JP2002020331A - Method for separating catalyst, product and reaction solvent - Google Patents

Method for separating catalyst, product and reaction solvent

Info

Publication number
JP2002020331A
JP2002020331A JP2001132015A JP2001132015A JP2002020331A JP 2002020331 A JP2002020331 A JP 2002020331A JP 2001132015 A JP2001132015 A JP 2001132015A JP 2001132015 A JP2001132015 A JP 2001132015A JP 2002020331 A JP2002020331 A JP 2002020331A
Authority
JP
Japan
Prior art keywords
solvent
reaction
reaction solvent
oxidation
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001132015A
Other languages
Japanese (ja)
Inventor
Nobudai Tani
信大 谷
Shuzo Murata
修三 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Daicel Chemical Industries Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001132015A priority Critical patent/JP2002020331A/en
Publication of JP2002020331A publication Critical patent/JP2002020331A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily separate a catalyst, products and reaction solvents from a reaction mixture obtained by oxidizing a substance in the presence of the oxidation catalyst composed of an N-hydroxy aromatic imide compound and a transition metal. SOLUTION: This method is to separate the oxidation catalyst, oxidation product and reactional solvent from the reactional mixture obtained by oxidizing the substrate in the presence of the oxidation catalyst composed of the N- hydroxy aromatic imide compound and the transition metal. The reactional solvent is distilled off from the reactional mixture in the presence of an organic solvent immiscible with the reactional solvent to afford a mixture containing the reactional solvent in a weight of <=5 times based on the N-hydroxy aromatic imide compound. The resultant mixture is then subjected to solid-liquid separation and separated into the oxidation product and the oxidation catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、N−ヒドロキシ芳
香族イミド化合物と遷移金属とから構成される酸化触媒
と酸化反応生成物と反応溶媒との分離方法に関する。
TECHNICAL FIELD The present invention relates to an oxidation catalyst comprising an N-hydroxy aromatic imide compound and a transition metal, a method for separating an oxidation reaction product and a reaction solvent.

【0002】[0002]

【従来の技術】従来、N−ヒドロキシ芳香族イミド化合
物からなる酸化触媒と酸化反応生成物との分離方法とし
ては、水溶性溶媒と非水溶性溶媒を用い、酸化触媒を非
水溶性溶媒に、酸化生成物を水溶性溶媒に、それぞれ分
配して分離する方法(特開平10−114702号公
報)が知られている。
2. Description of the Related Art Conventionally, as a method for separating an oxidation catalyst composed of an N-hydroxy aromatic imide compound and an oxidation reaction product, a water-soluble solvent and a water-insoluble solvent are used, and the oxidation catalyst is converted into a water-insoluble solvent. There is known a method of distributing and separating an oxidation product into a water-soluble solvent (JP-A-10-114702).

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記方法
では、酸化触媒と酸化生成物が共に非水溶性化合物であ
る場合、共に非水溶性溶媒に含まれるため、酸化触媒と
酸化生成物との分離が困難であるという問題があった。
However, in the above method, when the oxidation catalyst and the oxidation product are both water-insoluble compounds, both are contained in the water-insoluble solvent, so that the separation of the oxidation catalyst and the oxidation product is difficult. There was a problem that it was difficult.

【0004】[0004]

【課題を解決するための手段】本発明者らは、酸化触媒
と酸化生成物との分離方法について鋭意検討した結果、
反応溶媒に対し非混和性である有機溶媒の存在下に、反
応混合物から反応溶媒を特定量以下にまで留去し、次い
で酸化触媒と酸化生成物とを固液分離すれば、その分離
が容易に行われることを見出し、本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for separating an oxidation catalyst and an oxidation product, and as a result,
In the presence of an organic solvent that is immiscible with the reaction solvent, the reaction solvent is distilled off from the reaction mixture to a specific amount or less, and then the oxidation catalyst and the oxidation product are separated by solid-liquid separation. The present invention was completed.

