JP2002013923A - Method and device for measuring wave information by large floating body - Google Patents

Method and device for measuring wave information by large floating body

Info

Publication number
JP2002013923A
JP2002013923A JP2000195632A JP2000195632A JP2002013923A JP 2002013923 A JP2002013923 A JP 2002013923A JP 2000195632 A JP2000195632 A JP 2000195632A JP 2000195632 A JP2000195632 A JP 2000195632A JP 2002013923 A JP2002013923 A JP 2002013923A
Authority
JP
Japan
Prior art keywords
floating body
vertical
wave information
wave
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000195632A
Other languages
Japanese (ja)
Other versions
JP3455167B2 (en
Inventor
Tetsuro Ikebuchi
哲朗 池渕
Naoyuki Takatsu
尚之 高津
Wataru Koderayama
亘 小寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000195632A priority Critical patent/JP3455167B2/en
Publication of JP2002013923A publication Critical patent/JP2002013923A/en
Application granted granted Critical
Publication of JP3455167B2 publication Critical patent/JP3455167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that reliable wave information can not be obtained by a method for obtaining wave information by using a floating body following the vertical motion of wave, because the size of the floating body is reduced, causing poor following property according to the wave height. SOLUTION: This wave information measuring method uses a large floating body having a vertical oscillation response characteristic not coinciding with the vertical motion of a wave surface. The response characteristic of the floating body is previously estimated by simulation, water-tank experiment, or the like, to find its vertical oscillation response characteristic curve. Meanwhile, actual vertical acceleration of the floating body is measured, and displacement data on actual vertical motion of the floating body is found by integration operation based on the acceleration data. The displacement data is frequency- analyzed. The result of the frequency analysis and the characteristic curve are sued to find wave information.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願に係る発明は、浮体の上
下動揺特性が波面の上下動と一致しないような大型の浮
体を用いた波浪情報の計測方法および装置に関する。本
件明細書において「波浪情報」とは、波高、波向、波周
期等の情報を指す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring wave information using a large floating body whose vertical swing characteristics do not coincide with the vertical movement of a wavefront. In the present specification, “wave information” refers to information such as a wave height, a wave direction, and a wave period.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来の波
浪情報計測装置としては、海底設置型波高計(例えば特
開昭52−11973号公報)と波浪観測ブイ(例えば
特開平10−185564号公報)が広く知られてい
る。
2. Description of the Related Art Conventional wave information measuring devices include a seafloor type wave height meter (for example, Japanese Patent Application Laid-Open No. Sho 52-11973) and a wave observation buoy (for example, Japanese Patent Application Laid-Open No. 10-185564). Gazette) is widely known.

【0003】a)海底設置型波高計では、海底に固定さ
れた装置から上向きに超音波を発信し海表面からの反射
を受信して波高計測するもの、もしくは、水圧計を海底
に固定し圧力変動から波高を計測するものがあるが、水
深の浅い沿海域に限定され、大水深海域や外洋には向か
ない。
[0003] a) A seafloor-mounted wave height meter transmits an ultrasonic wave upward from a device fixed to the sea floor and receives the reflection from the sea surface to measure the wave height, or a water pressure gauge is fixed to the sea floor and the pressure is measured. Although there is one that measures wave height from fluctuations, it is limited to shallow coastal areas and is not suitable for deep seas or the open sea.

【0004】b)波浪観測ブイでは、海表面に浮かべた
小型ブイを係留し、その上下動の加速度を計測し、これ
を積分して波高を求める。
B) In a wave observation buoy, a small buoy floating on the sea surface is moored, and the vertical acceleration of the buoy is measured and integrated to obtain a wave height.

【0005】この方式では、表面ブイは波(海表面)の
上下動に追従していることが必須である。ブイが海表面
と同一の動きをするためには浮体は自ずと小型でなけれ
ばならず、係留ラインも軽くして上下動を拘束しないよ
うにする必要がある。 しかし、大水深海域での計測と
なれば、浮体を定置させるための係留ラインの重量や潮
流力が大きくなり、風力や潮流力等の外力が大きくな
る。これに対処するため表層浮体の排水量が大きくなる
と、係留ラインの影響も大きく現れ、浮体と海面の動き
に振幅や位相にずれが生じ、浮体の上下動が波高と一致
しなくなる。
In this system, it is essential that the surface buoy follows the vertical movement of the wave (sea surface). In order for the buoy to move in the same way as the sea surface, the floating body must be naturally small and the mooring line must be light so as not to restrain vertical movement. However, if the measurement is performed in the deep sea area, the weight and the tidal force of the mooring line for fixing the floating body increase, and the external force such as the wind force and the tidal force increases. If the drainage amount of the surface floating body is increased to cope with this, the influence of the mooring line also appears greatly, the amplitude and phase of the movement of the floating body and the sea surface are shifted, and the vertical movement of the floating body does not match the wave height.

【0006】したがって、水深の浅い沿海域で海面の動
きと同じ動きをする小型の浮体を設置して、海洋波の波
高や波周期等の情報を得る上記方式では、大水深海域や
外洋の波浪情報を精度良く推定することは困難である。
[0006] Therefore, in the above-mentioned method in which a small floating body that moves in the same manner as the sea surface moves in a shallow coastal area to obtain information such as the wave height and wave period of the ocean wave, the wave in the deep sea area or in the open sea can be obtained. It is difficult to accurately estimate information.

【0007】本願発明の目的は、波浪を起振力として動
揺が生じることに着目し、上下動揺特性が波面の上下動
と一致しない、大型の浮体を用い、理論計算または実験
的に求めた浮体の動揺特性を用いて、計測した動揺から
逆に大水深海域や外洋における波浪情報を精度良く推定
する波浪情報計測方法とその装置を提供することにあ
る。
An object of the present invention is to focus on the fact that a wave is generated as a vibrating force, and to use a large floating body whose vertical oscillating characteristics do not coincide with the vertical movement of a wavefront, using a floating body obtained theoretically or experimentally. It is an object of the present invention to provide a wave information measuring method and a wave information measuring method for accurately estimating wave information in the deep sea area or the open sea from the measured shaking using the shaking characteristics of the wave.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本願発明の特徴は、浮体の波浪動揺特性をシュミ
ュレーションや水槽実験等で求めて、これから海面上下
動に変換する式を解析し、これを用いて計測された浮体
の動揺情報を波浪情報に変換するところにある。
In order to solve the above-mentioned problems, the feature of the present invention is to determine the wave oscillating characteristics of a floating body by a simulation or a water tank experiment, and to analyze an equation for converting the characteristics into a sea level up and down motion. Then, the motion information of the floating body measured using this is converted into wave information.

【0009】その具体的な大型浮体による波浪情報計測
方法としては、第一に、上下動揺応答特性が波面の上下
動と一致しない大型の浮体を用いた波浪情報計測方法で
あって、シュミレーションや水槽実験等により予め浮体
の上下動の応答特性を推定してその動揺応答特性曲線を
求めておく一方、実際の浮体の上下方向加速度を計測
し、この加速度データに基づき浮体の実際の上下運動変
位データを積分演算して求め、この変位データと前記動
揺応答特性曲線とから波浪情報を求めるようにしたこと
を特徴とする。
The wave information measuring method using a large floating body is firstly a wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of the wavefront. While the response characteristics of the vertical movement of the floating body are estimated in advance by experiments and the like and the shaking response characteristic curve is obtained, the actual vertical acceleration of the floating body is measured, and the actual vertical movement displacement data of the floating body is measured based on this acceleration data. Is obtained by integral calculation, and wave information is obtained from the displacement data and the oscillation response characteristic curve.

【0010】これによれば、予めシュミレーション等に
よって推定した規則波中の浮体の動揺応答特性曲線を利
用して波高や波周期等の波浪情報を精度良く求めること
ができる。
According to this, wave information such as a wave height and a wave period can be obtained with high accuracy by using a fluctuation response characteristic curve of a floating body in a regular wave estimated in advance by a simulation or the like.

【0011】第二に、上下動揺応答特性が波面の上下動
と一致しない大型の浮体を用いた波浪情報計測方法であ
って、シュミレーションや水槽実験等により予め浮体の
上下動の応答特性を推定してその動揺応答特性曲線を求
めておく一方、実際の浮体の上下方向加速度を計測し、
この加速度データに基づき浮体の実際の上下運動変位デ
ータを積分演算して求め、この変位データを周波数分析
し、この周波数分析の結果と前記動揺応答特性曲線とに
より波浪情報を求めるようにしたことを特徴とする。
Second, a wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of the wavefront. The response characteristic of the vertical motion of the floating body is estimated in advance by simulation, a water tank experiment, or the like. The vertical response of the floating body is measured,
Based on the acceleration data, the actual vertical motion displacement data of the floating body is obtained by integral calculation, the frequency of the displacement data is analyzed, and the wave information is obtained from the result of the frequency analysis and the motion response characteristic curve. Features.

【0012】これによれば、予めシュミレーション等に
よって推定した規則波中の浮体の動揺応答特性曲線を利
用して不規則波の有義波高、最大波高、波周期などを精
度良く求めることができる。
According to this, the significant wave height, the maximum wave height, the wave period, etc. of the irregular wave can be accurately obtained by using the fluctuation response characteristic curve of the floating body in the regular wave preliminarily estimated by a simulation or the like.

【0013】第三に、上下動揺応答特性が波面の上下動
と一致しない大型の浮体を用いた波浪情報計測方法であ
って、シュミレーションや水槽実験等により予め浮体の
上下動(ヒーブ)、左右揺れ(スエイ)、前後揺れ(サ
ージ)、横揺れ(ロール)、縦揺れ(ピッチ)および船
首揺れ(ヨウ)の運動うち少なくとも3つの動揺の応答
特性を推定してその動揺応答特性曲線を求めておく一
方、実際の浮体の上下方向の加速度および角速度を計測
し、これらの加速度データおよび角速度データに基づき
浮体の当該3方向の運動変位データを積分演算して求
め、この変位データを周波数分析し、この周波数分析の
結果と前記動揺応答特性曲線とから波浪情報を求めるよ
うにしたことを特徴とする。
Third, a wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of the wavefront. The method includes a vertical movement (heave) and a horizontal sway of the floating body in advance by a simulation, a water tank experiment or the like. (Sway), back and forth sway (surge), roll (roll), pitch (pitch), and bow (yaw) motions are estimated to determine at least three sway response characteristics and a sway response characteristic curve is obtained. On the other hand, the vertical acceleration and angular velocity of the actual floating body are measured, and the motion displacement data of the floating body in the three directions are calculated by integration based on the acceleration data and angular velocity data, and the displacement data is subjected to frequency analysis. Wave information is obtained from a frequency analysis result and the fluctuation response characteristic curve.

【0014】これによれば、二次元波スペクトルを求め
ることも可能となり、波高や波周期の他に波向きなどに
関するより詳細な波浪情報を精度良く求めることができ
る。
According to this, it is also possible to obtain a two-dimensional wave spectrum, and it is possible to accurately obtain more detailed wave information on the wave direction and the like in addition to the wave height and wave period.

【0015】具体的な大型浮体による波浪情報計測装置
としては、第一に、浮体の上下動揺特性が波面の上下動
と一致しない大型の浮体を用いた波浪情報の計測装置で
あって、実際の浮体に設けた上下加速度センサと、この
加速度センサより計測した加速度データに基づき実際の
浮体の上下運動変位データを演算・解析する演算解析手
段と、シュミレーションや水槽実験等により予め求めて
いた浮体の上下動揺応答特性曲線を用いて前記演算解析
手段により求めた浮体の実際の上下動変位データから波
浪情報を計算する計算手段とを備えてなるものである。
As a specific wave information measuring apparatus using a large floating body, first, a wave information measuring apparatus using a large floating body whose vertical oscillating characteristic does not coincide with the vertical movement of the wavefront is an actual wave information measuring apparatus. A vertical acceleration sensor provided on the floating body, calculation and analysis means for calculating and analyzing actual vertical movement displacement data of the floating body based on the acceleration data measured by the acceleration sensor, and a vertical movement of the floating body previously obtained by a simulation, a water tank experiment, etc. And calculating means for calculating wave information from actual vertical movement displacement data of the floating body obtained by the arithmetic analysis means using the motion response characteristic curve.

【0016】これによれば、予めシュミレーション等に
よって推定した規則波中の浮体の動揺特性曲線を利用し
て波高や波周期等の波浪情報を精度良く求めることがで
きる。
According to this, wave information such as a wave height and a wave period can be obtained with high accuracy by using a fluctuation characteristic curve of a floating body in a regular wave estimated in advance by a simulation or the like.

【0017】第二に、浮体の上下動揺特性が波面の上下
動と一致しない大型の浮体を用いた波浪情報の計測装置
であって、実際の浮体に設けた上下加速度センサと、こ
の加速度センサより計測した加速度データに基づき実際
の浮体の上下運動変位データを演算・解析する演算解析
手段と、この演算解析手段により得られた上下運動変位
データに基づき周波数分析を行う周波数分析手段と、前
記シュミレーションや水槽実験等により予め求めておい
た浮体の上下動揺応答特性曲線を用いて、前記周波数分
析手段の結果から波浪情報を推定する波浪情報推定手段
とを備えてなるものである。
Secondly, the present invention relates to a wave information measuring apparatus using a large floating body in which the vertical motion characteristics of the floating body do not coincide with the vertical motion of the wavefront, wherein a vertical acceleration sensor provided on an actual floating body and a vertical acceleration sensor are provided. Calculation analysis means for calculating and analyzing actual vertical movement displacement data of the floating body based on the measured acceleration data; frequency analysis means for performing frequency analysis based on vertical movement displacement data obtained by the calculation analysis means; Wave information estimating means for estimating wave information from the result of the frequency analysis means using a vertical motion response characteristic curve of the floating body obtained in advance by a water tank experiment or the like.

【0018】これによれば、予めシュミレーション等に
よって推定した規則波中の浮体の動揺特性曲線を利用し
て不規則波の有義波高、最大波高、波周期などを精度良
く求めることができる。
According to this, a significant wave height, a maximum wave height, a wave period, and the like of an irregular wave can be accurately obtained by using a fluctuation characteristic curve of a floating body in a regular wave estimated in advance by a simulation or the like.

【0019】第三に、浮体の上下動揺特性が波面の上下
動と一致しない大型の浮体を用いた波浪情報の計測装置
であって、上下動、左右揺れ、前後揺れ、横揺れ、縦揺
れおよび船首揺れ運動のうち少なくとも3つの実際の浮
体の動揺を測るべく該浮体に設けた加速度センサや角速
度センサ等の動揺センサと、この動揺センサより計測し
た加速度データや角速度データに基づき実際の浮体の少
なくとも3つの当該運動変位を演算・解析する演算解析
手段と、この演算解析手段により得られた運動変位デー
タに基づき周波数分析を行う周波数分析手段と、前記シ
ュミレーションや水槽実験等により予め求めておいた浮
体の動揺応答特性曲線を用いて、前記周波数分析手段の
結果から波浪情報を推定する波浪情報推定手段とを備え
てなるものである。
Third, a wave information measuring apparatus using a large floating body whose vertical oscillating characteristic does not coincide with the vertical movement of the wavefront, comprising a vertical movement, a horizontal sway, a front-back sway, a horizontal sway, a vertical sway, A sway sensor such as an acceleration sensor or an angular velocity sensor provided on the floating body to measure the sway of at least three actual floating bodies in the bowing motion, and at least three of the actual floating bodies based on acceleration data and angular velocity data measured by the sway sensor. Three calculation analysis means for calculating and analyzing the motion displacement; frequency analysis means for performing frequency analysis based on the motion displacement data obtained by the calculation analysis means; and a floating body previously obtained by the simulation, a water tank experiment, or the like. Wave information estimating means for estimating wave information from the result of the frequency analysis means using the fluctuation response characteristic curve of

【0020】浮体の6つの運動変位のうち少なくとも3
つの運動変位を求めることにより、二次元波スペクトル
を求めことが可能となり、波高や波周期などに加えて波
向(波向分布)などの波浪情報をも精度良く得ることが
できる。
At least three of the six motion displacements of the floating body
By obtaining two motion displacements, a two-dimensional wave spectrum can be obtained, and wave information such as wave direction (wave direction distribution) in addition to wave height and wave period can be obtained with high accuracy.

【0021】[0021]

【発明の実施の形態】以下、本願発明の実施形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1は、本願が用いる浮遊型海洋構造物
(以下「浮体」という)1の正面図である。浮体1は大
型、すなわち、その上下動揺特性が波面(海面)WLの
上下動と一致しない、大型の浮体である。浮体1は平面
的には円形で、断面的にみれば台形状をなしている。浮
体1の底面には係留ライン2が接続されていて浮体はあ
る喫水をもって海面WL上に浮遊している。浮体1には
櫓状の構造物3が立設されており、上部には風速・風向
センサ4、GPSアンテナ5等が設置されている。また
浮体1内にはデータ保存、処理、通信用ユニット(コン
ピュータ等)6が搭載されると共に、波浪情報計測のた
めの加速度センサ、角速度センサ7等が設置されてい
る。
FIG. 1 is a front view of a floating marine structure (hereinafter referred to as “floating body”) 1 used in the present invention. The floating body 1 is a large floating body, that is, its vertical swing characteristics do not coincide with the vertical movement of the wavefront (sea surface) WL. The floating body 1 is circular in plan view and trapezoidal in cross section. A mooring line 2 is connected to the bottom surface of the floating body 1, and the floating body floats on the sea surface WL with a certain draft. A tower-like structure 3 is provided upright on the floating body 1, and a wind speed / wind direction sensor 4, a GPS antenna 5, and the like are provided on an upper portion thereof. A data storage, processing, and communication unit (computer or the like) 6 is mounted in the floating body 1, and an acceleration sensor, an angular velocity sensor 7, and the like for measuring wave information are provided.

【0023】大型浮体を用いるメリットは、浅い海域か
ら大水深海域まで水深の制約を受けないで、また、暴風
時の波浪情報を全周波数帯域かつ高精度で計測できるこ
と、更には、浮体上に加速度計や風速、風向計などの各
種のセンサを搭載し、計算、記録用のコンピュータを搭
載することを可能とする点などにある。
The advantage of using a large floating body is that it is not limited by water depth from shallow sea area to deep sea area, and that wave information at the time of a storm can be measured with high accuracy over the entire frequency band. It is equipped with various sensors such as a gauge, wind speed and anemometer, and can be equipped with a computer for calculation and recording.

【0024】かかる浮体の運動には、図2に示すように
ヒーブ(上下揺れ)、スウェイ(左右揺れ)、サージ
(前後揺れ)の3軸、に加え、この各軸回りのピッチ
(縦揺れ)、ヨウ(船首揺れ)およびロール(横揺れ)
の6つがある。 A. 規則波中の波浪情報の推定 まず、本願の基本的な思想を説明するため、規則波中に
おける波浪情報計測を例にとって説明する。図3は、こ
のような本願発明に係る波浪情報計測装置の機能ブロッ
ク図、図4は、この装置を用いた波浪情報計測方法のフ
ローチャート、そして図5〜9はその説明図である。 (1) 浮体の上下動(ヒーブ)の動揺応答特性曲線の
推定(ステップ1,2)まず、予めシュミレーションや
水槽実験で浮体の動揺応答特性を推定する。シュミュレ
ーションや水槽実験等によって浮体の波浪動揺特性を求
める手法は、海洋構造物の設計において確立された手法
であるので、ここでは簡単に述べる。
As shown in FIG. 2, the movement of the floating body includes three axes of heave (vertical sway), sway (lateral sway), and surge (back and forth sway), and a pitch (pitch) around each axis. , Yaw (bow) and roll (roll)
There are six. A. Estimation of Wave Information in Regular Wave First, in order to explain the basic idea of the present application, measurement of wave information in a regular wave will be described as an example. FIG. 3 is a functional block diagram of such a wave information measuring device according to the present invention, FIG. 4 is a flowchart of a wave information measuring method using this device, and FIGS. (1) Estimation of the swing response characteristic curve of the vertical movement (heave) of the floating body (steps 1 and 2) First, the swing response characteristic of the floating body is estimated in advance by simulation or a water tank experiment. The method for obtaining the wave fluctuation characteristics of the floating body by simulation, a water tank experiment, or the like is a method established in the design of an offshore structure, and will be briefly described here.

【0025】図5の正弦規則波9中に浮体1を浮かべ、
このときの浮体1の上下動の変位(上下揺れ振幅)Za
を下記運動方程式により求める。
Floating body 1 is floated in sine wave 9 of FIG.
The displacement of the vertical movement of the floating body 1 at this time (vertical swing amplitude) Za
Is determined by the following equation of motion.

【0026】[0026]

【数1】 (Equation 1)

【0027】ここに、a,b、cは係数であり、浮体の
形状等に依存し、bの減衰係数は粘性力の影響を含んで
いる。これらの係数はシュミレーションで求めるが、水
槽での模型実験によりチューニングする。右辺のFw
(t)は波強制力である。この運動方程式を解くと浮体
の上下動変位Zaが求まる。そして様々な規則波につい
て波周期TwとZaとの関係を求めれば、図6のような
規則波に対応した浮体の上下動に関する動揺応答(振
幅)特性曲線10を求めることができる。この動揺応答
(振幅)特性曲線は後述する計測装置の解析装置8に入
力される。
Here, a, b, and c are coefficients, which depend on the shape of the floating body and the like, and the damping coefficient of b includes the effect of viscous force. These coefficients are obtained by simulation, but are tuned by model experiments in a water tank. Fw on the right side
(T) is the wave forcing. By solving this equation of motion, the vertical movement displacement Za of the floating body is obtained. Then, if the relationship between the wave period Tw and Za is obtained for various regular waves, a fluctuation response (amplitude) characteristic curve 10 relating to the vertical movement of the floating body corresponding to the regular waves as shown in FIG. 6 can be obtained. This fluctuation response (amplitude) characteristic curve is input to an analysis device 8 of a measurement device described later.

【0028】図6(a)は、動揺応答(振幅)特性曲線1
0を示す。縦軸には無次元振幅Za/ha、横軸には波
周期Twをとって示す。haは波振幅であり、波高Hw
との関係はHw=2haである。なお、本明細書でいう
動揺応答特性曲線とは特にことわりのない限り応答振幅
特性曲線を意味する。
FIG. 6 (a) shows a characteristic curve 1 of the oscillation response (amplitude).
Indicates 0. The vertical axis represents the dimensionless amplitude Za / ha, and the horizontal axis represents the wave period Tw. ha is the wave amplitude, and the wave height Hw
Is Hw = 2ha. In addition, the fluctuation response characteristic curve referred to in this specification means a response amplitude characteristic curve unless otherwise specified.

【0029】このような動揺応答(振幅)特性曲線10
を求めることにより、全波周期域にわたって補間手法は
不要となり、精度が高められる。
Such a fluctuation response (amplitude) characteristic curve 10
, The interpolation method is not required over the entire wave period, and the accuracy is improved.

【0030】図6(b)は、動揺応答(位相)特性曲線1
0aを示す。縦軸には位相遅れεZ(=tl/T×2π
、tlは遅れ時間)、横軸には波周期Twをとって示
す。位相遅れは、波の運動に対して浮体の運動が遅れる
ことにより生じる。例えば、波の山頂部が浮体に当たっ
た後に、ある時間的な遅れをもって最も大きい浮体の動
揺が現れるときの位相遅れである。かかる位相遅れεZ
の影響は、後述する数式3に現れている。
FIG. 6 (b) shows a fluctuation response (phase) characteristic curve 1.
0a is indicated. The vertical axis indicates the phase delay ε Z (= tl / T × 2π
, Tl are delay times), and the horizontal axis indicates the wave period Tw. The phase lag is caused by the movement of the floating body being delayed with respect to the movement of the wave. For example, this is a phase delay when the largest fluctuation of the floating body appears with a certain time delay after the top of the wave hits the floating body. Such a phase delay ε Z
The effect of appears in Equation 3 described below.

【0031】なお、ヒーブ以外にピッチ、ロールなどを
求めて、より詳細な波浪情報を求める方法は後述する。
A method for obtaining more detailed wave information by obtaining a pitch, a roll and the like in addition to the heave will be described later.

【0032】上記動揺応答特性曲線10から明らかなよ
うに、小さな波周期(さざなみ程度)では大型浮体は波
振幅haに追従せず、大きな波周期(大きなうねりを持
った波)では波振幅haと浮体上下運動は一致するよう
になる、つまり、波に完全に追従して浮体が動揺するよ
うになる。図に示す例で、例えば波周期Twが20秒位
ではZa/haが1.0となり浮体が波と同じ運動する
ことを示している。 (2)海面に浮遊した実際の浮体の上下加速度等を計測
(ステップ3,4)実際の浮体1において、上下加速度
センサ7aにより浮体の上下方向の加速度を計測する。
このとき、浮体の傾斜の影響を除去して上下方向の加速
度成分を抽出するするため、角速度センサ7bにより浮
体の角速度を計測することが好ましい。
As is clear from the oscillation response characteristic curve 10, the large floating body does not follow the wave amplitude ha at a small wave cycle (rough wave), and the wave amplitude ha at a large wave cycle (wave having a large swell). The vertical movement of the floating body coincides, that is, the floating body shakes completely following the wave. In the example shown in the figure, for example, when the wave period Tw is about 20 seconds, Za / ha becomes 1.0, indicating that the floating body moves in the same way as the wave. (2) Measurement of the vertical acceleration and the like of the actual floating body floating on the sea surface (steps 3 and 4) In the actual floating body 1, the vertical acceleration of the floating body is measured by the vertical acceleration sensor 7a.
At this time, it is preferable to measure the angular velocity of the floating body by the angular velocity sensor 7b in order to remove the influence of the inclination of the floating body and extract the acceleration component in the vertical direction.

【0033】これらの計測データは記録装置11に記録
される(ステップ5)。
These measurement data are recorded in the recording device 11 (Step 5).

【0034】図7は上下加速度センサ7aにより計測さ
れた実際の浮体の加速度データの一つを示す。
FIG. 7 shows one of actual acceleration data of the floating body measured by the vertical acceleration sensor 7a.

【0035】図7は、縦軸に上下加速度、横軸に計測時
間tをとって示してある。これより浮体の実際の上下方
向の変位を積分・解析手段12により2回積分して求め
る(ステップ6)。図8はその結果である。
FIG. 7 shows the vertical acceleration on the vertical axis and the measurement time t on the horizontal axis. From this, the actual vertical displacement of the floating body is obtained by integrating twice by the integrating / analyzing means 12 (step 6). FIG. 8 shows the result.

【0036】浮体の上下方向の加速度が−Za・ω2
inωtで表されるとき、変位曲線はZa・sinωt
で表される。
The acceleration of the floating body in the vertical direction is -Za · ω 2 s
When represented by inωt, the displacement curve is Za · sinωt
It is represented by

【0037】図8より、例えば波周期Tw=10秒、運
動振幅Za=0.8が求まれば、これから、予めシュミ
ュレーション等により求めて解析装置8に入力しておい
た上記動揺応答特性曲線10を用いて、図9示すように
Tw=10秒における無次元波振幅Za/ha=0.9
が求められる。
From FIG. 8, for example, when the wave cycle Tw = 10 seconds and the motion amplitude Za = 0.8 are obtained, the above-mentioned fluctuation response characteristic curve which has been obtained in advance by simulation or the like and input to the analyzer 8 is obtained. 10, the dimensionless wave amplitude Za / ha = 0.9 at Tw = 10 seconds as shown in FIG.
Is required.

【0038】そうすると、求めるべき波振幅ha=0.
9/Za=0.9/0.8=1.1(m)と求められる
(ステップ7)。かかる計算は波高等計算手段13によ
り行われる。
Then, the wave amplitude ha = 0.
9 / Za = 0.9 / 0.8 = 1.1 (m) is obtained (step 7). Such calculation is performed by the wave height calculating means 13.

【0039】このようにして算出された波浪情報である
波高や波周期等の波浪情報は浮体に設置されているメモ
リ・伝送手段14たるコンピュータに記憶されると同時
に陸上監視装置へ伝送されるようになっている(ステッ
プ8)。B. 不規則波中の波浪情報の推定図10は機
能ブロック図、図11はそのフローチャート、図12〜
20はその説明図である。
The wave information, such as wave height and wave period, which is calculated as described above, is stored in a computer serving as a memory / transmission means 14 installed on a floating body and is simultaneously transmitted to a land monitoring device. (Step 8). B. FIG. 10 is a functional block diagram, FIG. 11 is a flowchart thereof, and FIGS.
20 is an explanatory diagram thereof.

【0040】上記波浪情報計測法は、浮体が正弦規則波
中に浮遊している場合のものであるが、実際の海面は、
このような規則波は少なく、殆どが不規則波である。
The above wave information measuring method is for a case where the floating body is floating in a sine wave, but the actual sea surface is
There are few such regular waves, and most are irregular waves.

【0041】そこで、不規則波に対応する波浪情報計測
の一般的手法が重要となるが、それを以下に説明する。
Therefore, a general method of measuring the wave information corresponding to the irregular wave is important, which will be described below.

【0042】まず、後述するように波向情報をも得る目
的で、予め浮体の6軸方向の運動のうち少なくとも3つ
の動揺応答特性曲線を上述したと同じ手法(シュミュレ
ーションや水槽実験)で求め(ステップ1,2)、これ
を解析装置15に入力しておく。
First, in order to obtain wave direction information as will be described later, at least three sway response characteristic curves among the movements of the floating body in six axial directions are obtained in advance by the same method (simulation or water tank experiment) as described above. (Steps 1 and 2), which are input to the analyzer 15.

【0043】他方、後述するように波向情報をも得る目
的で、3軸方向加速度センサ16aや角速度センサ16
bなどを実際の浮体に搭載しておき、その浮体を、波浪
情報を得たい海域に図1の如く係留して浮遊させる。そ
して、これらセンサによって実際の浮体の、少なくとも
3つの運動加速度ないし角速度を計測する(ステップ
3)。
On the other hand, as will be described later, in order to obtain wave direction information, a three-axis direction acceleration sensor 16a and an angular velocity sensor 16a are used.
b is mounted on an actual floating body, and the floating body is moored and floated in a sea area where wave information is to be obtained as shown in FIG. Then, at least three motion accelerations or angular velocities of the actual floating body are measured by these sensors (step 3).

【0044】つまり、この場合、図2に示すようにヒー
ブ(上下揺れ)、スウェイ(左右揺れ)サージ(前後揺
れ)の3軸方向の運動に加え、この各軸回りの運動であ
るヨウ、ロール(横揺れ)、ピッチ(縦揺れ)の6つ運
動のうち少なくとも3つの加速度又は角速度を計測す
る。この場合、ヒーブ(上下揺れ)、スウェイ(左右揺
れ)およびサージ(前後揺れ)は3軸方向加速度センサ
17aにより、また、ヨウ(船首揺れ)、ロール(横揺
れ)およびピッチ(縦揺れ)を計測する場合はいずれも
角速度センサ17bにより計測する(ステップ3)。
That is, in this case, as shown in FIG. 2, in addition to the three axial directions of heave (vertical sway), sway (lateral sway), and surge (forward / backward sway), the yaw and roll movements around these axes are included. The acceleration or angular velocity of at least three of the six movements (rolling) and pitch (pitch) are measured. In this case, the heave (vertical sway), sway (lateral sway) and surge (forward / backward sway) are measured by a three-axis acceleration sensor 17a, and yaw (bow), roll (roll) and pitch (pitch) are measured. If so, the measurement is performed by the angular velocity sensor 17b (step 3).

【0045】なお、これら加速度データから必要に応じ
角速度データを用いて浮体の傾斜の影響を除去した例え
ば上下方向の加速度成分を抽出したものをデータ記録装
置17たるコンピュータに記録しておく(ステップ4、
5)。但し、以下の説明は簡単なため上下方向加速度デ
ータについて主に述べるが、同様な操作や情報処理を、
計測した他の加速度や角速度(例えばロールφ、ピッチ
θ)に対しても行う。
It should be noted that the acceleration data in the vertical direction, for example, from which the influence of the inclination of the floating body is removed from the acceleration data by using angular velocity data as necessary, is recorded in the computer as the data recording device 17 (step 4). ,
5). However, the following description mainly focuses on the vertical acceleration data for simplicity.
This is also performed for other measured accelerations and angular velocities (eg, roll φ, pitch θ).

【0046】図12は実際の浮体の上下方向の加速度を
計測した結果を計測時間tとの関係で示したものであ
る。計測した他の運動についての加速度や角速度データ
についても同様な結果を得る。
FIG. 12 shows the result of measuring the actual vertical acceleration of the floating body in relation to the measurement time t. Similar results are obtained for acceleration and angular velocity data for other measured movements.

【0047】そして、この上下方向加速度等についての
計測データに関して積分・解析手段18によってこれを
2回積分して上下等の運動変位データ(3つの運動方向
の変位)を求める。図13は求められた例えば上下方向
の運動変位を横軸に計測時間tをもって示した変位の時
系列である。
The integration / analysis means 18 integrates the measured data on the vertical acceleration and the like twice to obtain vertical and vertical motion displacement data (displacements in three motion directions). FIG. 13 is a time series of the displacement, for example, showing the obtained vertical motion displacement with the measurement time t on the horizontal axis.

【0048】次に、周波数分析手段19によってこれを
周波数分析をする(ステップ6)。この分析によって、
図13の変位の時系列は図14に示すZc1(t)〜Z
ci(t)…(無限)の規則波の組み合わされたもので
あることを求める。これをフーリエ級数として表現すれ
ば、下記数式2のように表される。
Next, the frequency is analyzed by the frequency analyzing means 19 (step 6). With this analysis,
The time series of the displacement in FIG. 13 is Zc1 (t) to Zc shown in FIG.
Ci (t)... (infinity) are required to be a combination of regular waves. If this is expressed as a Fourier series, it is expressed as the following Expression 2.

【0049】[0049]

【数2】 (Equation 2)

【0050】今、例えば図14の変位の時系列(c)につ
いて、上述した手法(図8,9参照)と同様な手法によ
り、予め求められて解析装置15に入力されている浮体
の動揺応答(振幅)特性曲線10を用いて、例えば図1
5のように、変位Zai、波周期Twiのときのγiを
求める。γi=Zai/ha、即ち、ha=Zai/γ
iを求める。位相遅れεzi についても同様にして、図
6(b)の応答位相特性曲線10aより を求める。
Now, for example, the time series (c) of the displacement shown in FIG. 14 is calculated in advance by the same method as the above-mentioned method (see FIGS. Using the (amplitude) characteristic curve 10, for example, FIG.
As in 5, γi at the time of the displacement Zai and the wave period Twi is obtained. γi = Zai / ha, that is, ha = Zai / γ
Find i. Similarly, the phase delay ε zi is obtained from the response phase characteristic curve 10a in FIG. 6B.

【0051】これらを上記数式2に代入すると、下記数
式3のように波振幅hc(t)がフーリエ級数として表
される。
By substituting these into the above equation (2), the wave amplitude hc (t) is expressed as a Fourier series as in the following equation (3).

【0052】[0052]

【数3】 (Equation 3)

【0053】図16は上記フーリエ級数として表された
波振幅hc(t)から展開して求めた波高hc(t)の
時系列である。
FIG. 16 is a time series of the wave height hc (t) obtained by expanding the wave amplitude hc (t) expressed as the Fourier series.

【0054】これを基に、有義波高、最大波高、平均波
周期などの波浪情報が得られる(ステップ7)。以上は
動揺応答特性曲線を利用して波浪情報推定手段20によ
って実行される。
Based on this, wave information such as a significant wave height, a maximum wave height, and an average wave period is obtained (step 7). The above is executed by the wave information estimating means 20 using the fluctuation response characteristic curve.

【0055】そして、これをフーリエ変換することによ
り図17のような一次元波スペクトルが得られる。ここ
に、ω=2π/Twである。
Then, a one-dimensional wave spectrum as shown in FIG. 17 is obtained by Fourier transforming this. Here, ω = 2π / Tw.

【0056】ところで、上記の一次元波スペクトルで
は、波の向き(波向分布)の情報は含まれていない。
The one-dimensional wave spectrum does not include information on the direction of the wave (wave direction distribution).

【0057】そこで、上下方向の運動の場合と同様にし
て、例えば、ロールφ(t)、ピッチθ(t)について
も上記と同じ手法で求めておく。そして、少なくとも3
つの運動を計測することにより、公知の二次元波スペク
トルを求める手段21によって、図18のような二次元
波スペクトルを得る(ステップ8)。
Therefore, similarly to the case of the vertical movement, for example, the roll φ (t) and the pitch θ (t) are obtained in the same manner as described above. And at least 3
By measuring the two movements, a known two-dimensional wave spectrum obtaining means 21 obtains a two-dimensional wave spectrum as shown in FIG. 18 (step 8).

【0058】この二次元波スペクトルをχ面に積分投影
したものが図19である。これより波の主方向は、スペ
クトルの高さ、即ち、エネルギ密度が最も高い(ピー
ク)となる位置が90°であることから、平面的に画い
た図20に示すように風と同方向に波の向きが約90度
と推定しうる(ステップ9)。また、二次元波スペクト
ルのエネルギ密度で波の強さも推定できる。
FIG. 19 shows the integral projection of the two-dimensional wave spectrum on the χ plane. Since the main direction of the wave is 90 ° at the height of the spectrum, that is, the position where the energy density is highest (peak), the main direction of the wave is in the same direction as the wind as shown in FIG. The direction of the wave can be estimated to be about 90 degrees (step 9). In addition, the strength of the wave can be estimated from the energy density of the two-dimensional wave spectrum.

【0059】一般に波向きは海面上の風の向きに一致し
ていることが経験則上知られていることから、実際の浮
体に風速・風向計を備えておけば、波向データないし波
向分布の精度の検証が可能となり、これによって波浪情
報の信頼性を確保できる。
It is generally known from empirical rules that the direction of the wave coincides with the direction of the wind on the sea surface. Therefore, if an actual floating body is provided with a wind speed / wind indicator, the wave direction data or the wave direction is obtained. It is possible to verify the accuracy of the distribution, thereby ensuring the reliability of the wave information.

【0060】以上のようにして求めた波浪情報は、メモ
リ・伝送手段22にメモリされ、陸上監視設備に伝速さ
れる(ステップ10)。
The wave information obtained as described above is stored in the memory / transmission means 22 and transmitted to the on-land monitoring facility (step 10).

【0061】[0061]

【発明の効果】この出願発明は、以上説明したような形
態で実施され、次のような効果を奏する。 (1) 本願のような上下動揺特性が波面の上下動と一
致しない大型の浮体を使用しての波浪情報計測方法によ
れば、 a)浅い海域から大深度海域まで海の深度に全く制約を
受けず、特に従来設置が難しかった大水深海域にも設置
可能であることから、このような海域での波浪情報を精
度良く得ることができる。
The present invention is embodied in the form described above and has the following effects. (1) According to the method of measuring wave information using a large floating body whose vertical sway characteristic does not coincide with the vertical movement of the wavefront as in the present application, a) There is no restriction on the depth of the sea from a shallow sea area to a deep sea area. Since it can be installed especially in deep waters where it has been difficult to install it in the past, wave information in such seas can be obtained with high accuracy.

【0062】b)外洋のすべての海象・気象が計測可能
となるから、広域海域における海象計測のための本格的
な海象観測ブイの設置への道を開くものである。
B) Since all sea conditions and weather in the open ocean can be measured, the road to full-scale sea condition observation buoys for sea condition measurement in a wide sea area is opened.

【0063】c)従来の計測方法では精度が十分でなか
った暴風時の波浪情報を全周波数帯域かつ高精度で計測
できる。 (2) 本願装置によれば、実用上差し支えない精度を
もった(誤差10%程度)波浪データ(最大波高、有義
波高、波周期)を得ることができる。 (3)本願装置は設置場所に制約がなく、ブイを新設し
なくても、既存の係留浮体(航路標識ブイ、浮き魚礁
等)にも搭載可能である。
C) Wave information at the time of a storm, which was not sufficiently accurate with the conventional measurement method, can be measured with high accuracy over the entire frequency band. (2) According to the apparatus of the present invention, wave data (maximum wave height, significant wave height, wave period) having accuracy that is practically acceptable (error of about 10%) can be obtained. (3) The device of the present invention is not limited in its installation location, and can be mounted on an existing mooring body (such as a buoy for marking a route or a floating reef) without newly installing a buoy.

【0064】既存の海洋構造物を利用した波浪観測や、
市販の波浪観測ブイでは設置困難な深海域においても波
浪観測ができる汎用型波浪情報計測装置を提供できる。
Wave observation using existing offshore structures,
It is possible to provide a general-purpose wave information measurement device capable of observing waves even in a deep sea area where it is difficult to install a commercially available wave observation buoy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明が適用される大型浮体の概略正面図で
ある。
FIG. 1 is a schematic front view of a large floating body to which the present invention is applied.

【図2】浮体の6つの運動を示す図である。FIG. 2 is a diagram showing six movements of a floating body.

【図3】規則波に対する波浪情報計測装置の機能ブロッ
ク図である。
FIG. 3 is a functional block diagram of a wave information measuring device for a regular wave.

【図4】同フローチャートである。FIG. 4 is the same flowchart.

【図5】規則波中の浮体の動揺応答特性を求めるための
シュミュレーション図である。
FIG. 5 is a simulation diagram for obtaining a fluctuation response characteristic of a floating body in a regular wave.

【図6】(a)は同シュミュレーションにより求められた
動揺応答(振幅)特性曲線図である。(b)は動揺応答
(位相遅れ)特性曲線図である。
FIG. 6 (a) is a diagram of a fluctuation response (amplitude) characteristic curve obtained by the simulation. (b) is a characteristic curve diagram of the oscillation response (phase lag).

【図7】実際の大型浮体において計測された上下加速度
(縦軸)を、横軸に計測時間をとって表した図である。
FIG. 7 is a diagram showing vertical acceleration (vertical axis) measured on an actual large floating body, with the horizontal axis indicating measurement time.

【図8】2回積分で求められた上下変位(縦軸)を、横
軸に計測時間をとって表した図である。
FIG. 8 is a diagram showing vertical displacement (vertical axis) obtained by two-time integration with measurement time taken on a horizontal axis.

【図9】シュミュレーションにより求めた動揺応答特性
曲線を利用して上下変位と波高の比を求める要領図であ
る。
FIG. 9 is a view showing a procedure for obtaining a ratio between a vertical displacement and a wave height using a fluctuation response characteristic curve obtained by simulation.

【図10】不規則波に対する波浪情報計測装置の機能ブ
ロック図である。
FIG. 10 is a functional block diagram of the wave information measuring device for irregular waves.

【図11】同フローチャートである。FIG. 11 is the same flowchart.

【図12】実際の大型浮体において計測された加速度の
時系列である。
FIG. 12 is a time series of acceleration measured on an actual large floating body.

【図13】2回積分により求められた変位の時系列であ
る。
FIG. 13 is a time series of displacement obtained by two-time integration.

【図14】(a)(b)(c)は図13の時系列を周波数分析し
たときの各時系列である。
14 (a), (b) and (c) are time series when the time series of FIG. 13 is subjected to frequency analysis.

【図15】各時系列に基づき波高に対する変位の比を、
動揺応答特性曲線から求める要領図である。
FIG. 15 shows the ratio of displacement to wave height based on each time series,
FIG. 9 is a diagram showing a procedure to be determined from a motion response characteristic curve.

【図16】上記で求めた波高の時系列である。FIG. 16 is a time series of the wave height obtained above.

【図17】フーリエ変換により求められた一次元波スペ
クトルの図である。
FIG. 17 is a diagram of a one-dimensional wave spectrum obtained by Fourier transform.

【図18】二次元波スペクトルの図である。FIG. 18 is a diagram of a two-dimensional wave spectrum.

【図19】波向を求めるための波向分布である。FIG. 19 is a wave direction distribution for obtaining a wave direction.

【図20】波浪の主方向と風向との関係図である。FIG. 20 is a diagram illustrating a relationship between a main direction of a wave and a wind direction.

【符号の説明】[Explanation of symbols]

1…大型浮体 2…係留ライン 3…櫓状構造物 4…風速・風向センサ 5…GPSアンテナ 6…データ保存・処理・通信用ユニット 7…動揺センサユニット(7a…加速度センサ、7b…
角速度センサ) 8…解析装置 9…積分・解析手段 10…動揺応答(振幅)特性曲線 10a…応答位相特性曲線 11…データ記録装置 12…積分・解析手段 13…波高等計算手段 14…メモリ・伝送手段 15…解析装置 16…3軸方向センサ・角速度センサ 18…積分・解析手段 19…周波数分析手段 20…波浪情報推定手段 21…二次元スペクトルを求める手段 22…メモリ・伝送手段
DESCRIPTION OF SYMBOLS 1 ... Large floating body 2 ... Mooring line 3 ... Tower-shaped structure 4 ... Wind speed / wind direction sensor 5 ... GPS antenna 6 ... Data storage / processing / communication unit 7 ... Motion sensor unit (7a ... acceleration sensor, 7b ...
8: Analysis device 9: Integration / analysis means 10: Oscillation response (amplitude) characteristic curve 10a: Response phase characteristic curve 11: Data recording device 12: Integration / analysis means 13: Crest height calculation means 14: Memory / transmission Means 15 Analysis device 16 Three-axis direction sensor / angular velocity sensor 18 Integration / analysis means 19 Frequency analysis means 20 Wave information estimation means 21 Means for obtaining two-dimensional spectrum 22 Memory / transmission means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小寺山 亘 福岡県太宰府市青葉台3丁目20番8号 Fターム(参考) 2F069 AA04 BB40 DD19 DD20 DD25 GG06 GG20 GG39 GG41 GG56 GG72 JJ08 JJ19 JJ25 KK05 MM04 NN13 QQ05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Wataru Kodera 3-20-8 Aobadai, Dazaifu City, Fukuoka Prefecture F-term (reference) 2F069 AA04 BB40 DD19 DD20 DD25 GG06 GG20 GG39 GG41 GG56 GG72 JJ08 JJ19 JJ25 KK05 MM04 NN13 QQ05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】上下動揺応答特性が波面の上下動と一致し
ない大型の浮体を用いた波浪情報計測方法であって、 シュミレーションや水槽実験等により予め浮体の上下動
の応答特性を推定してその動揺応答特性曲線を求めてお
く一方、実際の浮体の上下方向加速度を計測し、この加
速度データに基づき浮体の実際の上下運動変位データを
積分演算して求め、この変位データと前記動揺応答特性
曲線とから波浪情報を求めるようにしたことを特徴とす
る大型浮体による波浪情報計測方法。
1. A wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of a wavefront, wherein the response characteristic of the vertical motion of the floating body is estimated in advance by simulation, a water tank experiment, or the like. While the motion response characteristic curve is obtained, the actual vertical acceleration of the floating body is measured, and based on the acceleration data, the actual vertical motion displacement data of the floating body is calculated by integration, and the displacement data and the motion response characteristic curve are obtained. A wave information measuring method using a large floating body, wherein wave information is obtained from the following.
【請求項2】上下動揺応答特性が波面の上下動と一致し
ない大型の浮体を用いた波浪情報計測方法であって、 シュミレーションや水槽実験等により予め浮体の上下動
の応答特性を推定してその動揺応答特性曲線を求めてお
く一方、実際の浮体の上下方向加速度を計測し、この加
速度データに基づき浮体の実際の上下運動変位データを
積分演算して求め、この変位データを周波数分析し、こ
の周波数分析の結果と前記動揺応答特性曲線とにより波
浪情報を求めるようにしたことを特徴とする大型浮体に
よる波浪情報計測方法。
2. A wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of a wavefront, wherein the response characteristic of the vertical motion of the floating body is estimated in advance by simulation, a water tank experiment, or the like. While obtaining the motion response characteristic curve, the vertical acceleration of the actual floating body is measured, the actual vertical movement displacement data of the floating body is calculated by integration based on the acceleration data, and the displacement data is subjected to frequency analysis. A wave information measuring method using a large floating body, wherein wave information is obtained based on a result of frequency analysis and the fluctuation response characteristic curve.
【請求項3】上下動揺応答特性が波面の上下動と一致し
ない大型の浮体を用いた波浪情報計測方法であって、 シュミレーションや水槽実験等により予め浮体の上下動
(ヒーブ)、左右揺れ(スエイ)、前後揺れ(サー
ジ)、横揺れ(ロール)、縦揺れ(ピッチ)および船首
揺れ(ヨウ)運動のうち少なくとも3つの動揺の応答特
性を推定してその動揺応答特性曲線を求めておく一方、
実際の浮体の動揺加速度および動揺角速度を計測し、こ
れらの加速度データおよび角速度データに基づき浮体の
少なくとも当該3方向の運動変位データを積分演算して
求め、この運動変位データを周波数分析し、この周波数
分析の結果と前記動揺応答特性曲線とから波浪情報を求
めるようにしたことを特徴とする大型浮体による波浪情
報計測方法。
3. A wave information measuring method using a large floating body whose vertical oscillating response characteristic does not coincide with the vertical movement of a wavefront, wherein the floating body is previously moved up and down (heave) and sway (sway) by simulation or a water tank experiment. ), The response characteristics of at least three of the back and forth sway (surge), the roll (roll), the pitch (pitch), and the bow (yaw) motion are estimated, and the sway response characteristic curve is obtained.
The actual oscillating acceleration and oscillating angular velocity of the floating body are measured, and based on these acceleration data and angular velocity data, motion displacement data of at least the three directions of the floating body are calculated by integration, and the motion displacement data is frequency-analyzed. A wave information measuring method using a large floating body, wherein wave information is obtained from an analysis result and the motion response characteristic curve.
【請求項4】 浮体の上下動揺特性が波面の上下動と一
致しない大型の浮体を用いた波浪情報の計測装置であっ
て、 実際の浮体に設けた上下加速度センサと、この加速度セ
ンサより計測した加速度データに基づき実際の浮体の上
下運動変位データを演算・解析する演算解析手段と、シ
ュミレーションや水槽実験等により予め求めておいた浮
体の上下動揺応答特性曲線を用いて前記演算解析手段に
より求めた浮体の実際の上下動変位データから波浪情報
を計算する計算手段とを備えてなる大型浮体による波浪
情報計測装置。
4. A wave information measuring apparatus using a large floating body whose vertical oscillating characteristic does not coincide with the vertical movement of a wavefront, wherein a vertical acceleration sensor provided on an actual floating body and measurement using the acceleration sensor are performed. Calculation and analysis means for calculating and analyzing the actual vertical movement displacement data of the floating body based on the acceleration data, and the calculation and analysis means obtained by using the vertical movement response characteristic curve of the floating body which has been obtained in advance by a simulation or a water tank experiment. A wave information measuring apparatus using a large floating body, comprising: a calculating means for calculating wave information from actual vertical movement displacement data of the floating body.
【請求項5】 浮体の上下動揺特性が波面の上下動と一
致しない大型の浮体を用いた波浪情報の計測装置であっ
て、 実際の浮体に設けた上下加速度センサと、この加速度セ
ンサより計測した加速度データに基づき実際の浮体の上
下運動変位データを演算・解析する演算解析手段と、こ
の演算解析手段により得られた上下運動変位データに基
づき周波数分析を行う周波数分析手段と、前記シュミレ
ーションや水槽実験等により予め求めておいた浮体の上
下動揺応答特性曲線を用いて、前記周波数分析手段の結
果から波浪情報を推定する波浪情報推定手段とを備えて
なる大型浮体による波浪情報計測装置。
5. A wave information measuring device using a large floating body whose vertical swing characteristics do not coincide with the vertical movement of a wavefront, wherein a vertical acceleration sensor provided on an actual floating body and a measurement using the acceleration sensor are performed. A calculation and analysis means for calculating and analyzing actual vertical movement displacement data of the floating body based on the acceleration data; a frequency analysis means for performing frequency analysis based on the vertical movement displacement data obtained by the calculation and analysis means; A wave information measuring device for a large floating body, comprising: wave information estimating means for estimating wave information from the result of the frequency analysis means, using a vertical motion response characteristic curve of the floating body obtained in advance by the above method.
【請求項6】 浮体の上下動揺特性が波面の上下動と一
致しない大型の浮体を用いた波浪情報の計測装置であっ
て、 上下動、左右揺れ、前後揺れ、横揺れ、縦揺れおよび船
首揺れ運動のうち少なくとも3つの実際の浮体の動揺を
測るべく該浮体に設けた上下加速度センサや角速度セン
サ等の動揺センサと、この動揺センサより計測した加速
度データや角速度データに基づき実際の浮体の少なくと
も3つの当該運動変位データを演算・解析する演算解析
手段と、この演算解析手段により得られた運動変位デー
タに基づき周波数分析を行う周波数分析手段と、前記シ
ュミレーションや水槽実験等により予め求めておいた浮
体の上下動揺応答特性曲線を用いて、前記周波数分析手
段の結果から波浪情報を推定する波浪情報推定手段とを
備えてなる大型浮体による波浪情報計測装置。
6. A wave information measuring apparatus using a large floating body whose vertical swing characteristics do not coincide with the vertical movement of a wavefront, comprising: a vertical movement, a horizontal sway, a back and forth sway, a horizontal sway, a vertical sway and a bow sway. A motion sensor, such as a vertical acceleration sensor or an angular velocity sensor, provided on the floating body to measure the motion of at least three actual floating bodies of the motion, and at least three of the actual floating bodies based on acceleration data and angular velocity data measured by the motion sensors. Calculation analysis means for calculating and analyzing the motion displacement data, frequency analysis means for performing frequency analysis based on the motion displacement data obtained by the calculation analysis means, and a floating body determined in advance by the simulation, a water tank experiment, or the like. And wave information estimating means for estimating wave information from the result of the frequency analysis means using the vertical motion response characteristic curve of Wave information measurement device according to the floating body.
JP2000195632A 2000-06-29 2000-06-29 Wave information measurement method and device using large floating body Expired - Fee Related JP3455167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195632A JP3455167B2 (en) 2000-06-29 2000-06-29 Wave information measurement method and device using large floating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195632A JP3455167B2 (en) 2000-06-29 2000-06-29 Wave information measurement method and device using large floating body

Publications (2)

Publication Number Publication Date
JP2002013923A true JP2002013923A (en) 2002-01-18
JP3455167B2 JP3455167B2 (en) 2003-10-14

Family

ID=18694269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195632A Expired - Fee Related JP3455167B2 (en) 2000-06-29 2000-06-29 Wave information measurement method and device using large floating body

Country Status (1)

Country Link
JP (1) JP3455167B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170920A (en) * 2004-12-17 2006-06-29 Nec Mobiling Ltd Tide level monitoring system, sea surface buoy for tide level monitoring system and ground-based station apparatus, tide level monitoring method, and tide level monitoring program
JP2007085795A (en) * 2005-09-20 2007-04-05 Universal Shipbuilding Corp Wave characteristic measuring method and its device
JP2007171146A (en) * 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2007327853A (en) * 2006-06-08 2007-12-20 Zeni Lite Buoy Co Ltd Marine phenomenon measuring method by spar buoy, and device therefor
JP2008157642A (en) * 2006-12-21 2008-07-10 Hitachi Zosen Corp Buoy for observing tsunami and ocean wave
JP2009014697A (en) * 2007-07-06 2009-01-22 Port & Airport Research Institute Wave direction calculating method of buoy-type wave height meter
JP2009143331A (en) * 2007-12-13 2009-07-02 Hitachi Zosen Corp Buoy for tsunami-ocean wave observation
JP2011213130A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Wave height and wave direction estimating method of incident wave, automatic navigation route and/or ship position holding controlling method, automatic navigation route and/or ship position holding controlling system, and ship and offshore structure
JP2012181117A (en) * 2011-03-02 2012-09-20 Univ Of Tokyo Wave measuring method and wave measuring system using ultrasonic wave
KR20140043192A (en) * 2012-09-28 2014-04-08 한국전력공사 Wave measuring apparatus loaded on a body
CN106052795A (en) * 2016-07-28 2016-10-26 中国石油天然气集团公司 Method and device for acquiring tide level
KR20190080350A (en) * 2017-12-28 2019-07-08 대우조선해양 주식회사 Apparatus and method for updating marine environment data
CN110532685A (en) * 2019-08-29 2019-12-03 山东交通学院 Floating structure sways motor imagination forecasting procedure
JP2020079762A (en) * 2018-11-14 2020-05-28 五洋建設株式会社 Wave height calculation method
JP2020131819A (en) * 2019-02-15 2020-08-31 株式会社救命 System, method and program for transversal wave cycle prediction
CN112082887A (en) * 2020-08-04 2020-12-15 浙江工业大学 Riser motion response simulation device based on floating structure wave frequency and slow drifting combination
JP2021076600A (en) * 2019-10-31 2021-05-20 株式会社ブルーオーシャン研究所 Oceanic condition measurement buoy and oceanic information measurement device
CN114152319A (en) * 2022-02-08 2022-03-08 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) Site detection method and device for side-mounted liquid level meter of tank truck
CN115667066A (en) * 2020-11-18 2023-01-31 三菱造船株式会社 Estimation device, estimation method, and program
CN116805028A (en) * 2023-08-17 2023-09-26 中国海洋大学 Wave surface inversion method and system based on floating body motion response

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954072B (en) * 2019-12-20 2021-12-21 深圳大学 Water depth detection method and device and storage medium
KR102458352B1 (en) * 2020-10-20 2022-10-24 화진기업(주) Wave gauge

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170920A (en) * 2004-12-17 2006-06-29 Nec Mobiling Ltd Tide level monitoring system, sea surface buoy for tide level monitoring system and ground-based station apparatus, tide level monitoring method, and tide level monitoring program
JP2007085795A (en) * 2005-09-20 2007-04-05 Universal Shipbuilding Corp Wave characteristic measuring method and its device
JP2007171146A (en) * 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2007327853A (en) * 2006-06-08 2007-12-20 Zeni Lite Buoy Co Ltd Marine phenomenon measuring method by spar buoy, and device therefor
JP4672605B2 (en) * 2006-06-08 2011-04-20 株式会社ゼニライトブイ Sea state measurement method by super buoy
JP2008157642A (en) * 2006-12-21 2008-07-10 Hitachi Zosen Corp Buoy for observing tsunami and ocean wave
JP2009014697A (en) * 2007-07-06 2009-01-22 Port & Airport Research Institute Wave direction calculating method of buoy-type wave height meter
JP2009143331A (en) * 2007-12-13 2009-07-02 Hitachi Zosen Corp Buoy for tsunami-ocean wave observation
JP2011213130A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Wave height and wave direction estimating method of incident wave, automatic navigation route and/or ship position holding controlling method, automatic navigation route and/or ship position holding controlling system, and ship and offshore structure
JP2012181117A (en) * 2011-03-02 2012-09-20 Univ Of Tokyo Wave measuring method and wave measuring system using ultrasonic wave
KR101969717B1 (en) * 2012-09-28 2019-04-18 한국전력공사 Wave measuring apparatus loaded on a body
KR20140043192A (en) * 2012-09-28 2014-04-08 한국전력공사 Wave measuring apparatus loaded on a body
CN106052795A (en) * 2016-07-28 2016-10-26 中国石油天然气集团公司 Method and device for acquiring tide level
KR102239830B1 (en) * 2017-12-28 2021-04-13 대우조선해양 주식회사 Apparatus and method for updating marine environment data
KR20190080350A (en) * 2017-12-28 2019-07-08 대우조선해양 주식회사 Apparatus and method for updating marine environment data
JP2020079762A (en) * 2018-11-14 2020-05-28 五洋建設株式会社 Wave height calculation method
JP2020131819A (en) * 2019-02-15 2020-08-31 株式会社救命 System, method and program for transversal wave cycle prediction
CN110532685A (en) * 2019-08-29 2019-12-03 山东交通学院 Floating structure sways motor imagination forecasting procedure
JP2021165752A (en) * 2019-10-31 2021-10-14 株式会社ブルーオーシャン研究所 Oceanic condition information measurement device
JP2021076600A (en) * 2019-10-31 2021-05-20 株式会社ブルーオーシャン研究所 Oceanic condition measurement buoy and oceanic information measurement device
CN112082887A (en) * 2020-08-04 2020-12-15 浙江工业大学 Riser motion response simulation device based on floating structure wave frequency and slow drifting combination
CN115667066A (en) * 2020-11-18 2023-01-31 三菱造船株式会社 Estimation device, estimation method, and program
CN114152319A (en) * 2022-02-08 2022-03-08 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) Site detection method and device for side-mounted liquid level meter of tank truck
CN114152319B (en) * 2022-02-08 2022-05-10 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) On-site detection method and detection device for side-mounted liquid level meter of tank truck
CN116805028A (en) * 2023-08-17 2023-09-26 中国海洋大学 Wave surface inversion method and system based on floating body motion response
CN116805028B (en) * 2023-08-17 2023-12-08 中国海洋大学 Wave surface inversion method and system based on floating body motion response

Also Published As

Publication number Publication date
JP3455167B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP3455167B2 (en) Wave information measurement method and device using large floating body
US6282151B1 (en) System and method for measuring wave directional spectrum and wave height
Bencivenga et al. The Italian data buoy network (RON)
Fer et al. Autonomous ocean turbulence measurements using shear probes on a moored instrument
Veras Guimarães et al. A surface kinematics buoy (SKIB) for wave–current interaction studies
Christensen et al. Surface wave measurements using a ship-mounted ultrasonic altimeter
JP4672605B2 (en) Sea state measurement method by super buoy
Centurioni et al. A new strategic wave measurement station off Naples port main breakwater
CN110887463A (en) Method and system for detecting fluctuation amplitude of sea waves based on inertial sensor
CN109490906A (en) A kind of boat-carrying wave dynamic measurement device based on laser radar
Harding et al. Turbulence measurements from compliant moorings. Part I: Motion characterization
JP2009115714A (en) Method and device for measuring speed of mobile unit
CN114455004A (en) Wave buoy combined with pressure acceleration sensor and precision improvement method
Yoerger et al. Drag forces and flow-induced vibrations of a long vertical tow cable—Part I: Steady-state towing conditions
CN110887506A (en) Motion amplitude detection method and system of inertial sensor influenced by sea waves
JP4534200B2 (en) Tsunami detector
Horwitz et al. Turbulence dissipation rates from horizontal velocity profiles at mid-depth in fast tidal flows
JP2003185743A (en) Wave height calculator, method of calculating wave height, recording medium, and ship
Toyota et al. Effects of hull shape on primary conversion characteristics of a floating OWC” Backward Bent Duct Buoy”
Jiao et al. Vertical and horizontal bending moments on the hydroelastic response of a large-scale segmented model in a seaway
Sun et al. Measurement and analysis of coastal waves along the north sea area of China
JP4830269B2 (en) Mooring sensor positioning method and apparatus
Govea et al. Motion compensation of opean-ocean acoustic Doppler velocimeter measurements for offshore turbulence assessment
Gourlay Dynamic draught of container ships in shallow water
Wilson et al. A comparison of current profiles collected from bottom-and buoy-mounted instruments

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees