JP2002020837A - Wear resistant steel excellent in toughness and its production method - Google Patents

Wear resistant steel excellent in toughness and its production method

Info

Publication number
JP2002020837A
JP2002020837A JP2000205313A JP2000205313A JP2002020837A JP 2002020837 A JP2002020837 A JP 2002020837A JP 2000205313 A JP2000205313 A JP 2000205313A JP 2000205313 A JP2000205313 A JP 2000205313A JP 2002020837 A JP2002020837 A JP 2002020837A
Authority
JP
Japan
Prior art keywords
steel
toughness
austenite grain
less
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000205313A
Other languages
Japanese (ja)
Inventor
Teruki Sadasue
照輝 貞末
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000205313A priority Critical patent/JP2002020837A/en
Publication of JP2002020837A publication Critical patent/JP2002020837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Component Parts Of Construction Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wear resistant steel excellent in toughness of vE-40 deg.C: >=17 J in the Brinell hardness of 300 to 500 by a direct quenching and tempering treatment without adding any expensive elements, and to provide its production method. SOLUTION: Steel having a composition containing, by mass, 0.05 to 0.40% C, 0.1 to 0.8% Si, 0.5 to 2.0% Mn, 0.1 to 2.0% Cr, 0.005 to 0.5% Ti, 0.0005 to 0.005% B, 0.005 to 0.10% Al and <=0.005% N, if required, further containing one or more kinds selected from Cu, Ni, Mo, V and Nb, and the balance substantially Fe with inevitable impurities is hot-rolled at a cumulative draft of >=50% in the austenite unrecrystallized region of <=900 deg.C, is directly quenched from >=Ar3 point and is subsequently tempered at 300 to Ac1 to control the old austenite grain extending degree (dL/dZ) to >=2; wherein, dZ is the old austenite grain size in the thickness direction of the steel, and dL is the old austenite grain size in the rolling direction of the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建設,土木および
鉱山等での堀削作業で用いられる産業機械、運搬機器等
に用いられる靭性に優れた耐摩耗鋼およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasion-resistant steel having excellent toughness used for industrial machines, transportation equipment and the like used for excavation work in construction, civil engineering and mining, and a method for producing the same.

【0002】[0002]

【従来の技術】建設、土木および鉱山等での堀削作業で
用いられる産業機械、運搬機器(例えば、パワーショベ
ル、ブルドーザ、大型ダンプトラック等)の土砂摩耗部
は、その摩耗量によって寿命がきまるため、耐摩耗性に
優れた鋼材が要求され、鋼材の硬度を高め、耐摩耗性を
向上させることが行われている。
2. Description of the Related Art The life of an earth and sand portion of an industrial machine or a transporting device (eg, a power shovel, a bulldozer, a large dump truck, etc.) used in construction, excavation work in civil engineering and mining, etc. is determined by the amount of wear. Therefore, a steel material having excellent wear resistance is required, and it has been performed to increase the hardness of the steel material and improve the wear resistance.

【0003】鋼材の硬度はマルテンサイト組織の場合、
鋼中C量によって一義的に決定され、硬度を高めるため
には多量のC添加を必要とするものの、靭性が著しく劣
化するという問題があった。
[0003] In the case of martensite structure, the hardness of steel
It is uniquely determined by the amount of C in steel, and although a large amount of C is required to increase hardness, there is a problem that toughness is significantly deteriorated.

【0004】そのため、焼入れ性と靭性の両者を確保す
る成分組成が検討され、更に、圧延した鋼材を空冷後に
再加熱し、旧オーステナイト粒を微細化すること、再加
熱時の旧オーステナイト粒の粗大化を析出物等で抑制す
る技術が提案されてきた。
[0004] Therefore, the composition of components for ensuring both hardenability and toughness has been studied. Further, the rolled steel material is reheated after air cooling to refine the old austenite grains, and the coarseness of the old austenite grains upon reheating. Techniques for suppressing the formation by precipitation or the like have been proposed.

【0005】特開平10−102185号公報には、オ
ーステナイト再結晶域で圧延を行い、旧オーステナイト
粒を微細化させ、その後、再加熱時にCr,Mo,Vを
固溶させ、焼入れ、焼戻しすれば、時間経過後、それら
の複合析出物が形成され耐摩耗性が向上し、靭性に有害
なC,Mn等を削減できることが記載されている。
[0005] Japanese Patent Application Laid-Open No. 10-102185 discloses that rolling is performed in an austenite recrystallization region to refine old austenite grains, and then Cr, Mo, and V are solid-dissolved during reheating, quenched, and tempered. It describes that after a lapse of time, these composite precipitates are formed, the wear resistance is improved, and C and Mn, which are harmful to toughness, can be reduced.

【0006】特開平11−71631号公報には、C量
を低下し、焼入れ性の低下はSiにより補償し、さらに
Nbのピンニング効果により再加熱時のオーステナイト
粒の粗大化を防止し、靭性を高める技術が開示されてい
る。
Japanese Patent Application Laid-Open No. 11-71631 discloses that the C content is reduced, the hardenability is compensated by Si, and the austenite grains are prevented from becoming coarse during reheating by the pinning effect of Nb, and the toughness is reduced. Techniques for enhancing are disclosed.

【0007】しかし、これらの従来技術は再加熱焼入れ
プロセスによるもので、直接焼入れと比較して製造コス
トが上昇し、また、合金元素としてCr,Mo,V,N
bの添加が必要であった。
However, these prior arts are based on a reheating quenching process, which increases the production cost as compared with direct quenching, and also includes Cr, Mo, V, and N as alloying elements.
The addition of b was required.

【0008】直接焼入れの場合、再加熱焼入れと比較し
て、再加熱処理がなく旧オーステナイト粒が粗大化し、
靭性が劣化するため、旧オーステナイト粒の微細化がポ
イントとなる。
[0008] In the case of direct quenching, compared with reheating quenching, there is no reheating treatment, and old austenite grains are coarsened.
Since toughness is deteriorated, the key point is to refine the prior austenite grains.