【0005】即ち、本発明は、N−ヒドロキシ芳香族イ
ミド化合物と遷移金属とから構成される酸化触媒の存在
下に、基質を酸化して得られる反応混合物から、酸化触
媒、酸化生成物及び反応溶媒を分離する方法であって、
反応溶媒に対し非混和性である有機溶媒の存在下に、反
応混合物から反応溶媒を留去して、N−ヒドロキシ芳香
族イミド化合物に対して5重量倍以下の反応溶媒を含有
する混合物を得た後、該混合物を固液分離により酸化生
成物と酸化触媒とに分離する方法に係るものである。
That is, the present invention provides an oxidation catalyst, an oxidation product and a reaction mixture obtained by oxidizing a substrate in the presence of an oxidation catalyst composed of an N-hydroxy aromatic imide compound and a transition metal. A method for separating a solvent, comprising:
The reaction solvent is distilled off from the reaction mixture in the presence of an organic solvent that is immiscible with the reaction solvent to obtain a mixture containing the reaction solvent in an amount of 5 times by weight or less based on the N-hydroxy aromatic imide compound. And then separating the mixture into an oxidation product and an oxidation catalyst by solid-liquid separation.

【0006】[0006]

【発明の実施の形態】本発明では、N−ヒドロキシ芳香
族イミド化合物と遷移金属とから構成される酸化触媒の
存在下に、基質を酸化して得られる反応混合物から、反
応溶媒に対し非混和性である有機溶媒の存在下に反応溶
媒を留去して、酸化触媒を析出させ、次いで得られた固
液混合物を固液分離し、酸化生成物を溶液部分に得、酸
化触媒を固体部分に得る。反応混合物からの反応溶媒の
留去は、得られる固液混合物中に残存する反応溶媒の量
が、N−ヒドロキシ芳香族イミド化合物に対して5重量
倍以下になるまで行う。この方法により、酸化触媒、酸
化生成物及び反応溶媒が各々十分に分離される。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a reaction mixture obtained by oxidizing a substrate in the presence of an oxidation catalyst composed of an N-hydroxy aromatic imide compound and a transition metal is immiscible with a reaction solvent. The reaction solvent is distilled off in the presence of a neutral organic solvent to precipitate an oxidation catalyst, and then the resulting solid-liquid mixture is subjected to solid-liquid separation to obtain an oxidation product in a solution portion, and the oxidation catalyst in a solid portion. Get to. The reaction solvent is distilled off from the reaction mixture until the amount of the reaction solvent remaining in the obtained solid-liquid mixture becomes 5 times by weight or less with respect to the N-hydroxy aromatic imide compound. By this method, each of the oxidation catalyst, the oxidation product, and the reaction solvent is sufficiently separated.

【0007】酸化反応に使用される酸化触媒を構成する
N−ヒドロキシ芳香族イミドとしては、例えば、N−ヒ
ドロキシフタルイミド、N−ヒドロキシナフチルイミド
等が挙げられる。また、芳香族環上の水素原子がアルキ
ル基、シクロアルキル基、アリール基、ハロゲン原子等
の置換基で置換されているN−ヒドロキシ芳香族イミド
でも差し支えない。N−ヒドロキシ芳香族イミド化合物
の酸化反応での使用量は、基質に対して、通常0.01
〜20モル%、好ましくは0.1〜10モル%の範囲で
ある。
The N-hydroxyaromatic imide constituting the oxidation catalyst used in the oxidation reaction includes, for example, N-hydroxyphthalimide, N-hydroxynaphthylimide and the like. Further, an N-hydroxy aromatic imide in which a hydrogen atom on an aromatic ring is substituted with a substituent such as an alkyl group, a cycloalkyl group, an aryl group, or a halogen atom may be used. The amount of the N-hydroxyaromatic imide compound used in the oxidation reaction is usually 0.01 to 0.01% relative to the substrate.
-20 mol%, preferably 0.1-10 mol%.

【0008】酸化反応に使用される酸化触媒を構成する
遷移金属としては、Co、Ce、Mn、Cr、Mo、F
e、Ru、Rh、Ni、Cuが好ましく、Co、Ce、
Mnがさらに好ましい。これらの遷移金属は必要に応じ
て2種以上用いられる。これらの遷移金属は、通常、金
属酸化物、有機酸塩、無機酸塩、ハロゲン化物、アセチ
ルアセトナートのような錯体、ポリリン酸等として用い
られる。遷移金属の酸化反応における使用量は、基質に
対して、通常0.0001〜1モル%、好ましくは0.
001〜0.5モル%の範囲である。
The transition metals constituting the oxidation catalyst used in the oxidation reaction include Co, Ce, Mn, Cr, Mo, F
e, Ru, Rh, Ni, and Cu are preferable, and Co, Ce,
Mn is more preferred. Two or more of these transition metals are used as necessary. These transition metals are usually used as metal oxides, organic acid salts, inorganic acid salts, halides, complexes such as acetylacetonate, polyphosphoric acid and the like. The amount of the transition metal used in the oxidation reaction is usually 0.0001 to 1 mol%, preferably 0.1 to 1 mol%, based on the substrate.
001-0.5 mol%.

