention which solves the above-mentioned problems, the insulating layer (boundary to the anode) is formed while preventing the resistance of the metal powder-containing conductive layer (6) forming the cathode from increasing. 3) The metal powder-containing conductive layer (6) should not be in contact with the metal powder-containing conductive layer (6).
The distance (t 1 ) between the cathode side end (3a) of the insulating layer and the insulating side end (6a) of the metal powder-containing conductive layer so that the metal does not protrude from the region of the carbon paste layer (5). Is provided to reduce the conduction in the vicinity thereof and prevent the leakage current from increasing.

【0006】さらにESR(等価直列抵抗)が増大しな
いように、絶縁層の陰極側端部(3a)と金属粉含有導
電性層の絶縁側端部(6a)との間隔(t1)と、陰極
部(7)の長さ(t0)との相対比を規定する構造をも
採用した。これら対策を実施した素子は、絶縁層付近に
導電性の高い物質(金属粉含有導電性層)が存在せず、
金属粉含有導電性層が絶縁層と離れているので、機械
的、熱的応力等を受けて絶縁層が一部破壊されたときに
もその付近での導通が少なく漏れ電流が増大しなくな
る。
Further, in order not to increase the ESR (equivalent series resistance), the distance (t 1 ) between the cathode side end (3a) of the insulating layer and the insulating side end (6a) of the metal powder-containing conductive layer is: A structure for defining the relative ratio to the length (t 0 ) of the cathode portion (7) was also employed. In the element where these measures were taken, the highly conductive substance (conductive layer containing metal powder) did not exist near the insulating layer.
Since the metal powder-containing conductive layer is separated from the insulating layer, even when the insulating layer is partially broken due to mechanical or thermal stress or the like, there is little conduction near the insulating layer and leakage current does not increase.

【0007】なお、本明細書で「周設」とは、ある部位
の回りに一周して設けることである。また、「載置」と
は、空間的に上下関係を示すことに限定されず、載置す
るものと載置されるものが接して配置されている状態を
も含む。「接合」とは二つの部材をつなぎ、くっつける
ことである。すなわち、本発明は以下の固体電解コンデ
ンサ素子とその製造方法及び固体電解コンデンサを提供
する。
[0007] In this specification, "periphery" means to provide a circuit around a part. Further, the term “placement” is not limited to spatially indicating a vertical relationship, but also includes a state in which a placed object and a placed object are arranged in contact with each other. "Joining" refers to joining and joining two members. That is, the present invention provides the following solid electrolytic capacitor element, a method for manufacturing the same, and a solid electrolytic capacitor.

【0008】1)所定の形状に裁断された表面に誘電体
皮膜を有する弁作用金属基板の端部を陽極とし、前記弁
作用金属基板上に所定幅の絶縁層を周設して、その絶縁
層を境に前記陽極の反対側の基板上全面に固体電解質層
及びカーボンペースト層とその上の金属粉含有導電性層
とからなる導電体層を順次形成して陰極とするコンデン
サ素子において、前記金属粉含有導電性層がカーボンペ
ースト層の領域内に設けられていることを特徴とする固
体電解コンデンサ素子。 2)所定の形状に裁断された表面に誘電体皮膜を有する
弁作用金属基板の端部を陽極とし、前記弁作用金属基板
上に所定幅の絶縁層を周設して、その絶縁層を境に前記
陽極の反対側の基板上全面に固体電解質層及びカーボン
ペースト層とその上の金属粉含有導電性層とからなる導
電体層を順次形成して陰極とするコンデンサ素子におい
て、前記金属粉含有導電性層が前記絶縁層の陰極側端部
と間隔をおいて設けられていることを特徴とする固体電
解コンデンサ素子。 3)前記金属粉含有導電性層と前記絶縁層の陰極側端部
との間隔が、前記陰極部の全体の長さの1/10〜1/
2である前記2に記載の固体電解コンデンサ素子。
1) An end portion of a valve action metal substrate having a dielectric film on a surface cut into a predetermined shape is used as an anode, and an insulation layer having a predetermined width is provided on the valve action metal substrate to insulate it. A capacitor element as a cathode by sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a metal powder-containing conductive layer thereon on the entire surface of the substrate opposite to the anode with the layer as a boundary, A solid electrolytic capacitor element, wherein a metal powder-containing conductive layer is provided in a region of a carbon paste layer. 2) An end portion of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape is used as an anode, an insulating layer having a predetermined width is provided on the valve metal substrate, and the insulating layer is bounded by the insulating layer. A capacitor element serving as a cathode by sequentially forming a conductive layer composed of a solid electrolyte layer and a carbon paste layer and a metal powder-containing conductive layer thereon on the entire surface of the substrate opposite to the anode, A solid electrolytic capacitor element, wherein a conductive layer is provided at a distance from a cathode end of the insulating layer. 3) The distance between the metal powder-containing conductive layer and the end of the insulating layer on the cathode side is 1/10 to 1/1 / the total length of the cathode section.
3. The solid electrolytic capacitor element according to the above 2, which is 2.

【0009】4)前記金属粉含有導電性層と前記絶縁層
の陰極側端部との間隔が、0.1〜1.5mmである前記
2または3に記載の固体電解コンデンサ素子。 5)前記金属分含有導電性層が、金属粉末からなる導電
性充填材及びバインダーの主成分としてのフッ素系ゴム
を含む前記1に記載の固体電解コンデンサ素子。 6)バインダーの80質量%以上がフッ素系ゴムである
前記5に記載の固体電解コンデンサ素子。 7)導電性充填材の80質量%以上が銀粉である前記5
に記載の固体電解コンデンサ素子。 8)前記金属分含有導電性層が、導電性充填材50〜9
5質量%及びバインダー5〜50質量%からなる前記5
に記載の固体電解コンデンサ素子。
(4) The solid electrolytic capacitor element as described in (2) or (3) above, wherein a distance between the metal powder-containing conductive layer and a cathode side end of the insulating layer is 0.1 to 1.5 mm. 5) The solid electrolytic capacitor element as described in 1 above, wherein the metal-containing conductive layer contains a conductive filler made of metal powder and a fluorine-based rubber as a main component of a binder. 6) The solid electrolytic capacitor element as described in 5 above, wherein 80% by mass or more of the binder is a fluorine-based rubber. 7) The silver powder described above, wherein 80% by mass or more of the conductive filler is silver powder.
3. The solid electrolytic capacitor element according to item 1. 8) The metal-containing conductive layer is formed of a conductive filler 50 to 9
The above 5 comprising 5% by mass and 5 to 50% by mass of a binder.
3. The solid electrolytic capacitor element according to item 1.

【0010】9)カーボンペースト層が、導電性カーボ
ン材料、バインダー及び溶媒を主要成分とし、前記導電
性カーボン材料の80質量%以上が人造黒鉛であり、前
記バインダーがゴム弾性を有する材料を含む前記1に記
載の固体電解コンデンサ素子。 10)弁作用金属が、平板状または箔状である前記1に
記載の固体電解コンデンサ素子。 11)弁作用金属がアルミニウム、タンタル、ニオブ、
及びチタンから選ばれる単体金属、またはこれらの合金
である前記1に記載の固体電解コンデンサ素子。 12)固体電解質層が、導電性重合体層である前記1に
記載の固体電解コンデンサ素子。 13)導電性重合体層が、複素五員環を含む化合物の重
合体である前記12に記載の固体電解コンデンサ素子。
9) The carbon paste layer contains a conductive carbon material, a binder and a solvent as main components, and at least 80% by mass of the conductive carbon material is artificial graphite, and the binder contains a material having rubber elasticity. 2. The solid electrolytic capacitor element according to 1. 10) The solid electrolytic capacitor element as described in 1 above, wherein the valve action metal is in a plate shape or a foil shape. 11) The valve metal is aluminum, tantalum, niobium,
2. The solid electrolytic capacitor element according to the above 1, which is a single metal selected from titanium and titanium, or an alloy thereof. 12) The solid electrolytic capacitor element as described in 1 above, wherein the solid electrolyte layer is a conductive polymer layer. 13) The solid electrolytic capacitor element as described in 12 above, wherein the conductive polymer layer is a polymer of a compound containing a five-membered heterocyclic ring.