【0009】特開平8−41535号公報は、SiとN
bを複合添加した鋼を直接焼入れ、焼戻すことで焼戻し
脆化と焼戻し軟化を同時に抑制し、Nbによる旧オース
テナイト粒微細化で、耐摩耗性(HB500以上)と靭
性を両立させ、Moを添加して焼入れ性および靭性を更
に向上させる技術を開示している。
Japanese Patent Application Laid-Open No. 8-41535 discloses that Si and N
By directly quenching and tempering the steel to which b is added in combination, tempering embrittlement and tempering softening are suppressed at the same time, and abrasion resistance (HB 500 or more) and toughness are compatible with the austenite grain refinement by Nb, and Mo is added. Discloses a technique for further improving the hardenability and toughness.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記技
術は、Si量を増加させるため溶接部靭性が低下し、N
b,Mo等高価な元素を添加した場合は、省プロセスに
よる製造コスト低下のメリットは失われる。また、得ら
れる鋼材の硬さは、ブリネル硬さ500以上であり、建
設,土木および鉱山等での堀削作業で用いられる産業機
械、運搬機器等に用いられる耐摩耗鋼としては硬度が高
すぎ、靭性の向上が望めない。
However, in the above-mentioned technique, the toughness of the welded portion is reduced because the Si content is increased, and the N content is reduced.
When expensive elements such as b and Mo are added, the advantage of lowering the manufacturing cost due to the saving of the process is lost. The hardness of the resulting steel material is Brinell hardness of 500 or more, which is too high for wear-resistant steel used in industrial machines, transportation equipment, and the like used in excavation work in construction, civil engineering, mining, and the like. , Improvement in toughness cannot be expected.

【0011】本発明は、以上の点に鑑みなされたもの
で、高価な元素を添加せず、直接焼入れ焼戻しによりブ
リネル硬さ300〜500でvE−40℃:17J以上
の靭性に優れた耐摩耗鋼およびその製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above points, and does not add expensive elements, and has a Brinell hardness of 300 to 500 and vE- 40 ° C : excellent toughness of 17 J or more by direct quenching and tempering. An object of the present invention is to provide steel and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、耐摩耗鋼
の靭性改善について鋭意検討を行い、ブリネル硬さ30
0〜500の場合、オーステナイト未再結晶域で強圧下
を行ない、オーステナイト粒を形態制御し、直接焼入
れ、焼戻しし、焼戻しマルテンサイト組織とした場合、
優れた靭性を有する耐摩耗鋼が得られることを見出し
た。
Means for Solving the Problems The present inventors have made intensive studies on improving the toughness of wear-resistant steel and have found that the Brinell hardness is 30%.
In the case of 0 to 500, a strong reduction is performed in the austenite non-recrystallized region to control the form of the austenite grains, directly quenched, tempered, and a tempered martensite structure,
It has been found that a wear-resistant steel having excellent toughness can be obtained.

【0013】本発明は以上の知見をもとに更に検討を加
えてなされたものである。
The present invention has been made based on the above findings and further studied.

【0014】1. 下記の組織を有することを特徴とす
る、質量%で、C:0.05〜0.40%、Si:0.
1〜0.8%、Mn:0.5〜2.0%、Cr:0.1
〜2.0%、Ti:0.005〜0.5%、B:0.0
005〜0.005%、Al:0.005〜0.10
%、N:0.005%以下、残部実質的にFeおよび不
可避不純物とからなる耐摩耗鋼。
1. C: 0.05 to 0.40% by mass, Si: 0.
1 to 0.8%, Mn: 0.5 to 2.0%, Cr: 0.1
To 2.0%, Ti: 0.005 to 0.5%, B: 0.0
005-0.005%, Al: 0.005-0.10
%, N: 0.005% or less, with the balance substantially consisting of Fe and unavoidable impurities.

【0015】(1)旧オーステナイト粒展伸度(dL/
dZ):2以上の焼戻しマルテンサイト組織 但し、dZ:鋼の肉厚方向の旧オーステナイト粒径、d
L:鋼の圧延方向の旧オーステナイト粒径 2. 鋼組成として更に、質量%で、Cu:0.1〜
1.0%、Ni:0.1〜1.0%、Mo:0.1〜
1.0%、V:0.01〜0.2%の一種または二種以
上を含有する1記載の耐摩耗鋼。
(1) Old austenite grain elongation (dL /
dZ): 2 or more tempered martensite structure, where dZ: prior austenite grain size in the thickness direction of steel, d
L: Old austenite grain size in the rolling direction of steel Further, as a steel composition, Cu: 0.1 to
1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to
1. The wear-resistant steel according to 1, which contains one or more of 1.0% and V: 0.01 to 0.2%.

【0016】3. 鋼組成として更に、質量%で、N
b:0.005〜0.1%を含有する1または2記載の
耐摩耗鋼。
3. Further, as a steel composition,
b: The wear-resistant steel according to 1 or 2 containing 0.005 to 0.1%.

【0017】4. 1乃至3の何れかに記載の組成を有
する鋼を、900℃以下のオーステナイト未再結晶域に
おいて累積圧下率50%以上で熱間圧延後、直ちにAr
3点以上から焼入れし、その後300℃〜Ac1で焼戻し
することを特徴とする耐摩耗鋼の製造方法。
4. Immediately after hot rolling a steel having the composition described in any one of 1 to 3 at a cumulative rolling reduction of 50% or more in an austenite unrecrystallized region of 900 ° C. or less, Ar
A method for producing wear-resistant steel, characterized by quenching from three or more points and then tempering at 300 ° C. to Ac1.

【0018】[0018]

【発明の実施の形態】本発明の成分組成、ミクロ組織お
よび製造条件について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The component composition, microstructure and production conditions of the present invention will be described.

【0019】1.成分組成 C Cは、鋼材の硬度を高め、耐摩耗性を向上させるため添
加する。0.05%未満ではその効果が得られず、一
方、0.40%を超えると溶接性および靭性が低下し、
焼き割れおよび遅れ破壊が生じ易くなるため、0.05
%以上、0.40%以下(0.05〜0.40%)とす
る。好ましくは0.10〜0.35%とする。
1. Component Composition C C is added to increase the hardness of the steel material and improve the wear resistance. If it is less than 0.05%, the effect cannot be obtained, while if it exceeds 0.40%, weldability and toughness decrease,
Since cracking and delayed fracture tend to occur, 0.05%
% To 0.40% or less (0.05 to 0.40%). Preferably, it is 0.10 to 0.35%.

【0020】Si Siは、製鋼時の脱酸剤として作用するため添加する。
0.1%未満ではその効果が十分でなく、一方、0.8
%を超えると溶接性、および靭性を損なうため、0.1
〜0.8%とする。好ましくは0.25〜0.55%と
する。
Si Si is added because it acts as a deoxidizer during steelmaking.
If it is less than 0.1%, the effect is not sufficient.
%, The weldability and toughness are impaired.
To 0.8%. Preferably, it is 0.25 to 0.55%.

【0021】Mn Mnは、低コストで焼入れ性を高め,靭性を向上させる
ため添加する。0.5%未満ではその効果がなく、一
方、2.0%を超えると溶接性を損ない、また遅れ破壊
が生じ易くなるため、0.5〜2.0%とする。好まし
くは1.0〜1.6%とする。
Mn Mn is added at low cost to enhance hardenability and improve toughness. If it is less than 0.5%, the effect is not obtained. On the other hand, if it exceeds 2.0%, weldability is impaired and delayed fracture is liable to occur. Preferably, it is set to 1.0 to 1.6%.

【0022】Cr Crは、低コストで焼入れ性を向上させるため添加す
る。0.1%未満ではその効果が十分でなく、一方、
2.0%を超えると溶接性および靭性を損なうため、
0.1〜2.0%とする。好ましくは0.2〜1.5%
とする。
Cr Cr is added to improve hardenability at low cost. If it is less than 0.1%, the effect is not enough, while
If it exceeds 2.0%, the weldability and toughness are impaired.
0.1 to 2.0%. Preferably 0.2-1.5%
And

【0023】Ti Tiは鋼中のNと化合し、Nを固定して、Bによる焼入
れ性を確保するため、さらに、TiCの分散析出により
耐摩耗性の向上を導くため添加する。0.005%未満
ではその効果が十分でなく、一方、0.5%を超えると
製品コストが上昇するため、0.005〜0.5%とす
る。
Ti Ti is added in order to combine with N in the steel and fix N to secure hardenability by B, and to further improve wear resistance by dispersing and depositing TiC. If the content is less than 0.005%, the effect is not sufficient. On the other hand, if the content exceeds 0.5%, the product cost increases.

【0024】B Bは、微量で焼入れ性を高めるため添加する。0.00
05%未満ではその効果が得られず、一方、0.005
%を超えると溶接性を低下させ、却って焼入れ性を低下
させるため、0.0005〜0.005%とする。
BB is added in a very small amount to enhance hardenability. 0.00
At less than 05%, the effect cannot be obtained.
%, The weldability is reduced, and the hardenability is rather reduced.

【0025】Al Alは、製鋼時の脱酸材として作用するため添加する。
0.005%未満ではその効果が得られず、一方、0.
10%を超えると靭性が低下するため、0.005〜
0.10%とする。好ましくは0.015〜0.035
%とする。
Al Al is added because it acts as a deoxidizer during steelmaking.
If the content is less than 0.005%, the effect cannot be obtained.
If it exceeds 10%, the toughness is reduced.
0.10%. Preferably 0.015 to 0.035
%.

【0026】N Nは、BとBNを形成し、焼入れ性を低下させる。N含
有量が0.005%を超えると、本発明範囲内のTi量
ではNの固定が不十分となるため、0.005%以下と
する。
NN forms B and BN and lowers the hardenability. If the N content exceeds 0.005%, the amount of Ti within the range of the present invention is insufficient to fix N. Therefore, the N content is set to 0.005% or less.

【0027】本発明の基本成分組成は以上であるが、更
にその特性を向上させる場合、Cu,Ni,Mo,V,
Nbの一種または二種以上を添加することが可能であ
る。
The basic component composition of the present invention is as described above. To further improve the characteristics, Cu, Ni, Mo, V,
One or two or more types of Nb can be added.

【0028】Cu Cuは、焼入れ性を向上させるため添加する。0.1%
未満ではその効果が得られず、1.0%を超えると熱間
脆性を生じるため、0.1〜1.0%とする。好ましく
は0.1〜0.3%とする。
Cu Cu is added to improve hardenability. 0.1%
If it is less than 1.0%, the effect cannot be obtained, and if it exceeds 1.0%, hot embrittlement occurs, so the content is made 0.1 to 1.0%. Preferably, it is 0.1 to 0.3%.

【0029】Ni Niは、靭性と焼入れ性を向上させるために添加する。
0.1%未満ではその効果が得られず、1.0%を超え
ると製品価格が上昇するため、0.1〜1.0%とす
る。好ましくは0.1〜0.3%とする。
Ni Ni is added to improve toughness and hardenability.
If it is less than 0.1%, the effect cannot be obtained, and if it exceeds 1.0%, the product price increases. Preferably, it is 0.1 to 0.3%.

【0030】Mo Moは、焼入れ性を向上させるため添加する。0.1%
未満ではその効果が得られず、1.0%を超えると溶接
性および靭性を低下させるため、0.1〜1.0%とす
る。好ましくは0.1〜0.5%とする。
Mo Mo is added to improve hardenability. 0.1%
If it is less than 1.0%, the effect cannot be obtained, and if it exceeds 1.0%, the weldability and toughness are reduced. Preferably it is 0.1-0.5%.

【0031】V Vは、析出硬化により、鋼材を硬化させるため添加す
る。0.01%未満ではその効果が得られず、0.2%
を超えると溶接性を低下させるため、0.01〜0.2
%とする。好ましくは0.01〜0.1%とする。
V V is added to harden the steel material by precipitation hardening. If less than 0.01%, the effect cannot be obtained, and 0.2%
Exceeds 0.01 to 0.2 to decrease the weldability.
%. Preferably, it is 0.01 to 0.1%.

【0032】Nb Nbは、圧延時の再結晶を抑制し、圧延によるオーステ
ナイト粒の展伸を容易にし、靭性を向上させる。0.0
05%未満ではその効果が十分得られず、一方、0.1
%を超えると溶接性が低下するため、0.005〜0.
1%とする。好ましくは0.005〜0.03%とす
る。
Nb Nb suppresses recrystallization during rolling, facilitates expansion of austenite grains by rolling, and improves toughness. 0.0
If the content is less than 0.05%, the effect cannot be sufficiently obtained.
%, The weldability is reduced.
1%. Preferably it is 0.005 to 0.03%.

【0033】2.ミクロ組織 旧オーステナイト粒展伸度(dL/dZ):2以上の焼
戻しマルテンサイト組織 但し、dZ:鋼の肉厚方向の旧オーステナイト粒径、d
L:鋼の圧延方向の旧オーステナイト粒径 本発明鋼では、目的とする硬度(ブリネル硬さHB(1
0/3000):硬度300以上)を得るため、焼戻し
マルテンサイト組織とし、旧オーステナイト粒展伸度
は、優れた靭性を得るため、2以上とする。
2. Microstructure Previous austenite grain elongation (dL / dZ): tempered martensite structure of 2 or more, where dZ: old austenite grain size in the thickness direction of steel, d
L: Old austenite grain size in the rolling direction of the steel In the steel of the present invention, the target hardness (Brinell hardness HB (1
0/3000): a tempered martensite structure to obtain a hardness of 300 or more), and a prior austenite grain elongation of 2 or more to obtain excellent toughness.

【0034】図1は、本発明範囲内の組成である、質量
%で、C:0.23%,Si:0.45%、Mn:1.
55%,P:0.011%,S:0.005%、Cr:
0.31%,Ti:0.018%、B:0.0019
%,Al:0.035%、N:0.0029%,残部が
実質的に鉄及び不可避不純物よりなる鋼を、種々の条件
で圧延した後、焼戻しマルテンサイト組織とした鋼板を
用い、吸収エネルギー値、ブリネル硬さに及ぼす旧オー
ステナイト粒伸展度の影響を調査した結果を示すもので
ある。
FIG. 1 shows a composition within the range of the present invention, in terms of mass%, C: 0.23%, Si: 0.45%, Mn: 1.
55%, P: 0.011%, S: 0.005%, Cr:
0.31%, Ti: 0.018%, B: 0.0019
%, Al: 0.035%, N: 0.0029%, the balance being substantially composed of iron and unavoidable impurities, rolled under various conditions, and then using a steel sheet having a tempered martensitic structure, using a steel plate having absorbed energy. 4 shows the results of an investigation into the effect of the prior austenite grain elongation on the value and Brinell hardness.

【0035】図より、旧オーステナイト粒展伸度が、2
以上の場合、優れた靭性が得られている。また、ブリネ
ル硬さは、旧オーステナイト粒展伸度によらず約350
〜400で優れた耐摩耗性が得られる値となっている。
From the figure, it can be seen that the old austenite grain elongation is 2
In the above cases, excellent toughness is obtained. The Brinell hardness is about 350 regardless of the former austenite grain elongation.
A value of ~ 400 gives excellent wear resistance.

【0036】尚、旧オーステナイト粒の展伸度は、鋼材
の肉厚方向に沿う断面および鋼材の圧延方向に沿う断面
での旧オーステナイト粒の粒径比として求められ、例え
ば、日本工業規格JIS G 0551に規定された焼
入れ焼戻し法による熱処理粒度試験法により求められ
る。
The elongation degree of the prior austenite grains is obtained as a particle size ratio of the prior austenite grains in a cross section along the thickness direction of the steel material and a cross section along the rolling direction of the steel material. For example, Japanese Industrial Standard JIS G It is determined by a heat treatment particle size test method by a quenching and tempering method specified in 0551.

【0037】ブリネル硬さは、JIS Z 2243に
よる、鋼板表面に直径10mmの圧子を押し込んだとき
に形成されるくぼみの直径を測定するブリネル硬さ(H
B(10/3000))試験により求めた。
The Brinell hardness is measured according to JIS Z 2243 to measure the diameter of a depression formed when a 10 mm diameter indenter is pressed into the surface of a steel sheet.
B (10/3000)).

【0038】吸収エネルギーはシャルピー衝撃試験を試
験温度ー40℃で、3本の試験片で行ない、その平均値
を求め、vE−40℃:17J以上を本発明の目標値と
した。試験片は、JIS Z 2202に記載の10×
10(mm),2mmVノッチとし、採取位置は板厚中
央、採取方向は圧延方向とした。
As for the absorbed energy, a Charpy impact test was conducted at a test temperature of -40.degree. C. on three test pieces, and the average value was determined. A target value of vE-40.degree. The test piece was a 10 × described in JIS Z 2202.
The notch was 10 (mm), 2 mm V, the sampling position was the center of the plate thickness, and the sampling direction was the rolling direction.

【0039】3.製造条件 本発明鋼は、オーステナイト未再結晶域で強圧下後、直
接焼入れ、焼戻しにより製造することが好ましい。好適
製造条件について説明する。
3. Manufacturing Conditions The steel of the present invention is preferably manufactured by direct quenching and tempering after being strongly pressed in the austenite unrecrystallized region. Preferred manufacturing conditions will be described.

【0040】熱間圧延 鋼片を加熱後、熱間圧延を行う。加熱温度は、950℃
未満では、鋼の変形抵抗が高くなり、一方、1250℃
を超えると、粗大粒となり、強度および靭性の確保が困
難となるため、950〜1250℃とするのが好まし
い。
Hot Rolling After the steel slab is heated, hot rolling is performed. Heating temperature is 950 ℃
Below, the deformation resistance of the steel increases, while 1250 ° C.
If it exceeds 950, it becomes coarse, and it is difficult to ensure strength and toughness.

【0041】熱間圧延において、900℃以下のオース
テナイト未再結晶域において累積圧下率50%以上の圧
延を行う。
In the hot rolling, rolling is performed at a cumulative draft of 50% or more in an austenite unrecrystallized region at 900 ° C. or less.

【0042】旧オーステナイト粒の展伸度を2以上と
し、その形状を保持するため、オーステナイト未再結晶
域で且つ900℃以下の低温側、好ましくは850℃〜
Ar3で、累積圧下率を50%以上とする圧延を行う。
In order to maintain the shape of the prior austenite grains at a degree of elongation of 2 or more and maintain the shape thereof, the austenite is in the non-recrystallized region and at a low temperature of 900 ° C. or less, preferably 850 ° C.
Rolling is performed with Ar3 to reduce the cumulative draft to 50% or more.

【0043】図2に旧オーステナイト粒の展伸度におよ
ぼす900℃以下での累積圧下率の影響を示す。累積圧
下率50%以上とした場合、旧オーステナイト粒は展伸
度2以上になる。図3に鋼材の靭性(シャルピー吸収エ
ネルギー値)と耐摩耗性(ブリネル硬さ)に及ぼす90
0℃以下の累積圧下率の影響を示す。
FIG. 2 shows the effect of the cumulative rolling reduction at 900 ° C. or less on the elongation of the prior austenite grains. When the cumulative rolling reduction is 50% or more, the austenite grains have an elongation of 2 or more. FIG. 3 shows the effect of 90 on the toughness (Charpy absorbed energy value) and wear resistance (Brinell hardness) of steel materials.
This shows the effect of the cumulative rolling reduction below 0 ° C.

【0044】旧オーステナイト粒の展伸度が2以上とな
るように、累積圧下率を50%以上とした場合、図1と
同様の本発明の効果が得られている。供試鋼、試験方法
および靭性、耐摩耗性の評価は、図1に準じて行った。
When the cumulative rolling reduction is 50% or more so that the austenite grains have an elongation of 2 or more, the effect of the present invention similar to that of FIG. 1 is obtained. The test steel, the test method, and the evaluation of toughness and wear resistance were performed according to FIG.

【0045】熱処理 熱間圧延後、直ちにAr3点以上から焼入れし、その後
300℃〜Ac1で焼戻し未再結晶域における累積圧下
の効果を失わないように、圧延後、直ちに、焼き入れを
行う。焼入れ開始温度は、マルテンサイト単相組織とす
るためAr3以上とし、オーステナイト単相組織より焼
入れを行う。
Heat treatment After the hot rolling, quenching is performed immediately from the Ar3 point or higher, and then quenching is performed immediately after the rolling so that the effect of the cumulative reduction in the non-recrystallized region at 300 ° C. to Ac1 is maintained. The quenching start temperature is Ar3 or more in order to obtain a martensite single phase structure, and quenching is performed from an austenitic single phase structure.

【0046】焼入れ停止温度は、マルテンサイト組織と
するため、Ms点以下とすることが望ましく、冷却速度
は水焼入れなどにより、20℃/s以上とすることが望
ましい。
The quenching stop temperature is desirably equal to or lower than the Ms point to obtain a martensite structure, and the cooling rate is desirably equal to or higher than 20 ° C./s by water quenching or the like.

【0047】Ar3点、Ms点は例えば、以下の式により
求めることができる。
The Ar3 point and the Ms point can be obtained, for example, by the following equations.

【0048】Ar3(℃)=910−310C−80M
n−20Cu−15Cr−55Ni−80Mo、但し、
各元素は質量%とする。
Ar 3 (° C.) = 910-310C-80M
n-20Cu-15Cr-55Ni-80Mo, provided that
Each element is defined as mass%.

【0049】Ms(℃)=517−300C−33Mn
−22Cr−17Ni−11Mo−11Si、但し、各
元素は質量%とする。
Ms (° C.) = 517-300C-33Mn
-22Cr-17Ni-11Mo-11Si, where each element is mass%.

【0050】焼入れ後、焼戻しを300℃〜Ac1で行
う。300℃未満では、靭性が向上せず、一方、焼戻し
温度をAc1点以上とすると硬度低下が著しく、本発明
が目的とする硬度が得られない。好ましくは300〜6
50℃とする。Ac1点は例えば、Ac1(℃)=723
−14Mn+22Si−14.4Ni+23.3Crに
より求めることができる。
After quenching, tempering is performed at 300 ° C. to Ac1. If the temperature is lower than 300 ° C., the toughness is not improved. On the other hand, if the tempering temperature is higher than the Ac1 point, the hardness is significantly reduced, and the hardness targeted by the present invention cannot be obtained. Preferably 300 to 6
50 ° C. The Ac1 point is, for example, Ac1 (° C.) = 723
-14Mn + 22Si-14.4Ni + 23.3Cr.

【0051】図4は、900℃以下の累積圧下率を35
%、70%とした直接焼入れ焼戻し鋼板の靭性と硬度に
及ぼす焼戻し温度の影響を示すもので、累積圧下率70
%とした鋼板では、焼戻し温度300℃以上で優れた靭
性が得られが、Ac1点以上においては本発明が目的と
する硬度が得られない。
FIG. 4 shows that the cumulative rolling reduction under 900 ° C. is 35%.
% And 70% indicate the effect of the tempering temperature on the toughness and hardness of the direct quenched and tempered steel sheet.
%, Excellent toughness can be obtained at a tempering temperature of 300 ° C. or higher, but the desired hardness of the present invention cannot be obtained at an Ac1 point or higher.

【0052】累積圧下率が35%の鋼板では、焼戻し温
度300℃以上でも靭性の改善は認められない。尚、焼
入れ停止温度と焼戻し温度は、本発明が目的とする硬度
が得られる範囲内で、靭性を改善させるため高温とする
ことが望ましい。
With a steel sheet having a cumulative reduction of 35%, no improvement in toughness is observed even at a tempering temperature of 300 ° C. or higher. The quenching stop temperature and the tempering temperature are desirably set to high temperatures in order to improve the toughness within a range in which the hardness targeted by the present invention can be obtained.

【0053】[0053]

【実施例】[実施例1]表1に供試鋼A〜Gの化学成分
を、表2に製造条件および得られた鋼板のミクロ組織お
よび硬度、靭性を示す。供試鋼は板厚20〜100mm
の鋼板とした。
EXAMPLES Example 1 Table 1 shows the chemical components of the test steels A to G, and Table 2 shows the production conditions and the microstructure, hardness and toughness of the obtained steel sheet. The test steel is 20 to 100 mm thick
Steel plate.

【0054】組織観察は、光学顕微鏡により行ない、旧
オーステナイト粒の展伸度は、日本工業規格JIS G
0551に規定された焼入れ焼戻し法による熱処理粒
度試験法により現出させたオーステナイト粒について鋼
材の肉厚方向に沿う断面および鋼材の圧延方向に沿う断
面での粒径比として求めた。硬度およびシャルピー衝撃
試験は、図1に準拠して行った。
The structure was observed with an optical microscope, and the degree of elongation of the former austenite grains was determined according to Japanese Industrial Standard JIS G
The austenitic grains revealed by the heat treatment grain size test method according to the quenching and tempering method specified in 0551 were determined as the grain size ratio in the cross section along the thickness direction of the steel material and the cross section along the rolling direction of the steel material. The hardness and Charpy impact tests were performed according to FIG.

【0055】表2中、実施例1〜6は、本発明例であ
り、いずれもブリネル硬さは300以上、靭性は−40
℃の吸収エネルギーで17Jを大幅に上回る良好な値
で、優れた耐摩耗性と靭性が得られている。
In Table 2, Examples 1 to 6 are examples of the present invention, each having a Brinell hardness of 300 or more and a toughness of -40.
Excellent abrasion resistance and toughness are obtained at a good value significantly exceeding 17 J at an absorption energy of ° C.

【0056】比較例1〜3は、旧オーステナイト粒展伸
度が2未満の焼戻しマルテンサイト組織で、ブリネル硬
さは300以上であるが、靭性が劣っている。
Comparative Examples 1 to 3 have a tempered martensite structure in which the prior austenite grain elongation is less than 2 and have a Brinell hardness of 300 or more, but are inferior in toughness.

【0057】比較例4は、旧オーステナイト粒展伸度が
2以上の焼き入れままのマルテンサイト組織であり、耐
摩耗性は良好であるが、靭性に劣っている。
Comparative Example 4 has an as-quenched martensite structure having a prior austenite grain elongation of 2 or more, and has good wear resistance but poor toughness.

【0058】比較例5は、C量が本発明範囲外である供
試鋼Gによるもので、旧オーステナイト粒展伸度が2以
上の焼戻しマルテンサイト組織で、靭性は−40℃の吸
収エネルギーで17J以上と優れているが、ブリネル硬
さは150で耐摩耗性が劣っている。
Comparative Example 5 is based on test steel G having a C content outside the range of the present invention, and has a tempered martensite structure having a prior austenite grain elongation of 2 or more, and has a toughness at an absorption energy of -40 ° C. It is excellent at 17 J or more, but has a Brinell hardness of 150 and poor wear resistance.

【0059】比較例6は、焼入れ停止温度を、鋼種Dの
Ms点を超える550℃としたもので、旧オーステナイ
ト粒展伸度は2以上であるが、焼戻しベイナイト組織で
あり、靭性は良好なもののブリネル硬さは223と耐摩
耗性が大幅に低下している。
In Comparative Example 6, the quenching stop temperature was set to 550 ° C. exceeding the Ms point of steel type D, and the austenite grain elongation was 2 or more, but it had a tempered bainite structure and good toughness. However, the Brinell hardness was 223, and the wear resistance was significantly reduced.

【0060】比較例7は、再加熱焼入れ処理によるもの
で、ブリネル硬さは412と耐摩耗性は良好であった
が、圧延後、展伸していた旧オーステナイト粒が、再加
熱されることにより、展伸度が1.3となり、−40℃
の吸収エネルギーが16Jと大幅に低下している。
Comparative Example 7 was a result of reheating and quenching, in which the Brinell hardness was 412 and the abrasion resistance was good, but the old austenite grains that had expanded after rolling were reheated. , The elongation becomes 1.3, -40 ° C
Has a significantly reduced absorption energy of 16J.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[実施例2]実施例1と同様に、表1に示す
供試鋼A〜Gを用い、板厚20〜100mmの鋼板とし
た。
[Example 2] In the same manner as in Example 1, the test steels A to G shown in Table 1 were used to form steel plates having a thickness of 20 to 100 mm.

【0064】表3に製造条件および得られた鋼板のミク
ロ組織および硬度、靭性を示す。硬度、靭性は、実施例
1と同様の方法により評価を行った。
Table 3 shows the manufacturing conditions and the microstructure, hardness and toughness of the obtained steel sheet. Hardness and toughness were evaluated in the same manner as in Example 1.

【0065】表3中、実施例1〜6は、本発明例であ
り、いずれもブリネル硬さは300以上、靭性は−40
℃の吸収エネルギーで17Jを大幅に上回る良好な値
で、優れた耐摩耗性と靭性が得られている。
In Table 3, Examples 1 to 6 are Examples of the present invention, each having a Brinell hardness of 300 or more and a toughness of -40.
Excellent abrasion resistance and toughness are obtained at a good value significantly exceeding 17 J at an absorption energy of ° C.

【0066】比較例1は、900℃以下の累積圧下率を
50%未満とし、且つ、焼戻し温度を250℃としたも
ので、ブリネル硬さは300以上で耐摩耗性は良好であ
るが、−40℃の吸収エネルギーが17J以下と靭性に
劣っている。
In Comparative Example 1, the cumulative draft at 900 ° C. or less was less than 50%, and the tempering temperature was 250 ° C. The Brinell hardness was 300 or more and the wear resistance was good. The absorption energy at 40 ° C. is 17 J or less, which is poor in toughness.

【0067】比較例2は、焼戻し温度が300℃で、9
00℃以下の累積圧下率が50%未満であり、ブリネル
硬さが358と耐摩耗性は良好であるが、−40℃の吸
収エネルギーが12Jと著しく靭性が劣化している。
In Comparative Example 2, the tempering temperature was 300 ° C.
Although the cumulative draft at 00 ° C or less is less than 50% and the Brinell hardness is 358, the wear resistance is good, but the absorption energy at −40 ° C. is 12 J, and the toughness is significantly deteriorated.

【0068】比較例3は、焼戻しを行わなかったもの
で、ブリネル硬さは300以上で耐摩耗性は良好である
が、−40℃の吸収エネルギーが17J未満で、著しく
靭性が劣化している。
Comparative Example 3 was not subjected to tempering and had a Brinell hardness of 300 or more and good abrasion resistance. However, the absorption energy at -40 ° C. was less than 17 J, and the toughness was remarkably deteriorated. .

【0069】比較例4は、焼戻し温度が200℃で、ブ
リネル硬さは300以上で耐摩耗性は良好であるが、−
40℃の吸収エネルギーが17Jを大幅に下回り、著し
く靭性が劣化している。
In Comparative Example 4, the tempering temperature was 200 ° C., the Brinell hardness was 300 or more, and the wear resistance was good.
The absorbed energy at 40 ° C. is significantly lower than 17 J, and the toughness is significantly deteriorated.

【0070】比較例5は、C量が本発明範囲外である供
試鋼Gによるもので、靭性は−40℃の吸収エネルギー
で17Jを大幅に上回り、優れているが、ブリネル硬さ
は150で耐摩耗性が劣っている。
Comparative Example 5 is based on test steel G having a C content outside the range of the present invention. The toughness is significantly higher than 17 J at an energy absorption of -40 ° C., and the Brinell hardness is 150. And inferior wear resistance.

【0071】比較例6は、焼入れ停止温度を、鋼種Dの
Ms点を超える550℃としたもので、焼戻しベイナイ
ト組織であり、靭性は良好なもののブリネル硬さは22
3と耐摩耗性が大幅に低下している。
In Comparative Example 6, the quenching stop temperature was 550 ° C. exceeding the Ms point of steel type D, which had a tempered bainite structure and good toughness, but had a Brinell hardness of 22.
3 and the wear resistance is significantly reduced.

【0072】比較例7は、再加熱焼入れ処理によるもの
で、ブリネル硬さは412と耐摩耗性は良好であった
が、圧延後、展伸していた旧オーステナイト粒が、再加
熱されることにより、展伸度が1.3となり、−40℃
の吸収エネルギーが16Jと大幅に低下している。
Comparative Example 7 was a result of a reheating quenching treatment, in which the Brinell hardness was 412 and the wear resistance was good, but the old austenite grains that had been expanded after rolling were reheated. , The elongation becomes 1.3, -40 ° C
Has a significantly reduced absorption energy of 16J.

【0073】[0073]

【表3】 [Table 3]

【0074】[0074]

【発明の効果】本発明によれば、旧オーステナイト粒径
を伸展させた焼戻しマルテンサイト組織を有し、靭性に
優れた耐摩耗鋼および生産性に優れたその製造方法が得
られ、土木機械、産業機械等の信頼性や施工性が向上
し、産業上極めて有用である。
According to the present invention, it is possible to obtain a wear-resistant steel having a tempered martensite structure in which the prior austenite grain size is extended and having excellent toughness and a method for producing the same having excellent productivity. The reliability and workability of industrial machines and the like are improved, and they are extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐摩耗性(表面ブリネル硬さ)、靭性(−40
℃における吸収エネルギー)に及ぼす旧オーステナイト
粒展伸度の影響を示す図。
FIG. 1 Abrasion resistance (surface Brinell hardness), toughness (−40)
FIG. 2 is a graph showing the influence of the prior austenite grain elongation on the absorption energy at ℃.

【図2】旧オーステナイト粒展伸度に及ぼす累積圧下率
の影響を示す図。
FIG. 2 is a graph showing the influence of the cumulative rolling reduction on the prior austenite grain elongation.

【図3】耐摩耗性(表面ブリネル硬さ)、靭性(−40
℃における吸収エネルギー)に及ぼす累積圧下率の影響
を示す図。
FIG. 3 shows wear resistance (surface Brinell hardness) and toughness (−40)
FIG. 3 is a diagram showing the effect of the cumulative rolling reduction on the energy absorbed at ℃.

【図4】耐摩耗性(表面ブリネル硬さ)、靭性(−40
℃における吸収エネルギー)に及ぼす焼戻し温度の影響
を示す図。
FIG. 4 shows abrasion resistance (surface Brinell hardness) and toughness (−40)
The figure which shows the influence of the tempering temperature on (energy absorbed in ° C).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D015 JA06 4K032 AA01 AA02 AA04 AA05 AA11 AA12 AA16 AA21 AA31 AA35 BA01 CA02 CB02 CC03 CD03 ──────────────────────────────────────────────────の Continued on the front page F term (reference) 2D015 JA06 4K032 AA01 AA02 AA04 AA05 AA11 AA12 AA16 AA21 AA31 AA35 BA01 CA02 CB02 CC03 CD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記の組織を有することを特徴とする質
量%で、C:0.05〜0.40%、Si:0.1〜
0.8%、Mn:0.5〜2.0%、Cr:0.1〜
2.0%、Ti:0.005〜0.5%、B:0.00
05〜0.005%、Al:0.005〜0.10%、
N:0.005%以下、残部実質的にFeおよび不可避
不純物とからなる耐摩耗鋼。 (1)旧オーステナイト粒展伸度(dL/dZ):2以
上の焼戻しマルテンサイト組織 但し、dZ:鋼の肉厚方向の旧オーステナイト粒径、d
L:鋼の圧延方向の旧オーステナイト粒径
C .: 0.05 to 0.40%, Si: 0.1 to 100% by mass characterized by having the following structure:
0.8%, Mn: 0.5 to 2.0%, Cr: 0.1 to
2.0%, Ti: 0.005 to 0.5%, B: 0.00
05-0.005%, Al: 0.005-0.10%,
N: a wear-resistant steel consisting of 0.005% or less, with the balance substantially consisting of Fe and unavoidable impurities. (1) Old austenite grain elongation (dL / dZ): tempered martensite structure of 2 or more, where dZ: old austenite grain size in the thickness direction of steel, d
L: Old austenite grain size in the rolling direction of steel
【請求項2】 鋼組成として更に、質量%で、Cu:
0.1〜1.0%、Ni:0.1〜1.0%、Mo:
0.1〜1.0%、V:0.01〜0.2%の一種また
は二種以上を含有する請求項1記載の耐摩耗鋼。
2. The steel composition further comprises Cu:
0.1-1.0%, Ni: 0.1-1.0%, Mo:
The wear-resistant steel according to claim 1, containing one or more of 0.1 to 1.0% and V: 0.01 to 0.2%.
【請求項3】 鋼組成として更に、質量%で、Nb:
0.005〜0.1%を含有する請求項1または2記載
の耐摩耗鋼。
3. The steel composition further comprises Nb:
3. The wear-resistant steel according to claim 1, comprising 0.005 to 0.1%.
【請求項4】 請求項1乃至3の何れかに記載の組成を
有する鋼を、900℃以下のオーステナイト未再結晶域
において累積圧下率50%以上で熱間圧延後、直ちにA
r3点以上から焼入れし、その後300℃〜Ac1で焼戻
しすることを特徴とする耐摩耗鋼の製造方法。
4. A steel having the composition according to claim 1 is hot rolled immediately after hot rolling at a cumulative rolling reduction of 50% or more in an austenite unrecrystallized region at 900 ° C. or less.
A method for producing wear-resistant steel, characterized by quenching from r3 or more and then tempering at 300 ° C. to Ac1.
JP2000205313A 2000-07-06 2000-07-06 Wear resistant steel excellent in toughness and its production method Pending JP2002020837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205313A JP2002020837A (en) 2000-07-06 2000-07-06 Wear resistant steel excellent in toughness and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205313A JP2002020837A (en) 2000-07-06 2000-07-06 Wear resistant steel excellent in toughness and its production method

Publications (1)

Publication Number Publication Date
JP2002020837A true JP2002020837A (en) 2002-01-23

Family

ID=18702422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205313A Pending JP2002020837A (en) 2000-07-06 2000-07-06 Wear resistant steel excellent in toughness and its production method

Country Status (1)

Country Link
JP (1) JP2002020837A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556081A (en) * 2013-10-30 2014-02-05 莱芜钢铁集团有限公司 High-strength high-toughness wear-resisting steel for excavator bucket teeth and manufacturing method thereof
WO2014045552A1 (en) 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
WO2014045553A1 (en) 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
WO2015115086A1 (en) 2014-01-28 2015-08-06 Jfeスチール株式会社 Wear-resistant steel plate and process for producing same
CN104894493A (en) * 2014-03-07 2015-09-09 安徽省宁国市华达耐磨材料有限公司 Novel super-high manganese steel and modification treatment thereof
US20160010191A1 (en) * 2013-03-28 2016-01-14 Baoshan Iron & Steel Co., Ltd. High-hardness low-alloy wear-resistant steel sheet and method of manufacturing the same
CN105568141A (en) * 2016-03-09 2016-05-11 桂林电子科技大学 High-strength and high-tenacity excavator bucket tooth and production method thereof
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN106244920A (en) * 2016-08-08 2016-12-21 武汉钢铁股份有限公司 Brinell hardness 450 grade wear-resisting steel and manufacture method thereof
CN108660374A (en) * 2018-05-23 2018-10-16 山东钢铁股份有限公司 A kind of quenching aligning short route wear-resisting steel plate and preparation method thereof
WO2019132310A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor
CN110499474A (en) * 2019-08-23 2019-11-26 江阴兴澄特种钢铁有限公司 High temperature resistant 400HB wear-resisting steel plate and its production method
EP3730656A4 (en) * 2017-12-22 2020-10-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
CN113957357A (en) * 2021-10-29 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled wear-resistant steel and production method thereof
US20220042152A1 (en) * 2018-09-27 2022-02-10 Posco Abrasion resistant steel having excellent hardness and impact toughness and manufacturing method therefor
US20230052839A1 (en) * 2019-12-19 2023-02-16 Posco Wear resistant steel material with excellent cut crack resistance and method of manufacturing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045552A1 (en) 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
WO2014045553A1 (en) 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
US10208369B2 (en) * 2013-03-28 2019-02-19 Baoshan Iron & Steel Co., Ltd. High-hardness low-alloy wear-resistant steel sheet and method of manufacturing the same
US20160010191A1 (en) * 2013-03-28 2016-01-14 Baoshan Iron & Steel Co., Ltd. High-hardness low-alloy wear-resistant steel sheet and method of manufacturing the same
KR102263332B1 (en) * 2013-08-30 2021-06-14 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN103556081A (en) * 2013-10-30 2014-02-05 莱芜钢铁集团有限公司 High-strength high-toughness wear-resisting steel for excavator bucket teeth and manufacturing method thereof
CN103556081B (en) * 2013-10-30 2015-12-30 莱芜钢铁集团有限公司 A kind of wear-resisting excavator bucket teeth steel of high-strength and high ductility and manufacture method thereof
WO2015115086A1 (en) 2014-01-28 2015-08-06 Jfeスチール株式会社 Wear-resistant steel plate and process for producing same
KR20160113683A (en) 2014-01-28 2016-09-30 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate and process for producing same
US10662493B2 (en) 2014-01-28 2020-05-26 Jfe Steel Corporation Abrasion-resistant steel plate and method for manufacturing the same
CN104894493A (en) * 2014-03-07 2015-09-09 安徽省宁国市华达耐磨材料有限公司 Novel super-high manganese steel and modification treatment thereof
CN105568141A (en) * 2016-03-09 2016-05-11 桂林电子科技大学 High-strength and high-tenacity excavator bucket tooth and production method thereof
CN106244920A (en) * 2016-08-08 2016-12-21 武汉钢铁股份有限公司 Brinell hardness 450 grade wear-resisting steel and manufacture method thereof
EP3730656A4 (en) * 2017-12-22 2020-10-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
US11371125B2 (en) 2017-12-22 2022-06-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2019132310A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor
CN108660374A (en) * 2018-05-23 2018-10-16 山东钢铁股份有限公司 A kind of quenching aligning short route wear-resisting steel plate and preparation method thereof
US20220042152A1 (en) * 2018-09-27 2022-02-10 Posco Abrasion resistant steel having excellent hardness and impact toughness and manufacturing method therefor
CN110499474A (en) * 2019-08-23 2019-11-26 江阴兴澄特种钢铁有限公司 High temperature resistant 400HB wear-resisting steel plate and its production method
US20230052839A1 (en) * 2019-12-19 2023-02-16 Posco Wear resistant steel material with excellent cut crack resistance and method of manufacturing same
CN113957357A (en) * 2021-10-29 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled wear-resistant steel and production method thereof

Similar Documents

Publication Publication Date Title
KR101165654B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4238832B2 (en) Abrasion-resistant steel plate and method for producing the same
KR20130025947A (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP2011179122A (en) Wear-resistant steel sheet excellent in low temperature toughness
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP2002256382A (en) Wear resistant steel sheet and production method therefor
JP2004300474A (en) Abrasion resistant steel and manufacturing method therefor
JP2002115024A (en) Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP3736320B2 (en) Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2003171730A (en) Wear resistant steel having delayed fracture resistance, and production method therefor
CN108368589B (en) High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP2019127633A (en) Clad steel plate and method for producing the same
JP2003160833A (en) Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2004197213A (en) Steel sheet to be hot-formed superior in hardenability after high-temperature forming