JP2002018443A - Method and apparatus for water treatment - Google Patents

Method and apparatus for water treatment

Info

Publication number
JP2002018443A
JP2002018443A JP2000208643A JP2000208643A JP2002018443A JP 2002018443 A JP2002018443 A JP 2002018443A JP 2000208643 A JP2000208643 A JP 2000208643A JP 2000208643 A JP2000208643 A JP 2000208643A JP 2002018443 A JP2002018443 A JP 2002018443A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
treated
supplied
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000208643A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takahashi
和義 高橋
Kohei Miki
康平 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000208643A priority Critical patent/JP2002018443A/en
Publication of JP2002018443A publication Critical patent/JP2002018443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for water treatment which cleans electrodes enough and can do electrolysis stably for a long time and an apparatus for the method. SOLUTION: Raw water 1 containing pollutants is supplied to an electrolytic cell 5 having an anode 3 and a cathode 4, fluidized with suspended solids A supplied to the electrolytic cell 5, and electrolyzed, and substances adhered to the electrodes 3 and 4 are peeled off effectively by the collision of the fluidized suspended solids with the electrodes 3 and 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚染物質を含有す
る被処理水を、電気分解を利用して処理する水処理方法
及び水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method and a water treatment apparatus for treating treated water containing pollutants by using electrolysis.

【0002】[0002]

【従来の技術】近年、上水、下水、屎尿、ごみの埋め立
て浸出水や各種産業廃水等においてダイオキシン類、環
境ホルモン物質、その他の有害有機化合物等の汚染物質
による汚染が問題になっており、これら汚染物質の処理
方法が切望されている。
2. Description of the Related Art In recent years, pollutants such as dioxins, environmental hormones, and other harmful organic compounds have become a problem in clean water, sewage, human waste, leachate leachate, and various industrial wastewaters. There is a long-felt need for a method for treating these contaminants.

【0003】これら汚染物質の処理方法としては、例え
ば、活性炭等の吸着剤を利用する吸着法、光触媒として
のTiO2と紫外線を使用する光触媒法や、オゾン等の
酸化剤と紫外線を併用する促進酸化法等が知られてい
る。
[0003] As a method of treating these contaminants, for example, an adsorption method using an adsorbent such as activated carbon, a photocatalyst method using TiO 2 as a photocatalyst and ultraviolet light, and an acceleration method using an oxidant such as ozone and ultraviolet light together are used. Oxidation methods and the like are known.

【0004】上記吸着法では、使用に連れ性能が低下す
るため、吸着剤を再生炉で再生した後、再充填しなけれ
ばならないという問題があり、光触媒法や促進酸化法で
は、紫外線照射設備が必要であるといった問題に加え
て、光を反応器の内部まで導光するための工夫が必要で
あり、さらに光を照射するランプの劣化問題もある。
[0004] In the above-mentioned adsorption method, the performance deteriorates with use. Therefore, there is a problem that the adsorbent must be refilled after being regenerated in a regeneration furnace. In the photocatalytic method and the accelerated oxidation method, ultraviolet irradiation equipment is required. In addition to the problem of necessity, it is necessary to devise a way to guide light to the inside of the reactor, and there is also a problem of deterioration of the lamp that irradiates light.

【0005】これらの方法以外の比較的簡易な処理方法
として、汚染物質を含有する被処理水を、板状或いは棒
状等の陽極と陰極を交互に配置した電解槽に供給し、電
気分解で処理する電解法が知られている。
As a relatively simple treatment method other than these methods, water to be treated containing contaminants is supplied to an electrolytic cell having a plate-like or rod-like shape in which anodes and cathodes are alternately arranged, and treated by electrolysis. A known electrolysis method is known.

【0006】[0006]

【発明が解決しようとする課題】この電解処理では、電
解により陰極近傍がアルカリ性に、陽極近傍が酸性に各
々なるため、被処理水中にCa2+、Mg2+、炭酸イオン
が存在すると、陰極表面に炭酸カルシウム、炭酸マグネ
シウムが析出する。ここで、純水等の特殊な水を除く
と、通常の廃水には必ずカルシウム、マグネシウム、炭
酸が存在するため、電極に対する炭酸カルシウムや炭酸
マグネシウムの析出、付着の問題は必然的に生じること
になる。また、陽極に酸化被膜が生成したり、両極にオ
イルやその他の汚染物質が付着することもある。
In this electrolytic treatment, since the vicinity of the cathode becomes alkaline and the vicinity of the anode becomes acidic due to electrolysis, if Ca 2+ , Mg 2+ and carbonate ions are present in the water to be treated, the cathode will Calcium carbonate and magnesium carbonate precipitate on the surface. Here, except for special water such as pure water, ordinary wastewater always contains calcium, magnesium, and carbonic acid, so that the problem of precipitation and adhesion of calcium carbonate and magnesium carbonate to the electrodes necessarily occurs. Become. Also, an oxide film may be formed on the anode, and oil and other contaminants may adhere to both electrodes.

【0007】これらは非導電性のため、電解槽に流す電
流が低下して電解効率が低下し、これらの堆積物が経時
的に多くなると、電解が不可能となるという不具合が生
じる。
[0007] Since these are non-conductive, the current flowing through the electrolytic cell is reduced to lower the electrolysis efficiency, and if these deposits increase with time, electrolysis becomes impossible.

【0008】このような場合、電極を取り出して洗浄す
るか、電解槽に薬剤を充満させて洗浄しなければなら
ず、大変な労力を必要とする。また、薬剤を使用した場
合には、薬剤の処理が必要となる。また、電極を洗浄す
る他の方法として、定期的に電極表面を摺動するクリー
ナを設置することも考えられるが、厄介な設備となる。
また、他の洗浄方法として、定期的に陽極と陰極を切り
換える簡単な方法が知られているが、一度析出した炭酸
カルシウムや炭酸マグネシウムを除去するのは難しい。
また、この方法では、廃水中の油や固形物が付着した電
極の汚れに対する効果は期待できない。
In such a case, the electrode must be taken out and washed, or the electrolytic cell must be filled with a chemical and washed, which requires a great deal of labor. Further, when a medicine is used, the treatment of the medicine is required. As another method of cleaning the electrode, it is conceivable to periodically install a cleaner that slides on the surface of the electrode, but this is troublesome equipment.
As another cleaning method, a simple method of periodically switching between an anode and a cathode is known, but it is difficult to remove calcium carbonate and magnesium carbonate once deposited.
In addition, this method cannot be expected to have any effect on the contamination of the electrode to which the oil or solid matter in the wastewater has adhered.

【0009】そこで、例えば特開平11−290857
号公報には、電極の下部から散気する気泡により電極を
清掃する方法が、また、例えば実開平6−60499号
公報には、散気に加えて電解槽に撹拌翼を設置して電極
表面を洗浄する方法が、比較的簡易な方法として各々提
案されている。
Therefore, for example, Japanese Patent Application Laid-Open No. H11-290857
Japanese Patent Application Laid-Open No. 6-60499 discloses a method of cleaning an electrode by using bubbles scattered from the lower part of the electrode. Have been proposed as relatively simple methods.

【0010】しかしながら、これらの方法では、ある程
度の改善は可能であるが、単なる水流による洗浄である
ため、その効果は十分とはいえない。
[0010] However, these methods can be improved to some extent, but their effects are not sufficient because they are merely washing with water flow.

【0011】本発明は、このような課題を解決するため
になされたものであり、電解槽の電極を十分に洗浄し、
電気分解を経時的に安定して行い得る水処理方法及び水
処理装置を提供することを目的とする。
The present invention has been made in order to solve such a problem, and has been made to sufficiently wash an electrode of an electrolytic cell,
An object of the present invention is to provide a water treatment method and a water treatment apparatus capable of performing electrolysis stably over time.

【0012】[0012]

【課題を解決するための手段】本発明による水処理方法
は、陽極と陰極を備える電解槽に、汚染物質を含有する
被処理水を供給し、電解槽に供給された浮遊固体と共に
被処理水を流動化させて当該被処理水を電解処理するこ
とを特徴としている。
According to the water treatment method of the present invention, the water to be treated containing contaminants is supplied to an electrolytic cell having an anode and a cathode, and the water to be treated is treated together with the suspended solid supplied to the electrolytic cell. Is fluidized and the water to be treated is subjected to electrolytic treatment.

【0013】このような水処理方法によれば、流動化さ
れる浮遊固体が電極に衝突するため、当該電極の付着物
が効果的に剥離される。
According to such a water treatment method, since the floating solid to be fluidized collides with the electrode, the deposits on the electrode are effectively peeled off.

【0014】ここで、浮遊固体を、被処理水の供給前に
予め電解槽に供給していても、被処理水の供給後に電解
槽に供給するようにしても良い。
Here, the suspended solid may be supplied to the electrolytic cell in advance before supplying the water to be treated, or may be supplied to the electrolytic cell after supplying the water to be treated.

【0015】特に、電極の汚れの度合いを検出し、当該
電極が所定に汚れたら、浮遊固体を電解槽に供給するよ
うにすれば、陽極からの金属の溶出を防止すべく当該陽
極に例えば白金等の鍍金を施している場合には、この鍍
金に対する浮遊固体の衝突の機会が必要最低限とされ、
当該鍍金の剥離の虞が低減される。
In particular, if the degree of contamination of the electrode is detected, and if the electrode is contaminated to a predetermined degree, a suspended solid is supplied to the electrolytic cell, and for example, platinum is applied to the anode to prevent elution of metal from the anode. In the case of plating, etc., the chance of collision of suspended solids with this plating is minimized,
The possibility of peeling of the plating is reduced.

【0016】また、電解槽にガスを供給して、被処理水
及び浮遊固体を流動化させるのが好ましい。
It is preferable to supply gas to the electrolytic cell to fluidize the water to be treated and the suspended solids.

【0017】このように、被処理水及び浮遊固体の流動
化を、撹拌翼等の機械的手段ではなくガス供給で行うこ
とで、電解槽の簡素化が図られる。
As described above, the fluidization of the water to be treated and the suspended solids is performed not by mechanical means such as stirring blades but by gas supply, thereby simplifying the electrolytic cell.

【0018】また、ガスを酸素含有ガスとし、電解槽に
生物汚泥を共存させて被処理水を電解処理しても良い。
Further, the gas to be treated may be an oxygen-containing gas, and the water to be treated may be subjected to electrolytic treatment in the presence of biological sludge in the electrolytic cell.

【0019】このように、電解槽に生物汚泥を共存させ
ることで、有機物を分解する生物汚泥槽としての機能も
有することになる。また、被処理水及び浮遊固体を流動
化させるガスを、酸素含有ガスとすれば、生物汚泥に必
要な酸素含有ガスを別途供給の必要がない。
As described above, by coexisting biological sludge in the electrolytic cell, it also has a function as a biological sludge tank for decomposing organic substances. Further, if the gas for fluidizing the water to be treated and the suspended solids is an oxygen-containing gas, there is no need to separately supply an oxygen-containing gas necessary for biological sludge.

【0020】また、電解槽に、過酸化水素及びオゾンの
少なくとも一方を供給して被処理水を電解処理するのが
好ましい。
Preferably, at least one of hydrogen peroxide and ozone is supplied to the electrolysis tank to electrolyze the water to be treated.

【0021】このような構成を採用した場合、過酸化水
素、オゾンが供給されることで、有機物の電解を促進す
る特に酸化力の強いOHラジカル(・OH)の生成量が
増加される。
When such a configuration is adopted, the supply of hydrogen peroxide and ozone increases the amount of OH radicals (.OH) that promote electrolysis of organic substances, and particularly have a strong oxidizing power.

【0022】また、本発明による水処理装置は、陽極と
陰極を備え、汚染物質を含有し供給される被処理水を電
解処理する電解槽と、この電解槽に供給された浮遊固体
と、被処理水及び浮遊固体を流動化させる流動化手段
と、を備えている。
Further, the water treatment apparatus according to the present invention has an anode and a cathode, and has an electrolyzer for electrolyzing water to be treated containing pollutants, a suspended solid supplied to the electrolyzer, and an electrolyzer. Fluidizing means for fluidizing the treated water and the suspended solids.

【0023】このように構成された水処理装置によれ
ば、流動化手段により電解槽の被処理水及び浮遊固体が
流動化されるため、上記水処理方法が効果的に実施され
る。
According to the water treatment apparatus configured as described above, since the water to be treated and the suspended solids in the electrolytic cell are fluidized by the fluidizing means, the above-described water treatment method is effectively performed.

【0024】[0024]

【発明の実施の形態】以下、本発明に係る水処理方法を
適用した水処理装置の好適な実施形態について添付図面
を参照しながら説明する。なお、各図において、同一の
要素には同一の符号を付し、重複する説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a water treatment apparatus to which a water treatment method according to the present invention is applied will be described below with reference to the accompanying drawings. In each of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted.

【0025】図1は、第1実施形態に係る水処理装置を
示す概略構成図である。図1に示すように、水処理装置
21は、電解処理を行う陽極3及び陰極4を有すると共
に、これら電極3,4の表面を洗浄するための浮遊固体
A(詳しくは後述)が投入されている電解槽5を備え
る。この電解槽5には、被処理水1を供給する被処理水
供給ラインL1が接続されると共に、当該電解槽5で電
解処理した処理水を、スクリーン等の分離器9を通すこ
とで浮遊固体Aと分離して取り出す処理水ラインL3が
接続されている。
FIG. 1 is a schematic configuration diagram showing a water treatment apparatus according to the first embodiment. As shown in FIG. 1, the water treatment apparatus 21 has an anode 3 and a cathode 4 for performing an electrolytic treatment, and a floating solid A (to be described in detail later) for cleaning the surfaces of the electrodes 3 and 4 is supplied thereto. The electrolytic cell 5 is provided. A treated water supply line L1 for supplying the treated water 1 is connected to the electrolytic tank 5, and the treated water subjected to the electrolytic treatment in the electrolytic tank 5 is passed through a separator 9 such as a screen to form a floating solid. A treated water line L3 which is separated and taken out from A is connected.

【0026】被処理水供給ラインL1は、ダイオキシン
類、環境ホルモン物質等の汚染物質(有害物質)を含有
する被処理水1を電解槽5に供給する。
The treated water supply line L 1 supplies treated water 1 containing pollutants (hazardous substances) such as dioxins and environmental hormones to the electrolytic cell 5.

【0027】電解槽5の陽極3及び陰極4は、板状を成
して対向配置され、複数枚の陽極3、陰極4が交互に位
置するように並設されている。これらの電極3,4は、
被処理水供給ラインL1を介して電解槽5に供給される
被処理水1に浸漬されると共に、外部直流電源2に接続
されている。なお、この板状電極に代えて、例えば、網
状、格子状、パイプ状、ハニカム状等の他形状の電極を
用いることも可能である。また、これら電極3,4の材
質としては、特に制限はないが、例えば、白金、銀、白
金族金属を被覆した各種金属、鉄、銅、ニッケル、ステ
ンレス、チタン、炭素等が採用される。
The anode 3 and the cathode 4 of the electrolytic cell 5 are arranged opposite to each other in a plate shape, and a plurality of anodes 3 and cathodes 4 are juxtaposed so as to be alternately located. These electrodes 3, 4 are
It is immersed in the water 1 to be supplied to the electrolytic cell 5 via the water supply line L 1, and is connected to the external DC power supply 2. Note that, instead of the plate-like electrode, for example, an electrode of another shape such as a mesh shape, a grid shape, a pipe shape, or a honeycomb shape can be used. The materials of the electrodes 3 and 4 are not particularly limited, and for example, platinum, silver, various metals coated with a platinum group metal, iron, copper, nickel, stainless steel, titanium, carbon and the like are employed.

【0028】電解槽5の電極3,4より下方の底部に
は、散気管6が設置され、この散気管6には、ガス供給
ラインL2を介してブロワ7が接続されている。この散
気管6は、ブロワ7から空気が供給されることで散気口
6aから空気を散気し、電解槽5の被処理水1中に気泡
Bを発生させる。この気泡Bにより、水流が発生し被処
理水1が流動化される。
An air diffuser 6 is provided below the electrodes 3 and 4 of the electrolytic cell 5 and a blower 7 is connected to the air diffuser 6 via a gas supply line L2. When air is supplied from the blower 7, the air diffuser 6 diffuses the air from the air diffuser port 6 a, and generates bubbles B in the water 1 to be treated in the electrolytic cell 5. Due to the bubbles B, a water flow is generated, and the water to be treated 1 is fluidized.

【0029】特に、本実施形態においては、電解槽5に
上記浮遊固体Aが添加されている。この浮遊固体Aは、
本実施形態では、電解槽5に対する被処理水1の供給前
に予め供給されている。この浮遊固体Aとしては、例え
ば、プラスチック(ポリプロピレン、ポリスチレン
等)、活性炭、ゼオライト等の鉱物、軽石、砂、珪石、
アルミナ、その他各種のセラミックや各種金属粒等が採
用され、この浮遊固体Aの形状としては、例えば、球
状、粒状、柱状、中空状、破砕状等各種形状のものが採
用されるが、これらの材質、形状に限定されるものでは
なく、上記散気により被処理水1と共に流動化し得るも
のであれば良く、加えて、電解槽5から取り出される処
理水に対して分離器9で分離回収するのが容易なもので
あれば良い。このため、浮遊固体Aは、材質によって異
なるが、数mm〜数cm程度のものが採用される。な
お、上記ブロワ7、ガス供給ラインL2、散気管6によ
り、被処理水1及び浮遊固体Aを流動化させる流動化手
段が構成されている。
In particular, in the present embodiment, the above-mentioned suspended solid A is added to the electrolytic cell 5. This suspended solid A is
In the present embodiment, the water 1 is supplied before the water 1 to be supplied to the electrolytic cell 5. Examples of the suspended solid A include plastics (polypropylene, polystyrene, etc.), activated carbon, minerals such as zeolite, pumice, sand, quartzite,
Alumina, other various ceramics, various metal particles, and the like are employed. As the shape of the suspended solid A, various shapes such as a sphere, a particle, a column, a hollow, and a crushed shape are employed. The material and shape are not limited, and any material may be used as long as it can be fluidized together with the water to be treated 1 by the above-mentioned aeration. In addition, the treated water taken out from the electrolytic cell 5 is separated and collected by the separator 9. Anything that is easy can be used. For this reason, the suspended solid A has a size of about several mm to several cm, although it depends on the material. The blower 7, the gas supply line L2, and the air diffuser 6 constitute fluidizing means for fluidizing the water 1 to be treated and the suspended solids A.

【0030】電極3,4同士の間隔は、気泡Bにより発
生する水流と浮遊固体Aの流動化を高める必要があるこ
と、水の電気抵抗があまり高くなると電力費が嵩むこと
等を考慮して、数cm〜数十cmの比較的狭い極間距離
に設定されている。また、直流電源2の電圧は、数V〜
数十V、電流密度は数A/m2〜数百A/m2程度にされ
ている。
The distance between the electrodes 3 and 4 is determined in consideration of the necessity of increasing the flow of the water flow generated by the bubbles B and the fluidization of the suspended solid A, and the fact that the electric resistance of water becomes too high increases the power cost. , And a relatively narrow distance between the poles of several cm to several tens cm. The voltage of the DC power supply 2 is several volts or more.
Several tens of volts and a current density of about several A / m 2 to several hundred A / m 2 are set.

【0031】このような水処理装置21によれば、浮遊
固体Aが予め添加されている電解槽5に、被処理水1が
被処理水供給ラインL1を介して供給され、電極3,4
が通電されることで、被処理水1が電解処理される。
According to the water treatment apparatus 21, the water 1 to be treated is supplied to the electrolytic cell 5 to which the suspended solid A has been added in advance through the water supply line L 1.
Is supplied with electricity, the water 1 to be treated is subjected to electrolytic treatment.

【0032】この時、ブロワ7の駆動による散気によっ
て被処理水1には気泡Bが発生し、この気泡Bにより発
生する水流によって、被処理水1が流動化されると共に
浮遊固体Aが流動化される。
At this time, bubbles B are generated in the water 1 to be treated by the air diffused by the drive of the blower 7, and the water flow generated by the bubbles B fluidizes the water 1 and causes the floating solids A to flow. Be transformed into

【0033】従って、浮遊固体Aが電極3,4に対して
衝突し、これにより、当該電極3,4の付着物が効果的
に剥離される。加えて、気泡Bにより形成される水流で
も電極3,4が洗浄される。特に、本実施形態では、電
極3,4が比較的狭い間隔で配置されているため、水流
及び浮遊固体Aの流れが強く、電極3,4の付着物が一
層効果的に剥離される。
Therefore, the floating solid A collides with the electrodes 3 and 4, whereby the deposits on the electrodes 3 and 4 are effectively peeled off. In addition, the electrodes 3 and 4 are also washed by the water flow formed by the bubbles B. In particular, in the present embodiment, since the electrodes 3 and 4 are arranged at relatively small intervals, the flow of the water and the suspended solid A is strong, and the deposits on the electrodes 3 and 4 are more effectively separated.

【0034】ここで、浮遊固体Aの電解槽5への添加量
は、容積比で0.5%〜30%が好ましい。これは、
0.5%より小さいと、電極3,4の付着物の剥離効果
が不十分であり、30%を越えると、電極3,4間で閉
塞が生じたり、浮遊固体Aの流動化が困難になるからで
ある。
Here, the amount of the suspended solid A added to the electrolytic cell 5 is preferably 0.5% to 30% by volume. this is,
If it is less than 0.5%, the effect of removing the deposits on the electrodes 3 and 4 is insufficient, and if it exceeds 30%, clogging occurs between the electrodes 3 and 4 or fluidization of the suspended solid A becomes difficult. Because it becomes.

【0035】このように、電解槽5では効果的に電極
3,4が洗浄されるため、電解処理が経時的に良好に成
される。この電解槽5で良好に電解処理された処理水
は、分離器9で浮遊固体Aと分離され処理水ラインL3
を介して取り出される。この処理水は、放流若しくは再
利用されるが、必要に応じてさらに別工程の処理が実施
される。
As described above, since the electrodes 3 and 4 are effectively washed in the electrolytic cell 5, the electrolytic treatment is favorably performed with time. The treated water satisfactorily electrolyzed in the electrolytic cell 5 is separated from the suspended solid A in the separator 9 and the treated water line L3
Is taken out through. This treated water is discharged or reused, but a further process is performed if necessary.

【0036】なお、浮遊固体Aを分離器9で分離回収す
るのではなく、次工程として例えば浮上分離、沈殿分
離、膜分離等を設定し、ここで浮遊固体Aを分離回収し
て電解槽5に戻すようにしても良い。
The floating solid A is not separated and recovered by the separator 9, but, for example, flotation, sedimentation, and membrane separation are set as the next step. May be returned.

【0037】このように、本実施形態においては、汚染
物質を含有する被処理水1と浮遊固体Aが流動化される
ため、この流動化する浮遊固体Aが電極3,4に衝突し
当該電極3,4の付着物が効果的に剥離されるようにな
っている。このため、電極3,4が十分に洗浄され、電
気分解を経時的に安定して行うことが可能とされてい
る。
As described above, in the present embodiment, the water 1 to be treated containing the contaminant and the floating solid A are fluidized, and the fluidized floating solid A collides with the electrodes 3 and 4 and the floating solid A The deposits 3 and 4 are effectively peeled off. Therefore, the electrodes 3 and 4 are sufficiently washed, and the electrolysis can be stably performed with time.

【0038】また、本実施形態においては、被処理水1
及び浮遊固体Aの流動化が、撹拌翼等の機械的手段では
なく空気供給(ガス供給)により実施されているため、
電解槽5の簡素化が図られている。このため、電解槽5
の小型化及び低コスト化が可能とされている。
In this embodiment, the water 1 to be treated is
And the fluidization of the suspended solid A is carried out by air supply (gas supply) instead of mechanical means such as a stirring blade,
The electrolytic cell 5 is simplified. Therefore, the electrolytic cell 5
It is possible to reduce the size and cost of the device.

【0039】ここで、電解槽5に、過酸化水素及びオゾ
ンの少なくとも一方を供給して被処理水1を電解処理す
るのが好ましい。このように過酸化水素、オゾンを供給
すると、有機物の電解を促進する特に酸化力の強いOH
ラジカル(・OH)の生成量が増加されるため、汚染物
質の分解が一層促進されることになる。
Here, it is preferable that at least one of hydrogen peroxide and ozone is supplied to the electrolytic cell 5 to electrolyze the water 1 to be treated. Supplying hydrogen peroxide and ozone in this way promotes electrolysis of organic substances, especially OH having a strong oxidizing power.
Since the amount of generated radicals (.OH) is increased, the decomposition of pollutants is further promoted.

【0040】なお、被処理水1の電気伝導度が低い場合
には、Na、K等の化合物(例えば塩化物)を添加して
も良い。また、散気管6から供給される空気に代えて、
オゾン含有の空気や酸素ガス等を用いても良い。さらに
また、pHを調整すべく、酸やアルカリを添加しても良
い。
When the electric conductivity of the water 1 to be treated is low, compounds such as Na and K (for example, chlorides) may be added. Also, instead of the air supplied from the air diffuser 6,
Ozone-containing air or oxygen gas may be used. Furthermore, an acid or an alkali may be added to adjust the pH.

【0041】図2は、本発明の第2実施形態に係る水処
理装置を示す概略構成図である。この第2実施形態の水
処理装置31が第1実施形態の水処理装置21と違う点
は、電解槽5に生物汚泥(活性汚泥)Cを投入している
点である。
FIG. 2 is a schematic configuration diagram showing a water treatment apparatus according to a second embodiment of the present invention. The difference between the water treatment apparatus 31 of the second embodiment and the water treatment apparatus 21 of the first embodiment is that biological sludge (activated sludge) C is supplied to the electrolytic cell 5.

【0042】この生物汚泥Cは、有機物を分解するもの
であり、その濃度は、生物汚泥法の場合と同様の0.1
〜1%程度にされている。
This biological sludge C is for decomposing organic substances, and its concentration is 0.1% as in the case of the biological sludge method.
About 1%.

【0043】また、この第2実施形態では、当該生物汚
泥Cが分離器9を通過して処理水と共に処理水ラインL
3を流れるため、この処理水ラインL3を流れる生物汚
泥Cを電解槽5に戻す返送システムが付設されている。
この返送システムでは、処理水ラインL3に接続された
沈殿槽10で、生物汚泥Cが沈殿して処理水と分離さ
れ、この沈殿汚泥12が返送ラインL5を介して電解槽
5に返送され、一方、上澄の処理水が処理水ラインL4
を介して取り出されるように成されている。なお、沈殿
汚泥12が浮上するのを防止するために、処理水ライン
L3の途中に脱気装置を設けると良い。
In the second embodiment, the biological sludge C passes through the separator 9 and the treated water line L together with the treated water.
3, a return system for returning the biological sludge C flowing through the treated water line L3 to the electrolytic tank 5 is provided.
In this return system, biological sludge C precipitates and is separated from treated water in the settling tank 10 connected to the treated water line L3, and the settled sludge 12 is returned to the electrolytic tank 5 through the return line L5. , The supernatant treated water is in treated water line L4
To be taken out. In order to prevent the settling sludge 12 from floating, a deaerator may be provided in the middle of the treated water line L3.

【0044】このような第2実施形態によれば、電解槽
5に生物汚泥Cが共存しているため、電解槽の機能に加
えて、有機物を分解する生物汚泥槽としての機能も有し
ており、この生物汚泥Cにより、汚染物質の分解が一層
促進されるようになっている。
According to the second embodiment, since the biological sludge C coexists in the electrolytic cell 5, in addition to the function of the electrolytic cell, it has a function as a biological sludge tank for decomposing organic substances. The decomposition of pollutants is further promoted by the biological sludge C.

【0045】また、生物汚泥Cに必要な酸素(空気)
が、被処理水1及び浮遊固体Aを流動化させるべく、ブ
ロワ7からガス供給ラインL2、散気管6、散気口6a
を介して供給されているため、生物汚泥C用に別途酸素
を供給するのが不要とされており、電解槽5の低コスト
化が可能とされている。
The oxygen (air) required for the biological sludge C
However, in order to fluidize the water 1 to be treated and the suspended solid A, a gas supply line L2, a diffuser 6 and a diffuser 6a are provided from the blower 7.
Therefore, it is not necessary to separately supply oxygen for the biological sludge C, and the cost of the electrolytic cell 5 can be reduced.

【0046】なお、生物汚泥Cの分離は、図2に示す沈
殿分離に限定されるものではなく、例えば浮上分離や膜
分離等であっても良い。
Incidentally, the separation of the biological sludge C is not limited to the sedimentation separation shown in FIG. 2, but may be, for example, flotation separation or membrane separation.

【0047】また、この第2実施形態でも、過酸化水素
及びオゾンの少なくとも一方を供給するようにすれば、
汚染物質の分解がより一層促進されることになる。
Also in the second embodiment, if at least one of hydrogen peroxide and ozone is supplied,
The decomposition of pollutants will be further promoted.

【0048】ここで、本発明者らは、上述の効果を確認
すべく、以下の実施例1〜3、比較例1の条件で実験を
実施した。
Here, the present inventors conducted experiments under the following conditions of Examples 1 to 3 and Comparative Example 1 in order to confirm the above effects.

【0049】(実施例1)ダイオキシン類を20pgT
EQ/l含有するごみの埋め立て浸出水を被処理水とし
て、毎時9lの割合で、粒径約3mmφの多孔性セラミ
ット(浮遊固体:セラミック粒子)が容積比で3%添加
された有効容積が9lの電解槽(30×10×40cm
高さ)に連続的に供給した。電解槽には、白金鍍金チタ
ン板の陽極とステンレス板の陰極(何れの電極もサイズ
は25×8×0.05cm厚さ)を、極間6cm間隔で
2枚づつ、計4枚を配置した。電解を開始した時点から
槽底部全面より毎分1lの空気を供給して、電解を10
00時間実施した。電解槽の出口側には、セラミック粒
子の流出を防止する約2mmのスクリーンを設置した。
その結果、電極の汚れは比較的少なく、1000時間後
でも同じ電解電圧で電流値は5%低下しただけであっ
た。また、処理水のダイオキシンを分析した結果、当初
の除去率70%に対して1000時間後でも68%の除
去率が得られた。すなわち、電気分解を経時的に安定し
て行い得るのが確認された。
Example 1 Dioxins were converted to 20 pgT
The landfill leachate of the garbage containing EQ / l is treated water, and the effective volume to which 3% by volume of a porous ceramite (suspended solid: ceramic particles) having a particle diameter of about 3 mmφ is added is 9 liters / hour. Electrolytic cell (30 × 10 × 40cm
(Height) continuously. In the electrolytic cell, a total of four anodes of a platinum-plated titanium plate and two cathodes of a stainless steel plate (each electrode having a size of 25 × 8 × 0.05 cm thick) were arranged at intervals of 6 cm between the electrodes. . From the start of electrolysis, air was supplied at a rate of 1 liter per minute from the entire bottom of the tank to perform electrolysis for 10 minutes.
The test was performed for 00 hours. On the outlet side of the electrolytic cell, a screen of about 2 mm for preventing outflow of ceramic particles was provided.
As a result, contamination of the electrode was relatively small, and the current value decreased only 5% at the same electrolytic voltage even after 1000 hours. In addition, as a result of analyzing dioxin in the treated water, a removal rate of 68% was obtained even after 1000 hours, compared to an initial removal rate of 70%. That is, it was confirmed that the electrolysis could be stably performed over time.

【0050】(比較例1)セラミック粒子を添加しない
以外は、実施例1と同じ条件で電解処理した。その結
果、1000時間後の電解電流は当初の20%と大幅に
低下し、ダイオキシン除去率も15%と大幅に低下し
た。すなわち、セラミック粒子を添加しない電解処理で
は、電気分解を経時的に安定して行うのが困難であっ
た。
(Comparative Example 1) Electrolysis was performed under the same conditions as in Example 1 except that no ceramic particles were added. As a result, the electrolysis current after 1000 hours was greatly reduced to the initial 20%, and the dioxin removal rate was also significantly reduced to 15%. That is, in the electrolytic treatment without adding the ceramic particles, it was difficult to stably perform the electrolysis over time.

【0051】(実施例2)実施例1の電解槽底部より供
給する空気を、オゾンを0.1%含有する空気に代え
て、実施例1と同様に電解処理した。その結果、電極の
汚れは少なく、1000時間後でも同じ電解電圧で電流
値は5%低下しただけであった。また、ダイオキシン除
去率は、当初の除去率95%に対して1000時間後で
も93%の除去率が得られた。すなわち、電気分解を経
時的に安定して行い得ると共に、オゾンの存在により、
ダイオキシン除去率が向上するのが確認された。
(Example 2) Electrolysis was performed in the same manner as in Example 1 except that the air supplied from the bottom of the electrolytic cell in Example 1 was replaced with air containing 0.1% of ozone. As a result, the electrode was less contaminated, and the current value decreased only 5% at the same electrolytic voltage even after 1000 hours. The dioxin removal rate was 93% even after 1000 hours, compared to the initial removal rate of 95%. That is, while the electrolysis can be performed stably with time, and the presence of ozone,
It was confirmed that the dioxin removal rate was improved.

【0052】(実施例3)実施例1の電解槽に、生物汚
泥を5000mg/l共存させて、実施例1と同様に電
解処理した。但し、生物汚泥はスクリーンで分離回収で
きないので、次工程で沈殿分離して回収し、電解槽に戻
して生物汚泥を5000mg/lに保持するようにし
た。その結果、被処理水のBODが50ppmに対して
処理水のそれは8ppmであった。また、生物汚泥を共
存させない条件下では、処理水のBODは20ppmで
あった。すなわち、生物汚泥の存在により、BODの除
去性能が向上するのが確認された。
(Example 3) In the electrolytic cell of Example 1, an electrolytic treatment was carried out in the same manner as in Example 1, except that 5000 mg / l of biological sludge coexisted. However, since the biological sludge cannot be separated and recovered by a screen, the biological sludge is separated and recovered in the next step, and is returned to the electrolytic cell to maintain the biological sludge at 5000 mg / l. As a result, the BOD of the treated water was 8 ppm while the BOD of the treated water was 50 ppm. In addition, the BOD of the treated water was 20 ppm under the condition that no biological sludge coexisted. That is, it was confirmed that the removal performance of BOD was improved by the presence of biological sludge.

【0053】以上、本発明をその実施形態に基づき具体
的に説明したが、本発明は上記実施形態に限定されるも
のではなく、例えば、上記実施形態においては、電解槽
5の簡素化を図るべく、ガスを供給して、被処理水1及
び浮遊固体Aを流動化させるようにしているが、撹拌翼
等の機械的手段により流動化させることも可能である。
As described above, the present invention has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment. For example, in the above embodiment, the electrolytic cell 5 is simplified. For this purpose, gas is supplied to fluidize the water 1 to be treated and the suspended solids A, but fluidization can also be carried out by mechanical means such as a stirring blade.

【0054】また、生物汚泥Cを電解槽5に共存させる
場合には、供給ガスを空気等の酸素含有ガスとする必要
があるが、生物汚泥Cを電解槽5に共存させない場合に
は、供給ガスは酸素含有ガスに限定されるものではな
い。
When the biological sludge C is allowed to coexist in the electrolytic cell 5, the supply gas needs to be an oxygen-containing gas such as air. The gas is not limited to an oxygen-containing gas.

【0055】また、電極3,4の汚れ、特に陰極4に対
する非導電物質の析出、陽極3に対する酸化膜の生成を
防止すべく、直流電源2の電極3,4に対する供給ライ
ンに極性反転スイッチを介装し、陽極3と陰極4の極性
を定期的に交替して運転するようにしても良い。
In order to prevent contamination of the electrodes 3 and 4, in particular, deposition of a non-conductive substance on the cathode 4 and formation of an oxide film on the anode 3, a polarity inversion switch is provided in the supply line for the electrodes 3 and 4 of the DC power supply 2. The operation may be performed by interposing the anode 3 and the cathode 4 while periodically changing the polarity.

【0056】また、上記実施例においては、電解槽5に
予め浮遊固体Aを供給するようにしているが、例えば、
直流電源2の電極3,4に対する供給ラインに電流計を
介装し、この電流計を例えばコンピュータにより監視す
ることで電極3,4の汚れの度合いを検出し、電流値が
所定値以下に低下したら当該電極3,4が所定に汚れと
判断して、浮遊固体Aを電解槽5に供給するようにして
も良い。このようにすることで、陽極3からの金属の溶
出を防止すべく当該陽極3に例えば白金等の鍍金を施し
ている場合には、この鍍金に対する浮遊固体Aの衝突の
機会が必要最低限とされて、当該鍍金の剥離の虞が低減
され、電気分解が経時的に一層安定して行われることに
なる。また、鍍金に対する浮遊固体Aの衝突の機会を必
要最低限とすべく、浮遊固体Aを定期的に電解槽5に供
給しても良い。
In the above embodiment, the suspended solid A is supplied to the electrolytic cell 5 in advance.
An ammeter is interposed in the supply line for the electrodes 3 and 4 of the DC power supply 2, and the degree of contamination of the electrodes 3 and 4 is detected by monitoring the ammeter with a computer, for example, and the current value falls below a predetermined value. Then, the electrodes 3 and 4 may be determined to be contaminated in a predetermined manner, and the suspended solid A may be supplied to the electrolytic cell 5. In this way, when the anode 3 is plated with, for example, platinum or the like in order to prevent the elution of metal from the anode 3, the chance of collision of the suspended solid A with the plating is minimized. Then, the fear of peeling of the plating is reduced, and the electrolysis is performed more stably with time. Further, the floating solid A may be supplied to the electrolytic cell 5 periodically so as to minimize the chance of the collision of the floating solid A with the plating.

【0057】さらにまた、例えばアルミニウム、鉄等の
溶解性電極を陽極3に用いるようにすれば、被処理水の
燐酸イオンと反応して不溶性の燐酸塩が生成されること
になり、富栄養化で問題になっている燐を除去すること
も可能である。
Furthermore, if a soluble electrode of, for example, aluminum or iron is used for the anode 3, it reacts with the phosphate ions of the water to be treated to form insoluble phosphates, thereby increasing eutrophication. It is also possible to remove the problematic phosphorus.

【0058】[0058]

【発明の効果】本発明による水処理方法及び水処理装置
は、陽極と陰極を備える電解槽に、汚染物質を含有する
被処理水を供給し、電解槽に供給された浮遊固体と共に
被処理水を流動化させて当該被処理水を電解処理してい
るため、流動化する浮遊固体が電極に衝突し当該電極の
付着物が効果的に剥離される。このため、電極が十分に
洗浄され、電気分解を経時的に安定して行うことが可能
となる。
According to the water treatment method and the water treatment apparatus of the present invention, the water to be treated containing contaminants is supplied to an electrolytic cell having an anode and a cathode, and the water to be treated is treated together with the suspended solid supplied to the electrolytic cell. Is fluidized and the water to be treated is subjected to the electrolytic treatment, so that the floating solid that is fluidized collides with the electrode, and the deposits on the electrode are effectively peeled off. Therefore, the electrodes are sufficiently washed, and the electrolysis can be stably performed with time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る水処理装置を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a water treatment device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る水処理装置を示す
概略構成図である。
FIG. 2 is a schematic configuration diagram illustrating a water treatment device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…被処理水、2…電源、3…陽極、4…陰極、5…電
解槽、6…散気管(流動化手段)、7…ブロワ(流動化
手段)、21,31…水処理装置、A…浮遊固体、B…
気泡、C…生物汚泥、L2…ガス供給ライン(流動化手
段)。
DESCRIPTION OF SYMBOLS 1 ... Water to be processed, 2 ... Power supply, 3 ... Anode, 4 ... Cathode, 5 ... Electrolyzer, 6 ... Aerator (fluidizing means), 7 ... Blower (fluidizing means), 21, 31 ... Water treatment apparatus A: suspended solid, B:
Bubble, C: biological sludge, L2: gas supply line (fluidizing means).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D028 AB00 BC12 BD06 4D050 AA13 AA15 AB19 BB02 BB09 CA10 4D061 DA08 DB19 DC08 EA03 EB01 EB04 EB20 EB27 EB28 EB29 EB30 EB33 EB35 EB37 ED12 ED20 FA15 GA30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D028 AB00 BC12 BD06 4D050 AA13 AA15 AB19 BB02 BB09 CA10 4D061 DA08 DB19 DC08 EA03 EB01 EB04 EB20 EB27 EB28 EB29 EB30 EB33 EB35 EB37 ED12 ED20 FA15 GA30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極を備える電解槽に、汚染物質
を含有する被処理水を供給し、 前記電解槽に供給された浮遊固体と共に前記被処理水を
流動化させて当該被処理水を電解処理することを特徴と
する水処理方法。
1. An untreated water containing a contaminant is supplied to an electrolytic cell having an anode and a cathode, and the untreated water is fluidized together with the suspended solid supplied to the electrolytic cell to remove the untreated water. A water treatment method characterized by performing an electrolytic treatment.
【請求項2】 前記浮遊固体を、前記被処理水の供給前
に予め前記電解槽に供給することを特徴とする請求項1
記載の水処理方法。
2. The method according to claim 1, wherein the suspended solid is supplied to the electrolytic cell in advance before supplying the water to be treated.
Water treatment method as described.
【請求項3】 前記電極の汚れの度合いを検出し、 当該電極が所定に汚れたら、前記浮遊固体を前記電解槽
に供給することを特徴とする請求項1記載の水処理方
法。
3. The water treatment method according to claim 1, wherein the degree of contamination of the electrode is detected, and when the electrode is contaminated to a predetermined degree, the suspended solid is supplied to the electrolytic cell.
【請求項4】 前記電解槽にガスを供給して、前記被処
理水及び前記浮遊固体を流動化させることを特徴とする
請求項1〜3の何れか一項に記載の水処理方法。
4. The water treatment method according to claim 1, wherein a gas is supplied to the electrolytic cell to fluidize the water to be treated and the suspended solid.
【請求項5】 前記ガスを酸素含有ガスとし、 前記電解槽に生物汚泥を共存させて前記被処理水を電解
処理することを特徴とする請求項4記載の水処理方法。
5. The water treatment method according to claim 4, wherein the gas is an oxygen-containing gas, and the water to be treated is subjected to electrolytic treatment in the presence of biological sludge in the electrolytic cell.
【請求項6】 前記電解槽に、過酸化水素及びオゾンの
少なくとも一方を供給して前記被処理水を電解処理する
ことを特徴とする請求項1〜5の何れか一項に記載の水
処理方法。
6. The water treatment according to claim 1, wherein at least one of hydrogen peroxide and ozone is supplied to the electrolysis tank to electrolyze the water to be treated. Method.
【請求項7】 陽極と陰極を備え、汚染物質を含有し供
給される被処理水を電解処理する電解槽と、この電解槽
に供給された浮遊固体と、 前記被処理水及び前記浮遊固体を流動化させる流動化手
段と、を備える水処理装置。
7. An electrolytic cell, comprising an anode and a cathode, for electrolytically treating water to be supplied containing a contaminant, floating solids supplied to the electrolytic cell, and the water to be treated and the floating solids. And a fluidizing means for fluidizing.
JP2000208643A 2000-07-10 2000-07-10 Method and apparatus for water treatment Pending JP2002018443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208643A JP2002018443A (en) 2000-07-10 2000-07-10 Method and apparatus for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208643A JP2002018443A (en) 2000-07-10 2000-07-10 Method and apparatus for water treatment

Publications (1)

Publication Number Publication Date
JP2002018443A true JP2002018443A (en) 2002-01-22

Family

ID=18705193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208643A Pending JP2002018443A (en) 2000-07-10 2000-07-10 Method and apparatus for water treatment

Country Status (1)

Country Link
JP (1) JP2002018443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069754A1 (en) * 2003-02-10 2004-08-19 Nt Nitto Sangyo Co., Ltd Method of decomposing hardly decomposable organic compound and apparatus therefor
WO2005049502A1 (en) * 2003-11-19 2005-06-02 Anzai, Setsu Waste water treating system for treating waste water after biogas is produced
CN105800739A (en) * 2016-05-27 2016-07-27 长沙华时捷环保科技发展股份有限公司 3D-EO three-dimensional peroxidation electrochemical device and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069754A1 (en) * 2003-02-10 2004-08-19 Nt Nitto Sangyo Co., Ltd Method of decomposing hardly decomposable organic compound and apparatus therefor
WO2005049502A1 (en) * 2003-11-19 2005-06-02 Anzai, Setsu Waste water treating system for treating waste water after biogas is produced
CN105800739A (en) * 2016-05-27 2016-07-27 长沙华时捷环保科技发展股份有限公司 3D-EO three-dimensional peroxidation electrochemical device and application thereof

Similar Documents

Publication Publication Date Title
Drogui et al. Review of electrochemical technologies for environmental applications
RU2534125C2 (en) Method of electrochemical sewage water processing and device of realisation thereof
Poon Electroflotation for groundwater decontamination
US6274028B1 (en) Electrolytic wastewater treatment method and apparatus
KR101842552B1 (en) Electrolytic Carbon Filter and Equipment of Water Treatment using the same
EP2035335B1 (en) Moving electrode electroflocculation process and corresponding device
KR101598493B1 (en) A treating method for waste water using electrolysis and waste water treating system
GB2515324A (en) Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
US4619745A (en) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ
US20050034978A1 (en) Electrolytic cell stack with porous surface active electrode for removal of organic contaminants from water and method to purify contaminated water
EP0668244A1 (en) Effluent treatment involving electroflotation
KR100319022B1 (en) Wastewater Treatment System Using Electrolytic Injury Method
JP2005007385A (en) Garbage disposal system
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JP2010137151A (en) Electrolytic apparatus and water treatment system
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2002018443A (en) Method and apparatus for water treatment
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JPS638835B2 (en)
JP3973508B2 (en) Water treatment equipment
US4111768A (en) Method of separating solids from a fluid system
JP2000334462A (en) Packed bed type electrochemical water treating device and method therefor
JP2005103391A (en) Wastewater treatment method and apparatus
JP2006026506A (en) Waste water treatment apparatus, garbage treatment system and oil removal apparatus
CN212669432U (en) Device for treating sulfur-containing wastewater of oil and gas field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112