【0011】14)複素五員環を含む化合物がチオフェ
ン骨格を有する化合物である前記13に記載の固体電解
コンデンサ素子。 15)導電性重合体層がポリ(3,4−エチレンジオキ
シチオフェン)を含む前記12に記載の固体電解コンデ
ンサ素子。 16)前記1乃至5のいずれかに記載のコンデンサ素子
をリードフレーム上に1つ以上載置し接合してなること
を特徴とする固体電解コンデンサ。
(14) The solid electrolytic capacitor element as described in (13) above, wherein the compound containing a five-membered heterocyclic ring is a compound having a thiophene skeleton. 15) The solid electrolytic capacitor element as described in 12 above, wherein the conductive polymer layer contains poly (3,4-ethylenedioxythiophene). 16) A solid electrolytic capacitor comprising one or more of the capacitor elements described in any one of 1 to 5 above mounted and joined on a lead frame.

【0012】17)所定の形状に裁断された表面に誘電
体皮膜を有する弁作用金属基板の陽極となる端部を区切
る位置に所定幅の絶縁層を周設する工程、前記絶縁層を
境に前記陽極の反対側の基板上全面に固体電解質層及び
カーボンペースト層とその上の金属粉含有導電性層とか
らなる導電体層を順次形成する工程を有するコンデンサ
素子の製造方法において、前記金属粉含有導電性層をカ
ーボンペースト層の領域内に設けることを特徴とする固
体電解コンデンサ素子の製造方法。 18)所定の形状に裁断された表面に誘電体皮膜を有す
る弁作用金属基板の陽極となる端部を区切る位置に所定
幅の絶縁層を周設する工程、前記絶縁層を境に前記陽極
の反対側の基板上全面に固体電解質層及びカーボンペー
スト層とその上の金属粉含有導電性層とからなる導電体
層を順次形成する工程を有するコンデンサ素子の製造方
法において、前記金属粉含有導電性層を前記絶縁層の陰
極側端部と間隔をおいて設けることを特徴とする固体電
解コンデンサ素子の製造方法。
17) A step of providing an insulating layer having a predetermined width at a position separating an end serving as an anode of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape. A method for manufacturing a capacitor element, comprising a step of sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a conductive layer containing a metal powder thereon on the entire surface of the substrate opposite to the anode. A method for manufacturing a solid electrolytic capacitor element, wherein a conductive layer containing carbon is provided in a region of a carbon paste layer. 18) a step of providing an insulating layer having a predetermined width at a position separating an end serving as an anode of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape; A method for manufacturing a capacitor element comprising a step of sequentially forming a conductor layer comprising a solid electrolyte layer and a carbon paste layer and a metal powder-containing conductive layer thereon over the entire surface on the opposite side of the substrate. A method for manufacturing a solid electrolytic capacitor element, characterized in that a layer is provided at an interval from a cathode end of the insulating layer.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明は、金属粉含有導電性層を絶縁層から離し、金属
粉含有導電性層とカーボンペースト層の位置関係を規定
することを特徴とするコンデンサ素子、その製造方法及
びその素子を用いた固体電解コンデンサである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The present invention provides a capacitor element characterized by separating a metal powder-containing conductive layer from an insulating layer and defining a positional relationship between the metal powder-containing conductive layer and the carbon paste layer, a method for manufacturing the same, and a solid using the element. It is an electrolytic capacitor.

【0014】本発明によれば、絶縁層の陰極側端部(3
a)と金属粉含有導電性層の陰極側端部(6a)との間
隔(t1)が、陰極部(7)の長さの1/10以上離れ
ており最大でも素子の陰極部(7)の長さの1/2以
下、好ましくは絶縁層の陰極側端部(3a)と金属粉含
有導電性層の陰極側端部(6a)の間隔(t1)が、陰
極部(7)の長さの1/8以上離れており最大でも素子
の陰極部(7)の長さの3/8以下の範囲にあれば、E
SRを増加させることなく高い歩留りで、かつリフロー
半田付け等で発生する熱的応力や機械的応力により誘電
体皮膜がミクロ的に破壊しても、コンデンサの漏れ電流
の増大を防ぐことができる。
According to the present invention, the cathode side end portion (3
The distance (t 1 ) between (a) and the cathode-side end (6a) of the metal powder-containing conductive layer is at least 1/10 of the length of the cathode (7). ) Or less, preferably the distance (t 1 ) between the cathode end (3a) of the insulating layer and the cathode end (6a) of the metal powder-containing conductive layer is less than the length of the cathode (7). If the distance is at least 1/8 of the length of the cathode and at most 3/8 or less of the length of the cathode part (7) of the element, E
Even if the dielectric film is microscopically broken due to thermal stress or mechanical stress generated by reflow soldering or the like without increasing SR, increase in leakage current of the capacitor can be prevented.

【0015】本発明のコンデンサ素子は、表面に誘電体
皮膜層(2)を有する弁作用金属基板(1)の端部が陽
極とされ、この陽極部に接して基板上に所定の幅の絶縁
層(3)を周設し、前記陽極部と絶縁部を除いた部分の
前記誘電体皮膜層上に固体電解質層(4)、その上にカ
ーボンペースト層(5)とその上の金属粉含有導電性層
(6)とからなる導電体層が順次形成されて作製され
る。
In the capacitor element of the present invention, an end of a valve metal substrate (1) having a dielectric film layer (2) on its surface is used as an anode, and an insulating member having a predetermined width is provided on the substrate in contact with the anode. A layer (3) is provided around the solid electrolyte layer (4) on a part of the dielectric film layer except for the anode part and the insulating part, and a carbon paste layer (5) and a metal powder on the solid electrolyte layer. A conductive layer composed of the conductive layer (6) is sequentially formed and manufactured.

【0016】弁作用金属基板はアルミニウム、タンタ
ル、ニオブ、チタン等から選ばれる単体金属、またはこ
れらの合金であればよい。その形態は、板状、箔状、焼
結体等いずれでもよい。例えば、金属箔は使用目的によ
って厚さは変わるが、一般に厚みが40〜150μm程
度のものが使用される。また、大きさ及び形状も用途に
より異なるが、平板形素子単位としては幅1〜15mm
程度、長さ1〜15mm程度の矩形のものが好ましく、
幅2〜10mm程度、長さ2〜7mm程度のものがより
好ましい。
The valve action metal substrate may be a single metal selected from aluminum, tantalum, niobium, titanium or the like, or an alloy thereof. The form may be any of a plate shape, a foil shape, a sintered body, and the like. For example, the thickness of the metal foil varies depending on the purpose of use, but generally a metal foil having a thickness of about 40 to 150 μm is used. The size and shape also vary depending on the application, but the width is 1 to 15 mm as a flat element unit.
About 1 to 15 mm in length is preferable,
Those having a width of about 2 to 10 mm and a length of about 2 to 7 mm are more preferable.

【0017】周設される絶縁層は、絶縁樹脂、無機質微
粉とセルロース系樹脂からなる組成物(特開平11−8
0596号公報)などを塗布して形成するか、または絶
縁テープを張付けてもよい。絶縁性の材料には特に制限
はない。具体例としては、ポリフェニルスルホン、ポリ
エーテルスルホン、シアン酸エステル樹脂、フッ素樹脂
(テトラフルオロエチレン、テトラフルオロエチレン・
パーフルオロアルキルビニルエーテル共重合体等)、低
分子量ポリイミド及びそれらの誘導体、可溶性ポリイミ
ドシロキサンとエポキシ樹脂からなる組成物(特開平8
−253677号公報)が挙げられる。また、絶縁層を
設ける方法も特に限定されず、絶縁層が所定の幅で基板
上に形成できる方法であればよい。
The surrounding insulating layer is made of a composition comprising an insulating resin, an inorganic fine powder and a cellulose resin (see JP-A-11-8-11).
No. 0596) or by applying an insulating tape. There is no particular limitation on the insulating material. Specific examples include polyphenyl sulfone, polyether sulfone, cyanate ester resin, and fluororesin (tetrafluoroethylene, tetrafluoroethylene.
Perfluoroalkyl vinyl ether copolymer, etc.), low molecular weight polyimides and their derivatives, and compositions comprising soluble polyimide siloxane and epoxy resin
-253677). The method for providing the insulating layer is not particularly limited as long as the insulating layer can be formed with a predetermined width on the substrate.

【0018】固体電解質層は、導電性重合体、導電性有
機物および導電性無機酸化物等いずれでもよい。また複
数の材料を順次形成してもよいし、複合材料を形成して
もよい。好ましくは、公知の導電性重合体、例えば、ピ
ロール、チオフェン、フランあるいはアニリン構造のい
ずれか1つの二価基、またはそれら置換誘導体の少なく
とも1つを繰り返し単位として含む導電性重合体を使用
できる。例えば、3,4−エチレンジオキシチオフェン
モノマー及び酸化剤を好ましくは溶液の形態において、
別々に前後してまたは一緒に金属箔の誘電体皮膜に塗布
して形成する方法(特開平2−15611号公報や特開
平10−32145号公報)等が利用できる。
The solid electrolyte layer may be any of a conductive polymer, a conductive organic substance, a conductive inorganic oxide and the like. Further, a plurality of materials may be sequentially formed, or a composite material may be formed. Preferably, a known conductive polymer, for example, a conductive polymer containing at least one divalent group of any one of pyrrole, thiophene, furan or aniline structure or a substituted derivative thereof as a repeating unit can be used. For example, the 3,4-ethylenedioxythiophene monomer and the oxidizing agent are preferably in the form of a solution,
A method of separately applying a dielectric film of a metal foil before and after or together (JP-A-2-15611 and JP-A-10-32145) can be used.

【0019】一般に導電性重合体にはドーパントが使用
される。ドーパントとしては、ドーピング能がある化合
物なら如何なるものでもよく、例えば、有機スルホン
酸、無機スルホン酸、有機カルボン酸及びこれらの塩を
使用できる。一般的にはアリールスルホン酸塩系ドーパ
ントが使用される。例えば、ベンゼンスルホン酸、トル
エンスルホン酸、ナフタレンスルホン酸、アントラセン
スルホン酸、アントラキノンスルホン酸またはそれらの
置換誘導体などの塩を用いることができる。また、特に
優れたコンデンサ性能を引き出すことができる化合物と
して、分子内に1つ以上のスルホン酸基とキノン構造を
有する化合物、複素環式スルホン酸、アントラセンモノ
スルホン酸及びこれらの塩を用いてもよい。これらのド
ーパントは単独で使用してもよいし、複数のものを併用
してもよい。
Generally, a dopant is used for the conductive polymer. As the dopant, any compound may be used as long as it has a doping ability. For example, organic sulfonic acids, inorganic sulfonic acids, organic carboxylic acids, and salts thereof can be used. Generally, an aryl sulfonate-based dopant is used. For example, salts such as benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid, and substituted derivatives thereof can be used. In addition, compounds having one or more sulfonic acid groups and a quinone structure in the molecule, heterocyclic sulfonic acid, anthracene monosulfonic acid, and salts thereof may be used as the compound that can bring out particularly excellent capacitor performance. Good. These dopants may be used alone or in combination of two or more.

【0020】導電体層は、一般的にはカーボンペースト
と導電性金属粉を含有するペーストを塗布し形成する
が、塗布以外の方法で導電体層を形成してもよい。
The conductor layer is generally formed by applying a paste containing a carbon paste and a conductive metal powder, but the conductor layer may be formed by a method other than the application.

【0021】本発明において、金属粉含有導電性層用ペ
ーストに用いられる導電性充填材としては銀粉の他、
金、銅等の金属粉末なども使用可能であるが、銀粉が最
もよく、それが充填材全体の80質量%以上含むものが
好ましい。粉末の粒度は平均粒径で1〜10μmが好ま
しい。平均粒径が1μm未満では嵩密度が小さく、ペー
ストの体積が大きくなり、導電体層の形成に不利であ
る。また平均粒径が10μmを超えると粗すぎて、陰極
リード端子との接続不良が起こり易い。
In the present invention, the conductive filler used for the paste for the metal powder-containing conductive layer may be silver powder,
Although metal powders such as gold and copper can be used, silver powder is the best, and one containing 80% by mass or more of the whole filler is preferable. The average particle size of the powder is preferably 1 to 10 μm. If the average particle size is less than 1 μm, the bulk density is small and the volume of the paste is large, which is disadvantageous for forming a conductor layer. On the other hand, if the average particle size exceeds 10 μm, it is too coarse, and connection failure with the cathode lead terminal is likely to occur.

【0022】導電体層は上記した本発明の金属粉含有導
電性用ペーストのみで形成することは可能であるが、通
常は導電性重合体層(4)の上にカーボンペーストによ
り形成された層(5)を設けその上に本発明の金属粉含
有導電性ペーストにより形成された層(6)を設ける。
特に、銀粉はマイグレーションするため、初めにカーボ
ンペーストを塗布しておいてからさらに銀粉含有導電性
ペーストを使用することが好ましい。
Although the conductor layer can be formed only of the above-mentioned metal powder-containing conductive paste of the present invention, a layer formed of a carbon paste on the conductive polymer layer (4) is usually used. (5) is provided thereon, and a layer (6) formed of the metal powder-containing conductive paste of the present invention is provided thereon.
In particular, since silver powder migrates, it is preferable to first apply a carbon paste and then use a silver powder-containing conductive paste.

【0023】カーボンペーストとしては、天然黒鉛、カ
ーボンブラック、人造黒鉛が使用できるが、好ましくは
人造黒鉛である。この人造黒鉛粉は平均粒径が1〜13
μm、アスペクト比が10以下であって、粒子径32μ
m以上の粒子が12質量%以下であることが好ましい。
カーボンペーストのバインダー樹脂としては後述の金属
粉含有導電性層用ペーストのバインダー樹脂として用い
られるフッ素系ゴムを使用することが好ましい。カーボ
ンペースト層(5)の厚さは1〜5μm程度でよい。
As the carbon paste, natural graphite, carbon black and artificial graphite can be used, but artificial graphite is preferable. This artificial graphite powder has an average particle size of 1 to 13.
μm, aspect ratio is 10 or less, particle diameter 32μ
It is preferable that the number of particles of m or more is 12% by mass or less.
As the binder resin of the carbon paste, it is preferable to use a fluorine-based rubber used as a binder resin of a paste for a metal powder-containing conductive layer described later. The thickness of the carbon paste layer (5) may be about 1 to 5 μm.

【0024】次に導電性金属粉含有ペーストのバインダ
ーとしては、ゴム弾性を有するもの(以下ゴム弾性体と
もいう。)で歪みを受けるとその歪みを元に戻そうとす
る性質のある材料であり、好ましくはさらに実施形態に
おいて溶剤に膨潤又は懸濁可能な材料である。また、コ
ンデンサ製造時のリフロー処理に対して優れた耐熱性を
有するゴム弾性体が使用される。具体例としては、イソ
プレンゴム、ブタジエンゴム、スチレン/ブタジエンゴ
ム、ニトリル/ブタジエンゴム、イソブチレン/イソプ
レンゴム、エチレン/プロピレン共重合体(EPM、E
PDM等)、多硫化系ゴム、フッ素系ゴム(VDF/H
FP、VDF/HFP/TFE等)、シリコーンゴム、
他の熱可塑性エラストマーが使用される。これらは、一
般にバインダーとして使用されているエポキシ樹脂に比
べて弾性率が高く、吸水性が低く、接着部の応力の緩和
に効果がある。その中でもフッ素系ゴムが好ましい。
Next, the binder of the conductive metal powder-containing paste is a material having rubber elasticity (hereinafter also referred to as rubber elastic body) and having a property of recovering the distortion when it is distorted. Preferably, and in a further embodiment, a material that is swellable or suspendable in a solvent. In addition, a rubber elastic body having excellent heat resistance to reflow treatment at the time of manufacturing a capacitor is used. Specific examples include isoprene rubber, butadiene rubber, styrene / butadiene rubber, nitrile / butadiene rubber, isobutylene / isoprene rubber, ethylene / propylene copolymer (EPM, EPM
PDM, etc.), polysulfide rubber, fluorine rubber (VDF / H
FP, VDF / HFP / TFE, etc.), silicone rubber,
Other thermoplastic elastomers are used. These have a higher elastic modulus, lower water absorption, and are more effective in reducing the stress of the bonded portion than the epoxy resin generally used as a binder. Among them, a fluorine-based rubber is preferable.

【0025】特にフッ素系ゴムがバインダーの主要成分
のもの、好ましくはバインダーの80〜100質量%が
フッ素系ゴムのものである。バインダーの残りの成分と
しては従来使用されている樹脂等を混合することができ
る。本発明で使用するフッ素系ゴムは、歪みを受けると
その歪みを元に戻そうとするゴム弾性を有するものであ
り、歪みが戻らないフッ素系樹脂とは区別される。フッ
素系ゴムとしては、例えば公知のフッ化ビニリデン系共
重合体ゴム、六フッ化プロピレン系共重合体ゴム、四フ
ッ化エチレン系共重合体ゴム、含フッ素アクリレートゴ
ム、含フッ素シリコーンゴム等を用いることができる。
これらのゴムは未加硫のものでガラス転移点(Tg)が
室温より低い点でもフッ素樹脂と区別される。
In particular, the fluorine-based rubber is the main component of the binder, preferably 80 to 100% by mass of the binder is the fluorine-based rubber. As the remaining components of the binder, conventionally used resins and the like can be mixed. The fluorine-based rubber used in the present invention has rubber elasticity that tends to restore the distortion when it is strained, and is distinguished from a fluorine-based resin that does not recover the distortion. As the fluorine rubber, for example, a known vinylidene fluoride copolymer rubber, a hexafluoropropylene copolymer rubber, a tetrafluoroethylene copolymer rubber, a fluorine-containing acrylate rubber, a fluorine-containing silicone rubber, or the like is used. be able to.
These rubbers are unvulcanized and are distinguished from fluororesins also in that their glass transition points (Tg) are lower than room temperature.

【0026】上記の導電性充填材とバインダーの混合割
合は導電性充填材50〜95質量%、バインダー5〜5
0質量%が好ましい。導電性充填材が50質量%より少
ないと導電性が低下し、また95質量%より多いとバイ
ンダー(5質量%未満)の結合力が低下し、導電体層の
形成が難しくなる。
The mixing ratio of the conductive filler and the binder is 50 to 95% by mass of the conductive filler and 5 to 5% by mass of the binder.
0% by mass is preferred. When the amount of the conductive filler is less than 50% by mass, the conductivity is reduced. When the amount is more than 95% by mass, the binding force of the binder (less than 5% by mass) is reduced, and it is difficult to form the conductor layer.

【0027】以上の導電性充填材とバインダーの混合物
(固形分)にぺーストとしての適度な粘度とするため、
通常有機溶媒を添加する。有機溶媒の量は固形分100
質量部に対し、一般的には40〜100質量部が適当で
ある。有機溶媒としては、酢酸ブチル、酢酸アミル、酢
酸プロピルなどを用いることができる。溶媒によりフッ
素系ゴムは膨張または溶解するが、溶媒に溶解するフッ
素系ゴムがより好ましい。導電性重合体の形成方法は、
上記重合体を形成するモノマーの酸化剤(重合開始剤)
による化学重合、あるいは電解重合、これらの併用など
公知の方法が用いられる。例えば、酸化皮膜層を有する
弁作用金属をモノマー溶液に浸漬し、次いで酸化剤溶液
に浸漬し、加温して化学重合させ、この操作を複数回繰
り返す。この繰り返し重合により導電性重合体層は多層
積層構造(キメラ構造、フィブリル構造)となり、外装
樹脂により封止する際の耐熱応力性に優れたものとな
る。
In order to make the above-mentioned mixture (solid content) of the conductive filler and the binder have an appropriate viscosity as a paste,
Usually an organic solvent is added. The amount of organic solvent is 100 solids
Generally, 40 to 100 parts by mass is suitable for parts by mass. As the organic solvent, butyl acetate, amyl acetate, propyl acetate and the like can be used. The fluorine-based rubber expands or dissolves depending on the solvent, but a fluorine-based rubber soluble in the solvent is more preferable. The method of forming the conductive polymer,
Oxidizing agent (polymerization initiator) for monomer forming the above polymer
A known method such as chemical polymerization, electrolytic polymerization, or a combination thereof is used. For example, a valve metal having an oxide film layer is immersed in a monomer solution, then immersed in an oxidizing agent solution, heated and chemically polymerized, and this operation is repeated a plurality of times. By this repetitive polymerization, the conductive polymer layer has a multilayer laminated structure (chimeric structure, fibril structure), and has excellent heat stress resistance when sealed with an exterior resin.

【0028】本発明で好ましく用いられるフッ素系ゴム
バインダーを使用する導電性金属粉含有層による作用は
次の通りである。導電性重合体層は多層積層構造をもち
耐熱応力性に優れるが、これにエポキシ樹脂等の熱収縮
の大きいバインダーを使用した導電性ペーストを塗布す
ると、導電性重合体の表層へ侵入する。このペーストは
加熱時の応力発生が大きく、導電性重合体の多層形状が
影響を受ける。フッ素系ゴムバインダー等のゴム弾性体
を含むバインダーを用いた場合には、導電性重合体の表
層に侵入したペーストの熱応力発生は小さく、生成され
た導電性重合体層の形状を保持する。これによりコンデ
ンサの耐熱性がより良好となるものと考えられる。
The effect of the conductive metal powder-containing layer using the fluorine rubber binder preferably used in the present invention is as follows. The conductive polymer layer has a multilayer laminated structure and is excellent in heat stress resistance. However, when a conductive paste using a binder having a large heat shrinkage such as an epoxy resin is applied thereto, the conductive polymer layer penetrates into the surface layer of the conductive polymer. This paste generates a large amount of stress when heated, and the multilayer shape of the conductive polymer is affected. When a binder containing a rubber elastic material such as a fluorine-based rubber binder is used, thermal stress generated by the paste penetrating into the surface layer of the conductive polymer is small, and the shape of the generated conductive polymer layer is maintained. It is considered that this improves the heat resistance of the capacitor.

【0029】化学重合の際の酸化剤としては過硫酸アン
モニウム、有機スルホン酸鉄(III)、塩化鉄(III)な
どの無機酸鉄、Fe(ClO43、有機酸鉄(III)、
過硫酸塩、アルキル過硫酸塩、過酸化水素、K2Cr2
7などが用いられる。
As the oxidizing agent in the chemical polymerization, inorganic acid irons such as ammonium persulfate, iron (III) organic sulfonate, iron (III) chloride, Fe (ClO 4 ) 3 , iron (III) organic acid,
Persulfate, alkyl persulfate, hydrogen peroxide, K 2 Cr 2 O
7 or the like is used.

【0030】固体電解質層(4)の表面に、カーボンペ
ースト層(5)と金属粉含有導電性層(6)が形成され
る。金属粉含有導電性層(6)は固体電解質層と密着接
合し、陰極として作用すると同時に、最終コンデンサ製
品(図2参照)の陰極リード端子(9)を接合するため
の接着層となるものである。金属粉含有導電性層(6)
の厚さは一般には10〜50μm程度である。
A carbon paste layer (5) and a metal powder-containing conductive layer (6) are formed on the surface of the solid electrolyte layer (4). The metal powder-containing conductive layer (6) is in close contact with the solid electrolyte layer and acts as a cathode, and at the same time, serves as an adhesive layer for joining the cathode lead terminal (9) of the final capacitor product (see FIG. 2). is there. Metal powder containing conductive layer (6)
Is generally about 10 to 50 μm.

【0031】また、本発明のコンデンサ素子は、2つ以
上が積層した積層型のコンデンサ素子として用いた場合
でも、同様に効果が得られる。積層型固体電解コンデン
サにおいては、リードフレームを面取り、つまり稜角の
部分を少し平らに削ったり、丸味をつけたりして稜角部
付近の素子の応力集中を緩和出来るように加工を施して
おくことが好ましい。
The same effect can be obtained when the capacitor element of the present invention is used as a stacked capacitor element in which two or more are stacked. In the multilayer solid electrolytic capacitor, it is preferable that the lead frame is chamfered, that is, the edge portion is slightly flattened or rounded so that processing is performed so that stress concentration of the element near the edge portion can be reduced. .

【0032】リードフレームの材料は一般的に使用され
るものであれば特に制限はないが、好ましくは銅系(例
えばCu−Ni系、Cu−Sn系、Cu−Fe系、Cu
−Ni−Sn系、Cu−Co−P系、Cu−Zn−Mg
系、Cu−Sn−Ni−P系合金等)の材料もしくは表
面に銅系の材料のメッキ処理を施した材料で構成すれば
リードフレームの形状の工夫により抵抗の減少、リード
フレームの面取り作業性が良好になる等の効果が得られ
る。
The material of the lead frame is not particularly limited as long as it is generally used, but preferably a copper-based material (for example, Cu-Ni-based, Cu-Sn-based, Cu-Fe-based, Cu-
-Ni-Sn system, Cu-Co-P system, Cu-Zn-Mg
, Cu-Sn-Ni-P alloy) or a material whose surface is plated with a copper-based material, the resistance is reduced by devising the shape of the lead frame, and the workability of chamfering the lead frame is improved. Are obtained.

【0033】[0033]

【実施例】以下に、実施例及び比較例を挙げて本発明を
説明するが、下記の例により本発明は何等限定されるも
のではない。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited by the following examples.

【0034】実施例1:図1に示す構成の単板コンデン
サ素子を以下のようにして作製した。表面にアルミナの
誘電体皮膜を有し、所定のサイズに切断(スリット)し
た厚さ100μm、長さ6mm、幅3mmのアルミニウ
ム(陽極基体(1))のエッチング箔の端部の長さ1m
m、幅3mmの部分を陽極部とし、陽極部に接して幅1
mmの絶縁層(3)をはちまき状に形成した。陽極部お
よび絶縁層以外の部分(長さ4mm×幅3mm)を、1
0質量%のアジピン酸アンモニウム水溶液で13V化成
して切り口部(切断面)に誘電体皮膜(2)を形成させ
た。この基板を、過硫酸アンモニウム20質量%とアン
トラキノン−2−スルホン酸ナトリウム0.1質量%と
なるように調製した水溶液に浸漬し、次いで3,4−エ
チレンジオキシチオフェン(Bayer AG製、Baytr
on M(登録商標))を5g溶解した1.2mol/Lの
イソプロパノール溶液に浸漬した。この基板を取り出し
て60℃の環境下で10分放置することで酸化重合を完
成させた。この重合反応処理を25回繰り返し、基板を
水で洗浄し、導電性重合体の固体電解質層(4)を形成
した。
Example 1 A single-plate capacitor element having the structure shown in FIG. 1 was manufactured as follows. A 1 m long edge of an aluminum (anode substrate (1)) etched foil having a thickness of 100 μm, a length of 6 mm, and a width of 3 mm cut into a predetermined size (slit) and having a dielectric film of alumina on the surface.
m, the width of 3 mm is defined as the anode, and the width of 1 mm is in contact with the anode.
The insulating layer (3) having a thickness of 2 mm was formed in a patch shape. The part other than the anode part and the insulating layer (length 4 mm x width 3 mm)
The dielectric film (2) was formed on the cut portion (cut surface) by 13 V chemical conversion with a 0% by mass aqueous solution of ammonium adipate. The substrate was immersed in an aqueous solution prepared so that ammonium persulfate was 20% by mass and sodium anthraquinone-2-sulfonate at 0.1% by mass. Then, 3,4-ethylenedioxythiophene (manufactured by Bayer AG, Baytr.
on M (registered trademark)) was immersed in a 1.2 mol / L isopropanol solution having 5 g dissolved therein. The substrate was taken out and allowed to stand at 60 ° C. for 10 minutes to complete oxidative polymerization. This polymerization reaction treatment was repeated 25 times, and the substrate was washed with water to form a conductive polymer solid electrolyte layer (4).

【0035】次いで、導電性重合体層を有する部分をカ
ーボンペースト(人造黒鉛粉末50質量%、バイトンS
VX(登録商標、デュポン・ダウ・エラストマー社製、
フッ化ビニリデン/四フッ化エチレン/六フッ化プロピ
レン共重合体)50質量%を混合し、ペーストの固形分
とした。これに溶媒として酢酸ブチルを加え、混練し、
固形分20質量%とした。)に浸漬し固化させてカーボ
ンペースト層(5)を絶縁層の陰極側端部まで形成し
た。さらに銀ペースト(銀粉85質量%とバイトン15
質量%を混合し、ペースト固形分とした。これに溶媒と
して酢酸ブチルを加え、混練し、固形分60質量%とし
た。)に浸漬し固化させ銀粉含有導電性層(6)を形成
し、絶縁層の陰極側端部(3a)と銀粉含有導電性層の
絶縁側端部(6a)の間隔t1=0.5mmの図1に示す
単板コンデンサ素子を得た。
Next, the portion having the conductive polymer layer was replaced with a carbon paste (50% by mass of artificial graphite powder, Viton S
VX (registered trademark, manufactured by DuPont Dow Elastomer Co., Ltd.)
50% by mass of vinylidene fluoride / ethylene tetrafluoride / propylene hexafluoride copolymer) were mixed to obtain a solid content of the paste. Add butyl acetate as a solvent to this, knead,
The solid content was 20% by mass. ) And solidified to form a carbon paste layer (5) up to the cathode side end of the insulating layer. In addition, silver paste (85% by mass of silver powder and Viton 15)
% By mass to obtain a paste solid content. To this, butyl acetate was added as a solvent and kneaded to a solid content of 60% by mass. ) And solidified to form a silver powder-containing conductive layer (6), and the distance t 1 between the cathode end (3a) of the insulating layer and the insulating side end (6a) of the silver powder-containing conductive layer is 0.5 mm. Of FIG. 1 was obtained.

【0036】さらに該単板コンデンサ素子(8)の4枚
を重ねて、同じ銀ペーストを用いて接合し、リードフレ
ーム(銅合金)(9)上に載置し、銀ペーストで接合し
て図2に示す積層型コンデンサ素子(10)を得た。陽
極接合後、該積層素子全体をエポキシ樹脂(住友ベーク
ライト社製EME−7320A)で封止し、120℃で
定格電圧を印加して2時間エージングを行い、合計30
個の積層型固体電解コンデンサを作製した。このコンデ
ンサ素子について、初期特性として120Hzにおける
容量と損失係数(tanδ×100%)、コンデンサの
交流に対する抵抗性を示すインピーダンスの指標となる
100kHZにおける等価直列抵抗(ESR)、それに
漏れ電流(LC)を測定した。なお、漏れ電流は定格電
圧を印可して1分後に測定した。表1にこれらの測定値
の平均値と、6μA以上の漏れ電流を不良とした時の不
良率、およびリフロー試験結果を示した。ここで、漏れ
電流の平均値は不良品を除いて計算した値であり、リフ
ロー試験は230℃の温度領域を30秒通過させること
により行ない、12μA以上を不良品とし、300μA
以上をショートとした。
Further, four sheets of the single-plate capacitor element (8) are overlapped, joined using the same silver paste, placed on a lead frame (copper alloy) (9), and joined with a silver paste. 2 was obtained. After anodic bonding, the entire laminated element was sealed with an epoxy resin (EME-7320A manufactured by Sumitomo Bakelite Co., Ltd.), and a rated voltage was applied at 120 ° C. and aging was performed for 2 hours.
A number of multilayer solid electrolytic capacitors were manufactured. For this capacitor element, the capacitance and loss coefficient at 120 Hz (tan δ × 100%), the equivalent series resistance (ESR) at 100 kHz, which is an index of impedance indicating the resistance of the capacitor to alternating current, and the leakage current (LC) are described as initial characteristics. It was measured. The leakage current was measured one minute after applying the rated voltage. Table 1 shows an average value of these measured values, a defective rate when a leakage current of 6 μA or more was determined to be defective, and a reflow test result. Here, the average value of the leakage current is a value calculated excluding defective products. The reflow test is performed by passing through a temperature region of 230 ° C. for 30 seconds.
The above was regarded as short.

【0037】実施例2:絶縁層の陰極側端部(3a)と
銀ペースト層の絶縁側端部(6a)の間隔t1を1.0m
mとした以外は実施例1と同様な方法でコンデンサを作
製し評価した。その結果を表1に示す。
Example 2 The interval t 1 between the cathode side end (3a) of the insulating layer and the insulating side end (6a) of the silver paste layer was 1.0 m.
A capacitor was prepared and evaluated in the same manner as in Example 1 except that m was used. Table 1 shows the results.

【0038】実施例3:絶縁層の陰極側端部と銀ペース
ト層の絶縁側端部の間隔t1=1.4mm程度とした以外
は実施例1と同様な方法でコンデンサを作製し評価し
た。その結果を表1に示す。
Example 3 A capacitor was prepared and evaluated in the same manner as in Example 1, except that the distance t 1 between the cathode side end of the insulating layer and the insulating side end of the silver paste layer was about 1.4 mm. . Table 1 shows the results.

【0039】実施例4:実施例2のアントラキノン−2
−スルホン酸ナトリウムの代わりに、4−モルホリンプ
ロパンスルホン酸ナトリウムを用いた以外は、実施例2
と同様にして実施例4のコンデンサを作製し評価した。
その結果を表1に示す。
Example 4: Anthraquinone-2 of Example 2
Example 2 except that sodium 4-morpholinepropanesulfonate was used instead of sodium sulfonate
The capacitor of Example 4 was produced and evaluated in the same manner as described above.
Table 1 shows the results.

【0040】実施例5:実施例2のアントラキノン−2
−スルホン酸ナトリウムの代わりに、アントラセン−1
−スルホン酸ナトリウムを用いた以外は、実施例2と同
様にして実施例5のコンデンサを作製し評価した。その
結果を表1に示す。
Example 5: Anthraquinone-2 of Example 2
Anthracene-1 instead of sodium sulfonate
-A capacitor of Example 5 was prepared and evaluated in the same manner as in Example 2 except that sodium sulfonate was used. Table 1 shows the results.

【0041】実施例6:実施例2のアントラキノン−2
−スルホン酸ナトリウムの代わりに、1−ナフタレンス
ルホン酸ナトリウムを用い、3,4−エチレンジオキシ
チオフェンの代わりにN−メチルピロールを用いた以外
は、実施例2と同様にして実施例6のコンデンサを作製
し評価した。その結果を表1に示す。
Example 6: Anthraquinone-2 of Example 2
-The capacitor of Example 6 was repeated in the same manner as in Example 2 except that sodium 1-naphthalenesulfonate was used instead of sodium sulfonate and N-methylpyrrole was used instead of 3,4-ethylenedioxythiophene. Was prepared and evaluated. Table 1 shows the results.

【0042】比較例1:絶縁層の陰極側端部と金属粉含
有導電性層(銀ペースト層)の絶縁側端部の間隔t1
0mmとした以外は実施例1と同様な方法でコンデンサ
を作製し評価した。その結果を表1に示す。
Comparative Example 1: Distance t 1 between the cathode end of the insulating layer and the insulating end of the metal powder-containing conductive layer (silver paste layer) =
A capacitor was prepared and evaluated in the same manner as in Example 1 except that the distance was set to 0 mm. Table 1 shows the results.

【0043】比較例2:絶縁層の陰極側端部と銀ペース
ト層の絶縁側端部の間隔t1=2.0mmとして形成した
以外は実施例1と同様な方法でコンデンサを作製し評価
した。その結果を表1に示す。
Comparative Example 2 A capacitor was prepared and evaluated in the same manner as in Example 1 except that the interval between the cathode end of the insulating layer and the insulating end of the silver paste layer was set to t 1 = 2.0 mm. . Table 1 shows the results.

【0044】比較例3:図3に示すように、カーボンペ
ースト層の上に設ける銀ペースト層が絶縁層の陰極側端
部からt2=0.5mm分はみ出して絶縁層を覆うように
形成した以外は実施例1と同様な方法でコンデンサを作
製し評価した。その結果を表1に示す。
Comparative Example 3: As shown in FIG. 3, the silver paste layer provided on the carbon paste layer was formed so as to protrude from the end of the insulating layer on the cathode side by t 2 = 0.5 mm to cover the insulating layer. Except for this, a capacitor was prepared and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明によれば、カーボンペースト層と
その上の金属粉含有導電性層とからなる導電体層の金属
粉含有導電性層をカーボンペースト層の領域内に形成す
ることにより、また前記金属粉含有導電性層を前記絶縁
層の陰極側端部と間隔をおいて設けることにより、イン
ピーダンスが低く、かつリフロー半田付け等で発生する
熱的応力や機械的応力を受けても、漏れ電流が増大しな
い優れたコンデンサを提供することができる。
According to the present invention, a metal powder-containing conductive layer of a conductor layer comprising a carbon paste layer and a metal powder-containing conductive layer thereon is formed in a region of the carbon paste layer. Further, by providing the metal powder-containing conductive layer at a distance from the cathode side end of the insulating layer, the impedance is low, and even when subjected to thermal stress or mechanical stress generated by reflow soldering or the like, An excellent capacitor that does not increase leakage current can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の固体電解コンデンサ素子構造の断面
図。
FIG. 1 is a cross-sectional view of a solid electrolytic capacitor element structure according to the present invention.

【図2】 本発明の積層型固体電解コンデンサ素子の断
面図。
FIG. 2 is a cross-sectional view of the multilayer solid electrolytic capacitor element of the present invention.

【図3】 金属粉含有導電性層(銀ペースト層)がカー
ボンペースト層からはみ出た状態の比較固体電解コンデ
ンサ素子の断面図。
FIG. 3 is a cross-sectional view of a comparative solid electrolytic capacitor element in a state where a metal powder-containing conductive layer (silver paste layer) protrudes from a carbon paste layer.

【符号の説明】[Explanation of symbols]

1 陽極基体 2 誘電体皮膜 3 絶縁層 3a 絶縁層の陰極側端部 4 固体電解質層 5 カーボンペースト層 6 金属粉含有導電性層(銀ペースト層) 6a 金属粉含有導電性層(銀ペースト層)の絶縁層側
端部 7 陰極部 8 単板固体電解コンデンサ素子 9 リードフレーム 10 積層型固体電解コンデンサ
Reference Signs List 1 anode substrate 2 dielectric film 3 insulating layer 3a cathode end of insulating layer 4 solid electrolyte layer 5 carbon paste layer 6 metal powder-containing conductive layer (silver paste layer) 6a metal powder-containing conductive layer (silver paste layer) 7 Cathode section 8 Single-plate solid electrolytic capacitor element 9 Lead frame 10 Multilayer solid electrolytic capacitor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/15 H01G 9/05 F 9/00 9/24 C (72)発明者 山崎 勝彦 長野県大町市大字大町6850番地 昭和電工 株式会社大町生産・技術統括部内 (72)発明者 市村 孝志 長野県大町市大字大町6850番地 昭和電工 株式会社大町生産・技術統括部内 Fターム(参考) 4J002 AC031 AC061 AC071 AC081 AC111 BB151 BB181 BD121 BD141 BD151 BD161 BG081 CP031 CP081 DA076 FD116Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01G 9/15 H01G 9/05 F 9/00 9/24 C (72) Inventor Katsuhiko Yamazaki 6850 Omachi Omachi, Omachi City, Nagano Prefecture Address Showa Denko Co., Ltd. Omachi Production & Technology Division (72) Inventor Takashi Ichimura 6850 Omachi Omachi, Omachi City, Nagano Prefecture Showa Denko Co., Ltd. Omachi Production & Technology Division F-term (reference) BD121 BD141 BD151 BD161 BG081 CP031 CP081 DA076 FD116

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 所定の形状に裁断された表面に誘電体皮
膜を有する弁作用金属基板の端部を陽極とし、前記弁作
用金属基板上に所定幅の絶縁層を周設して、その絶縁層
を境に前記陽極の反対側の基板上全面に固体電解質層及
びカーボンペースト層とその上の金属粉含有導電性層と
からなる導電体層を順次形成して陰極とするコンデンサ
素子において、前記金属粉含有導電性層がカーボンペー
スト層の領域内に設けられていることを特徴とする固体
電解コンデンサ素子。
1. An end portion of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape is used as an anode, and an insulating layer having a predetermined width is provided on the valve metal substrate to form an insulating layer. A capacitor element as a cathode by sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a metal powder-containing conductive layer thereon on the entire surface of the substrate opposite to the anode with the layer as a boundary, A solid electrolytic capacitor element, wherein a metal powder-containing conductive layer is provided in a region of a carbon paste layer.
【請求項2】 所定の形状に裁断された表面に誘電体皮
膜を有する弁作用金属基板の端部を陽極とし、前記弁作
用金属基板上に所定幅の絶縁層を周設して、その絶縁層
を境に前記陽極の反対側の基板上全面に固体電解質層及
びカーボンペースト層とその上の金属粉含有導電性層と
からなる導電体層を順次形成して陰極とするコンデンサ
素子において、前記金属粉含有導電性層が前記絶縁層の
陰極側端部と間隔をおいて設けられていることを特徴と
する固体電解コンデンサ素子。
2. An end portion of a valve action metal substrate having a dielectric film on a surface cut into a predetermined shape is used as an anode, and an insulation layer having a predetermined width is provided on the valve action metal substrate to form an insulation layer. A capacitor element as a cathode by sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a metal powder-containing conductive layer thereon on the entire surface of the substrate opposite to the anode with the layer as a boundary, A solid electrolytic capacitor element, wherein a metal powder-containing conductive layer is provided at a distance from a cathode end of the insulating layer.
【請求項3】 前記金属粉含有導電性層と前記絶縁層の
陰極側端部との間隔が、前記陰極部の全体の長さの1/
10〜1/2である請求項2に記載の固体電解コンデン
サ素子。
3. The distance between the metal powder-containing conductive layer and the end of the insulating layer on the cathode side is 1/1 of the entire length of the cathode section.
The solid electrolytic capacitor element according to claim 2, wherein the ratio is 10 to 1/2.
【請求項4】 前記金属粉含有導電性層と前記絶縁層の
陰極側端部との間隔が、0.1〜1.5mmである請求項
2または3に記載の固体電解コンデンサ素子。
4. The solid electrolytic capacitor element according to claim 2, wherein a distance between the metal powder-containing conductive layer and a cathode side end of the insulating layer is 0.1 to 1.5 mm.
【請求項5】 前記金属粉含有導電性層が、金属粉末か
らなる導電性充填材及びバインダーの主成分としてのフ
ッ素系ゴムを含む請求項1に記載の固体電解コンデンサ
素子。
5. The solid electrolytic capacitor element according to claim 1, wherein the metal powder-containing conductive layer contains a conductive filler made of metal powder and a fluorine-based rubber as a main component of a binder.
【請求項6】 バインダーの80質量%以上がフッ素系
ゴムである請求項5に記載の固体電解コンデンサ素子。
6. The solid electrolytic capacitor element according to claim 5, wherein 80% by mass or more of the binder is a fluorine rubber.
【請求項7】 導電性充填材の80質量%以上が銀粉で
ある請求項5に記載の固体電解コンデンサ素子。
7. The solid electrolytic capacitor element according to claim 5, wherein 80% by mass or more of the conductive filler is silver powder.
【請求項8】 前記金属分含有導電性層が、導電性充填
材50〜95質量%及びバインダー5〜50質量%から
なる請求項5に記載の固体電解コンデンサ素子。
8. The solid electrolytic capacitor element according to claim 5, wherein the metal-containing conductive layer comprises 50 to 95% by mass of a conductive filler and 5 to 50% by mass of a binder.
【請求項9】 カーボンペースト層が、導電性カーボン
材料、バインダー及び溶媒を主要成分とし、前記導電性
カーボン材料の80質量%以上が人造黒鉛であり、前記
バインダーがゴム弾性を有する材料を含む請求項1に記
載の固体電解コンデンサ素子。
9. The carbon paste layer comprising a conductive carbon material, a binder and a solvent as main components, at least 80% by mass of the conductive carbon material is artificial graphite, and the binder includes a material having rubber elasticity. Item 2. The solid electrolytic capacitor element according to Item 1.
【請求項10】 弁作用金属が、平板状または箔状であ
る請求項1に記載の固体電解コンデンサ素子。
10. The solid electrolytic capacitor element according to claim 1, wherein the valve metal is in a plate shape or a foil shape.
【請求項11】 弁作用金属がアルミニウム、タンタ
ル、ニオブ、及びチタンから選ばれる単体金属、または
これらの合金である請求項1に記載の固体電解コンデン
サ素子。
11. The solid electrolytic capacitor element according to claim 1, wherein the valve metal is a single metal selected from aluminum, tantalum, niobium, and titanium, or an alloy thereof.
【請求項12】 固体電解質層が、導電性重合体層であ
る請求項1に記載の固体電解コンデンサ素子。
12. The solid electrolytic capacitor element according to claim 1, wherein the solid electrolyte layer is a conductive polymer layer.
【請求項13】 導電性重合体層が、複素五員環を含む
化合物の重合体である請求項12に記載の固体電解コン
デンサ素子。
13. The solid electrolytic capacitor element according to claim 12, wherein the conductive polymer layer is a polymer of a compound containing a five-membered heterocyclic ring.
【請求項14】 複素五員環を含む化合物がチオフェン
骨格を有する化合物である請求項13に記載の固体電解
コンデンサ素子。
14. The solid electrolytic capacitor element according to claim 13, wherein the compound containing a five-membered heterocyclic ring is a compound having a thiophene skeleton.
【請求項15】 導電性重合体層がポリ(3,4−エチ
レンジオキシチオフェン)を含む請求項12に記載の固
体電解コンデンサ素子。
15. The solid electrolytic capacitor element according to claim 12, wherein the conductive polymer layer contains poly (3,4-ethylenedioxythiophene).
【請求項16】 請求項1乃至15のいずれかに記載の
コンデンサ素子をリードフレーム上に1つ以上載置し接
合してなることを特徴とする固体電解コンデンサ。
16. A solid electrolytic capacitor comprising one or more capacitor elements according to claim 1 mounted on a lead frame and joined.
【請求項17】 所定の形状に裁断された表面に誘電体
皮膜を有する弁作用金属基板の陽極となる端部を区切る
位置に所定幅の絶縁層を周設する工程、前記絶縁層を境
に前記陽極の反対側の基板上全面に固体電解質層及びカ
ーボンペースト層とその上の金属粉含有導電性層とから
なる導電体層を順次形成する工程を有するコンデンサ素
子の製造方法において、前記金属粉含有導電性層をカー
ボンペースト層の領域内に設けることを特徴とする固体
電解コンデンサ素子の製造方法。
17. A step of providing an insulating layer having a predetermined width at a position separating an end serving as an anode of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape; A method for manufacturing a capacitor element, comprising a step of sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a conductive layer containing a metal powder thereon on the entire surface of the substrate opposite to the anode. A method for manufacturing a solid electrolytic capacitor element, wherein a conductive layer containing carbon is provided in a region of a carbon paste layer.
【請求項18】 所定の形状に裁断された表面に誘電体
皮膜を有する弁作用金属基板の陽極となる端部を区切る
位置に所定幅の絶縁層を周設する工程、前記絶縁層を境
に前記陽極の反対側の基板上全面に固体電解質層及びカ
ーボンペースト層とその上の金属粉含有導電性層とから
なる導電体層を順次形成する工程を有するコンデンサ素
子の製造方法において、前記金属粉含有導電性層を前記
絶縁層の陰極側端部と間隔をおいて設けることを特徴と
する固体電解コンデンサ素子の製造方法。
18. A step of providing an insulating layer having a predetermined width at a position separating an end serving as an anode of a valve metal substrate having a dielectric film on a surface cut into a predetermined shape. A method for manufacturing a capacitor element, comprising a step of sequentially forming a conductor layer composed of a solid electrolyte layer and a carbon paste layer and a conductive layer containing a metal powder thereon on the entire surface of the substrate opposite to the anode. A method for manufacturing a solid electrolytic capacitor element, comprising: providing a conductive layer containing a material at an interval from a cathode end of the insulating layer.
JP2000207172A 2000-07-07 2000-07-07 Solid electrolytic capacitor element and manufacturing method thereof Expired - Lifetime JP4655339B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000207172A JP4655339B2 (en) 2000-07-07 2000-07-07 Solid electrolytic capacitor element and manufacturing method thereof
US09/899,992 US6449140B1 (en) 2000-07-07 2001-07-09 Solid electrolytic capacitor element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207172A JP4655339B2 (en) 2000-07-07 2000-07-07 Solid electrolytic capacitor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002025863A true JP2002025863A (en) 2002-01-25
JP4655339B2 JP4655339B2 (en) 2011-03-23

Family

ID=18703978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207172A Expired - Lifetime JP4655339B2 (en) 2000-07-07 2000-07-07 Solid electrolytic capacitor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4655339B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101562A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Chip solid electrolytic capacitor and its manufacturing method
JP2010267866A (en) * 2009-05-15 2010-11-25 Murata Mfg Co Ltd Solid electrolytic capacitor
JP2011155236A (en) * 2009-12-28 2011-08-11 Murata Mfg Co Ltd Solid-state electrolytic capacitor element and method for manufacturing the same
JPWO2013088954A1 (en) * 2011-12-14 2015-04-27 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
CN113874972A (en) * 2019-05-31 2021-12-31 松下知识产权经营株式会社 Electrolytic capacitor
WO2023026709A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
WO2023026708A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
US12027322B2 (en) 2019-05-31 2024-07-02 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101373A (en) * 1987-10-13 1989-04-19 Daiso Co Ltd Electrically conductive composition
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0260118A (en) * 1988-08-25 1990-02-28 Nitsuko Corp Solid electrolytic capacitor
JPH0620877A (en) * 1992-03-02 1994-01-28 Du Pont Japan Ltd Tantalum solid electrolytic capacitor
JPH06267798A (en) * 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JPH11135379A (en) * 1997-10-31 1999-05-21 Junji Ito Porous electrode and its manufacture
JP2000068158A (en) * 1998-06-11 2000-03-03 Showa Denko Kk Single plate capacitor element and laminated solid electrolytic capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101373A (en) * 1987-10-13 1989-04-19 Daiso Co Ltd Electrically conductive composition
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0260118A (en) * 1988-08-25 1990-02-28 Nitsuko Corp Solid electrolytic capacitor
JPH0620877A (en) * 1992-03-02 1994-01-28 Du Pont Japan Ltd Tantalum solid electrolytic capacitor
JPH06267798A (en) * 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JPH11135379A (en) * 1997-10-31 1999-05-21 Junji Ito Porous electrode and its manufacture
JP2000068158A (en) * 1998-06-11 2000-03-03 Showa Denko Kk Single plate capacitor element and laminated solid electrolytic capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101562A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Chip solid electrolytic capacitor and its manufacturing method
CN101887807B (en) * 2009-05-15 2013-06-12 株式会社村田制作所 Solid electrolytic capacitor element and solid electrolytic capacitor
JP2010267866A (en) * 2009-05-15 2010-11-25 Murata Mfg Co Ltd Solid electrolytic capacitor
KR101116120B1 (en) * 2009-05-15 2012-03-13 가부시키가이샤 무라타 세이사쿠쇼 Solid electrolytic capacitor element and solid electrolytic capacitor
US8482902B2 (en) 2009-12-28 2013-07-09 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor element and manufacturing method therefor
KR101142312B1 (en) 2009-12-28 2012-05-17 가부시키가이샤 무라타 세이사쿠쇼 Solid electrolytic capacitor element and method for producing solid electrolytic capacitor element
JP2011155236A (en) * 2009-12-28 2011-08-11 Murata Mfg Co Ltd Solid-state electrolytic capacitor element and method for manufacturing the same
JPWO2013088954A1 (en) * 2011-12-14 2015-04-27 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
CN113874972A (en) * 2019-05-31 2021-12-31 松下知识产权经营株式会社 Electrolytic capacitor
US11756738B2 (en) 2019-05-31 2023-09-12 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
CN113874972B (en) * 2019-05-31 2023-12-15 松下知识产权经营株式会社 Electrolytic capacitor
US12027322B2 (en) 2019-05-31 2024-07-02 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
WO2023026709A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
WO2023026708A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element

Also Published As

Publication number Publication date
JP4655339B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US6449140B1 (en) Solid electrolytic capacitor element and method for producing the same
KR101142312B1 (en) Solid electrolytic capacitor element and method for producing solid electrolytic capacitor element
US7060205B2 (en) Solid electrolytic capacitor and method for producing the same
JP5679275B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6819691B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
TWI410993B (en) Solid electrolytic capacitors
WO1999065044A1 (en) Sheet capacitor element and laminated solid electrolytic capacitor
JP2010034384A (en) Method of manufacturing solid-state electrolytic capacitor
EP1158551B1 (en) Solid electrolytic capacitor and its production method
KR101442339B1 (en) Solid electrolytic condenser and method for manufacturing the same
JP7473537B2 (en) Solid Electrolytic Capacitors
US6556427B2 (en) Solid electrolytic capacitor and method for producing the same
JP4655339B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
WO2018123525A1 (en) Electrolytic capacitor
JP4478906B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5020020B2 (en) Manufacturing method of solid electrolytic capacitor
JP4505774B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4900851B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP4501270B2 (en) Capacitor lead wire and solid electrolytic capacitor using the same
JP2022156883A (en) Conductive paste for solid electrolytic capacitors, solid electrolytic capacitor, and manufacturing method thereof
JP4811709B2 (en) Method for manufacturing solid electrolytic capacitor element
JP4845835B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002299171A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2002299172A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term