【0009】酸化反応に使用される基質としては、酸化
可能な部位を有していればよく、炭化水素類やアルコー
ル類が好ましい。該炭化水素類としては、例えば、置換
基を有していてもよい飽和又は不飽和脂肪族鎖式炭化水
素類、置換基を有していてもよい飽和又は不飽和脂肪族
環式炭化水素等が挙げられる。飽和又は不飽和脂肪族鎖
式炭化水素類としては、例えば、ブタン、イソブタン、
ペンタン、ヘキサン、オクタン、デカンのような炭素数
4から20程度の飽和炭化水素;2−ブテン、イソブテ
ンのような炭素数4から20程度のオレフィン炭化水
素;1,3−ブタジエン、2−メチル−1,3−ブタジ
エンのような直鎖及び分枝状不飽和炭化水素等が挙げら
れる。飽和又は不飽和脂肪族環式炭化水素としては、例
えば、シクロブタン、シクロペンタン、シクロヘキサ
ン、シクロヘプタン、シクロオクタン、シクロノナン、
シクロデカンのようなシクロアルカン類;シクロプロペ
ン、シクロブテン、シクロペンテン、シクロヘキセン、
シクロヘプテン、シクロオクテン、シクロノネン、シク
ロデセンのようなシクロアルケン類等が挙げられる。ま
た、上記アルコール類としては、例えば、前記炭化水素
類のアルコール誘導体に相当する、脂肪族鎖式一価アル
コール類、脂肪族鎖式多価アルコール類、脂肪族環式一
価アルコール類、脂肪族環式多価アルコール類等が挙げ
られる。
The substrate used in the oxidation reaction may have an oxidizable site, and is preferably a hydrocarbon or alcohol. Examples of the hydrocarbons include saturated or unsaturated aliphatic chain hydrocarbons which may have a substituent, and saturated or unsaturated aliphatic cyclic hydrocarbons which may have a substituent. Is mentioned. As the saturated or unsaturated aliphatic hydrocarbons, for example, butane, isobutane,
Saturated hydrocarbons having about 4 to 20 carbon atoms such as pentane, hexane, octane and decane; olefin hydrocarbons having about 4 to 20 carbon atoms such as 2-butene and isobutene; 1,3-butadiene and 2-methyl- Linear and branched unsaturated hydrocarbons such as 1,3-butadiene are exemplified. As the saturated or unsaturated aliphatic cyclic hydrocarbon, for example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane,
Cycloalkanes such as cyclodecane; cyclopropene, cyclobutene, cyclopentene, cyclohexene,
Cycloalkenes such as cycloheptene, cyclooctene, cyclononene, and cyclodecene are exemplified. Examples of the alcohols include aliphatic chain monohydric alcohols, aliphatic chain polyhydric alcohols, aliphatic cyclic monohydric alcohols, and aliphatic monohydric alcohols corresponding to the alcohol derivatives of the hydrocarbons. And cyclic polyhydric alcohols.

【0010】前記炭化水素類又はアルコール類の酸化、
例えば分子状酸素との接触による酸素酸化、により、対
応するアルコール類、アルデヒド類、ケトン類、有機カ
ルボン酸類等の酸化物が酸化生成物として得られる。本
発明では酸化触媒と酸化生成物とが共に非水溶性化合物
であっても、それらは十分に分離できる。
Oxidation of the hydrocarbons or alcohols,
For example, by oxygen oxidation by contact with molecular oxygen, corresponding oxides such as alcohols, aldehydes, ketones, and organic carboxylic acids are obtained as oxidation products. In the present invention, even if both the oxidation catalyst and the oxidation product are water-insoluble compounds, they can be sufficiently separated.

【0011】酸化反応に使用される反応溶媒としては、
例えば、ベンゾニトリル、アセトニトリルのような非プ
ロトン性溶媒;ぎ酸、酢酸のような有機酸;塩酸、硫酸
のような無機酸等が挙げられる。これらの反応溶媒は、
2種類以上組み合わせて用いてよい。反応溶媒は、酸化
触媒に対して良溶媒であるのが好ましいが、酸化触媒に
対して貧溶媒であってもよい。酸化反応における溶媒の
使用量は、基質1重量部に対して、通常0.01重量部
以上、好ましくは0.1重量部以上である。
The reaction solvent used for the oxidation reaction includes
For example, aprotic solvents such as benzonitrile and acetonitrile; organic acids such as formic acid and acetic acid; and inorganic acids such as hydrochloric acid and sulfuric acid. These reaction solvents are
Two or more types may be used in combination. The reaction solvent is preferably a good solvent for the oxidation catalyst, but may be a poor solvent for the oxidation catalyst. The amount of the solvent used in the oxidation reaction is usually at least 0.01 part by weight, preferably at least 0.1 part by weight, based on 1 part by weight of the substrate.

【0012】本発明においては、基質を酸化して得られ
る反応混合物から、反応溶媒に対し非混和性である有機
溶媒の存在下に反応溶媒を留去する。本発明に使用され
る反応溶媒に対し非混和性である有機溶媒としては、反
応溶媒と混合し静置したとき、反応溶媒と分液された状
態になる有機溶媒であれば使用できる。また、酸化触媒
の回収を容易とするために、酸化触媒に対して貧溶媒で
あることが好ましい。かかる有機溶媒としては、例え
ば、炭化水素、ハロゲン化炭化水素、エーテル、非水溶
性ケトン、非水溶性エステルなどが挙げられ、具体的に
は、ペンタン、ヘキサン、ヘプタン、シクロペンタン、
シクロヘキサン、シクロヘプタン、ジクロルエタン、t
−ブチルメチルエーテル、酢酸エチル、酢酸イソプロピ
ル等が挙げられ、留去の容易性からかかる有機溶媒は炭
素数1〜10程度のものが好ましい。
In the present invention, the reaction solvent is distilled off from the reaction mixture obtained by oxidizing the substrate in the presence of an organic solvent that is immiscible with the reaction solvent. As the organic solvent that is immiscible with the reaction solvent used in the present invention, any organic solvent that can be separated from the reaction solvent when mixed with the reaction solvent and allowed to stand can be used. Further, in order to facilitate the recovery of the oxidation catalyst, it is preferable that the solvent be a poor solvent for the oxidation catalyst. Such organic solvents include, for example, hydrocarbons, halogenated hydrocarbons, ethers, water-insoluble ketones, water-insoluble esters, and the like.Specifically, pentane, hexane, heptane, cyclopentane,
Cyclohexane, cycloheptane, dichloroethane, t
-Butyl methyl ether, ethyl acetate, isopropyl acetate and the like, and the organic solvent having about 1 to 10 carbon atoms is preferable because of easy distillation.

【0013】酸化反応後、反応混合物中に基質が残存
し、その基質が、反応溶媒に対し非混和性である有機溶
媒として作用する場合においては、反応溶媒の留去に際
し、該基質を、反応溶媒に対し非混和性である有機溶媒
の一部として利用することもできる。
When the substrate remains in the reaction mixture after the oxidation reaction, and the substrate acts as an organic solvent that is immiscible with the reaction solvent, the substrate is removed from the reaction solvent upon distillation of the reaction solvent. It can also be used as part of an organic solvent that is immiscible with the solvent.

【0014】反応混合物からの反応溶媒の留去は、反応
溶媒に対し非混和性である有機溶媒の存在下に、通常、
攪拌しながら、常圧下または減圧下で実施される。この
溶媒留去により酸化触媒を析出させることができる。こ
こで、反応溶媒に対し非混和性である有機溶媒の存在下
に、反応混合物から反応溶媒を留去する方法としては、
反応混合物に、反応溶媒に対し非混和性である有機溶媒
を添加後、反応溶媒を留去する方法;反応混合物に、反
応溶媒に対し非混和性である有機溶媒を加えながら反応
溶媒を留去する方法;反応混合物を、反応溶媒に対し非
混和性である有機溶媒に加えながら反応溶媒を留去する
方法等が挙げられる。
The distillation of the reaction solvent from the reaction mixture is usually carried out in the presence of an organic solvent that is immiscible with the reaction solvent.
It is carried out under normal pressure or reduced pressure with stirring. The oxidation catalyst can be precipitated by distilling off the solvent. Here, in the presence of an organic solvent that is immiscible with the reaction solvent, as a method of distilling the reaction solvent from the reaction mixture,
A method in which an organic solvent that is immiscible with the reaction solvent is added to the reaction mixture, and then the reaction solvent is distilled off; the reaction solvent is distilled off while an organic solvent that is immiscible in the reaction solvent is added to the reaction mixture. A method in which the reaction mixture is added to an organic solvent that is immiscible with the reaction solvent, and the reaction solvent is distilled off.

