JP2002016352A - Method and apparatus for reflow substrate heating - Google Patents

Method and apparatus for reflow substrate heating

Info

Publication number
JP2002016352A
JP2002016352A JP2000195793A JP2000195793A JP2002016352A JP 2002016352 A JP2002016352 A JP 2002016352A JP 2000195793 A JP2000195793 A JP 2000195793A JP 2000195793 A JP2000195793 A JP 2000195793A JP 2002016352 A JP2002016352 A JP 2002016352A
Authority
JP
Japan
Prior art keywords
substrate
gas
reflow
heating
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000195793A
Other languages
Japanese (ja)
Inventor
Masahiro Taniguchi
昌弘 谷口
Koichi Nagai
耕一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000195793A priority Critical patent/JP2002016352A/en
Publication of JP2002016352A publication Critical patent/JP2002016352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for reflow substrate heating in which components of slow temperature rise and thermally weak components can be reflow soldered collectively. SOLUTION: In the reflow substrate heating method for reflow soldering a substrate mounting electronic components 2, 4 and applied with cream solder at bonding positions, substrates 1 being carried continuously at a carrying section 5 are heated uniformly in a furnace body section 3 and gas of substantially the same temperature as the ambient temperature is blown locally from a heating acceleration nozzle section 8 to specified parts of the substrate 1 being heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント回路基板
に電子部品を半田付けして実装するためのリフロー装置
における基板加熱方法とその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for heating a substrate in a reflow apparatus for mounting electronic components on a printed circuit board by soldering.

【0002】[0002]

【従来の技術】プリント回路基板に電子部品を半田付け
して実装するためのリフロー装置の基板加熱方法には、
基板を一定の速度で装置の入口から出口まで連続搬送し
ながら加熱炉体部を通過させて基板を加熱する方法があ
る。
2. Description of the Related Art A board heating method of a reflow apparatus for soldering and mounting electronic components on a printed circuit board includes:
There is a method of heating a substrate by passing the substrate through a heating furnace while continuously transporting the substrate from the entrance to the exit of the apparatus at a constant speed.

【0003】図8は従来のリフロー装置である。図8に
おいて、1はプリント回路基板、2は熱容量の大きな大
型QFP、3は炉体部であり、第1予熱部3a、第2予
熱部3b、リフロー部3cからなる。4はアルミ電解コ
ンデンサ、5は基板搬送部、6は冷却部、7は全体加熱
用の熱風吹き出し部である。このような構成で、プリン
ト回路基板1へ全面に均一な加熱エネルギーを供給し、
各部をはんだ付けに必要な温度まで昇温することを特徴
とする。
FIG. 8 shows a conventional reflow apparatus. In FIG. 8, 1 is a printed circuit board, 2 is a large QFP having a large heat capacity, and 3 is a furnace body, which comprises a first preheating section 3a, a second preheating section 3b, and a reflow section 3c. Reference numeral 4 is an aluminum electrolytic capacitor, 5 is a substrate transporting unit, 6 is a cooling unit, and 7 is a hot air blowing unit for overall heating. With such a configuration, uniform heating energy is supplied to the entire surface of the printed circuit board 1,
It is characterized in that each part is heated to a temperature required for soldering.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実装基
板内には様々な部品が混在して搭載されるため、上記従
来のリフロー装置における基板加熱方法では、被加熱部
分の場所による熱容量差が必ず存在する。電子部品には
それぞれ、耐熱温度と耐熱保証時間が規定されているた
め、一定時間内に基板内の温度ばらつきを最小にするこ
とが求められる。しかし、昇温しにくい大型QFP2や
熱に弱いアルミ電解コンデンサ4等の部品が混在して搭
載された基板1を熱風吹き出し部7によって全体に均一
加熱するだけでは、基板1内の温度差を所定の時間内に
所定の範囲内に納めることができない場合があるという
問題があった。
However, since various components are mixedly mounted on the mounting substrate, the above-described conventional substrate heating method in the reflow apparatus necessarily has a heat capacity difference depending on the location of the portion to be heated. I do. Since each electronic component has a specified heat-resistant temperature and a guaranteed heat-resistant time, it is required to minimize the temperature variation in the substrate within a certain time. However, simply heating the substrate 1 on which components such as the large-sized QFP 2 and the aluminum electrolytic capacitor 4 that are hard to heat up and the like are mixed together by the hot air blowout unit 7 can reduce the temperature difference in the substrate 1 to a predetermined value. There is a problem that it may not be possible to fit within a predetermined range within the time.

【0005】そこで本発明は上記問題点に鑑み、熱風を
加熱源とした熱伝達加熱で実装基板全体の昇温を図ると
共に、昇温しにくい被加熱部分は局所的にガスを吹き付
けることによって熱伝達率を向上させて所定の温度まで
加熱させ、昇温しにくい部品と熱に弱い部品を一括して
リフロー半田付けできるリフロー基板加熱方法とその装
置を提供することを目的とする。
In view of the above problems, the present invention aims to raise the temperature of the entire mounting substrate by heat transfer heating using hot air as a heating source, and to blow a gas to a portion to be heated which is difficult to raise the temperature by locally blowing a gas. It is an object of the present invention to provide a reflow board heating method and a reflow board heating method capable of improving a transmissivity and heating to a predetermined temperature, and reflow soldering parts that are difficult to raise in temperature and parts that are weak to heat at once.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の本発明のリフロー基板加熱方法は、電
子部品が搭載されかつ接合箇所にクリーム半田が付与さ
れた基板をリフロー半田付けするリフロー基板加熱方法
において、搬送部にて連続的に搬送される基板を、炉体
部にて全体を均一に加熱すると共に基板の特定被加熱部
分に、雰囲気温度とほぼ同程度のガスを局所的に吹き付
けることを特徴とする。
According to a first aspect of the present invention, there is provided a method for heating a reflow board, comprising the steps of: reflow soldering a board on which electronic components are mounted and cream solder is applied to a joint; In the reflow substrate heating method, the substrate continuously transported by the transport unit is uniformly heated in the furnace body, and a gas having substantially the same temperature as the ambient temperature is locally applied to a specific heated portion of the substrate. It is characteristically sprayed.

【0007】上記発明によれば、全体加熱は一定の風速
を持った熱風で行うことで、耐熱温度の低いアルミ電解
コンデンサ等の電子部品の昇温限界に全体加熱を合わせ
こみ、熱容量の大きいQFP等の電子部品については全
体加熱だけでは昇温温度が不足するため、全体加熱して
いる熱風に加えてそれらの部品のリード部へ局所的に雰
囲気温度とほぼ同温度(±30℃、好ましくは±20
℃、さらに好ましくは±10℃)のガスを吹き付ける。
そうすることで、その特定被加熱部分だけ他の部分より
多くの熱エネルギーが供給されることで熱伝達率を増加
させ、前記リード部等の特定被加熱部分を所定の温度ま
で加熱することができる。これにより、耐熱温度の低い
アルミ電解コンデンサ等の電子部品を保護しつつ、熱容
量の大きいQFP等の電子部品も同時に一括してリフロ
ー半田付けすることができる。
According to the above invention, the overall heating is performed by hot air having a constant wind speed, whereby the overall heating is adjusted to the temperature rise limit of an electronic component such as an aluminum electrolytic capacitor having a low heat-resistant temperature, and the QFP having a large heat capacity is formed. As for the electronic components such as the above, the temperature rise temperature is insufficient only by the whole heating. Therefore, in addition to the hot air for the whole heating, the temperature of the ambient temperature is locally approximately equal to the ambient temperature (± 30 ° C., preferably ± 20
° C, more preferably ± 10 ° C).
By doing so, only the specific heated portion is supplied with more heat energy than the other portions, thereby increasing the heat transfer coefficient, and heating the specific heated portion such as the lead portion to a predetermined temperature. it can. Thereby, while protecting electronic components such as an aluminum electrolytic capacitor having a low heat resistance temperature, electronic components such as a QFP having a large heat capacity can be simultaneously reflow-soldered.

【0008】上記発明において請求項2記載のように、
ガスを局所的に吹き付けることを、基板直上と直下との
両面から行うようにすれば、基板下面の昇温ばらつきも
吸収でき、よりいっそう基板内の温度を一定時間内に一
定温度にまで到達させることができる。
In the above invention, as described in claim 2,
If the gas is locally sprayed from both the surface immediately above and immediately below the substrate, variations in temperature rise on the lower surface of the substrate can be absorbed, and the temperature inside the substrate can reach a certain temperature within a certain period of time. be able to.

【0009】また基板に吹き付けられるガスが、請求項
3記載の空気であれば大気の状態でのリフロー半田付け
に適用でき、請求項4記載の不活性ガスであれば、はん
だや部品リード部、基板ランド部の酸化を防ぎながらリ
フロー半田付けを行うことができる。
If the gas blown to the substrate is air according to claim 3, it can be applied to reflow soldering in the atmospheric state, and if the gas blown to the substrate is an inert gas according to claim 4, solder or component lead portions, Reflow soldering can be performed while preventing oxidation of the substrate land.

【0010】上記目的を達成するために請求項5記載の
本発明のリフロー基板加熱装置は、電子部品が搭載され
かつ接合箇所にクリーム半田が付与された基板をリフロ
ー半田付けするリフロー基板加熱装置において、基板を
連続的に搬送する搬送部と基板を加熱する炉体部とを備
え、炉体部は基板全体を均一に加熱する加熱源と、雰囲
気温度とほぼ同程度のガスを局所的に吹き付けるノズル
構成部とを有していることを特徴とする。
According to a fifth aspect of the present invention, there is provided a reflow board heating apparatus for reflow soldering a board on which electronic components are mounted and cream solder is applied to a joint. , A transfer unit for continuously transferring the substrate, and a furnace unit for heating the substrate. The furnace unit locally blows a gas having substantially the same temperature as the ambient temperature with a heating source for uniformly heating the entire substrate. And a nozzle component.

【0011】上記発明によれば、請求項1記載のリフロ
ー基板加熱方法を具体的に実施することができ、全体加
熱だけでは昇温不足となる基板の特定被加熱部分に対
し、ノズル構成部よりガスを吹き付けることにより容易
に加熱促進することができる。
According to the present invention, the method for heating a reflow substrate according to the first aspect can be specifically carried out. By blowing the gas, heating can be easily promoted.

【0012】また前記ノズル構成部が請求項6記載のよ
うに基板直下に配されることで、熱が基板下面から伝導
し、基板上に実装された弱耐熱部品の温度保証を行いつ
つ、熱容量の大きな大型QFP等の電子部品を同時に一
括に連続して半田付けできる。また前記ノズル構成部が
請求項7記載のように基板直上と直下との両面に配され
ることで、請求項2記載の方法を具体的に実施すること
ができ、同様の作用を奏することができる。
Further, since the nozzle constituting portion is disposed directly below the substrate, heat is conducted from the lower surface of the substrate, and the heat capacity of the heat-resistant component mounted on the substrate is ensured while ensuring the temperature. Large electronic components such as large QFPs can be soldered simultaneously and continuously. In addition, the method according to claim 2 can be specifically implemented by disposing the nozzle constituting portion on both surfaces directly above and immediately below the substrate as described in claim 7, and the same effect can be obtained. it can.

【0013】上記発明において、請求項8記載のよう
に、ノズル構成部は、炉体内部に基板搬送方向と略平行
に設置されたパイプと、炉体外部からパイプにガスを圧
送する配管とからなり、前記パイプは、搬送中の基板に
相対する側面にガス吹き出し用の穴を1ケ所以上開けて
局所的にガスを吹き付けるノズルを有する構成にすれ
ば、基板全体を均一におしなべて全体加熱する炉体部に
加え、ノズルを構成するパイプのガス吹き出し用の穴か
ら出るガスが局所的に基板の所定の部分に対する加熱を
促進することで、熱容量の大きい大型QFP等のリード
部等の特定被加熱部分を昇温させることができる。
[0013] In the above invention, as set forth in claim 8, the nozzle constituting portion includes a pipe installed substantially parallel to the substrate transfer direction inside the furnace body, and a pipe for pumping gas from outside the furnace body to the pipe. If the pipe has a nozzle that blows gas locally by making one or more holes for gas blowing on the side surface facing the substrate being conveyed, the furnace uniformly heats the entire substrate and heats the entire substrate. In addition to the body part, the gas coming out of the gas blowout hole of the pipe constituting the nozzle locally promotes the heating of a predetermined portion of the substrate, so that a specific heated portion such as a lead portion of a large QFP or the like having a large heat capacity can be heated. The part can be heated.

【0014】上記発明において、請求項9記載のように
局所的にガスを吹きつけられることを要する特定被加熱
部分の配置に応じて、基板搬送方向と略平行に設置され
たパイプの数や配置を追加したり取換えられる構成にし
たり、請求項10記載のように基板搬送方向と略平行に
多数配置されたパイプから、ガスを吹き付ける対象基板
に応じたパイプを選択して使用する構成にすれば、局所
的に加熱促進させる基板上の位置を任意に選択できるよ
うにパイプ配置を自由に選択できる。
In the above invention, according to the ninth aspect, the number and arrangement of the pipes installed substantially in parallel with the substrate transfer direction in accordance with the arrangement of the specific heated portion which needs to be locally blown with gas. Or a configuration in which a pipe corresponding to a target substrate to which gas is blown is selected and used from a large number of pipes arranged substantially parallel to the substrate transport direction as described in claim 10. For example, the pipe arrangement can be freely selected so that the position on the substrate where heating is locally promoted can be arbitrarily selected.

【0015】また請求項11記載のように炉体内部に多
数配置されたパイプの使用有無の選択と使用するパイプ
の設置位置が、ガスを吹き付ける対象基板の決定に応じ
て、自動制御で選択、調整できる構成にすれば、この選
択を基板の種類に応じて自動的に行うことができる。
[0015] According to the eleventh aspect, selection of the use or non-use of a plurality of pipes arranged inside the furnace body and the installation position of the pipes to be used are automatically selected according to the determination of the target substrate to which the gas is blown, With an adjustable configuration, this selection can be made automatically according to the type of substrate.

【0016】上記発明において、請求項12記載のよう
にパイプ側面に開けたガス吹き出し用の穴径を、パイプ
へのガス圧送入口側から順次拡大していく構成とした
り、請求項13記載のようにパイプのノズル部分が2重
構造をなし、外側のパイプの基板に相対する側面にはガ
ス吹き出し用の穴が開き、内側のパイプの側面には外側
のパイプに開けた穴と反対方向にガス吹き出し用の穴を
開けるようにすれば、加熱促進させるガスをパイプ全長
に渡り、どの穴からも均一な量で供給することができ、
加熱のバラツキを最小に抑えることが可能となる。
In the above invention, the diameter of the gas blowout hole formed in the side surface of the pipe may be gradually increased from the gas pressure inlet side to the pipe. The nozzle part of the pipe has a double structure, a hole for gas blowing is opened on the side of the outer pipe facing the substrate, and the gas is blown on the side of the inner pipe in the opposite direction to the hole made on the outer pipe. By making holes for blowing out, the gas to promote heating can be supplied in a uniform amount from any hole over the entire length of the pipe,
Variations in heating can be minimized.

【0017】また請求項14記載のように炉体外部から
パイプにガスを圧送する配管の途中に、ガスを炉体内部
雰囲気温度近くまで予備加熱するヒータ構造を備えるよ
うにすると好適である。
It is preferable that a heater structure for preheating the gas to a temperature close to the atmosphere temperature inside the furnace body is provided in the middle of the pipe for feeding the gas from the outside of the furnace body to the pipe.

【0018】[0018]

【発明の実施の形態】以下、本発明の代表的な一実施形
態を図1〜図7を参照して説明する。尚、図8に示した
従来例と同じ構成部分については同符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described below with reference to FIGS. The same components as those of the conventional example shown in FIG. 8 are denoted by the same reference numerals.

【0019】図1は本実施形態のリフロー装置を基板搬
送方向に縦断面して示す概略構成図を示し、図2は図1
のリフロー部3cにおいて基板がリフロー加熱される状
態を拡大して示す縦断面図を示す。図1と図2におい
て、1はプリント回路基板(基板)、2はプリント回路
基板1に実装された熱容量の大きな大型QFP(電子部
品)、4は耐熱温度の低いアルミ電解コンデンサ(電子
部品)、3は炉体部であり、第1予熱部3a、第2予熱
部3b、リフロー部3cからなる。5は基板1を搬送す
る搬送部、6は冷却部、7は全体均一加熱用の熱風吹き
出し部(加熱源)であり、基板の上・下両方に配置され
ている。8はリフロー部3c内に配置され、相対する基
板に局所的に熱風を吹き付ける加熱促進ノズル部(ノズ
ル構成部)、9はヒータ部である。
FIG. 1 is a schematic configuration diagram showing the reflow apparatus of the present embodiment in a longitudinal section in the substrate transport direction, and FIG.
FIG. 5 is an enlarged longitudinal sectional view showing a state where the substrate is reflow-heated in the reflow section 3c. 1 and 2, 1 is a printed circuit board (board), 2 is a large QFP (electronic component) having a large heat capacity mounted on the printed circuit board 1, 4 is an aluminum electrolytic capacitor (electronic component) having a low heat-resistant temperature, Reference numeral 3 denotes a furnace body, which includes a first preheating section 3a, a second preheating section 3b, and a reflow section 3c. Reference numeral 5 denotes a transport unit for transporting the substrate 1, 6 denotes a cooling unit, and 7 denotes a hot-air blowing unit (heating source) for uniformly heating the entire unit, and is disposed both above and below the substrate. Reference numeral 8 denotes a heating promoting nozzle unit (nozzle component unit) which is disposed in the reflow unit 3c and locally blows hot air to an opposing substrate, and 9 denotes a heater unit.

【0020】図3は本実施形態のリフロー装置のリフロ
ー部3cを水平に横断して示す概略構成図(図2を上方
から見た図)である。図3において、加熱促進ノズル部
8は搬送される基板1に対応する加熱促進ノズル8aと
待機している未使用の加熱促進ノズル8bに分かれてい
る。11は加熱促進ノズル部8を配管していく本管であ
り、12は本管11と加熱促進ノズル部8とを接続する
フレキシブルパイプである。この図3において、QFP
2が加熱される状態を拡大して示したのが図4であり、
(a)は横断面図、(b)は基板搬送方向の縦断面図、
(c)は基板搬送方向の直角方向から見た縦断面図であ
る。
FIG. 3 is a schematic structural view (FIG. 2 seen from above) showing a horizontal cross section of the reflow section 3c of the reflow apparatus of the present embodiment. In FIG. 3, the heating promotion nozzle unit 8 is divided into a heating promotion nozzle 8a corresponding to the substrate 1 to be conveyed and an unused heating promotion nozzle 8b waiting. Reference numeral 11 denotes a main pipe for piping the heating promotion nozzle section 8, and reference numeral 12 denotes a flexible pipe for connecting the main pipe 11 and the heating promotion nozzle section 8. In FIG. 3, QFP
FIG. 4 is an enlarged view of the state where No. 2 is heated,
(A) is a cross-sectional view, (b) is a vertical cross-sectional view in the substrate transport direction,
(C) is a longitudinal sectional view seen from a direction perpendicular to the substrate transport direction.

【0021】図3と図4で示すように、熱容量の大きい
大型QFP2のリード部2aの特定被加熱部分の真上に
は加熱促進ノズル8aが配置され、図4(b)(c)で
示すように、そのパイプの側面にはノズル穴8cが開け
られ、それぞれの穴8cから前記特定被加熱部分に向け
てガス10が吹き出ている。
As shown in FIGS. 3 and 4, a heating promoting nozzle 8a is disposed immediately above a specific portion to be heated of the lead portion 2a of the large QFP 2 having a large heat capacity, as shown in FIGS. 4 (b) and 4 (c). Thus, nozzle holes 8c are formed in the side surface of the pipe, and gas 10 is blown out from each hole 8c toward the specific heated portion.

【0022】上記構成においてプリント回路基板1は、
搬送部5によって一定速度で装置内を運ばれる。第1予
熱部3a、第2予熱部3b、リフロー部3cの各炉体内
部を通過する間に、プリント回路基板1は、各炉体内部
において熱風吹き出し部7から吹き出される雰囲気ガス
からの熱伝達により、加熱昇温される。
In the above configuration, the printed circuit board 1
The inside of the apparatus is transported at a constant speed by the transport unit 5. While passing through the inside of each furnace body of the first preheating section 3a, the second preheating section 3b, and the reflow section 3c, the printed circuit board 1 heats up from the atmosphere gas blown out of the hot air blowing section 7 inside each furnace body. By the transmission, the temperature is raised.

【0023】3a、3b、3cの各炉体内部ではプリン
ト回路基板1に均一に熱を供給するため、プリント回路
基板1内の昇温温度は実装部品(QFP2やアルミ電解
コンデンサ4)の熱容量差に応じた昇温ばらつきが生じ
る。リフロー部3cでは、全体均一加熱用の熱風吹き出
し部7からの熱風熱伝達により、プリント回路基板1は
昇温する。この昇温ばらつきを縮小するため、加熱促進
ノズル部8をプリント回路基板1の直上に配置した。図
3に示すように、加熱促進ノズル部8のうち基板1に対
応する加熱促進ノズル8aを選択し、昇温しにくいQF
P2のリード部2a直上に必要数配置する。図4はその
詳細を示すが、□28QFPの場合、搬送方向に平行に
位置する辺のリード部2aに対してはその直上に加熱促
進ノズル部8のノズル8aを各1本ずつ配置し、また搬
送方向に直角に位置する辺のリード部2aに対しては、
その中央部に相当する部分に1本配置することで、これ
ら各辺のリード部2aの必要温度までの昇温を確保す
る。
In order to uniformly supply heat to the printed circuit board 1 inside each of the furnace bodies 3a, 3b and 3c, the temperature rise in the printed circuit board 1 depends on the heat capacity difference between the mounted components (QFP2 and aluminum electrolytic capacitor 4). Temperature variation depending on the temperature. In the reflow section 3c, the printed circuit board 1 is heated by hot air heat transfer from the hot air blowing section 7 for uniform heating of the whole. In order to reduce the variation in temperature rise, the heating promoting nozzle unit 8 is disposed immediately above the printed circuit board 1. As shown in FIG. 3, the heating promotion nozzle 8a corresponding to the substrate 1 is selected from the heating promotion nozzle section 8, and the QF which is difficult to raise the temperature is selected.
The required number of the components are arranged just above the lead portion 2a of P2. FIG. 4 shows the details thereof. In the case of □ 28QFP, one nozzle 8a of the heating promoting nozzle 8 is disposed immediately above the lead 2a on the side positioned parallel to the transport direction. For the lead 2a on the side located at right angles to the transport direction,
By arranging one of them at a portion corresponding to the central portion, the temperature of the lead portion 2a on each side can be increased to a required temperature.

【0024】実験では、基板上10mm直上に加熱促進
ノズル8aを配置することで、リフローピーク温度での
ばらつきは、ΔT=25℃がΔT=10℃に納まること
を確認した。
In the experiment, it was confirmed that by disposing the heating promoting nozzle 8a just 10 mm above the substrate, the variation at the reflow peak temperature falls from ΔT = 25 ° C. to ΔT = 10 ° C.

【0025】加熱促進ノズル部8から吹き出すガス温度
をリフロー部3cにおける熱風吹き出し部7による加熱
雰囲気温度とほぼ同様の温度とするために、図1〜図3
に示すヒータ部9により圧送するガス温度も事前に加熱
しておく。
In order to make the temperature of the gas blown out from the heating promoting nozzle portion 8 substantially the same as the temperature of the atmosphere heated by the hot air blowing portion 7 in the reflow portion 3c, FIGS.
The temperature of the gas to be pumped by the heater section 9 shown in FIG.

【0026】加熱促進ノズル部8から吹き出されるガス
10のエネルギー分だけ、加熱促進ノズル部8直下にお
いては、供給エネルギーが多くなる。また、加熱促進ノ
ズル部8から吹き出す熱風温度は、リフロー部3cの全
体加熱雰囲気温度とほぼ同一であることで、昇温しやす
い部分であるアルミ電解コンデンサ4や基板1表面の温
度が、加熱促進ノズル部8からの熱風によって許容温度
以上に昇温させることなく加熱できる。このとき全体加
熱温度は、許容温度と同一に設定しておく。
Immediately below the heating promotion nozzle 8, the supplied energy increases by the energy of the gas 10 blown out from the heating promotion nozzle 8. The temperature of the hot air blown out from the heating promoting nozzle 8 is substantially the same as the temperature of the entire heating atmosphere of the reflow section 3c, so that the temperature of the aluminum electrolytic capacitor 4 and the surface of the substrate 1 which are likely to rise is reduced. Heating can be performed without increasing the temperature to an allowable temperature or more by hot air from the nozzle portion 8. At this time, the overall heating temperature is set to be the same as the allowable temperature.

【0027】図5は加熱促進ノズル部8のパイプ側面に
開けたガス吹き出し用のノズル穴8c部分の詳細を示
す。
FIG. 5 shows the details of the nozzle hole 8c for blowing out gas, which is opened on the side surface of the pipe of the heating promoting nozzle portion 8.

【0028】このノズル穴8cの径は、φ1.0mm、
φ1.1mm、φ1.2mm、φ1.3mm‥‥のよう
に、ガス供給方向手前より順次拡大していくことで、ガ
ス吹き出し量を適度に均一に補正することができる。
The diameter of the nozzle hole 8c is φ1.0 mm,
By expanding sequentially from the front of the gas supply direction such as φ1.1 mm, φ1.2 mm, and φ1.3 mm, the amount of gas blown out can be appropriately and uniformly corrected.

【0029】図6は上記実施形態で示した加熱促進ノズ
ル部8のパイプ構造とは別な形態を示している。加熱促
進ノズル部8のパイプは上記のように1本の中空パイプ
で構成してもよいが、図6に示すように2重の中空パイ
プ構成をとっても良い。図6に示す加熱促進ノズル部1
8において、18aは内側パイプ、18bは外側パイプ
である。内側パイプ18aの側面にはガス吹き出し用の
ノズル穴18cが開けられ、このノズル穴18cと18
0°反対側に相当する外側パイプ18bの側面にはノズ
ル穴18dを開ける。ノズル穴18dからのガス10が
相対するプリント回路基板1に吹き付けられる。この加
熱促進ノズル部18の構成では、パイプ内の圧力が均一
化されることで、ノズル穴18dより吹き出るガス量を
パイプ全長に渡り、ほぼ均一にすることができる。
FIG. 6 shows a form different from the pipe structure of the heating promoting nozzle portion 8 shown in the above embodiment. The pipe of the heating promoting nozzle portion 8 may be constituted by a single hollow pipe as described above, but may be constituted by a double hollow pipe as shown in FIG. Heating promotion nozzle part 1 shown in FIG.
In FIG. 8, 18a is an inner pipe, and 18b is an outer pipe. A nozzle hole 18c for blowing gas is formed on the side surface of the inner pipe 18a.
A nozzle hole 18d is formed in the side surface of the outer pipe 18b corresponding to the side opposite to 0 °. The gas 10 from the nozzle hole 18d is blown to the opposing printed circuit board 1. With the configuration of the heating promoting nozzle portion 18, the pressure in the pipe is made uniform, so that the amount of gas blown out from the nozzle hole 18d can be made substantially uniform over the entire length of the pipe.

【0030】図7は、従来の全体加熱方法での温度プロ
ファイル(a)と本実施形態による局所加熱方法を加え
たときの温度プロファイル(b)の測定結果を示すグラ
フである。(1) と(1)'はアルミ電解コンデンサボディー
部、(2) と(2)'はQFPリード部の温度プロファイルを
それぞれ示している。なお、3a、3b、3c、6はそ
れぞれ第1予熱部、第2予熱部、リフロー部、冷却部を
示している。従来の全体加熱方法では、リフローピーク
温度は(1)で230℃で、(2) で205℃であり、その
温度差はΔT=25℃であったが、本実施形態による局
所加熱方法を加えたことで、リフローピーク温度は
(1)' で230℃で、(2) ’で220℃であり、その温
度差はΔT=10℃まで縮小できることが分かってい
る。
FIG. 7 is a graph showing the measurement results of the temperature profile (a) in the conventional overall heating method and the temperature profile (b) when the local heating method according to the present embodiment is added. (1) and (1) 'show the temperature profile of the aluminum electrolytic capacitor body, and (2) and (2)' show the temperature profile of the QFP lead. Reference numerals 3a, 3b, 3c, and 6 denote a first preheating unit, a second preheating unit, a reflow unit, and a cooling unit, respectively. In the conventional overall heating method, the reflow peak temperature was 230 ° C. in (1) and 205 ° C. in (2), and the temperature difference was ΔT = 25 ° C. However, the local heating method according to the present embodiment was added. Thus, the reflow peak temperature is 230 ° C. for (1) ′ and 220 ° C. for (2) ′, and it is known that the temperature difference can be reduced to ΔT = 10 ° C.

【0031】尚、炉体部3内への加熱促進ノズル部8の
配置は、上記実施形態で示したようなリフロー部3cだ
けでなく、第1予熱部3aや第2予熱部3bにも配置す
ることで、よりいっそう昇温ばらつきの縮小を図ること
ができる。
The arrangement of the heating promoting nozzle 8 in the furnace body 3 is not limited to the reflow section 3c as shown in the above embodiment, but also to the first preheating section 3a and the second preheating section 3b. By doing so, it is possible to further reduce the variation in temperature rise.

【0032】また、加熱促進ノズル部8を上記実施形態
で示したような基板1の直上でなく直下に配すること
で、熱が基板1下面から伝導し、アルミ電解コンデンサ
4等の弱耐熱部品の温度保証を行いつつ、QFP2等の
熱容量の大きな部品を一括して半田付けできる。さらに
加熱促進ノズル部8を直上と直下との両面に配すること
で、基板1下面の昇温ばらつきも吸収でき、よりいっそ
う昇温ばらつきの縮小を図ることができる。
Further, by disposing the heating promoting nozzle portion 8 directly below the substrate 1 instead of directly above as shown in the above-described embodiment, heat is conducted from the lower surface of the substrate 1 and low heat resistant components such as the aluminum electrolytic capacitor 4. The components having a large heat capacity such as the QFP 2 can be collectively soldered while the temperature is guaranteed. Further, by disposing the heating promoting nozzles 8 on both the upper surface and the lower surface, the variation in temperature rise on the lower surface of the substrate 1 can be absorbed, and the variation in temperature rise can be further reduced.

【0033】また、加熱促進ノズル部8はリフロー部3
c内の雰囲気ガスを導入してファンなどを利用すること
によって、雰囲気温度とほぼ同温度のガスを局所的に基
板1の特定被加熱部分に吹き付けるように構成してもよ
い。
Further, the heating promoting nozzle section 8 is connected to the reflow section 3
By introducing an atmosphere gas in c and using a fan or the like, a gas having substantially the same temperature as the ambient temperature may be locally blown to a specific heated portion of the substrate 1.

【0034】[0034]

【発明の効果】請求項1記載の方法および請求項5記載
の装置によれば、基板の特定被加熱部分の温度を局所的
に昇温させ所定の温度にまで加熱できるので、熱に弱い
電子部品と昇温しにくい電子部品とを同時に一括に連続
してリフロー半田付けできるため、あと付けする部品が
無くなり工程が少なくて済む。また、あと付けする際の
再加熱が無くなり半田付け作業に必要なエネルギーの省
エネにもつながる。更には、実装基板内の昇温ばらつき
が小さくなるため、従来のSn−Pb共晶はんだに比べ
て融点が高くなる鉛フリーはんだを用いても、熱に弱い
電子部品を安心して実装基板にリフローはんだ付けする
ことができる。
According to the method of the first aspect and the apparatus of the fifth aspect, the temperature of the specific heated portion of the substrate can be locally increased and heated to a predetermined temperature, so that the electron which is weak against heat can be heated. Since the components and the electronic components that are difficult to raise the temperature can be simultaneously and continuously reflow-soldered, there is no need for components to be retrofitted, and the number of processes is reduced. In addition, reheating at the time of post-installation is eliminated, which leads to energy saving of energy required for soldering work. Furthermore, since the variation in temperature rise in the mounting board is reduced, even if lead-free solder whose melting point is higher than that of the conventional Sn-Pb eutectic solder is used, electronic components that are weak to heat can be reflowed to the mounting board with confidence. Can be soldered.

【0035】請求項2記載の方法および請求項7記載の
装置によれば、基板の上下両面に局所的にガスを吹き付
けることで、単位時間における基板へのエネルギー供給
量が増加する。一定時間に一定温度まで到達すれば良い
ので、加熱雰囲気温度設定値を下げることができる。加
熱雰囲気温度が下がれば、基板内の熱容量ばらつきによ
って生じる昇温ばらつきを小さくすることができ、熱に
弱い電子部品と昇温しにくい電子部品とを同時に一括に
連続してリフロー半田付けできる範囲が拡大する。
According to the method of the second aspect and the apparatus of the seventh aspect, by locally blowing gas on the upper and lower surfaces of the substrate, the amount of energy supplied to the substrate per unit time is increased. Since it is only necessary to reach a certain temperature in a certain time, the set value of the heating atmosphere temperature can be lowered. If the temperature of the heating atmosphere is lowered, the temperature rise variation caused by the heat capacity variation in the substrate can be reduced, and the range in which heat-sensitive electronic components and hard-to-heat electronic components can be simultaneously and continuously reflow-soldered is reduced. Expanding.

【0036】請求項3記載の方法によれば、ガスが空気
であることで、大気の状態でのリフロー半田付けに適用
できる。
According to the third aspect of the present invention, since the gas is air, it can be applied to reflow soldering in an atmospheric state.

【0037】請求項4記載の方法によれば、ガスが不活
性ガスであることで、はんだや部品リード部、基板ラン
ド部の酸化を防ぎながらリフロー半田付けを行うことが
でき、半田付け品質の向上が得られる。
According to the fourth aspect of the present invention, since the gas is an inert gas, reflow soldering can be performed while preventing oxidation of the solder, component lead portions, and substrate land portions. An improvement is obtained.

【0038】請求項6記載の装置によれば、前記ノズル
構成部が基板直下に配されることで、熱が基板下面から
伝導する。これにより、基板上に実装された弱耐熱部品
の温度保証を行いつつ、熱容量の大きな大型QFP等の
電子部品を同時に一括に連続して半田付けできる。
According to the apparatus described in claim 6, since the nozzle constituting portion is disposed immediately below the substrate, heat is conducted from the lower surface of the substrate. Thereby, while guaranteeing the temperature of the weak heat-resistant components mounted on the substrate, electronic components such as large QFPs having a large heat capacity can be soldered simultaneously and continuously.

【0039】請求項8記載の装置によれば、ノズル構成
部をガス吹き出し用の穴をパイプ側面に開けることによ
って具体的に局所的加熱を実施することができ、請求項
1と請求項5記載のものと同様の効果を奏することがで
きる。
According to the apparatus of the eighth aspect, the nozzle can be specifically heated locally by forming a hole for blowing out gas in the side of the pipe. The same effect as that of the first embodiment can be obtained.

【0040】請求項9記載の装置によれば、パイプの数
や配置を任意に設定でき、さまざまな種類の基板に対し
て即座に対応できる。
According to the ninth aspect of the present invention, the number and arrangement of the pipes can be arbitrarily set, so that various types of substrates can be immediately handled.

【0041】請求項10記載の装置によれば、対象基板
に応じてパイプを選択することで、様々な基板に対して
即座に対応でき、基板の機種切換がスムーズにできる。
According to the apparatus of the tenth aspect, by selecting a pipe in accordance with the target substrate, it is possible to immediately cope with various substrates and to smoothly switch the model of the substrate.

【0042】請求項11記載の装置によれば、パイプの
使用や設置位置の選択を自動制御でできることで、基板
の機種選択に応じて即座にリフロー条件が切換えできる
ので無人化につながると同時に間違いが無くなる。
According to the apparatus of the eleventh aspect, since the use of the pipe and the selection of the installation position can be automatically controlled, the reflow condition can be switched immediately according to the selection of the substrate model, which leads to unmanned operation and mistakes. Disappears.

【0043】請求項12記載の装置によれば、パイプ側
面に開けた穴径の工夫により、パイプ全長に渡って均一
なガス吹き出し量が確保でき、安定した昇温が得られ
る。
According to the apparatus of the twelfth aspect, a uniform amount of gas blown out over the entire length of the pipe can be secured by devising the diameter of the hole formed in the side surface of the pipe, and a stable temperature rise can be obtained.

【0044】請求項13記載の装置によれば、パイプを
2重構造にしかつ前記パイプ穴の位置を工夫すること
で、パイプ内の圧力が均一化されパイプ全長に渡り、ほ
ぼ均一なガス量を穴から吹き出すことができる。
According to the apparatus of the thirteenth aspect, by making the pipe a double structure and devising the position of the pipe hole, the pressure in the pipe is made uniform, and the gas amount becomes substantially uniform over the entire length of the pipe. Can be blown out of the hole.

【0045】請求項14記載の装置によれば、炉体内部
へ圧送されるガスを予備加熱するヒータ構造により、パ
イプ穴から吹き出すガス温度を、全体加熱している雰囲
気温度と同じ温度に設定することができ、昇温温度上限
を雰囲気温度の設定値とすることができるので、雰囲気
温度を弱耐熱部品の温度保証温度に設定すれば、部品温
度が保証温度以上になることは無い。
According to the apparatus of the present invention, the temperature of the gas blown out from the pipe hole is set to the same temperature as the ambient temperature of the entire heating by the heater structure for preheating the gas fed into the furnace body. Since the temperature rise temperature upper limit can be set to the set value of the ambient temperature, if the ambient temperature is set to the temperature guaranteed temperature of the weak heat-resistant component, the component temperature will not exceed the guaranteed temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るリフロー装置を示す
基板搬送方向の縦断面図。
FIG. 1 is a vertical cross-sectional view of a reflow device according to an embodiment of the present invention in a substrate transport direction.

【図2】同実施形態におけるリフロー部の基板搬送方向
の縦断面図。
FIG. 2 is a vertical cross-sectional view of a reflow unit in the substrate transport direction according to the embodiment.

【図3】同実施形態におけるリフロー部の水平横断面
図。
FIG. 3 is a horizontal cross-sectional view of a reflow unit in the embodiment.

【図4】同実施形態の要部を拡大して示し、(a)は横
断面図、(b)は基板搬送方向の縦断面図、(c)は基
板搬送方向の直角方向から見た縦断面図。
FIGS. 4A and 4B are enlarged views of a main part of the embodiment, in which FIG. 4A is a transverse sectional view, FIG. 4B is a longitudinal sectional view in a substrate transport direction, and FIG. Area view.

【図5】同実施形態における加熱促進ノズル部のノズル
穴部分を示す外観図。
FIG. 5 is an external view showing a nozzle hole portion of the heating promoting nozzle portion in the embodiment.

【図6】同実施形態における加熱促進ノズル部の変形例
を示し、(a)は基板搬送方向の縦断面図、(b)は基
板搬送方向の直角方向から見た縦断面図。
FIGS. 6A and 6B show a modification of the heating promoting nozzle portion in the embodiment, in which FIG. 6A is a longitudinal sectional view in a substrate carrying direction, and FIG. 6B is a longitudinal sectional view as seen from a direction perpendicular to the substrate carrying direction.

【図7】同実施形態と従来例との温度プロファイル測定
結果を示すグラフ。
FIG. 7 is a graph showing temperature profile measurement results of the embodiment and a conventional example.

【図8】従来のリフロー装置を示す基板搬送方向の縦断
面図。
FIG. 8 is a longitudinal sectional view showing a conventional reflow apparatus in a substrate transport direction.

【符号の説明】[Explanation of symbols]

1 プリント回路基板(基板) 2 QFP(熱容量の大きい電子部品) 3 炉体部 3c リフロー部 4 アルミ電解コンデンサ(熱に弱い電子部品) 5 搬送部 7 熱風吹き出し部(加熱源) 8 加熱促進ノズル部(ノズル構成部) 8a、8b 加熱促進ノズル 8c ノズル穴(ガス吹き出し用の穴) 9 ヒータ部 10 ガス 11 本管(配管) 12 フレキシブルパイプ(配管) 18 加熱促進ノズル部 18a 内側パイプ 18b 外側パイプ 18c、18d ノズル穴(ガス吹き出し用の穴) DESCRIPTION OF SYMBOLS 1 Printed circuit board (board) 2 QFP (Electronic part with large heat capacity) 3 Furnace part 3c Reflow part 4 Aluminum electrolytic capacitor (Electronic part weak to heat) 5 Conveyance part 7 Hot air blowing part (Heating source) 8 Heating promotion nozzle part (Nozzle configuration part) 8a, 8b Heat promotion nozzle 8c Nozzle hole (hole for gas blowing) 9 Heater part 10 Gas 11 Main pipe (pipe) 12 Flexible pipe (pipe) 18 Heat promotion nozzle part 18a Inner pipe 18b Outer pipe 18c , 18d nozzle hole (hole for gas blowing)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 31/02 310 B23K 31/02 310F 310B // B23K 101:42 101:42 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 31/02 310 B23K 31/02 310F 310B // B23K 101: 42 101: 42

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 電子部品が搭載されかつ接合箇所にクリ
ーム半田が付与された基板をリフロー半田付けするリフ
ロー基板加熱方法において、搬送部にて連続的に搬送さ
れる基板を、炉体部にて全体を均一に加熱すると共に基
板の特定被加熱部分に、雰囲気温度とほぼ同程度のガス
を局所的に吹き付けることを特徴とするリフロー基板加
熱方法。
In a reflow board heating method for reflow soldering a board on which electronic components are mounted and cream solder is applied to a joint portion, a board continuously conveyed by a conveyance section is heated by a furnace body section. A method for heating a reflow substrate, comprising uniformly heating the entirety and locally blowing a gas having substantially the same temperature as the ambient temperature to a specific heated portion of the substrate.
【請求項2】 ガスを局所的に吹き付けることを、基板
直上と直下との両面から行う請求項1記載のリフロー基
板加熱方法。
2. The reflow substrate heating method according to claim 1, wherein the gas is locally blown from both above and below the substrate.
【請求項3】 ガスが空気である請求項1または2記載
のリフロー基板加熱方法。
3. The method for heating a reflow substrate according to claim 1, wherein the gas is air.
【請求項4】 ガスが不活性ガスである請求項1または
2記載のリフロー基板加熱方法。
4. The reflow substrate heating method according to claim 1, wherein the gas is an inert gas.
【請求項5】 電子部品が搭載されかつ接合箇所にクリ
ーム半田が付与された基板をリフロー半田付けするリフ
ロー基板加熱装置において、基板を連続的に搬送する搬
送部と基板を加熱する炉体部とを備え、炉体部は基板全
体を均一に加熱する加熱源と、雰囲気温度とほぼ同程度
のガスを局所的に吹き付けるノズル構成部とを有してい
ることを特徴とするリフロー基板加熱装置。
5. A reflow board heating apparatus for reflow soldering a board on which electronic components are mounted and to which cream solder has been applied to a joint portion, comprising: a transfer section for continuously transferring the board; and a furnace body section for heating the board. Wherein the furnace body has a heating source for uniformly heating the entire substrate and a nozzle component for locally blowing a gas having substantially the same temperature as the ambient temperature.
【請求項6】 ノズル構成部が、基板直下に配されてい
る請求項5記載のリフロー基板加熱装置。
6. The reflow substrate heating apparatus according to claim 5, wherein the nozzle component is disposed immediately below the substrate.
【請求項7】 ノズル構成部が、基板真上と直下との両
面に配されている請求項5記載のリフロー基板加熱装
置。
7. The reflow substrate heating apparatus according to claim 5, wherein the nozzle constituting portions are arranged on both surfaces directly above and immediately below the substrate.
【請求項8】 ノズル構成部は、炉体内部に基板搬送方
向と略平行に設置されたパイプと、炉体外部からパイプ
にガスを圧送する配管とからなり、前記パイプは、搬送
中の基板に相対する側面にガス吹き出し用の穴を1ケ所
以上開けて局所的にガスを吹き付けるノズルを有する構
成とした請求項5、6または7記載のリフロー基板加熱
装置。
8. The nozzle constituting part comprises a pipe installed inside the furnace body substantially parallel to the substrate transfer direction, and a pipe for pressure-feeding gas from outside the furnace body to the pipe. The reflow substrate heating apparatus according to claim 5, 6 or 7, further comprising a nozzle for locally blowing gas by making one or more holes for gas blowing on a side surface opposite to the hole.
【請求項9】 局所的にガスを吹き付けられることを要
する特定被加熱部分の配置に応じて、基板搬送方向と略
平行に設置されたパイプの数や配置を追加したり取換え
られる構成とした請求項8記載のリフロー基板加熱装
置。
9. A configuration in which the number and arrangement of pipes installed substantially parallel to the substrate transfer direction can be added or replaced according to the arrangement of a specific heated portion that needs to be locally blown with gas. The reflow substrate heating device according to claim 8.
【請求項10】 基板搬送方向と略平行に多数配置され
たパイプから、ガスを吹き付ける対象基板に応じたパイ
プを選択して使用する構成とした請求項8記載のリフロ
ー基板加熱装置。
10. The reflow substrate heating apparatus according to claim 8, wherein a pipe is selected from a large number of pipes arranged substantially parallel to the substrate transfer direction and is used in accordance with a target substrate to which gas is to be blown.
【請求項11】 炉体内部に多数配置されたパイプの使
用有無の選択と使用するパイプの設置位置が、ガスを吹
き付ける対象基板の決定に応じて、自動制御で選択、調
整できる構成とした請求項10記載のリフロー基板加熱
装置。
11. A structure in which selection of use or nonuse of a large number of pipes arranged inside a furnace body and installation positions of pipes to be used can be automatically selected and adjusted according to determination of a substrate to which gas is blown. Item 11. A reflow substrate heating apparatus according to Item 10.
【請求項12】 パイプ側面に開けたガス吹き出し用の
穴径が、パイプへのガス圧送入口側から順次拡大してい
く構成とした請求項8記載のリフロー基板加熱装置。
12. The reflow substrate heating apparatus according to claim 8, wherein a diameter of a gas blowout hole formed in a side surface of the pipe is gradually increased from a gas pressure inlet to the pipe.
【請求項13】 パイプのノズル部分が2重構造をな
し、外側のパイプの基板に相対する側面にはガス吹き出
し用の穴が開き、内側のパイプの側面には外側のパイプ
に開けた穴と反対方向にガス吹き出し用の穴を開けてい
る請求項8記載のリフロー基板加熱装置。
13. A pipe nozzle has a double structure, a gas blowout hole is formed on a side of the outer pipe facing the substrate, and a hole formed on the outer pipe is formed on a side of the inner pipe. 9. The reflow substrate heating apparatus according to claim 8, wherein holes for blowing out gas are formed in the opposite direction.
【請求項14】 炉体外部からパイプにガスを圧送する
配管の途中に、ガスを炉体内部雰囲気温度近くまで予備
加熱するヒータ構造を備えている請求項8記載のリフロ
ー基板加熱装置。
14. The reflow substrate heating apparatus according to claim 8, further comprising a heater structure for preheating the gas to a temperature close to the atmosphere temperature inside the furnace body, in the middle of a pipe for feeding gas from outside the furnace body to the pipe.
JP2000195793A 2000-06-29 2000-06-29 Method and apparatus for reflow substrate heating Pending JP2002016352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195793A JP2002016352A (en) 2000-06-29 2000-06-29 Method and apparatus for reflow substrate heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195793A JP2002016352A (en) 2000-06-29 2000-06-29 Method and apparatus for reflow substrate heating

Publications (1)

Publication Number Publication Date
JP2002016352A true JP2002016352A (en) 2002-01-18

Family

ID=18694395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195793A Pending JP2002016352A (en) 2000-06-29 2000-06-29 Method and apparatus for reflow substrate heating

Country Status (1)

Country Link
JP (1) JP2002016352A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332725A (en) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd Reflow heating method and device
WO2006087820A1 (en) * 2005-02-21 2006-08-24 Fujitsu Limited Reflow system and reflow method
JP2007012874A (en) * 2005-06-30 2007-01-18 Omron Corp Substrate heating method, substrate heating apparatus, and hot-air reflow apparatus
US7357288B2 (en) 2003-07-17 2008-04-15 Matsushita Electric Industrial Co., Ltd. Component connecting apparatus
JP2009130269A (en) * 2007-11-27 2009-06-11 Nec Electronics Corp Semiconductor production apparatus and production process for semiconductor device
JP2010261835A (en) * 2009-05-08 2010-11-18 Shimadzu Corp X-ray inspection apparatus, and heating apparatus for the same
EP2301311A1 (en) * 2008-07-15 2011-03-30 Ersa GmbH Device for the heat treatment of workpieces
CN104217976A (en) * 2013-05-31 2014-12-17 无锡华润安盛科技有限公司 Bonding heating device and heating method
CN109848500A (en) * 2019-03-20 2019-06-07 无锡市博精电子有限公司 Semiconductor laser TO tube seat bottom plate half bore soldering processes
US11090751B2 (en) 2016-11-18 2021-08-17 Denso Corporation Reflow device and method for manufacturing substrate using the reflow device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332725A (en) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd Reflow heating method and device
US7357288B2 (en) 2003-07-17 2008-04-15 Matsushita Electric Industrial Co., Ltd. Component connecting apparatus
US7759613B2 (en) 2005-02-21 2010-07-20 Fujitsu Limited Reflowing apparatus and reflowing method
JPWO2006087820A1 (en) * 2005-02-21 2008-07-03 富士通株式会社 Reflow device and reflow method
WO2006087820A1 (en) * 2005-02-21 2006-08-24 Fujitsu Limited Reflow system and reflow method
JP4541401B2 (en) * 2005-02-21 2010-09-08 富士通株式会社 Reflow device and reflow method
JP2007012874A (en) * 2005-06-30 2007-01-18 Omron Corp Substrate heating method, substrate heating apparatus, and hot-air reflow apparatus
JP2009130269A (en) * 2007-11-27 2009-06-11 Nec Electronics Corp Semiconductor production apparatus and production process for semiconductor device
EP2301311A1 (en) * 2008-07-15 2011-03-30 Ersa GmbH Device for the heat treatment of workpieces
JP2011528171A (en) * 2008-07-15 2011-11-10 エーエルエスアー ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat treatment equipment for processed products
JP2010261835A (en) * 2009-05-08 2010-11-18 Shimadzu Corp X-ray inspection apparatus, and heating apparatus for the same
CN104217976A (en) * 2013-05-31 2014-12-17 无锡华润安盛科技有限公司 Bonding heating device and heating method
US11090751B2 (en) 2016-11-18 2021-08-17 Denso Corporation Reflow device and method for manufacturing substrate using the reflow device
CN109848500A (en) * 2019-03-20 2019-06-07 无锡市博精电子有限公司 Semiconductor laser TO tube seat bottom plate half bore soldering processes

Similar Documents

Publication Publication Date Title
JP2002016352A (en) Method and apparatus for reflow substrate heating
US20070254255A1 (en) System, apparatus and methods for board cooling
JP2687504B2 (en) Reflow equipment
JPH1093232A (en) Reflow soldering equipment
JP2018162932A (en) Reflow device
JPH05161961A (en) Reflow furnace
JP2001320163A (en) Reflow device and its board heating method
JP3114278B2 (en) Chisso reflow device
JP2000107856A (en) Device for coating flux
JPH07336040A (en) Cooler for soldered board
JP3095291B2 (en) Soldering equipment
JPH09246712A (en) Reflow soldering method and apparatus therefor
JP3495207B2 (en) Reflow soldering equipment
JP2018069264A (en) Reflow device
JP3356445B2 (en) Chisso reflow device
JP2018073902A (en) Reflow device
JP2010012476A (en) Soldering system
JP2000124593A (en) Reflow device and method
JP3818716B2 (en) Reflow soldering equipment
JPH05262U (en) Inert gas reflow equipment
JP2011245539A (en) Workpiece cooling enhancement unit for reflow soldering device and reflow soldering system
JP2009200072A (en) Reflow soldering apparatus and reflow soldering method using the same
JP2007035774A (en) Reflow soldering equipment and reflow soldering method
JP2000340938A (en) Soldering method and soldering device
JP3171179B2 (en) Reflow device and temperature control method in reflow device