JP2002022685A - Method for quantitatively analyzing organic compound in metal surface treatment liquid and method for controlling concentration of organic compound - Google Patents

Method for quantitatively analyzing organic compound in metal surface treatment liquid and method for controlling concentration of organic compound

Info

Publication number
JP2002022685A
JP2002022685A JP2000207796A JP2000207796A JP2002022685A JP 2002022685 A JP2002022685 A JP 2002022685A JP 2000207796 A JP2000207796 A JP 2000207796A JP 2000207796 A JP2000207796 A JP 2000207796A JP 2002022685 A JP2002022685 A JP 2002022685A
Authority
JP
Japan
Prior art keywords
organic compound
metal surface
surface treatment
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000207796A
Other languages
Japanese (ja)
Other versions
JP3614088B2 (en
Inventor
Makoto Shimura
眞 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000207796A priority Critical patent/JP3614088B2/en
Publication of JP2002022685A publication Critical patent/JP2002022685A/en
Application granted granted Critical
Publication of JP3614088B2 publication Critical patent/JP3614088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for quantitatively analyzing an organic compound in a metal surface treatment liquid and a method for controlling the concentration of the organic compound. SOLUTION: The organic compound is quantitatively analyzed with respect to a supernatant liquid, which is obtained by precipitating paramagnetic metal ions in the metal surface treatment liquid, by hydrogen nucleus nuclear magnetic resonance analysis to calculate the concentration of the organic compound and the organic compound is supplied and added while the concentration of the organic compound is monitored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属表面処理液中
の有機化合物の定量分析方法および該分析結果を活用す
る金属表面処理液中の有機化合物の濃度管理方法に関す
るものである。
The present invention relates to a method for quantitatively analyzing an organic compound in a metal surface treatment solution and a method for controlling the concentration of the organic compound in the metal surface treatment solution utilizing the results of the analysis.

【0002】[0002]

【従来の技術】自動車、家電製品、建材等に用いられる
鋼板は、耐食性、加工性、表面外観等の特性を付与する
ために、めっき、化成処理といった金属表面処理を施さ
れることが多い。この場合、金属表面処理液中に種々の
有機化合物が添加される。例えば、亜鉛−ニッケル合金
めっき鋼板の表面外観を優れたものにするために、めっ
き液に非イオン性界面活性剤であるポリエチレングリコ
ール、孤立電子対を持つ化合物、さらには炭素−炭素二
重結合を有する化合物を添加することが知られている
(特開平9−49097号公報)。
2. Description of the Related Art Steel sheets used for automobiles, home appliances, building materials and the like are often subjected to metal surface treatments such as plating and chemical conversion in order to impart properties such as corrosion resistance, workability, and surface appearance. In this case, various organic compounds are added to the metal surface treatment liquid. For example, in order to improve the surface appearance of a zinc-nickel alloy-plated steel sheet, a nonionic surfactant, polyethylene glycol, a compound having a lone pair of electrons, and a carbon-carbon double bond are added to the plating solution. It is known to add a compound having the same (JP-A-9-49097).

【0003】添加した有機化合物が十分な効果を発揮す
るためには、それぞれの金属表面処理液中における濃度
が適正でなければならない。しかし、金属表面処理を継
続している間に、金属表面処理液中の有機化合物の滅失
や化学反応のために、有機化合物の濃度変化があり、有
機化合物がもたらす効果が変動し、したがって金属表面
処理鋼板の特性、品質も変動する。有機化合物の適正濃
度を維持するために、有機化合物の補充または金属表面
処理液の追加補充あるいは全量置換が行われる。
In order for the added organic compound to exhibit a sufficient effect, the concentration in each metal surface treatment solution must be appropriate. However, while the metal surface treatment is continued, the concentration of the organic compound changes due to the loss or chemical reaction of the organic compound in the metal surface treatment solution, and the effect of the organic compound fluctuates. The characteristics and quality of the treated steel sheet also vary. In order to maintain an appropriate concentration of the organic compound, replenishment of the organic compound, additional replenishment of the metal surface treatment solution, or total replacement is performed.

【0004】従来、有機化合物の補充量は、操業時間の
経過、または金属表面処理鋼板の品質を見て決定されて
いた。従来法は、間接的であり、また経験的な要素に依
存しているため、金属表面処理鋼板の品質の安定化には
不十分であった。また、有機化合物は種類によって、滅
失や濃度変化の挙動も異なるため、従来法では、個々の
有機化合物について補充量を決定できなかった。結果と
して、金属表面処理鋼板の品質とコストに不利を及ぼし
ていた。このような不具合を防ぐために、金属表面処理
液中の有機化合物の濃度を随時監視し、適宜管理する必
要があり、有機化合物を簡単に定量分析する方法が必要
になる。
Heretofore, the replenishment amount of the organic compound has been determined in view of the elapse of the operation time or the quality of the metal surface-treated steel sheet. The conventional methods are indirect and rely on empirical factors, and thus are insufficient for stabilizing the quality of metal-treated steel sheets. Further, since the behavior of loss and concentration change of the organic compound differs depending on the kind, the replenishment amount cannot be determined for each organic compound by the conventional method. As a result, the quality and cost of the metal surface treated steel sheet were disadvantageously affected. In order to prevent such inconveniences, it is necessary to monitor the concentration of the organic compound in the metal surface treatment liquid as needed, and to appropriately manage the concentration, and a method for easily quantitatively analyzing the organic compound is required.

【0005】例えば、有機化合物を吸光光度法で定量分
析する場合には、有機化合物を金属表面処理液から有機
溶媒で抽出分離する必要がある。しかし、表面外観を改
善するために金属表面処理液に添加される有機化合物の
多くは、水溶性が大きく、適当な有機溶媒が存在しない
問題がある。また、高速液体クロマトグラフィー(HP
LC)を用いて、定量分析する試みにおいても、マトリ
ックスと有機化合物および有機化合物同士の分離が不完
全で、これを定量分析に用いることは困難であった。ま
た、有機化合物の金属表面処理液中濃度は0.1mmo
l/l程度であり、HPLCでの分離が可能であったと
しても、紫外吸収による検出には濃度が低過ぎる問題が
あった。有機化合物を誘導体とした後、HPLCで分
離、検出する方法も考えられるが、しかし、有機化合物
を金属表面処理液から分離せずに一斉に誘導体とする適
切な方法は見当たらない。
For example, when an organic compound is quantitatively analyzed by a spectrophotometric method, it is necessary to extract and separate the organic compound from a metal surface treatment solution with an organic solvent. However, many of the organic compounds added to the metal surface treatment solution to improve the surface appearance have a large water solubility, and there is a problem that a suitable organic solvent does not exist. In addition, high performance liquid chromatography (HP
Even in an attempt to perform a quantitative analysis using LC), the separation of the matrix from the organic compound and the organic compound was incomplete, and it was difficult to use this in the quantitative analysis. The concentration of the organic compound in the metal surface treatment solution is 0.1 mmo.
It was about 1 / l, and even if separation by HPLC was possible, there was a problem that the concentration was too low for detection by ultraviolet absorption. A method is also conceivable in which an organic compound is converted into a derivative and then separated and detected by HPLC. However, no suitable method has been found to simultaneously convert the organic compound into a derivative without separating it from the metal surface treatment solution.

【0006】一方、有機化合物を金属表面処理液から分
離することなく、1H−核磁気共鳴(以後1H−NMR
と記述する)分析法により分別定量分析する場合には、
金属表面処理液中に測定を妨害する常磁性物質、特に常
磁性金属イオンが共存することが多いので、金属表面処
理液をそのまま分析に供することが出来なかった。この
ように、金属表面処理液中の有機化合物の濃度を定量分
析出来る方法は従来知られていない。
On the other hand, without separating an organic compound from a metal surface treatment solution, 1H-nuclear magnetic resonance (hereinafter 1H-NMR)
If the analysis method is used for quantitative analysis,
Since a paramagnetic substance that interferes with the measurement, particularly paramagnetic metal ions, often coexists in the metal surface treatment solution, the metal surface treatment solution could not be directly used for analysis. As described above, a method capable of quantitatively analyzing the concentration of the organic compound in the metal surface treatment solution has not been known.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明は
金属表面処理液中の有機化合物の濃度を定量分析出来る
方法を新規に提供し、もって、金属表面処理液中の有機
化合物の濃度の管理を可能ならしめる方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a novel method for quantitatively analyzing the concentration of an organic compound in a metal surface treatment solution, thereby controlling the concentration of the organic compound in the metal surface treatment solution. It aims to provide a way to make it possible.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記目的を
達成するために鋭意検討した結果、1H−NMRにおい
て、金属表面処理液から有機化合物を分離することな
く、有機化合物を定量分析する方法を見出し、本発明に
至った。本発明は、金属表面処理液中の有機化合物を1
H−NMRにより定量分析するに当たり、金属表面処理
液中の常磁性金属イオンを沈殿処理した後、得られた上
澄み液の1H−NMRスペクトルを測定することを特徴
とする金属表面処理液中の有機化合物の定量分析方法で
ある。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, quantitatively analyze the organic compound in 1H-NMR without separating the organic compound from the metal surface treatment solution. A method was found and led to the present invention. In the present invention, the organic compound in the metal surface treatment solution is reduced to 1
In the quantitative analysis by H-NMR, after the paramagnetic metal ion in the metal surface treatment solution is subjected to precipitation treatment, the 1H-NMR spectrum of the obtained supernatant is measured, and the organic content in the metal surface treatment solution is measured. This is a quantitative analysis method for compounds.

【0009】好ましい本発明は、金属表面処理液が塩化
亜鉛、塩化ニッケルおよび塩化カリウムを主体とするめ
っき液であることを特徴とする前記の金属表面処理液中
の有機化合物の定量分析方法である。
A preferred embodiment of the present invention is the method for quantitatively analyzing an organic compound in a metal surface treatment solution, wherein the metal surface treatment solution is a plating solution mainly composed of zinc chloride, nickel chloride and potassium chloride. .

【0010】好ましい本発明は、有機化合物がポリエチ
レングリコール、チオ尿素、フマル酸、フマル酸塩、マ
レイン酸、マレイン酸塩およびアリルスルホン酸からな
る群より選ばれる少なくとも一つを含有する有機化合物
であることを特徴とする前記の金属表面処理液中の有機
化合物の定量分析方法である。
[0010] A preferred embodiment of the present invention is an organic compound containing at least one selected from the group consisting of polyethylene glycol, thiourea, fumaric acid, fumarate, maleic acid, maleate and allylsulfonic acid. A method for quantitative analysis of an organic compound in the metal surface treatment solution, wherein

【0011】好ましい本発明は、金属表面処理液に、濃
硫酸および無水硫酸ナトリウムを添加して沈殿処理する
ことを特徴とする前記の金属表面処理液中の有機化合物
の定量分析方法である。
The preferred present invention is the above-mentioned method for quantitatively analyzing an organic compound in a metal surface treatment liquid, wherein concentrated sulfuric acid and anhydrous sodium sulfate are added to the metal surface treatment liquid for precipitation treatment.

【0012】好ましい本発明は、1H−NMRスペクト
ル測定用溶液に加えた内部標準物質の1H−NMRシグ
ナルと有機化合物の1H−NMRシグナルの積分値の比
を用いて、有機化合物の濃度を決定することを特徴とす
る前記の金属表面処理液中の有機化合物の定量分析方法
である。
In a preferred aspect of the present invention, the concentration of the organic compound is determined by using the ratio of the integrated value of the 1H-NMR signal of the internal standard substance and the 1H-NMR signal of the organic compound added to the solution for 1H-NMR spectrum measurement. A method for quantitative analysis of an organic compound in the metal surface treatment solution, wherein

【0013】好ましい本発明は、チオ尿素を定量分析す
る際に、チオ尿素をあらかじめS−アルキル置換誘導体
に変換した後、該誘導体の1H−NMRスペクトルを測
定することを特徴とする前記の金属表面処理液中の有機
化合物の定量分析方法である。
[0013] In a preferred aspect of the present invention, the thiourea is converted to an S-alkyl-substituted derivative in advance in quantitative analysis of the thiourea, and then the 1H-NMR spectrum of the derivative is measured. This is a quantitative analysis method for an organic compound in a treatment liquid.

【0014】好ましい本発明は、前記の方法によって、
金属表面処理液中の有機化合物を定量分析した結果に基
づいて、金属表面処理液中への該有機化合物の補充添加
量を決定することを特徴とする金属表面処理液中の有機
化合物の濃度管理方法である。
According to a preferred embodiment of the present invention,
Controlling the concentration of the organic compound in the metal surface treatment liquid, wherein the replenishment addition amount of the organic compound to the metal surface treatment liquid is determined based on the result of quantitative analysis of the organic compound in the metal surface treatment liquid. Is the way.

【0015】[0015]

【発明の実施の形態】以下に、本発明を塩化亜鉛、塩化
ニッケルおよび塩化カリウムを主体とするめっき液を例
にとり、詳細に説明する。NMR分析する場合、試料中
に常磁性物質が共存すると分析が妨害される。該めっき
液には、高濃度のNi2+(0.5mol/l程度)が含
まれており、そのままではNMR分析が不可能である。
本発明者は、該めっき液に高濃度の硫酸イオンを加える
ことにより大部分のNi2+を硫酸塩として沈殿させ、該
めっき液中のNi2+をNMRスペクトルの解析が十分可
能な程度まで低減させ、もって、NMRスペクトルの測
定を可能にしたものである。なお、該めっき液には、ポ
リエチレングリコール、チオ尿素、フマル酸、フマル酸
塩、マレイン酸、マレイン酸塩およびアリルスルホン酸
からなる群より選ばれる少なくとも一つの有機化合物が
含有されている。具体的手順を以下に示すが、これに限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail by taking a plating solution mainly composed of zinc chloride, nickel chloride and potassium chloride as an example. In the case of NMR analysis, coexistence of a paramagnetic substance in a sample hinders the analysis. The plating solution contains a high concentration of Ni 2+ (about 0.5 mol / l), and it is impossible to perform NMR analysis as it is.
The present inventor added a large concentration of sulfate ions to the plating solution to precipitate most of Ni 2+ as sulfate, and reduced the Ni 2+ in the plating solution to an extent that NMR spectrum analysis was sufficiently possible. This makes it possible to measure the NMR spectrum. The plating solution contains at least one organic compound selected from the group consisting of polyethylene glycol, thiourea, fumaric acid, fumarate, maleic acid, maleate and allylsulfonic acid. The specific procedure is shown below, but is not limited thereto.

【0016】(1) めっき液をろ紙でろ過し、浮遊ご
みおよびスラッジ等を取り除き、一定量(例えば6m
l)のろ液をふた付きの容器に採取する。好ましくは、
これに1H−NMR分析における定量用内部標準物質を
既知量添加する。内部標準物質は1H−NMRシグナル
がめっき液中に存在する他の化合物(有機化合物、水、
その他)のシグナルと重ならないこと、および水溶性で
あることが好ましく、実用的には、1.8〜2.8pp
mのみにシグナルが現れる化合物であることが好まし
い。具体的にはアセトン、アセトニトリル、ジメチルス
ルホキシド(DMSO)等を挙げることが出来る。な
お、内部標準物質を水あるいは重水で適当な濃度に希釈
した溶液を作成しておき、該溶液を一定量分析試料に添
加するようにすると試料溶液の調製が容易である。
(1) The plating solution is filtered with a filter paper to remove floating dust and sludge, etc.
Collect the filtrate of 1) in a container with a lid. Preferably,
A known amount of an internal standard substance for quantification in 1H-NMR analysis is added thereto. The internal standard substance is a compound in which a 1H-NMR signal is present in the plating solution (organic compound, water,
Other) and preferably water-soluble, and practically 1.8 to 2.8 pp
It is preferable that the compound shows a signal only in m. Specific examples include acetone, acetonitrile, dimethyl sulfoxide (DMSO), and the like. A sample solution can be easily prepared by preparing a solution in which an internal standard substance is diluted to an appropriate concentration with water or heavy water, and adding a certain amount of the solution to an analysis sample.

【0017】(2) 内部標準物質を添加した試料溶液
に濃硫酸400μlおよび無水硫酸ナトリウム3gを加
え、容器にふたをして激しく振り混ぜ、硫酸ニッケルを
沈殿させる。同時に硫酸亜鉛も沈殿する。硫酸ニッケル
を十分析出、沈降させるため一晩静置する。硫酸ナトリ
ウムは試料溶液の金属イオンを硫酸塩として飽和させる
に十分な量であればよく、特に制限されない。硫酸ナト
リウムの水和物を使用することも出来るが、試料溶液を
水で希釈することになるので、無水硫酸ナトリウムの方
が好ましい。また、前記のように少量(100〜600
μl程度)の濃硫酸を合わせて添加する方が、硫酸ニッ
ケルの沈殿生成がより十分になるので好ましい。Ni2+
を除去するために硫酸イオン以外の陰イオン、例えば、
リン酸イオンも使用することが出来る。ただし、リン酸
イオンの場合は、細かく、かさ高いリン酸ニッケルの沈
殿が生成し、試料溶液からの分離が容易でないことがあ
る。
(2) 400 μl of concentrated sulfuric acid and 3 g of anhydrous sodium sulfate are added to the sample solution to which the internal standard substance has been added, and the vessel is covered and shaken vigorously to precipitate nickel sulfate. At the same time, zinc sulfate also precipitates. Leave overnight to precipitate and settle the nickel sulfate. Sodium sulfate is not particularly limited as long as it is an amount sufficient to saturate metal ions of the sample solution as sulfate. Although a hydrate of sodium sulfate can be used, anhydrous sodium sulfate is preferred because the sample solution is diluted with water. In addition, as described above, a small amount (100 to 600
(approximately μl) of concentrated sulfuric acid is preferably added because precipitation of nickel sulfate is more sufficient. Ni 2+
To remove anions other than sulfate ions, for example,
Phosphate ions can also be used. However, in the case of phosphate ions, fine and bulky precipitates of nickel phosphate are formed, and separation from the sample solution may not be easy.

【0018】(3) 硫酸ニッケルの沈殿を静置沈降さ
せた試料溶液の上澄み液350μlを採り出し、これに
重水350μlを混合してNMR分析用溶液とした。重
水はNMR分析時のロック溶媒であり、重水濃度が低過
ぎると分析の安定性に問題が生じる。一方、重水濃度を
高くすると相対的に試料濃度が下がり分析感度の点で不
利になる。重水の量は分析用溶液の全量を700mlと
したとき200〜500μl程度であるのが好ましい。
また、該試料中の分析対象化合物(有機化合物)濃度は
0.1mmol/l以下なので、十分な感度で分析する
にはフーリエ変換NMR装置の使用が好ましい。上記分
析用溶液を用いて1H−NMRスペクトルの測定を行う
が、水の巨大なシグナルを抑制するため、ホモゲートデ
カップリング法を用いて測定するのが好ましい。
(3) 350 μl of the supernatant of the sample solution in which the precipitate of nickel sulfate was allowed to settle and was taken out, and mixed with 350 μl of heavy water to prepare a solution for NMR analysis. Heavy water is a lock solvent at the time of NMR analysis, and if the concentration of heavy water is too low, there is a problem in the stability of the analysis. On the other hand, when the concentration of heavy water is increased, the concentration of the sample is relatively decreased, which is disadvantageous in terms of analytical sensitivity. The amount of heavy water is preferably about 200 to 500 μl when the total amount of the solution for analysis is 700 ml.
In addition, since the concentration of the compound to be analyzed (organic compound) in the sample is 0.1 mmol / l or less, it is preferable to use a Fourier transform NMR apparatus for analysis with sufficient sensitivity. The 1H-NMR spectrum is measured using the above-described analysis solution, but is preferably measured using a homogate decoupling method in order to suppress a huge signal of water.

【0019】(4) 得られた1H−NMRスペクトル
の各有機化合物に対応するシグナル面積と内部標準物質
に対応するシグナル面積の比から、各有機化合物と内部
標準物質のモル比を求め、該比、用いた試料(めっき
液)の量、および内部標準物質の添加量から各有機化合
物のめっき液中の濃度を求めた。
(4) From the ratio of the signal area corresponding to each organic compound to the signal area corresponding to the internal standard substance in the obtained 1H-NMR spectrum, the molar ratio between each organic compound and the internal standard substance was determined. The concentration of each organic compound in the plating solution was determined from the amount of the sample (plating solution) used and the amount of the internal standard substance added.

【0020】(5)[チオ尿素の定量分析] チオ尿素中の水素は、重水と水素交換するため、前記
(1)〜(3)の処理をしただけで測定した1H−NM
Rスペクトルにはシグナルが現れないので、チオ尿素の
定量分析が出来ない。そこで、チオ尿素の定量分析が必
要な場合には、下記の処理を追加して実施する。
(5) [Quantitative analysis of thiourea] Since hydrogen in thiourea exchanges hydrogen with heavy water, 1H-NM was measured only by the treatment of (1) to (3).
Since no signal appears in the R spectrum, quantitative analysis of thiourea cannot be performed. Therefore, when quantitative analysis of thiourea is required, the following processing is additionally performed.

【0021】前記(1)〜(2)の処理で得た上澄み液
1.5mlを採取し、これにエタノール1.5mlおよ
びヨウ化メチル0.5mlを加え、遮光して室温で反応
させる。遮光はヨウ化メチルの光分解を防止するためで
ある。また、反応時間が短いと反応が十分進行せず、逆
に1日懸ければ反応が十分に進行して終点に達する。十
分に定量的な分析結果を得るには、6〜24時間反応さ
せるのが好ましい。エタノールおよび過剰のヨウ化メチ
ルを蒸発除去した後、前記(3)以降の処理を行う。該
処理は、チオ尿素のイオウ原子をS−メチル化するため
であり、反応式は下記の通りである。 (H2 N)2 C=S+CH3 I→[(H2 N)2 CSCH3 + - この−SCH3 基の水素核を1H−NMRで測定するこ
とによりチオ尿素の定量が可能になる。
1.5 ml of the supernatant obtained by the treatments (1) and (2) is collected, and 1.5 ml of ethanol and 0.5 ml of methyl iodide are added thereto. Shading is to prevent photodecomposition of methyl iodide. On the other hand, if the reaction time is short, the reaction does not proceed sufficiently. Conversely, if the reaction lasts for one day, the reaction proceeds sufficiently to reach the end point. In order to obtain a sufficiently quantitative analysis result, the reaction is preferably performed for 6 to 24 hours. After the ethanol and excess methyl iodide are removed by evaporation, the above-mentioned treatment (3) and thereafter are performed. This treatment is for S-methylation of the sulfur atom of thiourea, and the reaction formula is as follows. (H 2 N) 2 C = S + CH 3 I → [(H 2 N) 2 CSCH 3] + I - allows the quantification of thiourea by measuring hydrogen nucleus of the -SCH 3 groups with IH-NMR .

【0022】(6)(めっき液中の有機化合物の濃度管
理) 前記(1)〜(4)または(1)〜(5)の手順で、随
時処理、分析した有機化合物の濃度を基に、有機化合物
の追加補充量を決定し、適宜有機表面処理液に有機化合
物を追加補充して、有機化合物の濃度を所定濃度に戻
す。これを反復継続することにより、金属表面処理亜鉛
−ニッケルめっき鋼板の品質管理が極めて容易になる。
(6) (Concentration control of organic compound in plating solution) In the procedure of (1) to (4) or (1) to (5), based on the concentration of the organic compound which is optionally treated and analyzed, An additional replenishment amount of the organic compound is determined, and the organic compound is appropriately replenished to the organic surface treatment solution to return the concentration of the organic compound to a predetermined concentration. By repeating this, the quality control of the metal surface-treated zinc-nickel plated steel sheet becomes extremely easy.

【0023】本発明の方法は、その他の各種化成処理液
中の有機化合物の濃度管理にも適用出来る。本発明の方
法は、積極的に金属表面処理液に添加した有機化合物の
濃度管理に適用出来ることはもちろん、不可避的に処理
液中に取り込まれた有機化合物、例えば被処理物に付着
した有機化合物が金属表面処理液にもちこまれる場合の
不純物管理にも適用出来る。
The method of the present invention can also be applied to control the concentration of organic compounds in various other chemical conversion treatment solutions. The method of the present invention can be applied not only to the concentration control of the organic compound positively added to the metal surface treatment liquid, but also to the organic compound unavoidably taken into the treatment liquid, for example, the organic compound attached to the object to be treated. Can also be applied to impurity control in the case where is introduced into the metal surface treatment liquid.

【0024】[0024]

【実施例】(実施例1) [電気亜鉛−ニッケルめっき液中のポリエチレングリコ
ール、プロパンスルホン酸イオンおよびアリルスルホン
酸ナトリウムの定量分析]有機化合物としてポリエチレ
ングリコール(平均分子量600)、アリルスルホン酸
ナトリウムおよびチオ尿素を含む電気亜鉛−ニッケルめ
っき浴から試料(めっき液)を採取した。試料をNo.
5Cろ紙でろ過して得たろ液6.00mlをスクリュー
キャップ付きバイアルに取り、これにDMSO1.00
%(v/v)重水溶液200μlを加えた。さらに濃硫
酸400μlおよび無水硫酸ナトリウム3gを加えて激
しく攪拌した後、一晩静置した。上澄み液300μlを
採り、重水300μlを加えて混合し、NMR測定用溶
液とした。
EXAMPLES (Example 1) [Quantitative Analysis of Polyethylene Glycol, Propane Sulfonate Ion and Sodium Allylsulfonate in Electrogalvanic-Ni Nickel Plating Solution] Polyethylene glycol (average molecular weight: 600), sodium allylsulfonate and A sample (plating solution) was collected from an electrozinc-nickel plating bath containing thiourea. The sample was no.
6.00 ml of the filtrate obtained by filtration through a 5C filter paper was placed in a vial with a screw cap, and DMSO 1.00 was added thereto.
200 μl of a% (v / v) heavy aqueous solution was added. Further, 400 μl of concentrated sulfuric acid and 3 g of anhydrous sodium sulfate were added, and the mixture was stirred vigorously, and then allowed to stand overnight. 300 μl of the supernatant was taken, 300 μl of heavy water was added and mixed to obtain a solution for NMR measurement.

【0025】1H−NMRはフーリエ変換NMR測定装
置(1H共鳴周波数270MHz)を用い、水のシグナ
ルをホモゲートデカップリング法で照射しながら測定し
た。試料採取回数は1000〜15000回程度であ
る。得られた1H−NMRスペクトルの一例を図1に示
す。化学シフトの基準にはDMSOを用いた。第1図の
スペクトルには、ポリエチレングリコール、アリルスル
ホン酸イオンおよび内部標準物質であるDMSOのシグ
ナルの他にプロパンスルホン酸イオンに帰属するシグナ
ルが認められた。プロパンスルホン酸イオンは電気めっ
き進行とともにアリルスルホン酸イオンの炭素−炭素二
重結合に水素が付加して生成したものである。また、8
ppm付近のシグナルはめっき液中に元々存在していた
不純物(フェニル系化合物)によるものである。
1H-NMR was measured using a Fourier transform NMR measuring apparatus (1H resonance frequency 270 MHz) while irradiating a water signal by a homogate decoupling method. The number of times of sampling is about 1000 to 15000 times. One example of the obtained 1H-NMR spectrum is shown in FIG. DMSO was used as a standard for chemical shift. In the spectrum of FIG. 1, a signal belonging to propanesulfonic acid ion was recognized in addition to the signal of polyethylene glycol, allylsulfonic acid ion and DMSO which is an internal standard substance. Propanesulfonic acid ion is generated by adding hydrogen to the carbon-carbon double bond of allylsulfonic acid ion with the progress of electroplating. Also, 8
The signal around ppm is due to impurities (phenyl compounds) originally present in the plating solution.

【0026】有機化合物の濃度は、図1に例示される各
化合物のシグナルの面積から、下記の計算により求め
た。シグナルの面積は、当該シグナル近傍のベースライ
ン上の積分値を求める方法によって求めた。この場合の
シグナルの面積を模式図として示すと、図2に示すハッ
チング部分のようになる。図2は、シグナル1およびシ
グナル2が近接している場合を示すものである。
The concentration of the organic compound was determined by the following calculation from the signal area of each compound illustrated in FIG. The area of the signal was determined by a method of calculating an integrated value on a baseline near the signal. The area of the signal in this case is schematically shown as a hatched portion shown in FIG. FIG. 2 shows a case where signal 1 and signal 2 are close to each other.

【0027】[1] まず、用いた有機化合物原液をD
MSO−d6に溶解し、その1H−NMRスペクトルを
別途測定して、有機化合物として用いたポリエチレング
リコールのオキシエチレン基水素シグナルの面積(A−
POEと表す)と末端水酸基水素シグナルの面積(A−
OHと表す)の比(A−OH/A−POE)を求めた。
本実施例の場合A−OH/A−POE=1.99/5
3.6である。
[1] First, the used organic compound stock solution was added to D
The compound was dissolved in MSO-d6, and its 1H-NMR spectrum was measured separately to determine the area of the oxyethylene group hydrogen signal (A-
POE) and the area of the terminal hydroxyl hydrogen signal (A-
OH) (A-OH / A-POE).
In the case of the present embodiment, A-OH / A-POE = 1.99 / 5
3.6.

【0028】[2] 定量に用いるシグナルは、図1に
おいて、アリルスルホン酸イオン(CH2 =CHCH2
SO3 −:2H)約5.4ppm、プロパンスルホン酸
イオン(CH3 CH2 CH2 SO3 −:3H)約0.9
5ppm、ポリエチレングルコール(HO(CH2 CH
2 O)n H)約3.7ppm、およびDMSO 2.7
1ppmとする。
[2] The signal used for the quantification is shown in FIG. 1 as an allyl sulfonate ion (CH 2 CHCHCH 2
SO 3 −: 2H) about 5.4 ppm, propanesulfonic acid ion (CH 3 CH 2 CH 2 SO 3 −: 3H) about 0.9
5 ppm, polyethylene glycol (HO (CH 2 CH
2 O) n H) about 3.7 ppm, and DMSO 2.7
1 ppm.

【0029】[3] 試料採取量(ml)をVS、内部
標準物質として添加したDMSOの量(モル数)をQ−
DMSOで表す。また、アリルスルホン酸イオン、プロ
パンスルホン酸イオン、ポリエチレングルコールおよび
DMSOについての定量用シグナルの面積をそれぞれA
−ASA、A−PSA、A−POE、A−DMSOと表
す。
[3] The sampling amount (ml) was VS, and the amount (mol) of DMSO added as an internal standard substance was Q-
Expressed as DMSO. In addition, the area of the quantitative signal for allyl sulfonate ion, propane sulfonate ion, polyethylene glycol and DMSO was A
-Represented as ASA, A-PSA, A-POE, A-DMSO.

【0030】[4] めっき液中の各有機化合物の濃度
(mol/l)、すなわち、ポリエチレングルコール、
アリルスルホン酸イオン、およびプロパンスルホン酸イ
オンの濃度(それぞれC−POE、C−ASA、C−P
SAと表す)は下記のように表すことが出来る。 C−POE=[A−POE×(A−OH/A−POE)×1/2]/ (A−DMSO/6)×Q−DMSO×(1000/VS) C−ASA=[(A−ASA/2)/(A−DMSO/6)]×Q− DMSO×(1000/VS) C−PSA=[(A−PSA/3)/(A−DMSO/6)]×Q− DMSO×(1000/VS)
[4] The concentration (mol / l) of each organic compound in the plating solution, that is, polyethylene glycol,
The concentration of allyl sulfonate ion and propane sulfonate ion (C-POE, C-ASA, CP
SA) can be represented as follows. C-POE = [A-POE × (A-OH / A-POE) × 1/2] / (A-DMSO / 6) × Q-DMSO × (1000 / VS) C-ASA = [(A-ASA / 2) / (A-DMSO / 6)] × Q-DMSO × (1000 / VS) C-PSA = [(A-PSA / 3) / (A-DMSO / 6)] × Q-DMSO × (1000 / VS)

【0031】1H−NMRスペクトルおよび前記〜
から求めた有機化合物の濃度の例を表1に示した。以上
のように本発明の方法を用いて、電気亜鉛−ニッケルめ
っき液中の有機化合物の定量分析が出来た。本発明の方
法を用いて定量分析して得た結果を用いて、個々の有機
化合物の濃度を管理することが出来る。例えばポリエチ
レングリコール濃度に着目してその濃度が保たれるよう
に有機化合物を追加補充した時点を表1に*印で示し
た。
1H-NMR spectrum and
Table 1 shows examples of the concentration of the organic compound obtained from the above. As described above, the quantitative analysis of the organic compound in the electrolytic zinc-nickel plating solution was performed by using the method of the present invention. Using the results obtained by the quantitative analysis using the method of the present invention, the concentration of each organic compound can be controlled. For example, the point at which the organic compound was additionally supplemented so as to maintain the concentration by focusing on the polyethylene glycol concentration is indicated by an asterisk (*) in Table 1.

【0032】(実施例2) [電気亜鉛−ニッケルめっき液中のポリエチレングリコ
ール、アリルスルホン酸ナトリウムおよびチオ尿素の定
量](添加回収実験) 電気亜鉛−ニッケルめっき液6mlにチオ尿素10.5
mgを添加し、試料を調製した。実施例1と同様に、硫
酸および硫酸ナトリウムを加えて沈殿処理した後の上澄
み液1.5mlにエタノール1.5mlおよびヨウ化メ
チル0.5mlを加えて攪拌し、室温、遮光下で18時
間反応させた。混合物の上澄み液約2mlを採り出し、
温風を吹き付けてエタノールおよび過剰のヨウ化メチル
を蒸発除去した。残った溶液から350μlを採取し、
重水350μlと混合し、1H−NMRスペクトルを測
定した。スペクトルを図3に示す。2.38ppmのシ
グナルは、[(H2 N)2 CSCH3 ]+ - の−S−
CH3 シグナルであり、このシグナルと内部標準物質D
MSOシグナルの面積比から下記の方法でチオ尿素の濃
度を計算した。
(Example 2) [Quantitative determination of polyethylene glycol, sodium allyl sulfonate and thiourea in electrogalvanized nickel-nickel plating solution] (addition and recovery experiment)
mg was added to prepare a sample. After adding sulfuric acid and sodium sulfate and precipitating as in Example 1, 1.5 ml of ethanol and 0.5 ml of methyl iodide were added to 1.5 ml of the supernatant, and the mixture was stirred and reacted at room temperature under light shielding for 18 hours. I let it. Take about 2 ml of the supernatant of the mixture,
Ethanol and excess methyl iodide were evaporated off by blowing hot air. Take 350 μl from the remaining solution,
After mixing with 350 μl of heavy water, the 1H-NMR spectrum was measured. The spectrum is shown in FIG. Signal 2.38ppm is, [(H2 N) 2 CSCH3 ] + I - Bruno -S-
CH3 signal, and this signal and internal standard substance D
The thiourea concentration was calculated from the area ratio of the MSO signal by the following method.

【0033】[7] 定量に用いるシグナルは[(H2
N)2 CSCH3 ]+ (2.38ppm)およびDMS
O(2.71ppm)とする。 [8] 試料採取量(ml)をVS、内部標準物質とし
て添加したDMSOの量(モル数)をQ−DMSOで表
す。また、[(H2 N)2 CSCH3 ]+ およびDMS
Oについての定量用シグナルの面積をそれぞれA−T
U、A−DMSOと表す。
[7] The signal used for quantification is [(H2
N) 2 CSCH3] + (2.38 ppm) and DMS
O (2.71 ppm). [8] The sampled amount (ml) is represented by VS, and the amount (mol number) of DMSO added as an internal standard is represented by Q-DMSO. [(H2 N) 2 CSCH3] + and DMS
The area of the quantification signal for O
U, A-DMSO.

【0034】[9] チオ尿素のめっき液中濃度(mm
ol/l)は下記のように表すことが出来る。 C−TU=[(A−TU/3)/(A−DMSO/6)]×Q− DMSO×(1000/VS) 以上の測定および計算から、チオ尿素の濃度は25.3
mmol/lと計算される。チオ尿素の添加時の濃度は
23.0mmol/lであるから、本発明の方法により
ほぼ満足出来る結果が得られたことになる。
[9] Thiourea concentration in plating solution (mm
ol / l) can be expressed as follows. C-TU = [(A-TU / 3) / (A-DMSO / 6)] × Q-DMSO × (1000 / VS) From the above measurements and calculations, the concentration of thiourea was 25.3.
Calculated as mmol / l. Since the concentration at the time of the addition of thiourea was 23.0 mmol / l, almost satisfactory results were obtained by the method of the present invention.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明は、金属表面処理液に添加した有
機化合物の濃度を知るための定量分析方法を新規に提供
し、例えば鋼板用亜鉛−ニッケルめっき液に添加して用
いる有機化合物の定量分析を容易に行うことを可能にし
た。その結果、金属表面処理中に変動する金属表面処理
液中の有機化合物の濃度管理が可能となり、例えば、表
面外観が優れた表面処理亜鉛−ニッケルめっき鋼板を安
定して製造することが出来るので、工業的価値は大き
い。
The present invention provides a novel quantitative analysis method for determining the concentration of an organic compound added to a metal surface treatment solution, for example, the determination of an organic compound to be used by adding to a zinc-nickel plating solution for steel sheets. The analysis has been made easier. As a result, it becomes possible to control the concentration of the organic compound in the metal surface treatment solution that fluctuates during the metal surface treatment, and for example, it is possible to stably produce a surface-treated zinc-nickel plated steel sheet having an excellent surface appearance. The industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の1H−NMRスペクトル図。FIG. 1 is a 1H-NMR spectrum chart of Example 1.

【図2】 1H−NMRスペクトル図のシグナルの拡大
模式図。
FIG. 2 is an enlarged schematic diagram of a signal in a 1H-NMR spectrum diagram.

【図3】 実施例2の1H−NMRスペクトル図。FIG. 3 is a 1H-NMR spectrum chart of Example 2.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属表面処理液中の有機化合物を水素核核
磁気共鳴分析法により定量分析するに当たり、金属表面
処理液中の常磁性金属イオンを沈殿処理した後、得られ
た上澄み液の1H−核磁気共鳴吸収スペクトルを測定す
ることを特徴とする金属表面処理液中の有機化合物の定
量分析方法。
1. When quantitatively analyzing an organic compound in a metal surface treatment solution by hydrogen nuclear magnetic resonance spectroscopy, paramagnetic metal ions in the metal surface treatment solution are subjected to a precipitation treatment, and 1H of the resulting supernatant is obtained. -A method for quantitatively analyzing an organic compound in a metal surface treatment solution, comprising measuring a nuclear magnetic resonance absorption spectrum.
【請求項2】金属表面処理液が塩化亜鉛、塩化ニッケル
および塩化カリウムを主体とするめっき液であることを
特徴とする請求項1に記載の金属表面処理液中の有機化
合物の定量分析方法。
2. The method for quantitatively analyzing an organic compound in a metal surface treatment solution according to claim 1, wherein the metal surface treatment solution is a plating solution mainly composed of zinc chloride, nickel chloride and potassium chloride.
【請求項3】有機化合物がポリエチレングリコール、チ
オ尿素、フマル酸、フマル酸塩、マレイン酸、マレイン
酸塩およびアリルスルホン酸からなる群より選ばれる少
なくとも一つを含有する有機化合物であることを特徴と
する請求項1または請求項2に記載の金属表面処理液中
の有機化合物の定量分析方法。
3. The organic compound is an organic compound containing at least one selected from the group consisting of polyethylene glycol, thiourea, fumaric acid, fumarate, maleic acid, maleate and allylsulfonic acid. The method for quantitatively analyzing an organic compound in a metal surface treatment solution according to claim 1 or 2.
【請求項4】金属表面処理液に、濃硫酸および無水硫酸
ナトリウムを添加して沈殿処理することを特徴とする請
求項1〜請求項3のいずれかに記載の金属表面処理液中
の有機化合物の定量分析方法。
4. The organic compound in a metal surface treatment liquid according to claim 1, wherein concentrated sulfuric acid and anhydrous sodium sulfate are added to the metal surface treatment liquid to perform a precipitation treatment. Quantitative analysis method.
【請求項5】1H−核磁気共鳴吸収スペクトル測定用溶
液に加えた内部標準物質の1H−核磁気共鳴吸収シグナ
ルと有機化合物の1H−核磁気共鳴吸収シグナルの積分
値の比を用いて、有機化合物の濃度を決定することを特
徴とする請求項1〜請求項4のいずれかに記載の金属表
面処理液中の有機化合物の定量分析方法。
5. The method according to claim 1, wherein the ratio of the integrated value of the 1H-nuclear magnetic resonance absorption signal of the internal standard substance and the integrated value of the 1H-nuclear magnetic resonance absorption signal of the organic compound added to the solution for measuring the 1H-nuclear magnetic resonance absorption spectrum is determined. The method for quantitatively analyzing an organic compound in a metal surface treatment solution according to any one of claims 1 to 4, wherein the concentration of the compound is determined.
【請求項6】チオ尿素を定量分析する際に、チオ尿素を
あらかじめS−アルキル置換誘導体に変換した後、該誘
導体の1H−核磁気共鳴吸収分析スペクトルを測定する
ことを特徴とする請求項3〜請求項5のいずれかに記載
の金属表面処理液中の有機化合物の定量分析方法。
6. The quantitative analysis of thiourea, wherein the thiourea is converted into an S-alkyl-substituted derivative in advance, and a 1H-nuclear magnetic resonance absorption spectrum of the derivative is measured. A method for quantitatively analyzing an organic compound in a metal surface treatment liquid according to any one of claims 1 to 5.
【請求項7】請求項1〜請求項6に記載のいずれかの方
法によって、金属表面処理液中の有機化合物を定量分析
した結果に基づいて、金属表面処理液中への前記有機化
合物の補充添加量を決定することを特徴とする金属表面
処理液中の有機化合物の濃度管理方法。
7. A method for replenishing an organic compound in a metal surface treatment liquid based on a result of quantitative analysis of the organic compound in the metal surface treatment liquid by any one of the methods according to claim 1 to 7. A method for controlling the concentration of an organic compound in a metal surface treatment solution, comprising determining the amount of addition.
JP2000207796A 2000-07-10 2000-07-10 Method for quantitative analysis and concentration control of organic compounds in metal surface treatment liquid Expired - Fee Related JP3614088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207796A JP3614088B2 (en) 2000-07-10 2000-07-10 Method for quantitative analysis and concentration control of organic compounds in metal surface treatment liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207796A JP3614088B2 (en) 2000-07-10 2000-07-10 Method for quantitative analysis and concentration control of organic compounds in metal surface treatment liquid

Publications (2)

Publication Number Publication Date
JP2002022685A true JP2002022685A (en) 2002-01-23
JP3614088B2 JP3614088B2 (en) 2005-01-26

Family

ID=18704500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207796A Expired - Fee Related JP3614088B2 (en) 2000-07-10 2000-07-10 Method for quantitative analysis and concentration control of organic compounds in metal surface treatment liquid

Country Status (1)

Country Link
JP (1) JP3614088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534984A (en) * 2005-04-05 2008-08-28 本田技研工業株式会社 Method for measuring the content of single-walled carbon nanotubes in carbon soot
KR101723200B1 (en) 2015-08-31 2017-04-18 주식회사 엘지화학 Analytical method for perovskite compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534984A (en) * 2005-04-05 2008-08-28 本田技研工業株式会社 Method for measuring the content of single-walled carbon nanotubes in carbon soot
KR101723200B1 (en) 2015-08-31 2017-04-18 주식회사 엘지화학 Analytical method for perovskite compounds

Also Published As

Publication number Publication date
JP3614088B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
Moffett et al. Solvent extraction of copper acetylacetonate in studies of copper (II) speciation in seawater
Abdolmohammad-Zadeh et al. A novel microextraction technique based on 1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milk samples
EP2154531B1 (en) Method for analysis of metal sample
CN109081836B (en) Mercury ion near-infrared fluorescent probe based on hemicyanine structure and preparation method and application thereof
CN110028471B (en) Coumarin Schiff base Cu2+Fluorescent probe and preparation method and application thereof
Matsumiya et al. A novel fluorescence reagent, 10-hydroxybenzo [h] quinoline-7-sulfonate, for selective determination of beryllium (II) ion at pg cm− 3 levels
CN107698557B (en) Pyridine bipyrazole acylhydrazone derivative-based fluorescent probe and preparation method and application thereof
CN112094270B (en) Purine parent-based cadmium ion detection fluorescent probe and preparation method and application thereof
JP2002022685A (en) Method for quantitatively analyzing organic compound in metal surface treatment liquid and method for controlling concentration of organic compound
Jones The polarograph1c estimation of molybdenum in plant materials
CN107843578B (en) Fluorescent probe based on coumarin copper ion complex, preparation method and application of fluorescent probe in selective identification of pyrophosphate
JP7048620B2 (en) Method for Producing High-Purity Iridium (III) Chloride Hydrate
CN110878085A (en) Rapid high-selectivity hypobromous acid fluorescent probe, preparation method and application
Taher et al. Determination of trace amounts of iron by a simple fluorescence quenching method
Akama et al. Determination of indium in metallic zinc by flame atomic absorption spectrometry after extraction with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone
KR20090006545A (en) The method for quantitative anaylsis of uss-p and polyethylene glycol
JP2008157627A (en) Quantitative determination method for sulfonic acid type anionic surfactant in copper electrolyte or plating liquid
JP2018159681A (en) Gas detection material and gas detector
US20100255596A1 (en) Citrate analysis for electrodeposition methods
Albelda et al. Cu 2+ and AMP complexation of enlarged tripodal polyamines
CN110981748A (en) Enhanced azo Salen Schiff base fluorescent probe, synthesis and application thereof
CN110172338A (en) It is a kind of to detect the MOFs fluorescence probe of tetrabromobisphenol A, preparation method and application
JP2928672B2 (en) Fluorescent calix [4] arene derivative
CN111751335A (en) Fluorescence method for detecting fluorine ions and sensor
KR100474418B1 (en) Quantitative Method of the organic additives in chloride bath

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees