JP2002018512A - Metal hollow shape and method of manufacturing it - Google Patents

Metal hollow shape and method of manufacturing it

Info

Publication number
JP2002018512A
JP2002018512A JP2000201746A JP2000201746A JP2002018512A JP 2002018512 A JP2002018512 A JP 2002018512A JP 2000201746 A JP2000201746 A JP 2000201746A JP 2000201746 A JP2000201746 A JP 2000201746A JP 2002018512 A JP2002018512 A JP 2002018512A
Authority
JP
Japan
Prior art keywords
hollow
fluid
mold
die
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000201746A
Other languages
Japanese (ja)
Inventor
Sadahide Yano
定英 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANO ENGINEERING KK
Original Assignee
YANO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANO ENGINEERING KK filed Critical YANO ENGINEERING KK
Priority to JP2000201746A priority Critical patent/JP2002018512A/en
Priority to US09/897,311 priority patent/US20020017372A1/en
Priority to EP01305723A priority patent/EP1174198A3/en
Priority to TW090116323A priority patent/TW495397B/en
Priority to AU54195/01A priority patent/AU5419501A/en
Priority to CA002352028A priority patent/CA2352028A1/en
Priority to CN01120010A priority patent/CN1330989A/en
Priority to KR1020010039776A priority patent/KR20020004871A/en
Publication of JP2002018512A publication Critical patent/JP2002018512A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/08Dies or mandrels with section variable during extruding, e.g. for making tapered work; Controlling variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/10Making finned tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/04Communication passages between channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Of Metal (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and costlessly manufacturing a material having communication holes between adjacent hollow parts as a metal hollow material having plural hollow parts which are continuous in the longitudinal direction. SOLUTION: By providing a female die 3 for forming the outer peripheral part of a shape ad a male die 2 having plural protruding parts 2a for forming the hollow parts and, by intermittently discharging a fluid without compatibility to the molten metal of a materials to be extruded in a process where a metal hollow shape 1 is extruded using the extruding die D1 which is provided with a female die 3 for forming the outer peripheral part of the shape and a male die 2 having plural protruding parts 2a for forming the hollow parts, fluid discharging ports 6 are opened on the bottoms of the partition forming proove parts 2b of the male die 2 and a fluid introducing passage 7 from the outside to the fluid discharging ports 6 is provided, the bubbles of the fluid are forced to enter into the interior of the partition of the metal hollow shape to be extruded and the communication holes are formed on the partition of the metal hollow shape by skeleton holes through which babbles has passed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば熱交換器
の熱交換管路を構成するアルミニウム又はその合金製の
多孔偏平チューブ等に供される複数の中空部を有する金
属中空型材と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal hollow member having a plurality of hollow portions provided for a porous flat tube made of aluminum or an alloy thereof for forming a heat exchange conduit of a heat exchanger, and a method of manufacturing the same. About the method.

【0002】[0002]

【従来の技術】カーエアコン用のコンデンサ等には、図
11(イ)に示すように、所要間隔を置いて対峙した一
対のヘッダー(51A)(51B)間に、各々両端を両ヘッ
ダー(51A)(51B)に連通接続した多数本の偏平な熱
交換チューブ(52)…が相互間にコルゲートフィン(5
3)を介して平行配置してコア部(54)を構成し、両ヘ
ッダー(51A)(51B)内の仕切り(55)により、導入
口(56)から流入する熱交換媒体がチューブ(52)…を
通してコア部(54)を蛇行状に流れて導出口(57)に至
る過程で、コア部(54)を通過する空気と熱交換するよ
うに設定された積層型熱交換器が汎用されている。
2. Description of the Related Art As shown in FIG. 11A, a condenser for a car air conditioner has a pair of headers (51A) and (51B) opposed to each other at a required interval. ) (51B) and a number of flat heat exchange tubes (52)...
The core portion (54) is arranged in parallel via 3), and the heat exchange medium flowing from the inlet (56) flows into the tube (52) by the partition (55) in both headers (51A) (51B). In the process of flowing in a meandering manner through the core portion (54) through the ... and reaching the outlet (57), a laminated heat exchanger set to exchange heat with air passing through the core portion (54) is widely used. I have.

【0003】そして、熱交換チューブ(52)は、流通す
る熱交換媒体の流体直径を小さくして熱伝導性を高める
ために、内部を複数の平行流路に分割したものが一般的
であり、アルミニウム又はその合金の中空押出型材から
なる押出チューブ、重合したブレージングシート間の非
接合部を圧縮空気で膨らませて平行流路を形成したラミ
ネートチューブ、偏平管内に波板状のインナーフィンを
挿入してろう付け接合することによって内部を平行流路
に分割したチューブ等が用いられるが、多孔偏平型のも
のを容易に量産できる点で押出チューブが主流になって
いる。この押出チューブは、図11(ロ)に示すよう
に、長手方向に連続する複数の隔壁(52a)…にて内部
が複数本(図では4本)の流路(58a)〜(58d)に仕
切られている。
[0003] The heat exchange tube (52) is generally divided into a plurality of parallel flow paths in order to reduce the fluid diameter of the heat exchange medium flowing therethrough and to enhance the heat conductivity. An extruded tube made of a hollow extruded mold material of aluminum or its alloy, a laminated tube in which a non-joined portion between polymerized brazing sheets is expanded with compressed air to form a parallel flow path, and a corrugated inner fin inserted into a flat tube A tube or the like whose inside is divided into parallel channels by brazing is used, but an extruded tube is mainly used because a porous flat type can be easily mass-produced. As shown in FIG. 11 (b), the extruded tube has a plurality of (four in the figure) flow paths (58a) to (58d) internally formed by a plurality of partition walls (52a). It is partitioned.

【0004】しかるに、このような多孔偏平チューブ
(52)を用いたコンデンサでは、例えば図11(ロ)に
示すように空気が矢印a方向に流れるとすると、コア部
(54)を通過する空気は風下側ほど受熱を経て温度が高
くなるから、各チューブ(52)における最も風上側の流
路(58a)と最も風下側の流路(58d)とでは熱交換媒
体と空気との温度差にかなりの違いを生じ、風上側の流
路(58a)を流れる熱交換媒体は受熱前の低温の空気と
の熱交換によって冷え過ぎるため、コンデンサ全体とし
ての熱交換効率が低下する。また、エバポレータの場合
は、逆に最も風上側の流路(58a)を流れる熱交換媒体
が高温の空気との熱交換によって過熱状態となり、コン
デンサ同様に全体としての熱交換効率が低下することに
なる。
However, in such a condenser using the porous flat tube (52), if air flows in the direction of arrow a as shown in FIG. 11 (b), the air passing through the core portion (54) Since the temperature becomes higher through the heat receiving on the leeward side, the temperature difference between the heat exchange medium and the air in the most leeward side flow path (58a) and the most leeward side flow path (58d) in each tube (52) is considerably large. And the heat exchange medium flowing in the windward-side flow path (58a) is excessively cooled by heat exchange with the low-temperature air before receiving heat, so that the heat exchange efficiency of the entire condenser is reduced. On the other hand, in the case of an evaporator, the heat exchange medium flowing through the most upstream wind path (58a) is overheated by heat exchange with high-temperature air, and the heat exchange efficiency as a whole is reduced similarly to the condenser. Become.

【0005】そこで、従来において、熱交換器全体とし
ての熱交換効率を高める目的で、各チューブにおける流
路間での熱交換媒体の混ざり合いを可能にし、もってチ
ューブ全体としての熱交換媒体の温度を平均化させるよ
うにしたものが提案されている。その一つは、図12
(イ)に示すように、幅方向一端側の流路(58d)部分
を溝枠部(61)とした中空押出型材(60)を用い、この
溝枠部(61)から孔開け用たがね(62)等をチューブ幅
方向に突入させることにより、同図(ロ)に示すように
流路(58a)〜(58d)間の各隔壁(52a)に連通孔
(64)を穿ったのち、溝枠部(61)の両側片(61a)
(61a)を丸めて突き合わせ、この突き合わせ部(63)
を電縫溶接等で接合して流路(58d)を形成するもので
ある。また、他の一つは、図13に示すように、チュー
ブを厚み方向に2分割した断面形状の一対の押出型材
(70a)(70b)を製作し、これら型材におけるチュー
ブの隔壁(52a)となる突条部(71)に、所要間隔置き
に切欠部(72)…を設けたのち、両押出型材(70a)
(70b)を重ね合わせてロウ付け接合することにより、
各切欠部(72)が流路間の連通孔となった熱交換チュー
ブとするものである。
Therefore, conventionally, for the purpose of increasing the heat exchange efficiency of the entire heat exchanger, it is possible to mix the heat exchange medium between the flow passages in each tube, and thereby to reduce the temperature of the heat exchange medium as a whole tube. There has been proposed a device that averages the values. One of them is shown in FIG.
As shown in (a), a hollow extruded material (60) having a groove (61) as a channel (61) at one end in the width direction was used for drilling holes from the groove (61). The communication holes (64) are formed in the partition walls (52a) between the flow paths (58a) to (58d) as shown in FIG. , Both side pieces (61a) of the groove frame (61)
(61a) is rolled and butted, and this butted portion (63)
Are formed by electric resistance welding or the like to form a flow path (58d). As another example, as shown in FIG. 13, a pair of extruded mold members (70 a, 70 b) having a sectional shape obtained by dividing a tube into two in a thickness direction is manufactured, and a partition wall (52 a) of the tube in these mold members is formed. After forming notches (72) ... at required intervals on the ridges (71), both extrusions (70a)
(70b) is overlapped and brazed and joined,
Each notch (72) is a heat exchange tube having communication holes between flow paths.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の提案に係る多孔偏平チューブでは、押出成形によっ
て製作した型材に、流路間の連通孔を設けるための孔開
け加工や切欠部を形成する加工を施した上で、更に型材
自体の曲げ加工及び溶接あるいは型材同士のロウ付け接
合を行う必要があり、チューブ製作に要する工数が非常
に多くなり、そのために多大な労力と時間を費やして製
作コストが高く付き、押出型材の使用による量産性とコ
スト低減の利点が失われてしまうことになる。
However, in the porous flat tube according to the above-mentioned conventional proposal, a process for forming a hole for forming a communication hole between flow paths and a process for forming a notch is formed in a mold material manufactured by extrusion molding. After that, it is necessary to perform bending and welding of the mold material itself or brazing of the mold material itself, so that the man-hour required for tube production becomes very large, and therefore, a great deal of labor and time are spent and the production cost is increased. And the advantages of mass productivity and cost reduction due to the use of the extruded material are lost.

【0007】この発明者らは、上述の状況に鑑みて、前
記の熱交換器用の多孔偏平チューブを始めとする、長手
方向に連続する複数の中空部を備えた金属中空材とし
て、隣接する中空部間の連通孔を有するものを効率よく
安価に製作すべく、様々な角度から鋭意検討を行うと共
に綿密な実験研究を重ねた。その結果、金属中空材を押
出成形型材として製作する際に、その押出成形と同時に
中空部間の連通孔を形成するという極めて画期的な手段
を究明し、この発明をなすに至った。
In view of the above situation, the present inventors have developed a metal hollow member having a plurality of hollow portions continuous in the longitudinal direction, such as the above-mentioned porous flat tube for a heat exchanger, and have been described as an adjacent hollow member. In order to efficiently and inexpensively manufacture a product with a communication hole between the parts, we conducted intensive studies from various angles and repeated detailed experimental research. As a result, when producing a hollow metal member as an extrusion-molded die, an extremely epoch-making means of forming a communication hole between the hollow portions at the same time as the extrusion molding was sought, and the present invention was accomplished.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
る金属中空型材は、図面の参照符号を付して示せば、長
手方向に連続する複数の中空部(10)…を備えた一体の
金属押出成形物(1)からなり、隣接する中空部(10)
(10)間の隔壁(11)に、押出成形過程で所要間隔置き
に形成された連通孔(12)…を有することを特徴として
いる。
According to a first aspect of the present invention, there is provided a hollow metal member having a plurality of hollow portions (10) which are continuous in a longitudinal direction, as indicated by reference numerals in the drawings. Extruded metal (1) and adjacent hollow (10)
The partition (11) between (10) has communication holes (12) formed at required intervals in the extrusion molding process.

【0009】上記構成の金属中空型材にあっては、流体
を流通させた際、連通孔(12)…を通して中空部(10)
…間で流体の混じり合いを生じるから、例えば熱交換器
用の熱交換チューブとして用いた場合、空気の流れ方向
に対して上流側の流路(中空部)と下流側の流路(中空
部)とで本来は温度差を生じる熱交換媒体が相互に混じ
り合い、チューブ全体としての熱交換媒体の温度が平均
化し、もって熱交換器全体としての熱交換効率が向上す
る。しかして、この金属中空型材は、押出成形にて型材
を製作した時点で中空部(10)(10)間の隔壁(11)に
連通孔(12)…が備わっているから、その製作に際し、
該連通孔(12)を形成するための孔開け加工や切欠部の
形成加工、型材自体の曲げ加工や溶接あるいは型材同士
のロウ付け接合等が全く不要である。
In the hollow metal member having the above structure, when a fluid is allowed to flow, the hollow portion (10) passes through the communication holes (12).
... Fluids are mixed between..., For example, when used as a heat exchange tube for a heat exchanger, the flow path on the upstream side (hollow part) and the flow path on the downstream side (hollow part) in the air flow direction. Thus, the heat exchange medium which originally generates a temperature difference is mixed with each other, and the temperature of the heat exchange medium as the whole tube is averaged, so that the heat exchange efficiency as the whole heat exchanger is improved. However, since the hollow metal members are provided with communication holes (12) in the partition walls (11) between the hollow portions (10) and (10) when the metal members are manufactured by extrusion molding,
There is no need for drilling or forming notches for forming the communication hole (12), bending or welding of the mold material itself, or brazing or joining the mold materials.

【0010】請求項2の発明は、上記請求項1の金属中
空型材において、複数の中空部(10)…が型材幅方向に
並列配置し、隣接する隔壁(11)(11)同士の連通孔
(12)…が型材長手方向の異なる位置にあるものとして
いる。この構成では、流体を流通させた際の連通孔(1
2)…を通した中空部(10)…間の流体の混じり合いが
より均等化するから、例えば熱交換器用の熱交換チュー
ブとして用いた場合のチューブ全体としての熱交換媒体
の温度がより平均化し易くなり、熱交換器全体としての
熱交換効率がより向上する。
According to a second aspect of the present invention, in the metal hollow mold of the first aspect, a plurality of hollow portions (10) are arranged in parallel in the width direction of the mold, and a communication hole between adjacent partition walls (11) (11). (12) ... are located at different positions in the longitudinal direction of the mold material. In this configuration, the communication hole (1
2) Since the mixing of the fluid between the hollow portions (10) through the ... becomes more uniform, for example, when used as a heat exchange tube for a heat exchanger, the temperature of the heat exchange medium of the entire tube becomes more average. And the heat exchange efficiency of the heat exchanger as a whole is further improved.

【0011】請求項3の発明に係る金属中空型材の製造
方法は、複数の中空部(10)…を有する金属中空型材
(1)の外周部を成形する雌型(3)と、同型材(1)
の各中空部(10)に対応した複数の中空成形用凸部(2
a)…を有する雄型(2)とを備え、該雄型(2)の隣
接する中空成形用凸部(2a)(2a)間で構成される
隔壁形成溝部(2b)の底に流体吐出口(6)が開口す
ると共に、外部より雄型(2)内を通って当該流体吐出
口(6)に至る流体導入路(7)が設けられた押出成形
ダイス(D1)〜(D4)を用い、この押出成形ダイス
(D1)〜(D4)内に押出材料の溶湯を供給して金属
中空型材(1)を押出成形する過程で、該溶湯に対して
相溶性のない流体を前記流体導入路(7)より導入して
前記流体吐出口(5)から間欠的に吐出させることによ
り、成形される金属中空型材(1)の隔壁(11)肉部に
当該流体の泡を入り込ませ、この泡の抜けた形骸孔によ
って金属中空型材(1)の隔壁(11)に両側中空部(1
0)(10)間を連通する連通孔(12)…を形成すること
を特徴としている。
The method for manufacturing a hollow metal member according to the third aspect of the present invention is characterized in that a female die (3) for forming an outer peripheral portion of a hollow metal member (1) having a plurality of hollow portions (10). 1)
A plurality of hollow molding protrusions (2) corresponding to each hollow portion (10)
a) having a male mold (2) having the following configuration. A fluid discharge is formed on the bottom of the partition wall forming groove (2b) formed between the adjacent hollow molding projections (2a) and (2a) of the male mold (2). The extrusion dies (D1) to (D4) having an outlet (6) and a fluid introduction path (7) from the outside to the fluid discharge port (6) through the inside of the male mold (2) are provided. In the process of supplying the molten metal of the extruded material into the extrusion dies (D1) to (D4) and extruding the hollow metal member (1), the fluid having no compatibility with the molten metal is introduced. By introducing the fluid from the channel (7) and intermittently discharging the fluid from the fluid discharge port (5), the foam of the fluid enters the meat of the partition wall (11) of the hollow metal member (1) to be molded. The hollow part (1) is inserted into the partition wall (11) of the metal hollow member (1) by the shape of the hole from which the foam has escaped.
A communication hole (12), which communicates between 0 and (10), is formed.

【0012】すなわち、この方法では、金属中空型材
(1)を押出成形する際に同時に当該型材の隣接する中
空部(10)(10)間の隔壁(11)に連通孔(12)が形成
されることになり、該連通孔(12)を形成するための孔
開け加工や切欠部の形成加工、型材自体の曲げ加工や溶
接あるいは型材同士のロウ付け接合等の後加工が全く不
要となる。しかして、該連通孔(12)は押出成形ダイス
(D1)〜(D4)の隔壁形成溝部(2b)の底から吐
出される流体の泡が抜けた形骸孔にて構成されるから、
当該流体の間欠吐出の時間間隔によって各隔壁(11)に
おける連通孔(12)…の間隔を自在に設定できると共
に、該流体の一回の吐出量によって連通孔(12)の大き
さも任意に設定でき、また吐出の継続時間を長くして連
通孔(12)を長孔状に形成することも可能である。更
に、各流体吐出口(6)ごと、もしくは一つ置きの流体
吐出口(6)の組ごとに間欠吐出のタイミングを制御し
たり、各流体吐出口(6)に対応する流体供給経路の長
さの違いによって吐出時期に差を付ける等の手段によ
り、隣接する隔壁(11)(11)同士の連通孔(12)…を
型材長手方向の異なる位置に形成することも可能であ
る。
That is, in this method, when the metal hollow mold (1) is extruded, a communication hole (12) is formed in the partition (11) between the adjacent hollow portions (10) of the mold at the same time. This eliminates the need for post-processing such as drilling for forming the communication hole (12), forming of the notch, bending of the mold itself, welding or brazing of the molds. Since the communication hole (12) is constituted by a body hole from which bubbles of fluid discharged from the bottom of the partition forming groove (2b) of the extrusion dies (D1) to (D4) are removed.
The interval between the communication holes (12) in each partition (11) can be freely set by the time interval of the intermittent discharge of the fluid, and the size of the communication hole (12) can be arbitrarily set by the discharge amount of the fluid at one time. It is also possible to form the communication hole (12) in a long hole shape by lengthening the duration of the discharge. Further, the timing of intermittent discharge is controlled for each fluid discharge port (6) or every other set of fluid discharge ports (6), and the length of the fluid supply path corresponding to each fluid discharge port (6) is controlled. It is also possible to form the communication holes (12)... Between the adjacent partition walls (11) at different positions in the longitudinal direction of the mold by means such as making a difference in the discharge timing depending on the difference.

【0013】請求項4の発明は、上記請求項3の金属中
空型材の製造方法において、押出成形ダイス(D2)の
雄型(2)として、保持用金型(23)に保持されたマン
ドレル(21)の一対の半割基体(20)(20)間に、前端
側を前記中空成形用凸部(2a)とする複数本の剛性ピ
ン(28)…が前後方向に沿う状態で挟持されると共に、
これら剛性ピン(28)…を挟持した前記半割基体(20)
(20)相互の対向面間に、隣接する剛性ピン(28)(2
8)の間に位置して前記流体導入路(7)の流体吐出口
(6)に臨む流路(72)が構成されたものを用いる構成
としている。
According to a fourth aspect of the present invention, in the method for manufacturing a metal hollow mold material according to the third aspect, the mandrel (23) held by the holding die (23) is used as the male die (2) of the extrusion die (D2). A plurality of rigid pins (28) having the front end side as the hollow forming projection (2a) are sandwiched between the pair of half bases (20) and (20) in the front-rear direction. Along with
The half base body (20) holding the rigid pins (28).
(20) Adjacent rigid pins (28) (2
8), a fluid passage (72) facing the fluid discharge port (6) of the fluid introduction path (7) is used.

【0014】この請求項4の構成では、前記の金属中空
型材(1)を製造するのに用いる押出成形ダイス(D
2)は、雄型(2)のマンドレル(21)の半割基体(2
0)(20)に比較的に安価な材料を使用できると共に、
中空成形用凸部(2a)に損傷や欠損を生じた際に剛性
ピン(28)だけの交換で済む上、流体導入路(7)…を
備えたマンドレル(21)の製作が容易になる。
In the structure of the fourth aspect, an extrusion die (D) used for manufacturing the metal hollow mold (1) is used.
2) is a half-substrate (2) of a male type (2) mandrel (21).
0) (20) can use relatively inexpensive materials,
When the hollow molding projection (2a) is damaged or lost, only the rigid pin (28) needs to be replaced, and the mandrel (21) having the fluid introduction path (7).

【0015】請求項5の発明は、上記請求項3又は4の
金属中空型材の製造方法において、押出成形ダイス(D
3)の雄型(2)として、リング部(23a)の内側に径
方向に沿うブリッジ部(23b)が一体形成され、このブ
リッジ部(23b)の両側が材料導通孔(25)(25)を構
成する保持用金型(23)と、該ブリッジ部(23b)に設
けた保持孔(26)に後方から挿嵌され、前端に前記中空
成形用凸部(2a)…を有するマンドレル(21)と、該
保持孔(26)の後端側に嵌合してマンドレル(21)の挿
嵌部分を後方から塞ぐ蓋部材(22)とを備え、前記流体
導入路(7)が保持用金型(23)より蓋部材(22)内部
及びマンドレル(21)内部を連通して流体吐出口(20)
に至る流路(72)〜(74)を有し、この流路の蓋部材
(22)とマンドレル(21)との接続部分にパイプ(9)
が挿嵌されたものを用いる。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a hollow metal member according to the third or fourth aspect, wherein the extrusion die (D
As the male mold (2) of 3), a bridge portion (23b) is formed integrally along the radial direction inside the ring portion (23a), and both sides of the bridge portion (23b) are formed with material conducting holes (25) (25). And a mandrel (21) which is inserted from behind into a holding hole (26) provided in the bridge portion (23b) and has the hollow forming convex portion (2a) at the front end. ), And a lid member (22) fitted to the rear end side of the holding hole (26) to close the inserted portion of the mandrel (21) from behind, and the fluid introduction path (7) is provided with a holding metal. From the mold (23), the inside of the lid member (22) and the inside of the mandrel (21) communicate with each other, and the fluid discharge port (20)
(72) to (74) leading to a pipe (9) at a connection portion between the lid member (22) and the mandrel (21).
Is used.

【0016】この請求項5の構成では、流体導入路
(7)…が雄型(2)の蓋部材(22)からマンドレル
(21)へと接続する部分にパイプ(9)を介在している
ことから、流体導入路(7)に導入された流体が蓋部材
(22)とマンドレル(21)との隙間から漏れ出して材料
導通孔(25)(25)を通る溶湯に混じり込む懸念がな
い。
In the structure of the fifth aspect, the pipe (9) is interposed at a portion where the fluid introduction passages (7)... Are connected from the male member (2) to the mandrel (21). Therefore, there is no fear that the fluid introduced into the fluid introduction path (7) leaks from the gap between the lid member (22) and the mandrel (21) and mixes with the molten metal passing through the material conduction holes (25) and (25). .

【0017】請求項6の発明は、上記請求項3〜5のい
ずれかの金属中空型材の製造方法において、溶湯に対し
て相溶性のない流体として気体を用いるものとしてい
る。この構成では、金属中空型材(1)の押出成形の
際、隣接する両側中空部(10)(10)間の隔壁(11)肉
部に気泡が入り込んで連通孔(12)を生じることになる
が、気泡となった気体は型材が押出成形ダイス(D1)
〜(D4)から出た際に自然に外気中に拡散するから、
流体が液体や常温で固化する材料(融液)である場合の
ように押出成形後に除去する手間が不要となる。
According to a sixth aspect of the present invention, in the method for manufacturing a hollow metal member according to any one of the third to fifth aspects, a gas is used as a fluid that is incompatible with the molten metal. In this configuration, when extruding the hollow metal member (1), air bubbles enter into the wall of the partition (11) between the adjacent hollow portions (10) and (10) to form the communication hole (12). However, the gas that has become bubbles is an extrusion die (D1).
~ When it comes out of (D4), it naturally diffuses into the outside air,
As in the case where the fluid is a liquid or a material (melt) that solidifies at room temperature, the trouble of removing after the extrusion molding is not required.

【0018】請求項7の発明は、上記請求項6の金属中
空型材の製造方法において、押出成形ダイス(D4)の
雄型(3)の前記流体導入路(7)が入口側流路(70)
より分岐して前記の各流体吐出口(6)に至る複数の出
口側流路(75a)〜(75d)を有し、且つ隣接する出口
側流路が互いに異なる流路長さに設定され、該流体導入
路(7)の入口側流路(70)に気体を導入した際に、出
口側流路(75a)〜(75d)の流路長さの差によって隣
接する流体吐出口(6)(6)からの気体の吐出時期が
ずれるようになされたものである。
According to a seventh aspect of the present invention, in the method for manufacturing a metal hollow mold material according to the sixth aspect, the fluid introduction path (7) of the male die (3) of the extrusion die (D4) is provided on the inlet side flow path (70). )
A plurality of outlet-side flow paths (75a) to (75d) branching to the respective fluid discharge ports (6), and adjacent outlet-side flow paths are set to have different flow path lengths; When a gas is introduced into the inlet-side flow path (70) of the fluid introduction path (7), the adjacent fluid discharge port (6) depends on the flow path length difference between the outlet-side flow paths (75a) to (75d). The discharge timing of the gas from (6) is shifted.

【0019】この請求項7の構成では、連通孔(12)形
成用の流体が圧縮性のある気体であるから、入口側流路
(70)に気体を導入した際、出口側流路(75a)〜(75
d)の流路長さによって流体吐出口(6)までの圧力の
伝播時間が変わり、流路長さの長い流体吐出口(6)か
ら出る気泡は流路長さの短い流体吐出口(6)から出る
気泡よりも吐出時期が遅れる。従って、得られる金属中
空型材(1)は、隣接する隔壁(11)(11)同士の連通
孔(12)…が型材長手方向の異なる位置にあるものとな
る。
In the structure of claim 7, since the fluid for forming the communication hole (12) is a compressible gas, when the gas is introduced into the inlet flow path (70), the outlet flow path (75a ) To (75
The propagation time of the pressure to the fluid discharge port (6) changes depending on the flow path length of d), and the air bubbles coming out of the fluid discharge port (6) having a long flow path length have the fluid discharge port (6) having a short flow path length. ), The ejection timing is later than that of the bubbles coming out of). Therefore, in the obtained metal hollow mold member (1), the communication holes (12)... Between the adjacent partition walls (11) (11) are located at different positions in the mold member longitudinal direction.

【0020】[0020]

【発明の実施の形態】以下、この発明に係る金属中空型
材とその製造方法について、図面を参照して具体的に説
明する。図1は熱交換器用の多孔偏平チューブに供され
るアルミニウム合金製の金属中空型材、図2〜図10は
該金属中空型材の押出成形に使用する押出成形ダイスを
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hollow metal member according to the present invention and a method for producing the same will be described in detail with reference to the drawings. FIG. 1 shows a metal hollow mold made of an aluminum alloy used for a porous flat tube for a heat exchanger, and FIGS. 2 to 10 show an extrusion die used for extrusion molding of the metal hollow mold.

【0021】図1に示す金属中空型材(1)は、偏平で
両側端が円弧状なし、長手方向に連続する複数条(図で
は4条)の隔壁(11)…によって内部が幅方向複数(図
では5つ)の中空部(10)…に仕切られており、各隔壁
(11)に両側の中空部(10)(10)間を透通する連通孔
(12)…が一定間隔置きに設けられ、これら連通孔(1
2)…の位置が隣接する隔壁(11)(11) 同士では互い
に型材長手方向にずれて全体として千鳥配置になってい
る。しかして、この金属中空型材(1)はアルミニウム
合金の押出成形にて得られた一体の押出成形物そのもの
であり、その押出成形過程で連通孔(12)…が形成され
ているため、当該型材(1)にはロウ付けや溶接等の後
加工による接合部が全く存在しない。
The hollow metal member (1) shown in FIG. 1 is flat and has no arcuate ends on both sides, and a plurality of (four in the figure) partition walls (11) continuous in the longitudinal direction have a plurality of inner portions in the width direction (FIG. 1). In the figure, five (5) hollow portions (10) are partitioned, and each partition (11) is provided with communication holes (12) through the hollow portions (10) (10) on both sides at regular intervals. These communication holes (1
2) The positions of the partition walls (11) and (11) adjacent to each other are displaced from each other in the longitudinal direction of the mold material, and are arranged in a staggered manner as a whole. The hollow metal mold (1) is an integral extruded product itself obtained by extrusion of an aluminum alloy, and since the communication holes (12) are formed in the extrusion molding process, In (1), there is no joint part by post-processing such as brazing or welding.

【0022】このような金属中空型材(1)を熱交換器
用の多孔偏平チューブとして用いれば、中空部(10)…
を流路として流通する熱交換媒体が隔壁(11)の連通孔
(12)を通して平行流路間で混じり合うことから、熱交
換中においてもチューブ全体としての熱交換媒体の温度
が平均化し、コンデンサでは空気の流れ方向に対して上
流側の流路(中空部)の熱交換媒体が冷え過ぎたり、同
じくエバポレータでは過熱状態になったりすることがな
く、もって熱交換器全体としての熱交換効率が向上す
る。
If such a hollow metal member (1) is used as a porous flat tube for a heat exchanger, hollow portions (10) ...
Since the heat exchange medium flowing as a flow path is mixed between the parallel flow paths through the communication holes (12) of the partition (11), the temperature of the heat exchange medium as a whole tube is averaged even during heat exchange, and the condenser In this case, the heat exchange medium in the flow path (hollow portion) on the upstream side with respect to the air flow direction does not become too cold, and also the evaporator does not become overheated, so that the heat exchange efficiency of the entire heat exchanger is reduced. improves.

【0023】なお、この発明の金属中空型材は、図1で
例示した熱交換器用の多孔偏平チューブに供する偏平型
のものに限らず、中空部間の連通部を必要とするか、該
連通部の存在が有利となる全ての用途に適応するもので
あり、型材の外形、中空部の数と配置、連通孔の大きさ
と配置間隔等は用途に応じて適宜設定すればよく、連通
孔についても隣接する隔壁同士で型材長手方向の同位置
に設けてもよい。ただし、図1で示す金属中空型材
(1)のように連通孔(12)…が千鳥配置になっている
構成では、連通孔(12)…を通した中空部(10)…間の
流体の混じり合いがより均等化するから、例えば前記の
熱交換器用の多孔偏平チューブに用いた際、チューブ全
体としての熱交換媒体の温度がより平均化し易くなり、
熱交換器全体としての熱交換効率がより向上することに
なる。
The hollow metal member of the present invention is not limited to the flat type for use in the porous flat tube for a heat exchanger illustrated in FIG. 1, but requires a communicating portion between the hollow portions. It is applicable to all applications where the presence of is advantageous, and the outer shape of the mold material, the number and arrangement of the hollow portions, the size and arrangement interval of the communication holes may be appropriately set according to the application, and the communication holes may also be set. The adjacent partition walls may be provided at the same position in the longitudinal direction of the mold. However, in the configuration in which the communication holes (12) are arranged in a staggered manner as in the metal hollow mold member (1) shown in FIG. 1, the fluid between the hollow portions (10) through the communication holes (12) is formed. Since the mixing is more uniform, for example, when used in the porous flat tube for the heat exchanger, the temperature of the heat exchange medium as a whole tube is more easily averaged,
The heat exchange efficiency of the heat exchanger as a whole is further improved.

【0024】図2及び図3は、図1で示すような多孔偏
平型の金属中空型材(1)の製造に用いる第一構成例の
押出成形ダイス(D1)を示す。これら図において、
(2)は該中空型材(1)の中空部(10)…を形成する
雄型、(3)は同型材(1)の外周部を成形する雌型、
(4)は雌型(3)に接して型材押出方向前方側に配置
したバックアップ用金型、(5)はこれら雄型(2)及
び雌型(3)とバックアップ用金型(4)の外周を取り
巻くカバー筒である。そして、雄型(2)は、超硬合金
製のマンドレル(21)、蓋部材(22) 、保持用金型(2
3)、外リング(24)より構成されている。また雌型
(3)は、超硬合金製の型本体(31)と保持リング(3
2)とからなる。
FIGS. 2 and 3 show an extrusion die (D1) of a first configuration example used for manufacturing a porous flat metal hollow mold member (1) as shown in FIG. In these figures,
(2) is a male mold for forming the hollow portion (10) of the hollow mold material (1), (3) is a female mold for molding the outer peripheral portion of the same mold material (1),
(4) is a backup mold arranged in front of the female material extrusion direction in contact with the female mold (3), and (5) is a male mold (2), a female mold (3) and a backup mold (4). It is a cover cylinder surrounding the outer periphery. The male mold (2) is made of a cemented carbide mandrel (21), a lid member (22), and a holding mold (2).
3) The outer ring (24). The female mold (3) consists of a mold body (31) made of cemented carbide and a retaining ring (3).
2)

【0025】雄型(2)のマンドレル(21)は、図4で
も示すように、全体的に偏平な形状を有しており、前端
に略角軸状をなす複数の中空成形用凸部(2a)…を並
列状に一体突設した前部(21a)と、やや厚肉で幅広の
後部(21b)とからなり、隣接する中空成形用凸部(2
a)(2a)間に各々構成される隔壁形成溝部(2b)
の底に流体吐出口(6)が開口している。そして、マン
ドレル(21)の内部には、後部(21b)に片側の側部か
ら幅方向に沿って穿設された入口側流路(70)と、この
入口側流路(70)から分岐して各流体吐出口(6)に繋
がる複数の平行な出口側流路(71)…とが設けられてい
る。
As shown in FIG. 4, the mandrel (21) of the male mold (2) has a flat shape as a whole, and has a plurality of hollow-shape projections (a substantially square axis) at its front end. 2a) consist of a front part (21a) integrally projecting in parallel and a slightly thicker and wider rear part (21b).
a) Partition forming groove portions (2b) formed between (2a)
The fluid discharge port (6) is open at the bottom of the. In the inside of the mandrel (21), an inlet-side flow path (70) formed in the rear part (21b) from one side along the width direction, and branches off from the inlet-side flow path (70). And a plurality of parallel outlet-side flow paths (71) connected to the respective fluid discharge ports (6).

【0026】雄型(2)の保持用金型(23)は、リング
部(23a)の内側に径方向に沿うブリッジ部(23b)が
一体形成され、このブリッジ部(23b)を挟む両側の空
所が材料導通孔(25)(25)を構成しており、ブリッジ
部(23b)に設けた保持孔(26)に、マンドレル(21)
を後方から挿嵌して保持すると共に、このマンドレル
(21)の挿嵌部の後方側を蓋部材(22)の嵌着によって
封鎖している。しかして、マンドレル(21)は、中空成
形用凸部(2a)…を有する前部側を保持孔(26)から
前方へ突出している。
In the holding mold (23) of the male mold (2), a bridge (23b) is formed integrally with the inside of a ring (23a) along the radial direction, and both sides sandwiching the bridge (23b). The voids constitute the material conducting holes (25) and (25), and the mandrel (21) is inserted into the holding hole (26) provided in the bridge portion (23b).
Is inserted and held from the rear, and the rear side of the inserted portion of the mandrel (21) is closed by fitting a lid member (22). Thus, the mandrel (21) projects forward from the holding hole (26) on the front side having the projections (2a) for hollow molding.

【0027】また、この保持用金型(23)の外周の径方
向対向位置には係合キー(23c)(23c)が設けてあ
り、両係合キー(23c)(23c)を外側の外リング(2
4)の内周のキー溝(24a)(24a)に係合することに
より、当該金型(23)と外リング(24)とが相対回転不
能に同心状に嵌合している。しかして、保持用金型(2
3)のリング部(23a)、外リング(24)、その外側の
カバー筒(5)には、マンドレル(21)の入口側流路
(70)に直線的に連通する半径方向の流体通路(7a)
〜(7c)が穿設されており、これら流体通路(7a)
〜(7c)とマンドレル(21)の入口側流路(70)及び
出口側流路(71)…とで外部から連通孔形成用の流体を
各流体吐出口(6)に供給する流体導入路(7)を構成
している。(8)はカバー筒(5)の外側から流体導入
路(7)に接続した流体導入管である。
Engagement keys (23c) and (23c) are provided at radially opposite positions on the outer periphery of the holding mold (23). Ring (2
By engaging the inner keyways (24a) and (24a) of 4), the mold (23) and the outer ring (24) are fitted concentrically so that they cannot rotate relative to each other. Then, the holding mold (2
In the ring portion (23a), the outer ring (24), and the outer cover cylinder (5) of (3), the radial fluid passage (70) linearly communicating with the inlet-side flow path (70) of the mandrel (21). 7a)
To (7c) are formed in these fluid passages (7a).
Through (7c) and the inlet-side flow path (70) and the outlet-side flow path (71) of the mandrel (21) supply a fluid for forming a communication hole from the outside to each fluid discharge port (6). (7) is constituted. (8) is a fluid introduction pipe connected to the fluid introduction path (7) from the outside of the cover cylinder (5).

【0028】雌型(3)の型本体(31)は、図4でも示
すように、外周が円形をなし、中央に全体として偏平で
後端側から前端側へ次第に拡大する型材導出孔(31a)
を有すると共に、この型材導出孔(31a)の後端内周に
型材外周形成用の突縁部(31b)が一体形成されてお
り、外周の径方向対向位置に設けたキー溝(31c)(31
c)を外側の保持リング(32)の内周の係合キー(32
a)(32a)に係合することにより、当該保持リング
(32)に相対回転不能に同心状に嵌合している。
As shown in FIG. 4, the mold main body (31) of the female mold (3) has a circular outer periphery, is flat at the center as a whole, and gradually expands from the rear end side to the front end side. )
And a protruding edge portion (31b) for forming the outer periphery of the molding material is integrally formed on the inner periphery of the rear end of the molding material lead-out hole (31a), and a key groove (31c) ( 31
c) The engaging key (32) on the inner circumference of the outer retaining ring (32)
a) By engaging with (32a), the retaining ring (32) is concentrically fitted to the holding ring (32) so as not to rotate relatively.

【0029】上記の雄型(2)及び雌型(3)とバック
アップ用金型(4)とは、図2及び図3に示すように、
端面同士を密着した同心状態でカバー筒(5)内に配置
しており、雌型(3)の型材導出孔(31a)にはバック
アップ用金型(4)の後端側から前端側へ次第に拡大す
る型材導出孔(4a)が臨んでいる。しかして、この配
置状態において、雄型(2)の保持用金型(23)に保持
されたマンドレル(21)は、中空成形用凸部(2a)…
の先端部が雌型(3)における型材導出孔(31a)の突
縁部(31b)の内側に位置している。また、雄型(2)
の保持用金型(23)と、雌型(3)の型本体(31)の後
端面との間には、マンドレル(21)の突出した前部を取
り囲む材料回り込み空間(27)が構成されている。
The male mold (2) and the female mold (3) and the backup mold (4) are, as shown in FIGS.
The end faces are arranged in the cover cylinder (5) in a concentric state in close contact with each other, and the mold lead-out hole (31a) of the female mold (3) gradually moves from the rear end side to the front end side of the backup mold (4). An expanding mold material outlet hole (4a) faces. Thus, in this arrangement, the mandrel (21) held by the holding mold (23) of the male mold (2) has the hollow molding projections (2a).
Is located inside the protruding edge portion (31b) of the mold material outlet hole (31a) in the female mold (3). In addition, male type (2)
Between the holding die (23) and the rear end surface of the female body (31) of the female die (3), a material wraparound space (27) surrounding the protruding front part of the mandrel (21) is formed. ing.

【0030】上記構成の押出成形ダイス(D1)は、雄
型(2)の保持用金型(23)の後端部に材料導入用の口
金リング(図示省略)を嵌合させると共に、材料導通孔
(25)(25)より内部にアルミニウム合金等の押出材料
の溶湯を流し込んで押出機に組み込み、これに押出材料
を所要の導入量で連続的に圧入することにより、金属中
空型材(1)を押出成形する。これにより、マンドレル
(21)先端の中空成形用凸部(2a)…の外周と、雌型
(3)における型材導出孔(31a)の突縁部(31b)の
内周との間隙から押し出される材料により、金属中空型
材(1)の外殻部が形成されると共に、中空成形用凸部
(2a)…の各々の隣接した隙間つまり隔壁形成溝部
(2b)を通って押し出される材料により、同型材
(1)の隔壁(11)…が形成され、各中空成形用凸部
(2a)に対応した中空部(10)…が構成されることに
なる。
The extrusion die (D1) having the above-mentioned structure has a die ring (not shown) for material introduction fitted to the rear end of the holding die (23) of the male die (2), and the material conduction is achieved. A metal hollow mold material (1) is prepared by pouring a molten metal of an extruded material such as an aluminum alloy into the extruder through the holes (25) and (25) and continuously injecting the extruded material into the extruder at a required amount. Is extruded. Thereby, it is extruded from the gap between the outer periphery of the hollow forming protrusions (2a) at the tip of the mandrel (21) and the inner periphery of the protruding edge (31b) of the mold material outlet hole (31a) in the female mold (3). The material forms the outer shell of the metal hollow mold member (1), and the material is extruded through adjacent gaps between the hollow forming projections (2a), that is, through the partition wall forming grooves (2b). The partition walls (11) of the mold material (1) are formed, and the hollow portions (10) corresponding to the respective hollow forming projections (2a) are formed.

【0031】しかして、この発明においては、上記の押
出過程において、流体導入管(8)を通して外部から連
通孔形成用の流体を流体導入路(7)に導入し、この流
体を各流体吐出口(6)より間欠的に吐出させる。これ
により、成形される金属中空型材(1)の隔壁(11)肉
部に当該流体の泡が入り込むから、成形後の泡の抜けた
形骸孔により、金属中空型材(1)の隔壁(11)に両側
中空部(10)(10)間を連通する連通孔(12)…が形成
される。ただし、この場合の連通孔(12)…は、全部の
隔壁部(11)…で型材長手方向の同位置に形成されるこ
とになる。
According to the present invention, in the above-mentioned extrusion process, a fluid for forming a communication hole is externally introduced into the fluid introduction path (7) through the fluid introduction pipe (8), and the fluid is discharged to each fluid discharge port. (6) Discharge more intermittently. As a result, the foam of the fluid enters the meat of the partition wall (11) of the hollow metal member (1) to be molded. There are formed communication holes (12) communicating between the hollow portions (10) on both sides. However, in this case, the communication holes (12) are formed at the same positions in the longitudinal direction of the mold in all the partition portions (11).

【0032】従って、この方法によれば、従来において
は金属中空型材の隣接する中空部間の隔壁に連通孔を形
成する上で必要であった押出成形後の孔開け加工や切欠
部の形成加工、型材自体の曲げ加工や溶接あるいは型材
同士のロウ付け接合等の後加工が全く不要となる。ま
た、連通孔(12)は押出成形時に流体吐出孔(6)から
吐出された流体の泡が抜けた形骸孔にて構成されるか
ら、当該流体の間欠吐出の時間間隔によって各隔壁(1
1)における連通孔(12)…の間隔を自在に設定できる
と共に、該流体の一回の吐出量によって連通孔(12)の
大きさも任意に設定でき、また吐出の継続時間を長くし
て連通孔(12)を長孔状に形成することも可能である。
Therefore, according to this method, a punching process after extrusion molding and a notch forming process which were conventionally required for forming a communication hole in a partition wall between adjacent hollow portions of a metal hollow mold material. In addition, no post-processing such as bending or welding of the mold material itself or brazing between the mold materials is required. In addition, since the communication hole (12) is constituted by a body hole from which bubbles of the fluid discharged from the fluid discharge hole (6) during extrusion molding are formed, each partition (1) is formed depending on the time interval of the intermittent discharge of the fluid.
The distance between the communication holes (12) in 1) can be freely set, and the size of the communication hole (12) can be arbitrarily set depending on the amount of discharge of the fluid at one time. The hole (12) can be formed in a long hole shape.

【0033】上記の連通孔形成用の流体としては、アル
ミニウム合金等の成形材料の溶湯に対して相溶性のない
ものであればよく、空気や窒素ガスの如き気体、耐熱油
の如き溶湯温度で気化しない高沸点の液体、成形材料よ
りも低融点である常温固形材料の融液等を使用できる
が、特に気体が好適である。すなわち、気体の場合、隔
壁(11)肉部に気泡が入り込んで連通孔(12)を形成す
ることになるが、気泡となった気体は型材(1)が押出
成形ダイス(D1)から出た際に自然に外気中に拡散す
るから、液体や常温で固化する融液を用いた場合のよう
に押出成形後に除去する手間が不要となる。
The fluid for forming the communication holes may be any fluid having no compatibility with the molten metal of the molding material such as an aluminum alloy, and may be a gas such as air or nitrogen gas or a molten metal temperature such as heat-resistant oil. A high-boiling liquid that does not vaporize, a melt of a room-temperature solid material having a lower melting point than the molding material, and the like can be used, and a gas is particularly preferable. That is, in the case of gas, air bubbles enter into the wall of the partition wall (11) to form the communication hole (12), but the gas as air bubbles has the mold (1) exiting the extrusion die (D1). In this case, since it naturally diffuses into the outside air, there is no need to remove it after extrusion molding as in the case of using a liquid or a melt that solidifies at room temperature.

【0034】次に、この発明に係る金属中空型材の製造
方法に用いる押出成形ダイスの他の構成例を示す。これ
ら押出成形ダイス(D2)〜(D4)の場合、雄型
(2)のマンドレル(21)と流体導入路(7)の構成が
異なること以外は、前記第一構成例の押出成形ダイス
(D1)と全く同様であるため、以下の記述においては
押出成形ダイス(D1)との共通部分については同一符
号を付してその説明を省略する。
Next, another configuration example of the extrusion die used in the method for manufacturing a hollow metal member according to the present invention will be described. In the case of these extrusion dies (D2) to (D4), except that the configuration of the mandrel (21) of the male mold (2) and the configuration of the fluid introduction path (7) are different, the extrusion dies (D1) of the first configuration example described above. ), The same reference numerals are given to the common parts with the extrusion die (D1) in the following description, and the description is omitted.

【0035】図5に示す第二構成例の押出成形ダイス
(D2)における雄型(2)のマンドレル(21)は、厚
み方向に2分割した一対の半割基体(20)(20)間に、
前後方向に沿う複数本の剛性ピン(28)…が平行状態に
挟持されており、各剛性ピン(28)…の半割基体(20)
(20)より突出した前端部が中空成形用凸部(2a)を
なし、隣接する剛性ピン(28)(28)の各々の間が隔壁
形成溝部(2b)をなしている。しかして、このマンド
レル(21)においては、図6でも示すように、剛性ピン
(28)…を挟持した半割基体(20)(20)相互の対向面
間で、隣接する剛性ピン(28)(28)の各々の間に位置
して前後方向全長にわたる出口側流路(72)…が構成さ
れ、各出口側流路(72)の前端が隔壁形成溝部(2b)
の底に流体吐出口(6)として開口している。
The mandrel (21) of the male die (2) in the extrusion die (D2) of the second configuration example shown in FIG. 5 is located between a pair of half-substrates (20) (20) divided in the thickness direction into two. ,
A plurality of rigid pins (28) ... along the front-rear direction are sandwiched in a parallel state, and a half base body (20) of each rigid pin (28) ...
The front end protruding from (20) forms a hollow molding projection (2a), and a space between each of the adjacent rigid pins (28) and (28) forms a partition wall forming groove (2b). In this mandrel (21), as shown in FIG. 6, the half rigid bases (20) sandwiching the rigid pins (28). (28) are located between each of the outlet-side channels (72)... Over the entire length in the front-rear direction, and the front end of each outlet-side channel (72) is formed by a partition wall forming groove (2b).
At the bottom as a fluid discharge port (6).

【0036】一方、マンドレル(21)の後端面と蓋部材
(22)の前端面との間には、蓋部材(22)側の溝にて入
口側流路(73)が構成され、この入口側流路(73)に出
口側流路(72)…が連通すると共に、保持用金型(23)
のリング部(23a)、外リング(24)、カバー筒(5)
に穿設された半径方向の流体通路(7a)〜(7c)が
当該入口側流路(73)に直線的に連通して一連の流体導
入路(7)を形成している。
On the other hand, between the rear end face of the mandrel (21) and the front end face of the lid member (22), an inlet-side flow path (73) is formed by a groove on the lid member (22) side. The outlet side flow path (72) communicates with the side flow path (73), and the holding mold (23)
Ring part (23a), outer ring (24), cover cylinder (5)
The fluid passages (7a) to (7c) extending in the radial direction linearly communicate with the inlet side flow passage (73) to form a series of fluid introduction passages (7).

【0037】上記構成の押出成形ダイス(D2)では、
押出成形時の中空部成形に伴う付加が専ら剛性ピン(2
8)…に加わることになるから、この剛性ピン(28)と
して超硬材料製のものを用いて、マンドレル(21)の半
割基体(20)(20)には比較的に安価な材料を使用でき
ることになり、また中空成形用凸部(2a)に損傷や欠
損を生じた際に剛性ピン(28)だけの交換で済む上、流
体導出路(72)…を備えたマンドレル(21)の製作も容
易になり、ダイス製作及び保守のコストが低減するとい
う利点がある。
In the extrusion die (D2) having the above structure,
Only the rigid pin (2
8) Because of this, the rigid pin (28) is made of a super hard material, and a relatively inexpensive material is used for the half bases (20) and (20) of the mandrel (21). It is possible to use the mandrel (21) having a fluid outlet path (72)... Only when the rigid pin (28) is replaced when damage or breakage occurs in the hollow forming projection (2a). There is an advantage that manufacturing is easy and the cost of die manufacturing and maintenance is reduced.

【0038】図7〜図9に示す第三構成例の押出成形ダ
イス(D3)では、雄型(2)のマンドレル(21)に各
流体吐出口(6)に対応した出口側流路(72)…が前後
方向に貫設されている。一方、蓋部材(22)には、保持
用金型(23)のリング部(23a)、外リング(24)、カ
バー筒(5)に穿設された半径方向の流体通路(7a)
〜(7c)に直線的に連通する入口側流路(73)と、こ
の入口側流路(73)よりマンドレル(21)側の出口側流
路(72)…に対応して分岐した出口側流路(74)…とを
有している。そして、この蓋部材(22)の各出口側流路
(74)にパイプ(9)の一端側を挿入固着し、このパイ
プ(9)をマンドレル(21)の出口側流路(72)に挿嵌
している。
In the extrusion die (D3) of the third configuration example shown in FIGS. 7 to 9, the mandrel (21) of the male die (2) has an outlet-side flow path (72) corresponding to each fluid discharge port (6). ) Are provided in the front-rear direction. On the other hand, the lid member (22) has a ring portion (23a) of the holding mold (23), an outer ring (24), and a radial fluid passage (7a) formed in the cover cylinder (5).
(7c) and an outlet side branched corresponding to an outlet side flow path (72) on the mandrel (21) side from the inlet side flow path (73). And a flow path (74). Then, one end of the pipe (9) is inserted and fixed to each outlet side flow path (74) of the lid member (22), and this pipe (9) is inserted into the outlet side flow path (72) of the mandrel (21). It is fitting.

【0039】ここで、保持用金型(23)のブリッジ部
(23b)の両側には材料導通孔(25)(25)があるか
ら、流体導入路(7)に高圧で導入した流体が蓋部材
(22)とマンドレル(21)との隙間から漏れ出すと、こ
れが溶湯に混じり込み、得られる金属中空型材(1)の
品質低下を招くことになる。しかるに、この押出成形ダ
イス(D3)では、流体導入路(7)…が雄型(2)の
蓋部材(22)からマンドレル(21)へと接続する部分に
パイプ(9)を介在していることから、流体導入路
(7)に導入された流体が蓋部材(22)とマンドレル
(21)との隙間から漏れ出す懸念がなく、もって流体の
混じり込みによる型材品質の低下を回避できる。
Here, since the material conducting holes (25) and (25) are provided on both sides of the bridge portion (23b) of the holding mold (23), the fluid introduced at a high pressure into the fluid introduction path (7) is covered. When leaking from the gap between the member (22) and the mandrel (21), this leaks into the molten metal and causes a deterioration in the quality of the obtained metal hollow mold (1). However, in this extrusion die (D3), a pipe (9) is interposed at a portion where the fluid introduction paths (7)... Connect from the lid member (22) of the male mold (2) to the mandrel (21). Therefore, there is no fear that the fluid introduced into the fluid introduction path (7) leaks out of the gap between the lid member (22) and the mandrel (21), so that a decrease in the quality of the mold material due to the mixing of the fluid can be avoided.

【0040】図10(イ)〜(ハ)に示す第四構成例の
押出成形ダイス(D4)では、雄型(2)のマンドレル
(21)は、押出成形ダイス(D2)と同様に、厚み方向
に2分割した一対の半割基体(20)(20)間に、突出し
た前端部を中空成形用凸部(2a)とする前後方向に沿
う複数本の剛性ピン(28a)〜(28e)が平行状態に挟
持されると共に、半割基体(20)(20)相互の対向面間
で出口側流路(75a)〜(75d)が構成されている。
In the extrusion die (D4) of the fourth configuration example shown in FIGS. 10 (a) to 10 (c), the mandrel (21) of the male mold (2) has the same thickness as the extrusion die (D2). A plurality of rigid pins (28a) to (28e) extending in the front-rear direction between a pair of half-substrates (20) (20) divided in two directions and having a protruding front end as a hollow molding projection (2a). Are held in parallel with each other, and outlet side flow paths (75a) to (75d) are formed between the opposing surfaces of the half bases (20) and (20).

【0041】しかるに、剛性ピン(28a)〜(28e)の
長さは、ピン(28a)を最短、ピン(28d)を最長とし
て順に長くなっている。また、出口側流路(75a)〜
(75d)は、いずれも流体吐出口(6)からマンドレル
(21)の後方へ伸び、剛性ピン(28a)〜(28d)の各
々の後端を僅かに越える位置で直角に向きを変えてマン
ドレル(21)の片側側面に達し、保持用金具(23)側の
凹入した分配空間(76)を介して当該金具(23)の入口
側流路(7a)に連通しており、その流路長さが流路
(75a)を最短、流路(75d)を最長として順に長くな
っている。
However, the length of the rigid pins (28a) to (28e) increases in order with the pin (28a) being the shortest and the pin (28d) being the longest. In addition, the outlet side flow path (75a)-
(75d) extends from the fluid discharge port (6) to the rear of the mandrel (21), and turns at right angles to the mandrel at a position slightly beyond the rear end of each of the rigid pins (28a) to (28d). (21), and communicates with the inlet-side flow path (7a) of the metal fitting (23) via the concave distribution space (76) on the side of the holding metal fitting (23). The length is increased in order with the flow path (75a) being the shortest and the flow path (75d) being the longest.

【0042】この押出成形ダイス(D4)による金属中
空型材(1)の押出成形においては、連通孔形成用の流
体として空気や窒素ガス等の気体を流体導入路(7)に
間欠的に導入すると、出口側流路(75a)〜(75d)の
流路長さの違いによって流体吐出口(6)までの圧力の
伝播時間に差ができることから、一回の導入毎に、出口
側流路(75a)の流体吐出口(6)から最も早く気泡が
吐出され、順次吐出時期が遅れて最後に出口側流路(75
d)の流体吐出口(6)から気泡が吐出される。従っ
て、得られる金属中空型材(1)は、例えば図1に示す
ように、隣接する隔壁(11)(11)同士の連通孔(12)
…が型材長手方向の異なる位置にあるものとなる。
In the extrusion molding of the hollow metal die (1) by the extrusion molding die (D4), a gas such as air or nitrogen gas is intermittently introduced into the fluid introduction path (7) as a fluid for forming a communication hole. Since the propagation time of the pressure to the fluid discharge port (6) varies depending on the difference in the flow path length of the outlet flow paths (75a) to (75d), the outlet flow path ( Bubbles are discharged from the fluid discharge port (6) of 75a) earliest, the discharge timing is sequentially delayed, and finally the outlet side flow path (75)
Air bubbles are discharged from the fluid discharge port (6) of d). Accordingly, the obtained metal hollow mold member (1) has a communicating hole (12) between adjacent partition walls (11) and (11) as shown in FIG. 1, for example.
Are located at different positions in the longitudinal direction of the mold.

【0043】なお、押出成形時に金属中空型材(1)の
隣接する隔壁(11)(11)同士の連通孔(12)…を型材
長手方向の異なる位置に形成する手段としては、上記の
押出成形ダイス(D4)のように流体導入路(7)の分
岐した出口側流路(75a)〜(75d)の流路長さを異な
らせ、且つ連通孔形成用の流体として気体を用いる方法
以外に、各流体吐出口(6)ごと、もしくは一つ置きの
流体吐出口(6)の組ごとに、流体導入路に介在させた
電磁弁等の流路開閉機構により、間欠吐出のタイミング
を自動的にずらせるように制御する方法も採用できる。
しかして、この流路開閉機構による制御では、流体とし
て気体のみならず液体(融液を含む)も使用可能であ
る。
The means for forming the communication holes (12) between adjacent partition walls (11) of the metal hollow mold member (1) at different positions in the longitudinal direction of the mold member at the time of extrusion molding is as described above. Apart from the method of using a gas as the fluid for forming the communication holes, the outlet-side channels (75a) to (75d) of the fluid introduction path (7) are made to have different channel lengths as in the die (D4). The intermittent discharge timing is automatically set for each fluid discharge port (6) or every other set of fluid discharge ports (6) by a flow path opening / closing mechanism such as a solenoid valve interposed in the fluid introduction path. It is also possible to adopt a method of controlling so as to shift.
In the control by the channel opening / closing mechanism, not only gas but also liquid (including melt) can be used as the fluid.

【0044】また、この発明に係る金属中空型材の製造
方法では、押出成形ダイスとして、例示したダイス(D
1)〜(D4)に限らず、雄型(2)及び雌型(3)の
分割形態と組合せ構造、中空成形用凸部(2a)…の数
及び配置と断面形状、流体導入路(7)の流路構成等が
種々異なるものを使用可能である。
In the method for manufacturing a hollow metal member according to the present invention, the dies (D
Not only 1) to (D4), but also the division form and combination structure of the male mold (2) and the female mold (3), the number and arrangement and cross-sectional shape of the hollow molding projections (2a). ) Can be used in which the flow path configuration and the like are variously different.

【0045】[0045]

【発明の効果】請求項1の発明によれば、長手方向に連
続する複数の中空部を備えた金属中空型材として、隣接
する中空部間の隔壁に所要間隔置きに形成された連通孔
を有することから、例えば熱交換器用の熱交換チューブ
として用いた場合に、空気の流れ方向に対して上流側の
流路と下流側の流路とで本来は温度差を生じる熱交換媒
体が相互に混じり合い、チューブ全体としての熱交換媒
体の温度が平均化し、もって熱交換器全体としての熱交
換効率を向上させることができ、しかも製造に際して該
連通孔を形成するための孔開け加工や切欠部の形成加
工、型材自体の曲げ加工や溶接あるいは型材同士のロウ
付け接合といった後加工が全く不要であり、押出成形の
みで容易に且つ安価に製造可能なものが提供される。
According to the first aspect of the present invention, a hollow metal member having a plurality of hollow portions continuous in the longitudinal direction has communication holes formed at required intervals in a partition wall between adjacent hollow portions. Therefore, for example, when used as a heat exchange tube for a heat exchanger, heat exchange media that originally generate a temperature difference between a flow path on the upstream side and a flow path on the downstream side with respect to the air flow direction are mixed with each other. The temperature of the heat exchange medium as a whole tube is averaged, so that the heat exchange efficiency as a whole heat exchanger can be improved. No post-processing such as forming, bending of the mold material itself, welding or brazing of the mold materials is required at all, and a product that can be easily and inexpensively manufactured only by extrusion molding is provided.

【0046】請求項2の発明によれば、特に複数の中空
部が型材幅方向に並列配置した上記の金属中空型材とし
て、隣接する隔壁同士の連通孔が型材長手方向の異なる
位置にあることから、流体を流通させた際の連通孔を通
した中空部間の流体の混じり合いがより均等化し、例え
ば熱交換器用の熱交換チューブとして用いた場合のチュ
ーブ全体としての熱交換媒体の温度がより平均化し易く
なり、熱交換器全体としての熱交換効率をより向上し得
るものが提供される。
According to the second aspect of the present invention, in particular, as the above-described metal hollow mold member in which a plurality of hollow portions are arranged in parallel in the mold member width direction, the communication holes between adjacent partition walls are located at different positions in the mold member longitudinal direction. The mixing of the fluid between the hollow portions through the communication holes when the fluid is circulated becomes more uniform, and the temperature of the heat exchange medium as a whole tube when used as a heat exchange tube for a heat exchanger, for example, becomes higher. An object which can be easily averaged and can further improve the heat exchange efficiency of the heat exchanger as a whole is provided.

【0047】請求項3の発明に係る金属中空型材の製造
方法によれば、型材外周部を成形する雌型と、同型材の
各中空部に対応した複数の中空成形用凸部を有する雄型
とを備えた押出成形ダイスを用い、その押出成形を行う
過程で雄型の隔壁形成溝部の底から溶湯に対して相溶性
のない流体を間欠的に吐出させ、成形される金属中空型
材の隔壁肉部に当該流体の泡を入り込ませ、この泡の抜
けた形骸孔によって隔壁に両側中空部間の連通孔を形成
することから、該連通孔を形成するための孔開け加工や
切欠部の形成加工、型材自体の曲げ加工や溶接あるいは
型材同士のロウ付け接合等の後加工が全く不要となり、
しかも各隔壁における連通孔の間隔と大きさを任意に設
定でき、また連通孔を長孔状に形成することも可能とな
る。
According to the method for manufacturing a metal hollow mold material according to the third aspect of the present invention, a female mold for molding an outer peripheral portion of the mold material and a male mold having a plurality of hollow molding convex portions corresponding to each hollow portion of the same mold material. In the process of performing the extrusion molding, an incompatible fluid to the molten metal is intermittently discharged from the bottom of the male partition wall forming groove, and the partition wall of the metal hollow mold material to be molded is used. Since the foam of the fluid enters the meat portion and the communicating hole between the hollow portions on both sides is formed in the partition wall by the shape hole from which the foam has been removed, a drilling process for forming the communicating hole and formation of a notch portion are formed. No post-processing such as machining, bending of the mold material itself, welding or brazing of the mold materials is required,
Moreover, the spacing and size of the communication holes in each partition can be set arbitrarily, and the communication holes can be formed in a long hole shape.

【0048】請求項4の発明によれば、上記の金属中空
型材の製造方法において、使用する押出成形ダイスの特
に雄型のマンドレルを安価に且つ容易に製作できると共
に、その中空成形用凸部に損傷や欠損を生じた際に剛性
ピンだけを交換すればよく、もって押出成形機の保全コ
ストを低減できるという利点がある。
According to the fourth aspect of the present invention, in the above-described method for manufacturing a hollow metal member, particularly a male mandrel of an extrusion die to be used can be easily and inexpensively manufactured, and the protrusion for hollow molding is formed. When the damage or breakage occurs, only the rigid pin needs to be replaced, which is advantageous in that the maintenance cost of the extruder can be reduced.

【0049】請求項5の発明によれば、上記の金属中空
型材の製造方法において、押出成形過程で前記連通孔形
成のために押出成形ダイスに導入する流体が部材同士の
隙間から漏れ出して溶湯に混じり込む懸念がなく、もっ
て該流体の混じり込みによる金属中空型材の品質低下を
防止できるという利点がある。
According to the fifth aspect of the present invention, in the above method for manufacturing a hollow metal member, the fluid introduced into the extrusion die for forming the communication hole in the extrusion molding process leaks from the gap between the members and melts. Therefore, there is an advantage that the quality of the hollow metal material can be prevented from being deteriorated due to the mixing of the fluid.

【0050】請求項6の発明によれば、上記の金属中空
型材の製造方法において、溶湯に対して相溶性のない流
体として気体を用いることから、型材の押出成形後に流
体を除去する手間が不要になるという利点がある。
According to the sixth aspect of the present invention, in the above method for manufacturing a hollow metal member, a gas is used as the fluid that is incompatible with the molten metal, so that there is no need to remove the fluid after the extrusion of the die. There is an advantage of becoming.

【0051】請求項7の発明によれば、上記の気体を用
いる金属中空型材の製造方法において、押出成形ダイス
の流体導入路の分岐した出口側流路が隣接する流路同士
で互いに異なる流路長さに設定されていることから、流
体導入路に単に気体を導入するだけで、得られる金属中
空型材の隣接する隔壁同士の連通孔が型材長手方向の異
なる位置に形成され、該型材が例えば熱交換器用の熱交
換チューブとしてより好適なものになるという利点があ
る。
According to the seventh aspect of the present invention, in the method of manufacturing a metal hollow mold member using a gas, the outlet-side flow paths of the fluid introduction paths of the extrusion die differ from each other in adjacent flow paths. Since the length is set, simply introducing gas into the fluid introduction path, communication holes between adjacent partition walls of the obtained metal hollow mold material are formed at different positions in the mold material longitudinal direction, and the mold material is, for example, There is an advantage that it becomes more suitable as a heat exchange tube for a heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る金属中空型材の一構成例を示す
一部破断斜視図である。
FIG. 1 is a partially cutaway perspective view showing one configuration example of a metal hollow mold member according to the present invention.

【図2】この発明に係る金属中空型材の製造方法に用い
る押出成形ダイスの第一構成例を示す全体断面図であ
る。
FIG. 2 is an overall sectional view showing a first configuration example of an extrusion die used in the method for manufacturing a hollow metal member according to the present invention.

【図3】図2のIII −III 線の断面矢視図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2;

【図4】同第一構成例の押出成形ダイスの雄型のマンド
レルと雌型の型本体を示す斜視図である。
FIG. 4 is a perspective view showing a male mandrel and a female mold main body of the extrusion die of the first configuration example.

【図5】この発明に係る金属中空型材の製造方法に用い
る押出成形ダイスの第二構成例を示す全体断面図であ
る。
FIG. 5 is an overall sectional view showing a second configuration example of an extrusion die used in the method for manufacturing a hollow metal member according to the present invention.

【図6】同第二構成例の押出成形ダイスの雄型のマンド
レル示す斜視図である。
FIG. 6 is a perspective view showing a male mandrel of the extrusion die of the second configuration example.

【図7】この発明に係る金属中空型材の製造方法に用い
る押出成形ダイスの第三構成例を示す全体断面図であ
る。
FIG. 7 is an overall sectional view showing a third configuration example of an extrusion die used in the method for manufacturing a hollow metal member according to the present invention.

【図8】図7のVIII−VIII線の断面矢視図である。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7;

【図9】同第三構成例の押出成形ダイスの要部を示し、
(イ)図は断面図、(ロ)図は(イ)図のロ−ロ線の断
面矢視図である。
FIG. 9 shows an essential part of an extrusion die of the third configuration example,
(A) is a cross-sectional view, and (B) is a cross-sectional view taken along the line I-I of (A).

【図10】この発明に係る金属中空型材の製造方法に用
いる押出成形ダイスの第四構成例におけるマンドレルを
示し、(イ)図は半割基体の平面図、(ロ)図は全体正
面図、(ハ)図は全体側面図である。
10 shows a mandrel in a fourth configuration example of an extrusion die used in the method for manufacturing a hollow metal member according to the present invention, wherein FIG. 10A is a plan view of a half base, FIG. (C) The figure is an overall side view.

【図11】積層型熱交換器の一例を示し、(イ)図は全
体の正面図、(ロ)図は熱交換コア部の斜視図である。
FIGS. 11A and 11B show an example of a stacked heat exchanger, wherein FIG. 11A is a front view of the whole, and FIG. 11B is a perspective view of a heat exchange core.

【図12】従来の多孔偏平チューブにおける隔壁の連通
孔形成操作を示し、(イ)図は加工前の断面図、(ロ)
図は加工後の断面図である。
12A and 12B show a communication hole forming operation of a partition wall in a conventional porous flat tube. FIG. 12A is a cross-sectional view before processing, and FIG.
The figure is a sectional view after processing.

【図13】従来における隔壁に連通孔を設けた多孔偏平
チューブの作製操作を示す斜視図である。
FIG. 13 is a perspective view showing a conventional production operation of a porous flat tube provided with a communication hole in a partition wall.

【符号の説明】[Explanation of symbols]

1・・・・・・・・・金属中空型材 10・・・・・・・・中空部 11・・・・・・・・隔壁部 12・・・・・・・・連通孔 2・・・・・・・・・雄型 2a・・・・・・・・中空成形用凸部 2b・・・・・・・・隔壁形成溝部 20・・・・・・・・半割基体 21・・・・・・・・マンドレル 22・・・・・・・・蓋部材 23・・・・・・・・保持用金具 23a・・・・・・・リング部 23b・・・・・・・ブリッジ部 25・・・・・・・・材料導通孔 26・・・・・・・・保持孔 28・・・・・・・・剛性ピン 3・・・・・・・・・雌型 31・・・・・・・・型本体 6・・・・・・・・・流体吐出口 7・・・・・・・・・流体導入路 7a,70,73・・入口側流路 71,72,74・・出口側流路 75a〜75d・・・出口側流路 9・・・・・・・・・パイプ D1〜D4・・・・・押出成形ダイス 1 ... hollow metal member 10 ... hollow part 11 ... partition wall part 12 ... communicating hole 2 ...・ ・ ・ ・ ・ ・ Male 2a ・ ・ ・ ・ ・ ・ ・ Protrusion for hollow molding 2b ・ ・ ・ ・ ・ ・ ・ ・ ・ Partition forming groove 20 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Half substrate 21 ・ ・ ・······· Mandrel 22 ················································································································································································································································· ········ Material conduction hole 26 ········ Holding hole 28 ········ Rigid pin 3 ········· Female type 31 ···· ··· Mold body 6 ······ Fluid discharge port 7 ······ Fluid introduction path 7a, 70, 73 ··· Inlet side flow path 71, 72, 74 ··· Outlet side flow path 75a-75d ・ ・ ・ Outlet side Channel 9: Pipe D1-D4: Extrusion die

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に連続する複数の中空部を備え
た一体の金属押出成形物からなり、隣接する中空部間の
隔壁に、押出成形過程で所要間隔置きに形成された連通
孔を有することを特徴とする金属中空型材。
1. An integral metal extruded product having a plurality of hollow portions continuous in the longitudinal direction, and a partition between adjacent hollow portions has communication holes formed at required intervals in the extrusion process. A hollow metal member characterized by the fact that:
【請求項2】 複数の中空部が型材幅方向に並列配置
し、隣接する隔壁同士の連通孔が型材長手方向の異なる
位置にある請求項1記載の金属中空型材。
2. The hollow metal member according to claim 1, wherein a plurality of hollow portions are arranged in parallel in the width direction of the die material, and communication holes between adjacent partition walls are located at different positions in the longitudinal direction of the die material.
【請求項3】 複数の中空部を有する金属中空型材の外
周部を成形する雌型と、同型材の各中空部に対応した複
数の中空成形用凸部を有する雄型とを備え、該雄型の隣
接する中空成形用凸部間で構成される隔壁形成溝部の底
に流体吐出口が開口すると共に、外部より雄型内を通っ
て当該流体吐出口に至る流体導入路が設けられた押出成
形ダイスを用い、 この押出成形ダイス内に押出材料の溶湯を供給して金属
中空型材を押出成形する過程で、該溶湯に対して相溶性
のない流体を前記流体導入路より導入して前記流体吐出
口から間欠的に吐出させることにより、成形される金属
中空型材の隔壁肉部に当該流体の泡を入り込ませ、この
泡の抜けた形骸孔によって金属中空型材の隔壁に両側中
空部間を連通する連通孔を形成することを特徴とする金
属中空型材の製造方法。
3. A female mold for molding an outer peripheral portion of a metal hollow mold having a plurality of hollow portions, and a male mold having a plurality of hollow molding projections corresponding to each hollow portion of the same mold material. Extrusion in which a fluid discharge port is opened at the bottom of the partition wall forming groove portion formed between adjacent hollow forming projections of the mold, and a fluid introduction path from the outside to the fluid discharge port through the inside of the male mold is provided. In the process of supplying a molten metal of the extruded material into the extrusion die and extruding the hollow metal material by using a molding die, a fluid incompatible with the molten metal is introduced from the fluid introduction path to the fluid. By intermittently discharging from the discharge port, the foam of the fluid enters into the partition wall of the hollow metal member to be molded, and the hollow portion of the bubble is removed to communicate between the hollow portions on both sides to the partition wall of the hollow metal member. Characterized by the formation of a communicating hole Method of manufacturing a hollow member.
【請求項4】 押出成形ダイスの雄型として、保持用金
型に保持されたマンドレルの一対の半割基体間に、前端
側を前記中空成形用凸部とする複数本の剛性ピンが前後
方向に沿う状態で挟持されると共に、これら剛性ピンを
挟持した前記半割基体相互の対向面間に、隣接する剛性
ピンの間に位置して前記流体導入路の流体吐出口に臨む
流路が構成されたものを用いる請求項3記載の金属中空
型材の製造方法。
4. As a male die of an extrusion molding die, a plurality of rigid pins having a front end side as the hollow molding convex portion are provided between a pair of half bases of a mandrel held by a holding die. And a flow path facing the fluid discharge port of the fluid introduction path is located between the adjacent rigid pins, between the opposing surfaces of the half-substrates sandwiching these rigid pins. 4. The method for producing a hollow metal member according to claim 3, wherein the material is used.
【請求項5】 押出成形ダイスの雄型として、リング部
の内側に径方向に沿うブリッジ部が一体形成され、この
ブリッジ部の両側が材料導通孔を構成する保持用金型
と、該ブリッジ部に設けた保持孔に後方から挿嵌され、
前端に前記中空成形用凸部を有するマンドレルと、該保
持孔の後端側に嵌合してマンドレルの挿嵌部分を後方か
ら塞ぐ蓋部材とを備え、これらマンドレル及び蓋部材の
前記流体導入路が保持用金型より蓋部材内部及びマンド
レル内部を連通して流体吐出口に至る流路を有し、この
流路の蓋部材とマンドレルとの接続部分にパイプが挿嵌
されたものを用いる請求項3又は4に記載の金属中空型
材の製造方法。
5. As a male die of an extrusion die, a bridging portion is formed integrally along a radial direction inside a ring portion, and both sides of the bridging portion constitute a material holding hole, and a bridging portion. Is inserted from behind into the holding hole provided in the
A mandrel having the convex portion for hollow molding at a front end thereof; and a lid member fitted to a rear end side of the holding hole to close an insertion portion of the mandrel from behind, and the fluid introduction path of the mandrel and the lid member. Has a flow path from the holding mold to the lid member and the mandrel and leading to the fluid discharge port, wherein a pipe is inserted into a connection portion between the lid member and the mandrel in this flow path. Item 5. The method for producing a hollow metal member according to item 3 or 4.
【請求項6】 溶湯に対して相溶性のない流体として気
体を用いる請求項3〜5のいずれかに記載の金属中空型
材の製造方法。
6. The method for producing a hollow metal member according to claim 3, wherein a gas is used as the fluid having no compatibility with the molten metal.
【請求項7】 押出成形ダイスの雄型の前記流体導入路
が入口側流路より分岐して前記の各流体吐出口に至る複
数の出口側流路を有し、且つ隣接する出口側流路が互い
に異なる流路長さに設定され、該流体導入路の入口側流
路に気体を導入した際に、出口側流路の流路長さの差に
よって隣接する流体吐出口からの気体の吐出時期がずれ
るようになされた請求項6記載の金属中空型材の製造方
法。
7. The male fluid introduction passage of the extrusion die has a plurality of outlet passages branching from an inlet passage and reaching each of the fluid discharge ports, and adjacent outlet passages. Are set to different flow path lengths from each other, and when a gas is introduced into the inlet-side flow path of the fluid introduction path, the gas is discharged from the adjacent fluid discharge port due to the difference in the flow path length of the outlet-side flow path. 7. The method for producing a hollow metal member according to claim 6, wherein the timing is shifted.
JP2000201746A 2000-07-04 2000-07-04 Metal hollow shape and method of manufacturing it Pending JP2002018512A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000201746A JP2002018512A (en) 2000-07-04 2000-07-04 Metal hollow shape and method of manufacturing it
US09/897,311 US20020017372A1 (en) 2000-07-04 2001-07-02 Metal hollow member and method for manufacturing the same
EP01305723A EP1174198A3 (en) 2000-07-04 2001-07-02 Metal hollow member and method for manufacturing the same
TW090116323A TW495397B (en) 2000-07-04 2001-07-03 Metal hollow member and method for manufacturing the same
AU54195/01A AU5419501A (en) 2000-07-04 2001-07-03 Metal hollow member and method for manufacturing the same
CA002352028A CA2352028A1 (en) 2000-07-04 2001-07-03 Metal hollow member and method for manufacturing the same
CN01120010A CN1330989A (en) 2000-07-04 2001-07-04 Metal hollow parts and mfg. thereof
KR1020010039776A KR20020004871A (en) 2000-07-04 2001-07-04 Metallic hollow shape material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201746A JP2002018512A (en) 2000-07-04 2000-07-04 Metal hollow shape and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2002018512A true JP2002018512A (en) 2002-01-22

Family

ID=18699382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201746A Pending JP2002018512A (en) 2000-07-04 2000-07-04 Metal hollow shape and method of manufacturing it

Country Status (8)

Country Link
US (1) US20020017372A1 (en)
EP (1) EP1174198A3 (en)
JP (1) JP2002018512A (en)
KR (1) KR20020004871A (en)
CN (1) CN1330989A (en)
AU (1) AU5419501A (en)
CA (1) CA2352028A1 (en)
TW (1) TW495397B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093474B2 (en) 2001-10-23 2006-08-22 Showa Denko K.K. Extrusion die for manufacturing tube with small hollow portions, mandrel used for said extrusion die, and multi-hollowed tube manu-factured by using said extrusion die
JP2010158699A (en) * 2009-01-08 2010-07-22 Showa Denko Kk Method of manufacturing metallic hollow material, device of manufacturing the same, and metallic hollow material
CN102500633A (en) * 2011-09-28 2012-06-20 中国兵器工业第五九研究所 Method for forming cup-shaped component with gear
WO2013132679A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2013160959A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
JPWO2013161792A1 (en) * 2012-04-27 2015-12-24 三菱電機株式会社 Heat exchanger, method for manufacturing the same, and refrigeration cycle apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730597B2 (en) 2002-03-26 2010-06-08 Showa Denko K. K. Method for processing metal molding member having fine configuration, method for manufacturing metal molding member, extrusion die, method for manufacturing extruded member, and extruded member
CN1319661C (en) * 2005-08-30 2007-06-06 天津锐新电子热传技术有限公司 Frequency hopping radio station aluminum alloy shell extrusion molding dies
WO2008072787A2 (en) 2006-12-14 2008-06-19 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
KR100808625B1 (en) * 2007-03-22 2008-03-03 장기운 Structure of mandrel mold for pipe pressing
BE1018518A3 (en) * 2009-04-06 2011-02-01 Atlas Copco Airpower Nv IMPROVED HEAT EXCHANGER.
KR101530918B1 (en) * 2014-01-16 2015-06-23 일심알맥스(주) Dies And System For Manufacturing Tube Of Heat Exchanger
CN105442952B (en) * 2014-08-21 2017-09-15 铭泰五金工业股份有限公司 Reversion component and number wheel apparatus
TWI559070B (en) * 2015-02-10 2016-11-21 太豪生醫股份有限公司 Medical image playing system and method
SI3306253T1 (en) * 2016-10-07 2019-08-30 Alfa Laval Corporate Ab Heat exchanging plate and heat exchanger
US11209224B2 (en) * 2018-04-19 2021-12-28 Raytheon Technologies Corporation Mixing between flow channels of cast plate heat exchanger
US10801781B2 (en) * 2018-10-17 2020-10-13 Hanon Systems Compliant b-tube for radiator applications
CN112880454A (en) * 2019-11-29 2021-06-01 上海微电子装备(集团)股份有限公司 Heat exchange structure and semiconductor heat exchange device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313327A (en) * 1979-12-31 1982-02-02 Peerless Of America, Inc. Extrusion die for forming multi-passage tubular members
DE4120165C2 (en) * 1990-07-05 1995-01-26 Friedrichs Konrad Kg Extrusion tool for producing a hard metal or ceramic rod
US5263352A (en) * 1992-02-27 1993-11-23 Yugen Kaisha Yano Engineering Combination die assembly and a method of extrusion using the die assembly
US5323851A (en) * 1993-04-21 1994-06-28 Wynn's Climate Systems, Inc. Parallel flow condenser with perforated webs

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093474B2 (en) 2001-10-23 2006-08-22 Showa Denko K.K. Extrusion die for manufacturing tube with small hollow portions, mandrel used for said extrusion die, and multi-hollowed tube manu-factured by using said extrusion die
JP2010158699A (en) * 2009-01-08 2010-07-22 Showa Denko Kk Method of manufacturing metallic hollow material, device of manufacturing the same, and metallic hollow material
CN102500633A (en) * 2011-09-28 2012-06-20 中国兵器工业第五九研究所 Method for forming cup-shaped component with gear
CN102500633B (en) * 2011-09-28 2014-11-05 中国兵器工业第五九研究所 Method for forming cup-shaped component with gear
WO2013132679A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2013132679A1 (en) * 2012-03-07 2015-07-30 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
WO2013160959A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
WO2013161792A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
CN104246410A (en) * 2012-04-27 2014-12-24 三菱电机株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
JPWO2013161792A1 (en) * 2012-04-27 2015-12-24 三菱電機株式会社 Heat exchanger, method for manufacturing the same, and refrigeration cycle apparatus
US9546823B2 (en) 2012-04-27 2017-01-17 Mitsubishi Electric Corporation Heat exchanger, method of manufacturing same, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
AU5419501A (en) 2002-01-10
EP1174198A3 (en) 2002-08-07
TW495397B (en) 2002-07-21
CA2352028A1 (en) 2002-01-04
US20020017372A1 (en) 2002-02-14
KR20020004871A (en) 2002-01-16
CN1330989A (en) 2002-01-16
EP1174198A2 (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP2002018512A (en) Metal hollow shape and method of manufacturing it
JP2005524821A (en) Heat exchanger
JP3597436B2 (en) Heat exchanger
JP2003121086A (en) Heat exchange tube and heat exchanger
WO2015027783A1 (en) Micro-channel heat exchanger and method for manufacturing same
JP5485024B2 (en) Extrusion die equipment
EP1657513B1 (en) Heat exchanger
JP2006142811A (en) Manufacturing method for heat exchanger and heat exchanger manufactured by the method
JP2004125352A (en) Heat exchanger
JPH04309766A (en) Heat exchanger
JP2003185376A (en) Cooling liquid/air heat exchanger core assembly
JPH06123578A (en) Stacked type heat exchanger
JP2004257729A (en) Method of manufacturing heat exchanger
JP2004271143A (en) Heat exchanger
JP4533040B2 (en) Connection structure between header tank of refrigerant and refrigerant distribution pipe
JP2005024109A (en) Heat exchanger
JP2001133078A (en) Connection structure of tubular member, its pipe connection part formation method, and fluid shunt using connection structure
JP2001059689A (en) Tube for heat exchanger
JPH01247991A (en) Heat exchanger and manufacture thereof
JPH10137877A (en) Manufacture of tube heat exchanger
JPH08233476A (en) Heat exchanger
JP2003172588A (en) Heat exchanger
JP4164145B2 (en) Heat exchanger and car air conditioner using the same
JP2000234881A (en) Manufacture of tube for heat exchanger
JP2005076926A (en) Heat exchanger and manufacturing method of the same