【0015】反応溶媒留去の際の温度は、通常、反応溶
媒が蒸発により留去され得る温度以上であればよく、例
えば、反応溶媒の沸点以上、また反応溶媒と反応溶媒に
対し非混和性である有機溶媒とが共沸混合物を形成する
場合にはその共沸点以上である。また、反応溶媒の留去
は、加圧下でも減圧下でも行うことができるので、それ
に対応して反応溶媒の留去温度も適宜変更すればよい。
The temperature at the time of distilling off the reaction solvent may be usually not lower than the temperature at which the reaction solvent can be distilled off by evaporation, for example, not lower than the boiling point of the reaction solvent or immiscible with the reaction solvent and the reaction solvent. When the organic solvent forms an azeotropic mixture, the azeotropic point is equal to or higher than the azeotropic point. Further, since the distillation of the reaction solvent can be performed under pressure or under reduced pressure, the distillation temperature of the reaction solvent may be appropriately changed accordingly.

【0016】反応溶媒留去の際の、反応溶媒に対し非混
和性である有機溶媒の使用量は、反応溶媒に対して、通
常0.1〜100重量倍、好ましくは0.5〜20重量
倍の範囲である。
The amount of the organic solvent that is immiscible with the reaction solvent when distilling off the reaction solvent is usually 0.1 to 100 times, preferably 0.5 to 20 times the weight of the reaction solvent. Range of double.

【0017】反応溶媒の留去は、得られる固液混合物中
に残存する反応溶媒の量が、N−ヒドロキシ芳香族イミ
ド化合物に対して5重量倍以下、好ましくは1重量倍以
下になるまで行う。
The reaction solvent is distilled off until the amount of the reaction solvent remaining in the obtained solid-liquid mixture becomes 5 times by weight or less, preferably 1 time by weight or less based on the N-hydroxyaromatic imide compound. .

【0018】反応溶媒の留去後、得られた固液混合物
は、濾過やデカンテーション等の方法で固液分離され、
析出した酸化触媒と反応生成物とが回収される。
After distilling off the reaction solvent, the obtained solid-liquid mixture is separated into solid and liquid by a method such as filtration or decantation.
The deposited oxidation catalyst and reaction product are recovered.

【0019】[0019]

【実施例】実施例 以下に本発明の実施例を示すが、本発明はこれらに限定
されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0020】実施例1 酸化反応混合物149g(主要成分濃度:シクロヘキサ
ン58重量%、アセトニトリル33重量%、シクロヘキ
サノン4重量%、シクロヘキサノール1重量%、N−ヒ
ドロキシフタルイミド1重量%、コバルト0.01重量
%)を50℃に保温、攪拌しながら、76℃に保温した
シクロヘキサン92gに1.5時間かけて滴下した。滴
下開始と共にシクロヘキサンとアセトニトリルの共沸混
合物の留去が開始された。滴下終了後50分間、保温及
び共沸混合物の留去を継続することによって、溶媒留去
前の酸化反応混合物に含まれていたアセトニトリルの9
8%を留去した。得られた固液混合物中のアセトニトリ
ルの量は、N−ヒドロキシフタルイミドに対し0.44
重量倍であった。
Example 1 149 g of an oxidation reaction mixture (concentration of main components: cyclohexane 58% by weight, acetonitrile 33% by weight, cyclohexanone 4% by weight, cyclohexanol 1% by weight, N-hydroxyphthalimide 1% by weight, cobalt 0.01% by weight) ) Was added dropwise to 92 g of cyclohexane kept at 76 ° C over 1.5 hours while keeping the temperature at 50 ° C and stirring. With the start of the dropwise addition, the distillation of the azeotropic mixture of cyclohexane and acetonitrile was started. By keeping the temperature and distilling off the azeotropic mixture for 50 minutes after the completion of the dropwise addition, 9% of acetonitrile contained in the oxidation reaction mixture before distilling off the solvent was removed.
8% was distilled off. The amount of acetonitrile in the resulting solid-liquid mixture was 0.44 with respect to N-hydroxyphthalimide.
It was weight-fold.

【0021】この固液混合物をシクロヘキサン15gと
混合して、加圧濾過に付し、溶液部分(濾液)とケーキ
部分(濾残)とに分離した。溶媒留去前の酸化反応混合
物に含まれていたN−ヒドロキシフタルイミドおよびコ
バルトの、ケーキ部分への分配率はそれぞれ95%およ
び100%、溶液部分への分配率はそれぞれ5%および
0%であった。溶媒留去前の酸化反応混合物に含まれて
いたシクロヘキサノンおよびシクロヘキサノールの、ケ
ーキ部分への分配率はそれぞれ14%および13%、溶
液部分への分配率はそれぞれ83%および85%であっ
た。
This solid-liquid mixture was mixed with 15 g of cyclohexane and subjected to pressure filtration to separate a solution portion (filtrate) and a cake portion (filtration residue). Before the solvent was distilled off, the distribution of N-hydroxyphthalimide and cobalt contained in the oxidation reaction mixture was 95% and 100%, respectively, in the cake part and 5% and 0%, respectively, in the solution part. Was. Before the solvent was distilled off, the distribution of cyclohexanone and cyclohexanol contained in the oxidation reaction mixture was 14% and 13%, respectively, in the cake portion and 83% and 85%, respectively, in the solution portion.

【0022】実施例2 酸化反応混合物37g(主要成分濃度:シクロヘキサン
58重量%、アセトニトリル32重量%、シクロヘキサ
ノン4重量%、シクロヘキサノール1重量%、N−ヒド
ロキシフタルイミド1重量%、コバルト0.01重量
%)をシクロヘキサン23gと混合して、63℃〜79
℃で保温し、シクロヘキサンとアセトニトリルの共沸混
合物を留去することによって、溶媒留去前の酸化反応混
合物に含まれていたアセトニトリルの96%を留去し
た。得られた固液混合物中のアセトニトリルの量は、N
−ヒドロキシフタルイミドに対し0.92重量倍であっ
た。
Example 2 Oxidation reaction mixture 37 g (concentration of main components: cyclohexane 58% by weight, acetonitrile 32% by weight, cyclohexanone 4% by weight, cyclohexanol 1% by weight, N-hydroxyphthalimide 1% by weight, cobalt 0.01% by weight) ) Is mixed with 23 g of cyclohexane,
The mixture was kept at a temperature of ° C., and an azeotropic mixture of cyclohexane and acetonitrile was distilled off, whereby 96% of acetonitrile contained in the oxidation reaction mixture before the solvent was distilled off. The amount of acetonitrile in the resulting solid-liquid mixture was N
0.92 times the weight of hydroxyphthalimide.

【0023】この固液混合物をシクロヘキサン45gと
混合して、加圧濾過に付し、溶液部分(濾液)とケーキ
部分(濾残)とに分離した。溶媒留去前の酸化反応混合
物に含まれていたN−ヒドロキシフタルイミドおよびコ
バルトの、ケーキ部分への分配率はそれぞれ99%およ
び100%、溶液部分への分配率はそれぞれ1%および
0%であった。溶媒留去前の酸化反応混合物に含まれて
いたシクロヘキサノンおよびシクロヘキサノールの、ケ
ーキ部分への分配率はそれぞれ3%および4%、溶液部
分への分配率はそれぞれ92%および91%であった。
This solid-liquid mixture was mixed with 45 g of cyclohexane and subjected to pressure filtration to separate a solution portion (filtrate) and a cake portion (filtration residue). Before the solvent was distilled off, the distribution of N-hydroxyphthalimide and cobalt contained in the oxidation reaction mixture was 99% and 100%, respectively, in the cake portion and 1% and 0%, respectively, in the solution portion. Was. Before the solvent was distilled off, the distribution of cyclohexanone and cyclohexanol contained in the oxidation reaction mixture was 3% and 4% in the cake portion, respectively, and the distribution ratios in the solution portion were 92% and 91%, respectively.

【0024】比較例1 シクロヘキサン21g、アセトニトリル12g、シクロ
ヘキサノン1.5g、シクロヘキサノール0.4g、N
−ヒドロキシフタルイミド0.4gおよびコバルト0.
01gからなる酸化反応混合物のモデル液を、65℃で
保温し、シクロヘキサンとアセトニトリルの混合物を留
去することによって、溶媒留去前のモデル液に含まれて
いたアセトニトリルの74%を留去した。得られた固液
混合物中のアセトニトリルの量は、N−ヒドロキシフタ
ルイミドに対し6.5重量倍であった。
Comparative Example 1 Cyclohexane 21 g, acetonitrile 12 g, cyclohexanone 1.5 g, cyclohexanol 0.4 g, N
0.4 g of hydroxyphthalimide and 0.1 g of cobalt.
A model liquid of the oxidation reaction mixture consisting of 01 g was kept at 65 ° C., and a mixture of cyclohexane and acetonitrile was distilled off, whereby 74% of acetonitrile contained in the model liquid before the solvent was distilled off. The amount of acetonitrile in the obtained solid-liquid mixture was 6.5 times the weight of N-hydroxyphthalimide.

【0025】この固液混合物をシクロヘキサン40gと
混合して、加圧濾過に付し、溶液部分(濾液)とケーキ
部分(濾残)とに分離した。溶媒留去前のモデル液に含
まれていたN−ヒドロキシフタルイミドおよびコバルト
の、ケーキ部分への分配率はそれぞれ81%および10
0%、溶液部分への分配率はそれぞれ19%および0%
であった。溶媒留去前のモデル液に含まれていたシクロ
ヘキサノンおよびシクロヘキサノールの、ケーキ部分へ
の分配率はそれぞれ1.5%および0.9%、溶液部分
への分配率はそれぞれ94%および95%であった。
This solid-liquid mixture was mixed with 40 g of cyclohexane and filtered under pressure to separate a solution portion (filtrate) and a cake portion (filtration residue). The partition rates of N-hydroxyphthalimide and cobalt contained in the model solution before the solvent was distilled off were 81% and 10%, respectively.
0%, partition ratio to solution part 19% and 0%, respectively
Met. The partition ratios of cyclohexanone and cyclohexanol contained in the model liquid before solvent evaporation were 1.5% and 0.9%, respectively, in the cake portion, and 94% and 95%, respectively, in the solution portion. there were.

【0026】[0026]

【発明の効果】本発明の方法によれば、N−ヒドロキシ
芳香族イミド化合物と遷移金属とから構成される酸化触
媒の存在下に、基質を酸化して得られる反応混合物か
ら、酸化触媒と酸化生成物が共に非水溶性化合物であっ
ても、酸化触媒、酸化生成物及び反応溶媒を容易に分離
することができる。
According to the method of the present invention, an oxidation catalyst and an oxidation catalyst are obtained from a reaction mixture obtained by oxidizing a substrate in the presence of an oxidation catalyst composed of an N-hydroxy aromatic imide compound and a transition metal. Even if both products are water-insoluble compounds, the oxidation catalyst, oxidation products and reaction solvent can be easily separated.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 45/33 C07C 45/33 45/79 45/79 45/84 45/84 49/403 49/403 A J // C07B 61/00 300 C07B 61/00 300 (72)発明者 村田 修三 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4H006 AA02 AC41 AC44 AD12 AD17 BA20 BA47 BA60 BA83 BB11 BB21 BE30 FC22 FE12 4H039 CA60 CA62 CC30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C07C 45/33 C07C 45/33 45/79 45/79 45/84 45/84 49/403 49/403 A J // C07B 61/00 300 C07B 61/00 300 (72) Inventor Shuzo Murata 5-1, Sokai-cho, Niihama-shi, Ehime F-term in Sumitomo Chemical Co., Ltd. 4H006 AA02 AC41 AC44 AD12 AD17 BA20 BA47 BA60 BA83 BB11 BB21 BE30 FC22 FE12 4H039 CA60 CA62 CC30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】N−ヒドロキシ芳香族イミド化合物と遷移
金属とから構成される酸化触媒の存在下に、基質を酸化
して得られる反応混合物から、酸化触媒、酸化生成物及
び反応溶媒を分離する方法であって、反応溶媒に対し非
混和性である有機溶媒の存在下に、反応混合物から反応
溶媒を留去して、N−ヒドロキシ芳香族イミド化合物に
対して5重量倍以下の反応溶媒を含有する混合物を得た
後、該混合物を固液分離により酸化生成物と酸化触媒と
に分離することを特徴とする方法。
1. An oxidation catalyst, an oxidation product and a reaction solvent are separated from a reaction mixture obtained by oxidizing a substrate in the presence of an oxidation catalyst composed of an N-hydroxy aromatic imide compound and a transition metal. In the method, in the presence of an organic solvent that is immiscible with the reaction solvent, the reaction solvent is distilled off from the reaction mixture, and the reaction solvent is added to the N-hydroxyaromatic imide compound in an amount not more than 5 times by weight. A method comprising, after obtaining a mixture containing the mixture, separating the mixture into an oxidation product and an oxidation catalyst by solid-liquid separation.
【請求項2】反応混合物を、反応溶媒に対し非混和性で
ある有機溶媒に加えながら、反応混合物から反応溶媒を
留去する請求項1記載の方法。
2. The method according to claim 1, wherein the reaction solvent is distilled off from the reaction mixture while adding the reaction mixture to an organic solvent that is immiscible with the reaction solvent.
【請求項3】基質が、シクロアルカンおよびシクロアル
カノールから選ばれた少なくとも一種である請求項1ま
たは2に記載の方法。
3. The method according to claim 1, wherein the substrate is at least one selected from cycloalkanes and cycloalkanols.
【請求項4】酸化触媒及び酸化生成物が非水溶性である
請求項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the oxidation catalyst and the oxidation product are insoluble in water.
【請求項5】反応溶媒と、反応溶媒に対し非混和性であ
る有機溶媒とが、共沸混合物を形成する請求項1〜4の
いずれかに記載の方法。
5. The process according to claim 1, wherein the reaction solvent and an organic solvent that is immiscible with the reaction solvent form an azeotrope.
【請求項6】反応溶媒に対し非混和性である有機溶媒
が、酸化触媒に対して貧溶媒である請求項1〜5のいず
れかに記載の方法。
6. The method according to claim 1, wherein the organic solvent immiscible in the reaction solvent is a poor solvent for the oxidation catalyst.
【請求項7】反応溶媒がアセトニトリルである請求項1
〜6のいずれかに記載の方法。
7. The method according to claim 1, wherein the reaction solvent is acetonitrile.
7. The method according to any one of claims 1 to 6.
【請求項8】反応溶媒に対し非混和性である有機溶媒
が、シクロヘキサンである請求項1〜7のいずれかに記
載の分離方法。
8. The separation method according to claim 1, wherein the organic solvent immiscible with the reaction solvent is cyclohexane.
JP2001132015A 2000-05-02 2001-04-27 Method for separating catalyst, product and reaction solvent Pending JP2002020331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132015A JP2002020331A (en) 2000-05-02 2001-04-27 Method for separating catalyst, product and reaction solvent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-133331 2000-05-02
JP2000133331 2000-05-02
JP2001132015A JP2002020331A (en) 2000-05-02 2001-04-27 Method for separating catalyst, product and reaction solvent

Publications (1)

Publication Number Publication Date
JP2002020331A true JP2002020331A (en) 2002-01-23

Family

ID=26591409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132015A Pending JP2002020331A (en) 2000-05-02 2001-04-27 Method for separating catalyst, product and reaction solvent

Country Status (1)

Country Link
JP (1) JP2002020331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280135B1 (en) 2005-03-07 2013-06-28 가부시끼가이샤 다이셀 Process for oxidation of organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280135B1 (en) 2005-03-07 2013-06-28 가부시끼가이샤 다이셀 Process for oxidation of organic compounds

Similar Documents

Publication Publication Date Title
KR20080019626A (en) Method for making carboxylic acids
JP3197518B2 (en) Method for treating a reaction mixture obtained from the oxidation of cyclohexane
CN100404490C (en) Method for making carboxylic acids
WO2002040154A1 (en) Catalysts comprising n-substituted cyclic imides and processes for preparing organic compounds with the catalysts
JPH0687782A (en) Method of hydroformylation and bimetallic catalyst therefor
JP3943336B2 (en) Cycloalkane oxidation method
JPH06126194A (en) Method of recovering rhodium from distillation residue of oxo-synthetic product
JP2002145807A (en) Method for separating reaction product and catalyst
JP2002020331A (en) Method for separating catalyst, product and reaction solvent
JP4112877B2 (en) Catalyst composed of cyclic imide compound and method for producing organic compound using the catalyst
US6555004B2 (en) Method for separating catalyst, product and solvent
DE60114166T2 (en) PROCESS FOR THE OXIDATION OF CYCLOHEXANE IN CARBOXYLIC ACIDS
JP4005558B2 (en) Hydrocarbon oxidation to acids
EP1544190B1 (en) Method for producing carboxylic acids
JPH04210938A (en) Process for producing dodecanedioic acid
FR2839973A1 (en) Direct oxidation of hydrocarbons, alcohols and/or ketones to the corresponding carboxylic acids by oxygen or an oxygen-containing gas in the presence of a catalyst
JPH0557250B2 (en)
JP2001288122A (en) Method for separating reaction product from catalyst
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
JPS62263140A (en) Production of alpha-phenylpropionic acid derivative
JP4434751B2 (en) Method for producing carboxylic acid
KR100689684B1 (en) Method for making carboxylic acids
JP4774763B2 (en) Method for producing purified 3-methyl-2-butenyl acetate
JPS62242641A (en) Production of alpha-phenylpropionic acid derivative
CH315464A (en) Process for the preparation of a crystallizable complex of a trans-trans pentaenal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124