JP2002017676A - Auto-refractometer - Google Patents

Auto-refractometer

Info

Publication number
JP2002017676A
JP2002017676A JP2000202655A JP2000202655A JP2002017676A JP 2002017676 A JP2002017676 A JP 2002017676A JP 2000202655 A JP2000202655 A JP 2000202655A JP 2000202655 A JP2000202655 A JP 2000202655A JP 2002017676 A JP2002017676 A JP 2002017676A
Authority
JP
Japan
Prior art keywords
pupil
measurement
optical axis
light
auto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000202655A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000202655A priority Critical patent/JP2002017676A/en
Publication of JP2002017676A publication Critical patent/JP2002017676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and reliably measure the refractive index of an eye even in case of an eye with a microcoria whose pupil diameter is smaller than the diameter of measurement luminous flux. SOLUTION: A measurement section is two-dimensionally driven by a driving means while a light source remains on so that a measurement optical axis draws a circle around a pupil. The luminous flux accumulated in a photoelectric sensor which made a rotation as shown in Figs. (a)-(d) forms a ring-like luminous flux Ld shown in Fig. (e). The luminous flux Ld obtained in this way is operated like a case where the luminous flux is received at one time without eccentricity to determine the refractive index.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼科病院や眼鏡店
などで使われるオートレフラクトメータに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auto-refractometer used in ophthalmic hospitals and optician stores.

【0002】[0002]

【従来の技術】オートレフラクトメータにおいては、測
定光束径よりも瞳孔が小さいときは測定が難しい。この
ような小瞳孔眼の測定に関して、3方向に逐次に偏芯し
て瞳孔の片側から投影した眼底光束を逐次に検出し、乱
視を含む屈折測定をする技術が特開平4−141133
号公報に開示されている。
2. Description of the Related Art In an auto-refractometer, measurement is difficult when the pupil is smaller than the measured light beam diameter. With respect to such measurement of the small pupil eye, Japanese Patent Laid-Open No. 4-141133 discloses a technique for sequentially detecting retinal luminous flux projected from one side of the pupil while being eccentric in three directions, and performing refraction measurement including astigmatism.
No. 6,009,045.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、受光光束の受光画面上の座標位置で屈
折力を測定している。
However, in the above conventional example, the refractive power is measured at the coordinate position of the received light beam on the light receiving screen.

【0004】本発明の目的は、上述の問題点を解消し、
瞳孔径が測定光束径よりも小さな場合でも容易かつ確実
に眼屈折測定できるオートレフラクトメータを提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide an auto-refractometer capable of easily and reliably measuring an eye refraction even when a pupil diameter is smaller than a measurement light beam diameter.

【0005】また、本発明の他の目的は、座標位置を使
わずに、精度良く小瞳孔眼の眼屈折測定をするオートレ
フラクトメータを提供することにある。
Another object of the present invention is to provide an auto-refractometer for accurately measuring the refraction of a small pupil eye without using a coordinate position.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るオートレフラクトメータは、眼底に光束
を投影し反射光を検出し眼屈折測定をするオートレフラ
クトメータにおいて、測定光学系をアライメント駆動す
る駆動手段により測定光学系の光軸が瞳孔中心の周りを
回るように駆動しながら検出した信号により、乱視を合
む眼屈折測定をすることを特徴とする。
According to the present invention, there is provided an auto-refractometer for projecting a light beam onto a fundus, detecting reflected light, and measuring refraction of the eye. The apparatus is characterized in that an eye refraction measurement for astigmatism is performed based on a signal detected while driving the optical axis of the measurement optical system around the center of the pupil by a driving unit for performing alignment driving.

【0007】また、本発明に係るオートレフラクトメー
タは、瞳孔と共役位置に設け光軸中心と周辺で光束を分
割する光分割部材と、該光分割部材を介して眼底に光束
を投影する投影系と眼底反射光を撮像素子で受光する受
光系とを含む測定光学系と、該測定光学系をアライメン
ト駆動する駆動手段と、該駆動手段により前記測定光学
系をその光軸が瞳孔中心の周囲を移動しながら前記撮像
素子で受光した信号により屈折測定をすることを特徴と
する。
An auto-refractometer according to the present invention includes a light splitting member provided at a position conjugate with the pupil for splitting a light flux at the center and periphery of the optical axis, and a projection system for projecting the light flux onto the fundus via the light splitting member. A measuring optical system including a light receiving system that receives light reflected by the fundus with an image sensor, a driving unit that drives the alignment of the measuring optical system, and the driving unit moves the measuring optical system so that the optical axis of the measuring optical system is around the center of the pupil. It is characterized in that refraction is measured by a signal received by the image sensor while moving.

【0008】[0008]

【発明の実施の形態】本発明を図示の実施の形態に基づ
いて詳細に説明する。図1は第1の実施の形態のオート
レフラクトメータの構成図を示す。測定光学系を収納す
る測定部1は、基台2上に3個のステップモータ等から
構成される駆動手段3を介して三次元的に移動可能なよ
うに載置されている。基台2には、頂部に測定ボタン4
を設けた操作桿5が設けられ、被検者Sの顔を固定する
図示しない額当てなどの顔固定部材が取り付けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiment. FIG. 1 shows a configuration diagram of the auto-refractometer according to the first embodiment. A measuring unit 1 that houses a measuring optical system is mounted on a base 2 so as to be three-dimensionally movable via a driving unit 3 including three step motors and the like. The measurement button 4 is provided on the base 2
Is provided, and a face fixing member such as a forehead rest (not shown) for fixing the face of the subject S is attached.

【0009】被検者Sの視線方向の光軸O1上には、被
検眼E側から測定光波長を透過するダイクロイックミラ
ーである光分割部材6、対物レンズ7、孔あきミラー
8、瞳孔Pと略共役な中心開口絞り9、レンズ10、赤
外LEDから成る測定光源11が配列されている。光分
割部材6の反射方向の光軸O2上には、レンズ12、可
視光を透過するダイクロイックミラーである光分割部材
13、ミラー14、光軸方向に動き視標視度を変えるレ
ンズ15、固視視標16が設けられている。光分割部材
13の反射方向の前眼部光軸O3上には、前眼部を結像
するレンズ17、ビデオカメラである撮像手段18が設
けられている。また、孔あきミラー8の反射方向の受光
光軸O4上には、瞳孔Pに略共役でリング開口を有する
受光絞り19、光束を光軸O4の外方向に偏向する逆円
錐プリズムである光偏向部材20、レンズ21、正視眼
底に共役なCCDなどの撮像素子である光電センサ22
が配列されている。
On the optical axis O1 in the direction of the line of sight of the subject S, a light splitting member 6, which is a dichroic mirror that transmits the measurement light wavelength from the eye E, an objective lens 7, a perforated mirror 8, a pupil P A substantially conjugate center aperture stop 9, a lens 10, and a measurement light source 11 composed of an infrared LED are arranged. On the optical axis O2 in the reflection direction of the light splitting member 6, a lens 12, a light splitting member 13, which is a dichroic mirror transmitting visible light, a mirror 14, a lens 15, which moves in the optical axis direction and changes the visual target diopter, A visual target 16 is provided. On the anterior segment optical axis O3 in the reflection direction of the light splitting member 13, a lens 17 for forming an image of the anterior segment and an imaging means 18 as a video camera are provided. On the light receiving optical axis O4 in the direction of reflection of the perforated mirror 8, a light receiving stop 19 having a ring opening substantially conjugate to the pupil P, and an optical deflector that is an inverted conical prism that deflects a light beam outward from the optical axis O4. A photoelectric sensor 22 which is an imaging device such as a member 20, a lens 21, and a CCD conjugated to the ocular fundus.
Are arranged.

【0010】光電センサ22の信号は演算制御手段23
に接続され、撮像手段18の出力はテレビモニタ24、
演算制御手段23に接続されている。また、測定部1の
検者側には小瞳孔測定時に押しボタン25が設けられて
おり、この押しボタン25は演算制御手段23に接続さ
れている。
The signal of the photoelectric sensor 22 is calculated by an arithmetic control unit 23.
The output of the imaging means 18 is a television monitor 24,
It is connected to arithmetic control means 23. Further, a push button 25 is provided on the examiner side of the measuring unit 1 when measuring a small pupil, and this push button 25 is connected to the arithmetic and control unit 23.

【0011】測定時において、検者はテレビモニタ24
を見て瞳孔Pが映るように操作桿5を操作して駆動手段
3を駆動する。瞳孔Pがテレビモニタ24の画面に入る
ことを確認して測定ボタン4を押すと、撮像手段18の
信号が逐次に演算制御手段23に取り込まれ、瞳孔Pの
位置が認識される。瞳孔P内は暗く映るので、輝度レベ
ルの低い部分として瞳孔Pを認識できる。瞳孔Pの中心
が測定光軸O1に合うように駆動手段3を制御する。合
致すると測定光源11を点灯し測定を開始する。
At the time of measurement, the examiner uses the TV monitor 24
, The operating means 5 is operated to drive the driving means 3 so that the pupil P is projected. When the measurement button 4 is pressed after confirming that the pupil P is on the screen of the television monitor 24, the signal of the imaging means 18 is sequentially taken into the arithmetic control means 23, and the position of the pupil P is recognized. Since the inside of the pupil P appears dark, the pupil P can be recognized as a portion having a low luminance level. The driving unit 3 is controlled so that the center of the pupil P is aligned with the measurement optical axis O1. When they match, the measurement light source 11 is turned on to start the measurement.

【0012】瞳孔Pの中心からスポット光束を眼底に投
影し、瞳孔Pで投影測定の周りからリング状に取り出し
た光束を光電センサ22にリング光束として受光する。
得られたリング像の大きさを基に被検眼Eの球面度数を
演算し、楕円の程度により乱視度数を演算し、その方向
で乱視角度をそれぞれ演算する。この予備測定による視
度に基づいてレンズ21の位置を制御し、視度誘導を行
って本測定を行い屈折値を求める。
A spot light beam is projected onto the fundus from the center of the pupil P, and a light beam extracted in a ring shape from around the projection measurement at the pupil P is received by the photoelectric sensor 22 as a ring light beam.
The spherical power of the eye E is calculated based on the size of the obtained ring image, the astigmatic power is calculated based on the degree of the ellipse, and the astigmatic angle is calculated in the direction. Based on the diopter obtained by the preliminary measurement, the position of the lens 21 is controlled, diopter guidance is performed, the main measurement is performed, and the refraction value is obtained.

【0013】瞳孔Pが測定光束よりも小さい小瞳孔眼の
場合に、押しボタン25を押すと偏芯しながら測定する
ように制御される。測定光軸O1が瞳孔Pの中心の周り
を円を描くように、測定光源11を点灯したまま駆動手
段3により測定部1を二次元的に駆動する。図2はこの
場合の瞳孔Pでの光軸O1の軌跡Tを示す。
When the pupil P is a small pupil eye smaller than the measurement light beam, when the push button 25 is pressed, the control is performed such that the measurement is performed while being eccentric. The measurement unit 1 is two-dimensionally driven by the driving unit 3 while the measurement light source 11 is turned on so that the measurement optical axis O1 draws a circle around the center of the pupil P. FIG. 2 shows a locus T of the optical axis O1 at the pupil P in this case.

【0014】図3は瞳孔と偏芯された光束の関係を示
し、光軸O1は投影光束Laと受光光束Lbの中心にあ
る。図3(a)、(b)、(c)、(d)はそれぞれ左上右下に偏芯
した位置の関係を示している。瞳孔Pに投影光束Laと
受光光束Lbの異なる一部が入射している。図4は偏芯
した場合の光電センサ22上の受光光束Lcをそれぞれ
示している。
FIG. 3 shows the relationship between the pupil and the decentered light beam, and the optical axis O1 is at the center of the projection light beam La and the received light beam Lb. 3 (a), 3 (b), 3 (c) and 3 (d) show the relationship between the positions eccentric to the upper left and lower right, respectively. Different portions of the projection light beam La and the received light beam Lb enter the pupil P. FIG. 4 shows the received light beam Lc on the photoelectric sensor 22 when the eccentricity occurs.

【0015】図2に示すように、1回転した光電センサ
22に蓄積された光束は、図4(e)に示すようにリング
光束Ldとなる。このようにして得られた光束Ldを、
偏芯せずに一度に受光した場合と同様に演算して屈折値
を求める。ただし、視度誘導の雲霧時には一方向に偏芯
して行う。睫の影響のない図3(b)に示すように、下方
に偏芯した状態で予備測定により視度誘導を行い、本測
定では上述のように偏芯方向を変えながら測定する。
As shown in FIG. 2, the luminous flux accumulated in the photoelectric sensor 22 after one rotation becomes a ring luminous flux Ld as shown in FIG. 4 (e). The luminous flux Ld thus obtained is
The refraction value is obtained by performing the same calculation as in the case where the light is received at once without decentering. However, it is performed eccentrically in one direction at the time of cloudiness for diopter guidance. As shown in FIG. 3 (b) without the influence of the eyelashes, diopter guidance is performed by preliminary measurement in a state of being eccentric downward, and in this measurement, measurement is performed while changing the eccentric direction as described above.

【0016】このように、円周状に偏芯しながら測定す
ることにより、瞳孔P内の平均的な屈折力が測定できる
ので、小瞳孔に限らず大きな瞳孔の眼や瞳孔の一部分に
混濁を有する被検眼Eにも、このような測定を行うこと
ができる。
As described above, the average refractive power in the pupil P can be measured by measuring while eccentrically circumferentially, so that not only the small pupil but also the eyes of a large pupil or a part of the pupil may be clouded. Such measurement can also be performed on the eye E to be examined.

【0017】アライメント時に瞳孔Pの位置と共に大き
さを認識し、測定光束よりも小さい場合は、自動的に上
述の偏芯測定をするようにプログラムしておいてもよ
い。上述の説明では、瞳孔Pの中心から投影し、その周
囲から受光する形態としたが、その逆に周辺から投影し
中心から受光する形態でも同様である。また、リング光
束は3経線方向に配置した6つの光束によってもよい。
At the time of alignment, the size of the pupil P is recognized together with the position of the pupil P, and when the pupil P is smaller than the measurement light flux, the above-described eccentricity measurement may be automatically programmed. In the above description, the projection is performed from the center of the pupil P and the light is received from the periphery. However, the same applies to the configuration in which the projection is performed from the periphery and the light is received from the center. Further, the ring light beam may be six light beams arranged in three meridian directions.

【0018】図5、図6、図7は第2の実施の形態を示
している。これらの実施の形態は共に第1の実施の形態
のように、測定部を駆動する駆動手段3と前眼部を撮像
する撮像手段18を備えている。
FIGS. 5, 6, and 7 show a second embodiment. Each of these embodiments includes a driving unit 3 for driving the measuring unit and an imaging unit 18 for imaging the anterior segment as in the first embodiment.

【0019】図5は通常測定時の瞳孔P上の測定光束を
示し、測定光軸O1を瞳孔Pの中心に合わせる。2個の
LEDによる投影光束Le、Lfは瞳孔Pの両側周辺か
ら交互に投影し、受光光束Lgは瞳孔Pの中心から取り
出し、図6に示す2分割光電センサ31、32上に受光
光束Lhを受光する。光電センサ31、32の差信号を
検出し、その差が無くなるようにフォーカスを変えてゆ
く過程で、眼底と光電センサ31、32とが共役になる
と差が無くなるので、そのフォーカス位置を基に視度を
測定する。
FIG. 5 shows a measurement light beam on the pupil P during normal measurement, and the measurement optical axis O1 is aligned with the center of the pupil P. The projection light beams Le and Lf by the two LEDs are projected alternately from both sides of the pupil P, the received light beam Lg is taken out from the center of the pupil P, and the received light beam Lh is put on the two-part photoelectric sensors 31 and 32 shown in FIG. Receive light. In the process of detecting the difference signal between the photoelectric sensors 31 and 32 and changing the focus so as to eliminate the difference, when the fundus and the photoelectric sensors 31 and 32 become conjugate, the difference disappears. Measure the degree.

【0020】この場合に、投影光束Le、Lfを光軸O
1の周りに180度回転するように、測定系の一部を回
動しながらフォーカスを変え、各経線の屈折力を測定し
乱視を求める。
In this case, the projection light beams Le and Lf are shifted along the optical axis O.
The focus is changed while rotating a part of the measurement system so as to rotate 180 degrees around 1, and the astigmatism is obtained by measuring the refractive power of each meridian.

【0021】図7は小瞳孔眼の測定時の瞳孔Pと測定光
束を示す。投影光束Leを照明するLEDを連続点灯
し、投影光束Lfを照明する測定光源11を消灯する。
光電センサ31、32の出力の差が無くなるように、光
軸方向に測定系部材を動かしてフォーカスするのは通常
の測定と同様である。測定部1は駆動手段3により光軸
O1が半円Qを描くように駆動する。同時に、各経線の
屈折力を測定するために、測定系の一部を測定光軸O1
を中心として測定部1と同期して180度回動する。
FIG. 7 shows a pupil P and a measurement light beam when measuring a small pupil eye. The LED that illuminates the projection light beam Le is continuously turned on, and the measurement light source 11 that illuminates the projection light beam Lf is turned off.
Movement of the measurement system member in the optical axis direction to focus so as to eliminate the difference between the outputs of the photoelectric sensors 31 and 32 is the same as in normal measurement. The measuring unit 1 is driven by the driving unit 3 so that the optical axis O1 draws a semicircle Q. At the same time, in order to measure the refractive power of each meridian, a part of the measurement system is set to the measurement optical axis O1
, And rotates 180 degrees in synchronization with the measuring unit 1.

【0022】図8、図9、図10は第3の実施の形態
で、検影法の原理による測定系のオートレフラクトメー
タの例で示している。図8は瞳孔P上の投影光束Liを
示し、矢印の方向にスリット状の投影光束Liが瞳孔P
を横切るように動き、その眼底反射光を瞳孔Pと共役位
置にある光電センサ33、34、35により検出する。
FIGS. 8, 9 and 10 show a third embodiment, which is an example of an auto-refractometer of a measuring system based on the principle of a radiographic method. FIG. 8 shows the projection light beam Li on the pupil P, and the slit-shaped projection light beam Li
, And the reflected light from the fundus is detected by the photoelectric sensors 33, 34, 35 located at positions conjugate with the pupil P.

【0023】図9は正視眼底からの光電センサ33、3
4、35上の反射光を示している。正視の場合には、瞳
孔Pは投影光束の位置に拘わらず一様に明るくなる。屈
折異常があると、瞳孔Pでの明るさに分布が生じ、その
分布は光束Liの位置で変化するので、この分布を検出
して屈折力を求める。乱視を測定するには、ロータリプ
リズム等により光軸O1を中心として測定光束を180
度回転する。通常の測定には、瞳孔Pの周囲の2個所の
センサ33、35で足りる。小瞳孔眼を測定するため
に、光軸O1上に更に1つの光電センサ34を設けられ
ているが、通常の測定時にはこの光電センサ34は使わ
なくともよい。
FIG. 9 shows photoelectric sensors 33, 3 from the fundus of the standard eye.
4, the reflected light on 35 is shown. In the case of normal vision, the pupil P becomes uniformly bright regardless of the position of the projection light beam. If there is a refraction abnormality, a distribution occurs in the brightness at the pupil P, and the distribution changes at the position of the light beam Li. Therefore, the distribution is detected to determine the refracting power. In order to measure astigmatism, the measurement light flux is shifted 180 degrees around the optical axis O1 by a rotary prism or the like.
Rotate degrees. For normal measurement, two sensors 33 and 35 around the pupil P are sufficient. In order to measure the small pupil eye, one more photoelectric sensor 34 is provided on the optical axis O1, but this photoelectric sensor 34 does not have to be used during normal measurement.

【0024】図10は小瞳孔の測定時の測定光束を示
す。瞳孔像が光電センサ33、34に掛かるように偏芯
させ、光電センサ35の信号は使用しない。測定部1を
駆動手段3で瞳孔上で半円Rを描くように駆動する。そ
の動きに同期して、測定光束を光軸O1を中心として1
80度回転する。光電センサ33、34により瞳孔P上
の反射光強度分布を検出し屈折値を求める。小瞳孔の測
定時には、虹彩からの反射を遮光する瞳孔程度の大きさ
の絞りを、瞳孔Pの共役位置に光軸O1に偏芯して挿入
することが望ましい。
FIG. 10 shows a measurement light beam when the small pupil is measured. The pupil image is decentered so as to be applied to the photoelectric sensors 33 and 34, and the signal of the photoelectric sensor 35 is not used. The measuring unit 1 is driven by the driving means 3 so as to draw a semicircle R on the pupil. In synchronization with the movement, the measurement light flux is shifted by 1 around the optical axis O1.
Rotate 80 degrees. The reflected light intensity distribution on the pupil P is detected by the photoelectric sensors 33 and 34 to determine a refraction value. At the time of measurement of the small pupil, it is desirable to insert an iris having a size about the pupil that blocks reflection from the iris, eccentrically to the optical axis O1 at the conjugate position of the pupil P.

【0025】なお、従来の装置では、光軸中心にはアラ
イメント用の光電センサが設けられているが、これを小
瞳孔眼屈折測定に兼用してもよい。
In the conventional apparatus, a photoelectric sensor for alignment is provided at the center of the optical axis. However, this may be used also for measurement of small pupil eye refraction.

【0026】[0026]

【発明の効果】以上説明したように本発明に係るオート
レフラクトメータは、小瞳孔眼を容易にかつ確実に屈折
測定できる。
As described above, the auto-refractometer according to the present invention can easily and reliably measure the refraction of the small pupil eye.

【0027】また、本発明に係るオートフラクトメータ
は、撮像素子画面の座標位置を使用せずに、屈折値の演
算ができるので精度の良く小瞳孔眼の屈折測定ができ
る。
Further, the autofractometer according to the present invention can calculate the refraction value without using the coordinate position of the image sensor screen, so that the refraction of the small pupil eye can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態のオートレフラクトメータの構
成図である。
FIG. 1 is a configuration diagram of an auto-refractometer according to a first embodiment.

【図2】瞳孔上の光軸の軌跡の説明図である。FIG. 2 is an explanatory diagram of a locus of an optical axis on a pupil.

【図3】瞳孔と測定光束の関係図である。FIG. 3 is a relationship diagram between a pupil and a measurement light beam.

【図4】光電センサ上の受光光束の説明図である。FIG. 4 is an explanatory diagram of a received light beam on a photoelectric sensor.

【図5】第2の実施形態の瞳孔上の測定光束の説明図で
ある。
FIG. 5 is an explanatory diagram of a measurement light beam on a pupil according to the second embodiment.

【図6】光電センサ上の受光光束の説明図である。FIG. 6 is an explanatory diagram of a received light beam on a photoelectric sensor.

【図7】小瞳孔と測定光束の説明図である。FIG. 7 is an explanatory diagram of a small pupil and a measurement light beam.

【図8】第3の実施形態の瞳孔上の測定光束の説明図で
ある。
FIG. 8 is an explanatory diagram of a measurement light beam on a pupil according to the third embodiment.

【図9】光電センサ上の受光光束の説明図である。FIG. 9 is an explanatory diagram of a received light beam on a photoelectric sensor.

【図10】小瞳孔眼の光電センサ上の受光光束の説明図
である。
FIG. 10 is an explanatory diagram of a light beam received on a photoelectric sensor of a small pupil eye.

【符号の説明】[Explanation of symbols]

1 測定部 3 駆動手段 11 測定光源 18 撮像手段 22、31、32、33、34、35 光電センサ 23 演算制御手段 24 テレビモニタ DESCRIPTION OF SYMBOLS 1 Measuring part 3 Driving means 11 Measurement light source 18 Imaging means 22, 31, 32, 33, 34, 35 Photoelectric sensor 23 Operation control means 24 Television monitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 眼底に光束を投影し反射光を検出し眼屈
折測定をするオートレフラクトメータにおいて、測定光
学系をアライメント駆動する駆動手段により測定光学系
の光軸が瞳孔中心の周りを回るように駆動しながら検出
した信号により、乱視を合む眼屈折測定をすることを特
徴とするオートレフラクトメータ。
1. An auto-refractometer for projecting a light beam onto a fundus and detecting reflected light to measure an eye refraction, wherein a driving means for driving the alignment of the measuring optical system causes the optical axis of the measuring optical system to rotate around the center of the pupil. An auto-refractometer, which measures an eye refraction for astigmatism based on a signal detected while being driven.
【請求項2】 瞳孔と共役位置に設け光軸中心と周辺で
光束を分割する光分割部材と、該光分割部材を介して眼
底に光束を投影する投影系と眼底反射光を撮像素子で受
光する受光系とを含む測定光学系と、該測定光学系をア
ライメント駆動する駆動手段と、該駆動手段により前記
測定光学系をその光軸が瞳孔中心の周囲を移動しながら
前記撮像素子で受光した信号により屈折測定をすること
を特徴とするオートレフラクトメータ。
2. A light splitting member provided at a position conjugate to the pupil and splitting a light flux at the center and periphery of the optical axis, a projection system for projecting a light flux onto the fundus via the light splitting member, and a fundus reflected light received by an image sensor. A measuring optical system including a light receiving system for performing the measurement, a driving unit that drives the alignment of the measuring optical system, and the driving unit receives the measuring optical system with the image sensor while its optical axis moves around the center of the pupil. An auto-refractometer that performs refraction measurement using a signal.
【請求項3】 前眼部像から瞳孔径を求め、該瞳孔径に
応じて瞳孔中心と測定光軸での偏芯量を変える請求項1
又は2に記載のオートレフラクトメータ。
3. The pupil diameter is determined from the anterior eye image, and the eccentric amount between the pupil center and the measurement optical axis is changed according to the pupil diameter.
Or the auto-refractometer according to 2.
JP2000202655A 2000-07-04 2000-07-04 Auto-refractometer Pending JP2002017676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202655A JP2002017676A (en) 2000-07-04 2000-07-04 Auto-refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202655A JP2002017676A (en) 2000-07-04 2000-07-04 Auto-refractometer

Publications (1)

Publication Number Publication Date
JP2002017676A true JP2002017676A (en) 2002-01-22

Family

ID=18700150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202655A Pending JP2002017676A (en) 2000-07-04 2000-07-04 Auto-refractometer

Country Status (1)

Country Link
JP (1) JP2002017676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112965A (en) * 2000-10-10 2002-04-16 Topcon Corp Eye optical characteristic measuring apparatus
JP2006263082A (en) * 2005-03-23 2006-10-05 Topcon Corp Ocular optical characteristic measuring apparatus
US7416301B2 (en) 2003-12-25 2008-08-26 Nidek Co., Ltd. Eye refractive power measurement apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112965A (en) * 2000-10-10 2002-04-16 Topcon Corp Eye optical characteristic measuring apparatus
JP4606559B2 (en) * 2000-10-10 2011-01-05 株式会社トプコン Ophthalmic optical characteristic measuring device
US7416301B2 (en) 2003-12-25 2008-08-26 Nidek Co., Ltd. Eye refractive power measurement apparatus
JP2006263082A (en) * 2005-03-23 2006-10-05 Topcon Corp Ocular optical characteristic measuring apparatus
JP4684700B2 (en) * 2005-03-23 2011-05-18 株式会社トプコン Ophthalmic optical characteristic measuring device

Similar Documents

Publication Publication Date Title
JP4174126B2 (en) Ophthalmic measuring device
JP4492847B2 (en) Eye refractive power measuring device
JP3523453B2 (en) Optometrist
JP2005103103A (en) Refractive power measuring apparatus
JP5301908B2 (en) Eye refractive power measuring device
JP2011072593A (en) Eye refractive power measurement apparatus
JPH08103413A (en) Ophthalmological measuring instrument
JPH06217938A (en) Ocular refractometer
WO2003039357A1 (en) Device for measuring optical characteristic of eye
JP5601614B2 (en) Eye refractive power measuring device
JP2018171140A (en) Subjective optometric apparatus and subjective optometric program
JP4288139B2 (en) Ophthalmic measuring device
JPH08224213A (en) Ophthalmological device
JP2002017676A (en) Auto-refractometer
JP7349713B2 (en) ophthalmology equipment
JP4745550B2 (en) Corneal measuring device
JP2002336199A (en) Opthalmoscopic equipment
JPH06121773A (en) Ophthalmology refractometer
JPH09103408A (en) Ophthalmometer
EP3695774A1 (en) Ophthalmic device
US20200260953A1 (en) Ophthalmic device
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
WO2016129499A1 (en) Ocular refractivity measuring device
JPH11309114A (en) Optometer device
JP2004024471A (en) Ophthalmic instrument