JP2002009584A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP2002009584A
JP2002009584A JP2000194887A JP2000194887A JP2002009584A JP 2002009584 A JP2002009584 A JP 2002009584A JP 2000194887 A JP2000194887 A JP 2000194887A JP 2000194887 A JP2000194887 A JP 2000194887A JP 2002009584 A JP2002009584 A JP 2002009584A
Authority
JP
Japan
Prior art keywords
substrate
axis
acoustic wave
surface acoustic
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000194887A
Other languages
Japanese (ja)
Other versions
JP3952666B2 (en
Inventor
Kengo Asai
健吾 浅井
Mitsutaka Hikita
光孝 疋田
Atsushi Isobe
敦 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000194887A priority Critical patent/JP3952666B2/en
Publication of JP2002009584A publication Critical patent/JP2002009584A/en
Application granted granted Critical
Publication of JP3952666B2 publication Critical patent/JP3952666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave device the delay time temperature coefficient of which is reduced. SOLUTION: Single crystal piezoelectric substrates employing the same type of material are joined by taking a propagation direction of a surface acoustic wave in parallel with the direction in which the linear expansion coefficient is small in order to improve the linear expansion coefficient. Or the joining layer of a joined substrate obtained by joining substrates made of different kinds of materials employs a coated glass layer with a high heat resistance and ease of handling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は携帯電話等に用いら
れる弾性表面波を用いる素子およびその基板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device using a surface acoustic wave used in a cellular phone and the like, and a method of manufacturing a substrate thereof.

【0002】[0002]

【従来の技術】携帯電話等に用いられる弾性表面波素子
は、例えば、電子情報通信学会論文誌A,J76巻−
A,2号、185−192頁(1993年2月)に示さ
れているように、タンタル酸リチウム基板、ニオブ酸リ
チウム基板および四ホウ酸リチウム基板などの単結晶圧
電基板上に金属薄膜の櫛形交差電極を形成して構成され
ている。
2. Description of the Related Art A surface acoustic wave element used for a cellular phone or the like is disclosed in, for example, IEICE Transactions A, J76-
A, No. 2, pp. 185-192 (February 1993), a comb-like metal thin film formed on a single-crystal piezoelectric substrate such as a lithium tantalate substrate, a lithium niobate substrate, and a lithium tetraborate substrate. It is configured by forming cross electrodes.

【0003】携帯電話等の高性能化に伴い、それらに用
いる弾性表面波素子用基板の遅延時間温度係数を改善さ
せた報告がなされている。例えば、特開平11−550
70号に示されているように単結晶圧電基板とガラス基
板を直接接合させた事例がある。さらに、第20回超音
波シンポジウム予稿集51頁(1999年11月)に示
されているように単結晶圧電基板とマイナス膨張ガラス
を紫外線硬化型樹脂で接合させた事例がある。
As the performance of mobile phones and the like has been improved, reports have been made on the improvement of the temperature coefficient of delay time of a substrate for a surface acoustic wave device used for them. For example, JP-A-11-550
As shown in No. 70, there is an example in which a single crystal piezoelectric substrate and a glass substrate are directly bonded. Further, as shown in the 20th Ultrasonic Symposium Proceedings, p. 51 (November 1999), there is a case where a single-crystal piezoelectric substrate and minus-expandable glass are joined by an ultraviolet curing resin.

【0004】[0004]

【発明が解決しようとする課題】携帯電話等は、近年の
急速な市場拡大から、送受信の各周波数帯域がより拡大
される傾向にあり、送信帯域と受信帯域の周波数間隔が
非常に狭いシステムも存在している。このことから携帯
電話等に内蔵される各種デバイスに対しても、より一層
の高性能化が要求されている。特にタンタル酸リチウム
基板あるいはニオブ酸リチウム基板等の単結晶圧電基板
上に金属薄膜の櫛形交差電極を形成する従来の弾性表面
波素子では、遅延時間温度係数が大きい場合、帯域間減
衰量が十分に取れないため重大な課題となる。
With the rapid market expansion in recent years, portable telephones and the like tend to have more and more frequency bands for transmission and reception, and there are also systems where the frequency interval between the transmission band and the reception band is very narrow. Existing. For this reason, various devices incorporated in mobile phones and the like are required to have higher performance. In particular, in the case of a conventional surface acoustic wave element in which a comb-shaped cross electrode of a metal thin film is formed on a single crystal piezoelectric substrate such as a lithium tantalate substrate or a lithium niobate substrate, if the delay time temperature coefficient is large, the inter-band attenuation is sufficient. It is a serious issue because it cannot be taken.

【0005】弾性表面波素子の遅延時間温度係数は、単
結晶圧電基板の線熱膨張係数と弾性表面波伝搬速度の温
度係数との差によって決定される。これらの値は単結晶
圧電基板固有の値であり、線熱膨張係数に関して言え
ば、例えばX軸を中心にY軸からZ軸方向に36°〜4
6°の角度で回転された面方位を持つタンタル酸リチウ
ム基板のX軸、すなわち弾性表面波伝搬方向では約1
6.1ppm/℃、またX軸を中心にY軸からZ軸方向
に64°の角度で回転された面方位を持つニオブ酸リチ
ウム基板のX軸すなわち弾性表面波伝搬方向では約1
5.4ppm/℃と大きい。今後、弾性表面波素子の性
能向上を図る上でこの点が障害となっている。
[0005] The temperature coefficient of the delay time of the surface acoustic wave element is determined by the difference between the linear thermal expansion coefficient of the single crystal piezoelectric substrate and the temperature coefficient of the surface acoustic wave propagation velocity. These values are specific to the single-crystal piezoelectric substrate, and in terms of the linear thermal expansion coefficient, for example, 36 ° to 4 ° from the Y axis to the Z axis around the X axis.
The X axis of the lithium tantalate substrate having a plane orientation rotated at an angle of 6 °, that is, about 1 in the surface acoustic wave propagation direction.
6.1 ppm / ° C., and about 1 in the X-axis of the lithium niobate substrate having a plane orientation rotated at an angle of 64 ° from the Y-axis to the Z-axis about the X-axis, that is, the surface acoustic wave propagation direction.
It is as large as 5.4 ppm / ° C. This will be an obstacle in improving the performance of the surface acoustic wave device in the future.

【0006】上記の課題を解決する方法として、単結晶
圧電基板に線熱膨張係数が小さいガラス基板を直接接合
した複合圧電基板を用いる方法がある。しかし、上記複
合圧電基板は材質の異なる基板を接合しているため、特
に基板接合界面でのバルク波反射の影響が大きく、弾性
表面波素子の特性を劣化させる問題(フィルタでは例え
ば帯域内リップル、あるいは帯域外のスプリアス応答
等)がある。
As a method for solving the above problem, there is a method using a composite piezoelectric substrate in which a glass substrate having a small linear thermal expansion coefficient is directly joined to a single crystal piezoelectric substrate. However, since the composite piezoelectric substrate is formed by bonding substrates made of different materials, the influence of bulk wave reflection is particularly large at the bonding interface of the substrates, thereby deteriorating the characteristics of the surface acoustic wave element. Or out-of-band spurious responses).

【0007】また、基板接合方法に関しては、前記直接
接合以外に、接着剤等を用いる方法もあるが、適用でき
る接着剤に耐熱性がなく、デバイスを形成する過程での
加熱処理時に問題が生じるおそれがある。
As for the method of bonding the substrates, there is a method using an adhesive or the like other than the direct bonding. However, the applicable adhesive has no heat resistance and causes a problem during the heat treatment in the process of forming the device. There is a risk.

【0008】本発明は、上記のような問題を考慮し、弾
性表面波を励振伝搬させる単結晶圧電基板の線熱膨張係
数を改善することによって、遅延時間温度係数が向上で
きる弾性表面波素子用基板、およびその弾性表面波素子
用基板上に弾性表面波素子を実現することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described problems, and is intended to improve a temperature coefficient of delay time by improving a linear thermal expansion coefficient of a single crystal piezoelectric substrate for exciting propagation of a surface acoustic wave. It is an object to realize a surface acoustic wave device on a substrate and a substrate for the surface acoustic wave device.

【0009】すなわち、単結晶圧電基板の接合法に関し
ては、直接接合法において基板接合界面でのバルク波反
射の影響を抑えた良好な弾性表面波伝搬特性を実現する
ことを目的とし、また接着層を介して基板接合を行う方
法において基板接合後の櫛形交差電極の製造プロセス工
程に対して十分な耐熱性および耐薬品性を示す基板接合
を実現することを目的とする。
That is, with respect to the bonding method of a single crystal piezoelectric substrate, it is an object of the present invention to realize good surface acoustic wave propagation characteristics in which the influence of bulk wave reflection at the substrate bonding interface is suppressed in the direct bonding method. It is an object of the present invention to realize a substrate bonding exhibiting sufficient heat resistance and chemical resistance with respect to a process of manufacturing a comb-shaped crossed electrode after the substrate bonding in a method of performing substrate bonding via the substrate.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明による弾性表面波素子は、単結晶圧電基板で
ある第1の基板と、第1の基板に接合された第2の基板
と、第1の基板の第2の基板との接合面と反対側の面上
に形成され弾性表面波を励振伝搬する櫛型交差電極とを
備えた構造において、第1の基板の弾性表面波伝搬方向
を第2の基板の接合面内で最も線熱膨張係数の小さい方
向と平行にすることを特徴とする。
In order to achieve the above object, a surface acoustic wave device according to the present invention comprises a first substrate which is a single crystal piezoelectric substrate and a second substrate which is joined to the first substrate. And a comb-shaped crossing electrode formed on a surface of the first substrate opposite to a bonding surface with the second substrate and configured to excite and propagate a surface acoustic wave. The propagation direction is parallel to the direction having the smallest linear thermal expansion coefficient in the bonding surface of the second substrate.

【0011】上記において、第1と第2の基板が実質的
に接合層を介さず、直接接合される構成の場合、上記第
1と第2の基板の材質は、同じ材質であることが好まし
い。また、本発明による上記第1と第2の基板が異種材
料を接合した構成であるときには、耐熱性および耐薬品
性の問題を解決した基板接合を可能とするために、基板
の接合界面に塗布ガラスを主成分とする接着層を介する
ことが好ましい。
In the above structure, when the first and second substrates are directly bonded without substantially interposing a bonding layer, the materials of the first and second substrates are preferably the same. . Further, when the first and second substrates according to the present invention have a configuration in which dissimilar materials are bonded, the first and second substrates are coated on the bonding interface of the substrates in order to enable the bonding of the substrates to solve the problems of heat resistance and chemical resistance. It is preferable to use an adhesive layer mainly composed of glass.

【0012】[0012]

【発明の実施の形態】図1は本発明による弾性表面波素
子の第1の実施例を示す斜視図である。図の1は単結晶
圧電基板、2は上記基板1に接合された第2の基板、3
は上記基板1の、基板2との接合面と反対側の面上に形
成された櫛型交差電極である。本実施例において、基板
2の材質は基板1と同じであるが、基板1の弾性表面波
の伝搬方向(矢印4)における基板2の線熱膨張係数
は、基板1の同方向の線熱膨張係数より小さくなるよう
に接合されている。
FIG. 1 is a perspective view showing a first embodiment of a surface acoustic wave device according to the present invention. 1 is a single-crystal piezoelectric substrate, 2 is a second substrate bonded to the substrate 1, and 3 is a single-crystal piezoelectric substrate.
Is a comb-shaped crossing electrode formed on the surface of the substrate 1 opposite to the bonding surface with the substrate 2. In this embodiment, the material of the substrate 2 is the same as that of the substrate 1, but the linear thermal expansion coefficient of the substrate 1 in the direction of propagation of the surface acoustic wave (arrow 4) is the linear thermal expansion of the substrate 1 in the same direction. It is joined so as to be smaller than the coefficient.

【0013】本実施例における弾性表面波素子では、基
板1と基板2とが直接接合によって接合され、接合した
基板を弾性表面波素子用基板5として用いる。基板1上
に形成された櫛型交差電極3により励振された弾性表面
波は基板1上を伝搬し、弾性表面波素子として機能して
いる。櫛形交差電極3の電極指は基板1のX軸に対して
垂直方向に形成されているため、弾性表面波は基板1の
X軸に対して平行な方向に伝搬する。
In the surface acoustic wave device according to this embodiment, the substrate 1 and the substrate 2 are joined by direct joining, and the joined substrate is used as the substrate 5 for the surface acoustic wave device. The surface acoustic wave excited by the comb-shaped cross electrodes 3 formed on the substrate 1 propagates on the substrate 1 and functions as a surface acoustic wave element. Since the electrode fingers of the interdigital transducer 3 are formed in a direction perpendicular to the X axis of the substrate 1, the surface acoustic waves propagate in a direction parallel to the X axis of the substrate 1.

【0014】基板1上に金属薄膜の櫛形交差電極3を形
成した弾性表面波素子において遅延時間温度係数は、基
板1の弾性表面波伝搬方向4の線熱膨張係数と弾性表面
波伝搬速度の温度係数との差によって決定する。これら
の値は単結晶圧電基板固有の値であり、例えば、X軸を
中心にY軸からZ軸方向に36°〜46°の角度で回転
された面方位を持つタンタル酸リチウム基板の弾性表面
波伝搬方向4(X軸方向)の線熱膨張係数は約16.1
ppm/℃と良好な数値ではない。
In a surface acoustic wave device in which a comb-shaped cross electrode 3 of a metal thin film is formed on a substrate 1, the delay time temperature coefficient is determined by the linear thermal expansion coefficient of the substrate 1 in the surface acoustic wave propagation direction 4 and the temperature of the surface acoustic wave propagation velocity. Determined by the difference with the coefficient. These values are specific to the single-crystal piezoelectric substrate, and include, for example, the elastic surface of a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the X axis. The linear thermal expansion coefficient in the wave propagation direction 4 (X-axis direction) is about 16.1
ppm / ° C is not a good value.

【0015】現在、弾性表面波素子に使用されている単
結晶圧電基板において、遅延時間温度係数が良好なもの
としては水晶基板がある。水晶基板の場合、弾性表面波
伝搬方向4の線熱膨張係数は約13.71ppm/℃
と、けして良好な値ではないが、弾性表面波伝搬速度の
温度係数がタンタル酸リチウム基板やニオブ酸リチウム
基板などとは逆に正の値となる性質を持っているため、
線熱膨張係数の値が弾性表面波伝搬速度の温度係数の値
によって相殺され、遅延時間温度係数が小さな値を示
す。しかしながら、水晶基板は電気機械結合係数が小さ
く、十分な周波数帯域幅を得ることができないという欠
点がある。電気機械結合係数と遅延時間温度係数の両方
がともに良好な単結晶圧電基板は、現在のところ発見さ
れていない。
At present, among the single crystal piezoelectric substrates used for the surface acoustic wave element, there is a quartz substrate having a good delay time temperature coefficient. In the case of a quartz substrate, the coefficient of linear thermal expansion in the surface acoustic wave propagation direction 4 is about 13.71 ppm / ° C.
Although it is not a good value, the temperature coefficient of the surface acoustic wave propagation velocity has the property of being a positive value contrary to lithium tantalate substrate, lithium niobate substrate, etc.
The value of the linear thermal expansion coefficient is offset by the value of the temperature coefficient of the surface acoustic wave propagation velocity, and the delay time temperature coefficient shows a small value. However, the quartz substrate has a drawback that the electromechanical coupling coefficient is small and a sufficient frequency bandwidth cannot be obtained. A single crystal piezoelectric substrate having both good electromechanical coupling coefficient and good delay time temperature coefficient has not been found so far.

【0016】本実施例では、電気機械結合係数が大きい
単結晶圧電基板を用いて、遅延時間温度係数が小さい弾
性表面波素子を実現するために、単結晶圧電基板である
基板1の弾性表面波伝搬方向4と第2の基板2の線熱膨
張係数の小さい方向とを平行にして接合する。これによ
り、基板2の線熱膨張係数によって基板1の線熱膨張係
数が抑制され、遅延時間温度係数が改善される。
In this embodiment, a single crystal piezoelectric substrate having a large electromechanical coupling coefficient is used to realize a surface acoustic wave device having a small delay time temperature coefficient. The joining is performed with the propagation direction 4 and the direction in which the coefficient of linear thermal expansion of the second substrate 2 is small being parallel. Thereby, the linear thermal expansion coefficient of the substrate 1 is suppressed by the linear thermal expansion coefficient of the substrate 2, and the delay time temperature coefficient is improved.

【0017】図2は本実施例による基板1の面方位の一
例を示したものであり、図3は本実施例による基板2の
面方位の一例を示したものである。図3の矢印6は、第
2の基板の熱膨張係数が最も小さい方向を示す。ここで
は基板1としてX軸を中心にY軸からZ軸方向に36°
〜46°の角度で回転された面方位を持つタンタル酸リ
チウム基板を用い、基板1と同じ材質からなる基板2と
してY軸方向の面方位を持つタンタル酸リチウム基板を
用いる。
FIG. 2 shows an example of the plane orientation of the substrate 1 according to the present embodiment, and FIG. 3 shows an example of the plane orientation of the substrate 2 according to the present embodiment. Arrow 6 in FIG. 3 indicates the direction in which the thermal expansion coefficient of the second substrate is the smallest. Here, the substrate 1 is 36 ° from the Y axis to the Z axis around the X axis.
A lithium tantalate substrate having a plane orientation rotated by an angle of up to 46 ° is used, and a lithium tantalate substrate having a plane orientation in the Y-axis direction is used as a substrate 2 made of the same material as the substrate 1.

【0018】図4は、基板1と基板2を接合させる場合
の接合方向を示した図である。ここで、基板1および基
板2の線熱膨張係数を考える。基板1であるX軸を中心
にY軸からZ軸方向に36°〜46°の角度で回転され
た面方位を持つタンタル酸リチウム基板では、弾性表面
波の伝搬方向4であるX軸方向の線熱膨張係数が約1
6.1ppm/℃である。これに対して、基板2である
Y軸方向の面方位を持つタンタル酸リチウム基板の熱膨
張係数が非常に小さい方向(矢印6で示す。ここでは弾
性表面波の伝搬方向であるX軸方向に対して直交するZ
軸方向)の線熱膨張係数は約4.1ppm/℃と、この
面内で最も小さい。
FIG. 4 is a view showing a joining direction when the substrate 1 and the substrate 2 are joined. Here, the linear thermal expansion coefficients of the substrate 1 and the substrate 2 are considered. In a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis centering on the X axis as the substrate 1, the X axis direction, which is the propagation direction 4 of the surface acoustic wave, is used. Linear thermal expansion coefficient is about 1
6.1 ppm / ° C. On the other hand, in the direction in which the thermal expansion coefficient of the lithium tantalate substrate having the plane orientation in the Y-axis direction as the substrate 2 is very small (indicated by an arrow 6; here, in the X-axis direction which is the propagation direction of the surface acoustic wave). Z orthogonal to
The coefficient of linear thermal expansion (axial direction) is about 4.1 ppm / ° C., which is the smallest in this plane.

【0019】本発明によると図4に示すように、基板1
の弾性表面波伝搬方向4であるX軸方向と、基板2の線
熱膨張係数が非常に小さいZ軸方向6を平行にして接合
することにより、基板1の線熱膨張係数が基板2の線熱
膨張係数によって抑制されるため、弾性表面波伝搬方向
4の線熱膨張係数を改善することができる。ただし、基
板1の線熱膨張係数がそのまま基板2の線熱膨張係数と
なるわけではなく、基板1と基板2の熱膨張差によって
接合面に生じる熱応力に準じた数値となるため、基板1
と基板2の基板厚さが重要となる。検討した結果、基板
2の厚さが基板1の厚さの3倍以上となるように基板1
を薄板化することにより、接合した弾性表面波素子用基
板5において弾性表面波伝搬方向の線熱膨張係数をより
顕著に改善できることが分かった。
According to the present invention, as shown in FIG.
The X-axis direction which is the surface acoustic wave propagation direction 4 of the substrate 2 and the Z-axis direction 6 where the linear thermal expansion coefficient of the substrate 2 is very small are joined in parallel, so that the linear thermal expansion coefficient of the substrate 1 is Since the coefficient of thermal expansion is suppressed by the coefficient of thermal expansion, the coefficient of linear thermal expansion in the surface acoustic wave propagation direction 4 can be improved. However, the coefficient of linear thermal expansion of the substrate 1 does not directly become the coefficient of linear thermal expansion of the substrate 2, but becomes a numerical value according to the thermal stress generated on the bonding surface due to the difference in thermal expansion between the substrate 1 and the substrate 2.
The substrate thickness of the substrate 2 is important. As a result of the examination, the substrate 1 was set so that the thickness of the substrate 2 was three times or more the thickness of the substrate 1.
It has been found that by reducing the thickness of the substrate, the coefficient of linear thermal expansion in the surface acoustic wave propagation direction in the bonded surface acoustic wave element substrate 5 can be more remarkably improved.

【0020】ここでは、基板1であるX軸を中心にY軸
からZ軸方向に36°〜46°の角度で回転された面方
位を持つタンタル酸リチウム基板の板厚を90μm、基
板2であるY軸方向の面方位を持つタンタル酸リチウム
基板の板厚を270μmとすることにより、Y軸方向の
面方位を持つタンタル酸リチウム基板の線熱膨張係数が
支配的となり、線熱膨張係数が改善される。この場合の
遅延時間温度係数を測定した結果、24ppm/℃であ
った。基板接合を行わない従来の弾性表面波素子の遅延
時間温度係数は33ppm/℃であるから、本発明によ
り9ppm/℃の改善効果があった。また、基板1の板
厚をより一層薄くすることで、より大きい効果が得られ
る。
Here, the thickness of a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the X axis as the substrate 1 is 90 μm, By setting the thickness of the lithium tantalate substrate having a plane orientation in a certain Y-axis direction to 270 μm, the linear thermal expansion coefficient of the lithium tantalate substrate having a plane orientation in the Y-axis direction becomes dominant, and the linear thermal expansion coefficient becomes Be improved. As a result of measuring the delay time temperature coefficient in this case, it was 24 ppm / ° C. Since the delay time temperature coefficient of the conventional surface acoustic wave device without substrate bonding is 33 ppm / ° C., the present invention has an effect of improving 9 ppm / ° C. Further, by further reducing the thickness of the substrate 1, a greater effect can be obtained.

【0021】また、本実施例によれば、接合された基板
1と基板2が同じ材質からなる構造、すなわち接合界面
における格子定数が同じとなる構造であるため、単結晶
圧電基板とガラス基板に代表されるような異種材料基板
の接合と比較して、より強力な接着力が実現できる。す
なわち、X軸を中心にY軸からZ軸方向に36°〜46
°の角度で回転された面方位を持つタンタル酸リチウム
基板とY軸方向の面方位を持つタンタル酸リチウム基板
は同じ材質であることから、非常に強力な接着力の実現
が可能である。
Further, according to the present embodiment, since the bonded substrate 1 and the substrate 2 have the same material, that is, the same lattice constant at the bonding interface, the single crystal piezoelectric substrate and the glass substrate have the same structure. Stronger adhesive strength can be realized as compared with the joining of dissimilar material substrates as represented. That is, from the Y axis to the Z axis in the direction of 36 ° to 46 ° around the X axis.
Since the lithium tantalate substrate having a plane orientation rotated by an angle of ° and the lithium tantalate substrate having a plane orientation in the Y-axis direction are made of the same material, it is possible to realize a very strong adhesive force.

【0022】図5を用いて本実施例による基板接合界面
のバルク波反射の影響を説明する。基板2の厚さが基板
1の厚さの3倍以上となるように基板1の板厚を薄板化
すると、基板1の表面と基板接合界面とが接近するため
に(a)に示すようにバルク波7の基板接合界面からの
反射波8の影響がより大きくなる。しかしながら、本実
施例によれば(b)に示すように、接合した基板1と基
板2が同じ材質からなる構造であるため、異種材料基板
を接合した場合と比較して、バルク波7の基板接合界面
からの反射波8の影響が小さくなる。
The influence of the reflection of the bulk wave on the interface between the substrates according to the present embodiment will be described with reference to FIG. When the thickness of the substrate 1 is reduced so that the thickness of the substrate 2 becomes three times or more the thickness of the substrate 1, the surface of the substrate 1 and the substrate bonding interface come close to each other, as shown in FIG. The influence of the reflected wave 8 from the substrate bonding interface of the bulk wave 7 becomes larger. However, according to this embodiment, as shown in (b), the bonded substrate 1 and the substrate 2 have a structure made of the same material. The influence of the reflected wave 8 from the bonding interface is reduced.

【0023】すなわち、X軸を中心にY軸からZ軸方向
に36°〜46°の角度で回転された面方位を持つタン
タル酸リチウム基板とY軸方向の面方位を持つタンタル
酸リチウム基板は、同じ材質であることから接合界面で
の反射による影響が小さく、この構造を有する本実施例
の弾性表面波では接合界面からのバルク波反射による素
子特性の劣化を小さくすることができる。
That is, a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to a Z axis direction about the X axis and a lithium tantalate substrate having a plane orientation in the Y axis direction are: Since the same material is used, the influence of reflection at the bonding interface is small, and in the surface acoustic wave of this embodiment having this structure, deterioration of device characteristics due to bulk wave reflection from the bonding interface can be reduced.

【0024】また、異種材料基板どうしを直接接合する
場合には、接合基板の線熱膨張係数の差やボイド部と接
合部との熱応力の不均一などにより、基板破損の問題が
生じやすいが、本実施例によれば、接合された基板1と
2が同じ材質であるため、異種材料基板の直接接合と比
較して基板破損の問題が生じにくい。
When substrates of different materials are directly bonded to each other, a problem of substrate breakage is likely to occur due to a difference in linear thermal expansion coefficient of the bonded substrates or uneven thermal stress between the void portion and the bonded portion. According to the present embodiment, since the bonded substrates 1 and 2 are made of the same material, the problem of substrate breakage is less likely to occur as compared with the direct bonding of substrates of different materials.

【0025】つぎに本発明の弾性表面波素子の製造方法
の一例を図6により説明する。例えば基板1として、X
軸を中心にY軸からZ軸方向に36°〜46°の角度で
回転された面方位を持つ鏡面研磨されたタンタル酸リチ
ウム基板を用意する。また、基板2としてはY軸方向の
面方位を持つ鏡面研磨されたタンタル酸リチウム基板を
用意する。上記両者を接合する前処理として300℃以
上の温度で1時間以上の熱処理を行う。これは基板1お
よび基板2の表面に付着しているガスや有機物を除去す
る目的で行う。この処理を怠ると基板接合後に接合界面
にボイドが発生する可能性がある。
Next, an example of a method for manufacturing a surface acoustic wave device according to the present invention will be described with reference to FIG. For example, as the substrate 1, X
A mirror-polished lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the axis is prepared. As the substrate 2, a mirror-polished lithium tantalate substrate having a plane orientation in the Y-axis direction is prepared. As a pretreatment for joining the two, a heat treatment is performed at a temperature of 300 ° C. or more for 1 hour or more. This is performed for the purpose of removing gases and organic substances attached to the surfaces of the substrate 1 and the substrate 2. If this treatment is neglected, voids may be generated at the bonding interface after bonding the substrates.

【0026】次いで、接合する2枚のタンタル酸リチウ
ム基板を、過酸化水素(H22)とアンモニア水溶液
(NH4OH)と純水(H2O)を混合した溶液に約10
分程度浸漬させた後、純水によるリンスを行う。これは
基板1および基板2の表面に親水性を持たせ、基板接合
時に基板表面に吸着されている水分子間に働くファンデ
ルワース力により結合させる効果がある。
Next, the two lithium tantalate substrates to be joined are placed in a solution obtained by mixing hydrogen peroxide (H 2 O 2 ), an aqueous ammonia solution (NH 4 OH) and pure water (H 2 O).
After immersion for about a minute, rinsing with pure water is performed. This has the effect of imparting hydrophilicity to the surfaces of the substrate 1 and the substrate 2 and bonding them by the van der Waals force acting between the water molecules adsorbed on the substrate surface when the substrates are joined.

【0027】その後、2枚のタンタル酸リチウム基板を
乾燥させた後、室温、空気雰囲気中で基板接合を行う。
ここではパーティクルフリーの接合界面を得ることが特
に重要であり、前記洗浄後、クラス10以上のクリーン
度を持つクリーンルームで基板接合を行うことが望まし
い。また、接合直前に洗浄を行うことによりパーティク
ルフリーの界面と親水性を持った界面を両立させること
ができる。
After drying the two lithium tantalate substrates, the substrates are joined at room temperature in an air atmosphere.
Here, it is particularly important to obtain a particle-free bonding interface, and it is desirable to bond the substrates in a clean room having a class 10 or higher cleanness after the above-mentioned cleaning. Further, by performing cleaning immediately before joining, both a particle-free interface and a hydrophilic interface can be achieved.

【0028】その後、接合された2枚のタンタル酸リチ
ウム基板は基板2であるY軸方向の面方位を持つタンタ
ル酸リチウム基板の線熱膨張係数が支配的となるよう
に、基板1であるX軸を中心にY軸からZ軸方向に36
°〜46°の角度で回転された面方位を持つタンタル酸
リチウム基板の薄板化を行う。基板研磨装置を用いて、
X軸を中心にY軸からZ軸方向に36°〜46°の角度
で回転された面方位を持つタンタル酸リチウム基板の板
厚を、Y軸方向の面方位を持つタンタル酸リチウム基板
の板厚に対して3分の1以下となるように研磨する。
After that, the two lithium tantalate substrates joined together are made of the substrate 1 such that the linear thermal expansion coefficient of the lithium tantalate substrate having the plane orientation in the Y-axis direction becomes dominant. 36 from the Y axis to the Z axis around the axis
Thinning of a lithium tantalate substrate having a plane orientation rotated by an angle of ° to 46 ° is performed. Using a substrate polishing device,
The thickness of the lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° in the Z axis direction from the Y axis about the X axis is determined by the thickness of the lithium tantalate substrate having the plane orientation in the Y axis direction. Polishing is performed so that the thickness is 1/3 or less.

【0029】研磨工程は粗研磨から仕上げ研磨を段階的
に行い、鏡面研磨を実現する。このとき、ここに示した
ように基板接合後の研磨工程によって薄板化するのでは
なく、あらかじめY軸方向の面方位を持つタンタル酸リ
チウム基板に対して3分の1以下の板厚となるX軸を中
心にY軸からZ軸方向に36°〜46°の角度で回転さ
れた面方位を持つタンタル酸リチウム基板を用意してか
ら接合してもよく、基板1の板厚が基板2の板厚に対し
て3分の1以下の板厚であれば製法は特に問わない。
In the polishing step, mirror polishing is realized by performing stepwise from rough polishing to finish polishing. At this time, instead of being thinned by the polishing process after the bonding of the substrates as shown here, the thickness becomes less than one-third that of the lithium tantalate substrate having the plane orientation in the Y-axis direction in advance. A lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the axis may be prepared and then joined. The manufacturing method is not particularly limited as long as the thickness is 1/3 or less of the thickness.

【0030】基板1を薄板化した後、250℃の温度で
約2時間の熱処理を行うことにより2枚のタンタル酸リ
チウム基板は完全に接合される。その後、図7に示すよ
うな櫛形交差電極3を、基板2に接合された基板1上に
通常の電極作製工程を行って作製する。このとき櫛形交
差電極3により励振伝搬される弾性表面波が基板1の弾
性表面波伝搬方向(X軸方向)と一致するように櫛形交
差電極3を配置する。
After the substrate 1 is thinned, a heat treatment is performed at a temperature of 250 ° C. for about 2 hours, whereby the two lithium tantalate substrates are completely joined. Thereafter, a comb-shaped cross electrode 3 as shown in FIG. 7 is manufactured by performing a normal electrode manufacturing process on the substrate 1 bonded to the substrate 2. At this time, the comb-shaped cross electrodes 3 are arranged so that the surface acoustic waves excited and propagated by the comb-shaped cross electrodes 3 coincide with the surface acoustic wave propagation direction (X-axis direction) of the substrate 1.

【0031】上記、第1の実施例においては、基板1と
してX軸を中心にY軸からZ軸方向に36°〜46°の
角度で回転された面方位を持つタンタル酸リチウム基
板、同じ材質からなる基板2としてY軸方向の面方位を
持つタンタル酸リチウム基板を用いた例について説明し
たが、基板2としてX軸方向の面方位を持つタンタル酸
リチウム基板を用いた場合も同様の効果がある。
In the first embodiment, as the substrate 1, a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the X axis, and the same material An example in which a lithium tantalate substrate having a plane orientation in the Y-axis direction is used as the substrate 2 made of the above has been described. However, a similar effect can be obtained when a lithium tantalate substrate having a plane orientation in the X-axis direction is used as the substrate 2. is there.

【0032】同様に、基板1としてX軸を中心にY軸か
らZ軸方向に36°〜46°の角度で回転された面方位
を持つタンタル酸リチウム基板を用い、同じ材質からな
る基板2として基板1と同じ面方位を持つタンタル酸リ
チウム基板を用い、基板1のX軸方向が基板2のX軸方
向と直交するように接合した場合も同様の効果がある。
Similarly, as the substrate 1, a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the X axis is used. The same effect can be obtained when a lithium tantalate substrate having the same plane orientation as the substrate 1 is used and bonded so that the X-axis direction of the substrate 1 is orthogonal to the X-axis direction of the substrate 2.

【0033】同様に、基板1としてX軸方向の面方位を
持つタンタル酸リチウム基板を用い、同じ材質からなる
基板2としてY軸方向もしくはX軸方向の面方位を持つ
タンタル酸リチウム基板を用い、基板1の弾性表面波伝
搬方向4であるY軸からZ軸方向に112°の角度で回
転された方向が基板2のZ軸方向と平行となるように接
合した場合も同様の効果がある。
Similarly, a lithium tantalate substrate having a plane orientation in the X-axis direction is used as the substrate 1, and a lithium tantalate substrate having a plane orientation in the Y-axis direction or the X-axis direction is used as the substrate 2 made of the same material. The same effect can be obtained when the substrate 1 is joined so that the direction rotated at an angle of 112 ° from the Y axis, which is the surface acoustic wave propagation direction 4 of the substrate 1, to the Z axis is parallel to the Z axis direction of the substrate 2.

【0034】同様に、基板1としてX軸を中心にY軸か
らZ軸方向に41°〜64°の角度で回転された面方位
を持つニオブ酸リチウム基板を用い、同じ材質からなる
基板2としてY軸方向もしくはX軸方向の面方位を持つ
ニオブ酸リチウム基板を用い、基板1のX軸方向が基板
2のZ軸方向と平行するように接合した場合も同様の効
果がある。
Similarly, as the substrate 1, a lithium niobate substrate having a plane orientation rotated at an angle of 41 ° to 64 ° from the Y axis to the Z axis around the X axis is used. The same effect is obtained when a lithium niobate substrate having a plane orientation in the Y-axis direction or the X-axis direction is used and the substrate 1 is bonded so that the X-axis direction of the substrate 1 is parallel to the Z-axis direction of the substrate 2.

【0035】同様に、基板1としてX軸を中心にY軸か
らZ軸方向に41°〜64°の角度で回転された面方位
を持つニオブ酸リチウム基板を用い、同じ材質からなる
基板2として基板1と同じ面方位を持つニオブ酸リチウ
ム基板を用い、基板1のX軸方向が基板2のX軸方向と
直交するように接合した場合も同様の効果がある。
Similarly, as the substrate 1, a lithium niobate substrate having a plane orientation rotated at an angle of 41 ° to 64 ° from the Y axis to the Z axis around the X axis is used. The same effect can be obtained when a lithium niobate substrate having the same plane orientation as the substrate 1 is used and bonded so that the X-axis direction of the substrate 1 is orthogonal to the X-axis direction of the substrate 2.

【0036】また、基板1として四ホウ酸リチウム基板
を用い、同じ材質からなる基板2として接合面内にc軸
を有する四ホウ酸リチウム基板を用い、基板1の弾性表
面波伝搬方向4が基板2のc軸方向と平行となるように
接合した弾性表面波素子用基板5においても同様の効果
がある。
Further, a lithium tetraborate substrate is used as the substrate 1, a lithium tetraborate substrate having a c-axis in the bonding surface is used as the substrate 2 made of the same material, and the surface acoustic wave propagation direction 4 of the substrate 1 is The same effect is obtained in the surface acoustic wave element substrate 5 joined so as to be parallel to the c-axis direction of FIG.

【0037】この場合の基板1および基板2の線熱膨張
係数を考えると、基板1である四ホウ酸リチウム基板の
a軸方向の線熱膨張係数が約13ppm/℃であるのに
対して、基板2である四ホウ酸リチウム基板のc軸の線
熱膨張係数は約−1.5ppm/℃と負の線熱膨張係数
となる。よって、四ホウ酸リチウム基板のa軸方向と四
ホウ酸リチウム基板のc軸方向が平行となるように基板
接合することにより、a軸方向の線熱膨張係数の約13
ppm/℃がc軸方向の線熱膨張係数の約−1.5pp
m/℃によって抑制され、接合した弾性表面波素子用基
板5において弾性表面波伝搬方向の線熱膨張係数が改善
できる。
Considering the linear thermal expansion coefficients of the substrate 1 and the substrate 2 in this case, the linear thermal expansion coefficient in the a-axis direction of the lithium tetraborate substrate as the substrate 1 is about 13 ppm / ° C. The linear thermal expansion coefficient of the c-axis of the lithium tetraborate substrate as the substrate 2 is about -1.5 ppm / ° C., which is a negative linear thermal expansion coefficient. Therefore, by bonding the substrates so that the a-axis direction of the lithium tetraborate substrate and the c-axis direction of the lithium tetraborate substrate are parallel, a linear thermal expansion coefficient of about 13 in the a-axis direction is obtained.
ppm / ° C is approximately -1.5 pp of the linear thermal expansion coefficient in the c-axis direction.
m / ° C., the coefficient of linear thermal expansion in the surface acoustic wave propagation direction can be improved in the bonded surface acoustic wave element substrate 5.

【0038】つぎに、本発明の別の実施例を説明する。
図8は本発明による弾性表面波素子の第2の実施例を示
す斜視図である。図8に示す弾性表面波素子は単結晶圧
電基板である基板1と、基板1に接合された基板2と、
基板1の基板2との接合面と反対側の面上に形成され弾
性表面波を励振する櫛型交差電極3とを備えた弾性表面
波素子であり、基板1と基板2の接合には基板1と基板
2の接合界面に塗布ガラス(SOG:Spin On Gras
s)を主成分とする接着層9を有している。
Next, another embodiment of the present invention will be described.
FIG. 8 is a perspective view showing a second embodiment of the surface acoustic wave device according to the present invention. The surface acoustic wave device shown in FIG. 8 includes a substrate 1 which is a single crystal piezoelectric substrate, a substrate 2 bonded to the substrate 1,
A surface acoustic wave element comprising a comb-shaped cross electrode 3 formed on a surface of the substrate 1 opposite to a surface to be joined to the substrate 2 and exciting a surface acoustic wave. Coating glass (SOG: Spin On Gras)
and s) as the main component.

【0039】基板1の弾性表面波の伝搬方向4における
基板2の線熱膨張係数は、基板1の同方向の線熱膨張係
数より小さくなるように接合されている。また、基板2
の厚さが基板1の厚さの3倍以上となるように基板1の
板厚が薄板化されている。接着層9として塗布ガラスを
用いて基板1と基板2を接合させた基板を弾性表面波素
子用基板5として用いる。基板1上に形成された櫛型交
差電極3により励振された弾性表面波は基板1上を伝搬
し、弾性表面波素子として機能する。
The substrates 2 are joined so that the linear thermal expansion coefficient of the substrate 2 in the surface acoustic wave propagation direction 4 is smaller than the linear thermal expansion coefficient of the substrate 1 in the same direction. Also, the substrate 2
The thickness of the substrate 1 is reduced so that the thickness of the substrate 1 is three times or more the thickness of the substrate 1. A substrate in which the substrate 1 and the substrate 2 are bonded to each other using coated glass as the adhesive layer 9 is used as the substrate 5 for a surface acoustic wave device. The surface acoustic wave excited by the comb-shaped cross electrodes 3 formed on the substrate 1 propagates on the substrate 1 and functions as a surface acoustic wave element.

【0040】接着層9として用いる塗布ガラスは酸化珪
素を主成分とする被膜を塗布・焼成法で形成することが
できるもので、珪素化合物を有機溶剤に溶解させたもの
である。ここでは基板1としてX軸を中心にY軸からZ
軸方向に36°〜46°の角度で回転された面方位を持
つタンタル酸リチウム基板を用い、基板2として酸化珪
素基板を用いる。
The coated glass used as the adhesive layer 9 can be formed by coating and baking a film containing silicon oxide as a main component, and is obtained by dissolving a silicon compound in an organic solvent. Here, the substrate 1 is Z-axis from the Y-axis around the X-axis.
A lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° in the axial direction is used, and a silicon oxide substrate is used as the substrate 2.

【0041】本実施例によれば、基板1と基板2の接合
において、接着層9として主成分が酸化珪素からなる塗
布ガラスを用いることにより、接着層9自体の遅延時間
温度係数が小さいことから、例えば紫外線硬化型樹脂等
を接着剤として用いた場合との比較において、接着層9
による遅延時間温度係数の悪化がないため、接合した弾
性表面波素子用基板5の弾性表面波伝搬方向4に対する
遅延時間温度係数がより改善される。また、塗布ガラス
は主成分が酸化珪素からなるため非常に硬度が高く、基
板1の熱膨張による応力が発生した場合にも、例えば紫
外線硬化型樹脂等と比べて圧電基板1の伸びを抑制する
ことができ、線熱膨張係数の改善にも効果的である。
According to the present embodiment, when the substrate 1 and the substrate 2 are joined together, the adhesive layer 9 is made of coated glass whose main component is silicon oxide, so that the delay time temperature coefficient of the adhesive layer 9 itself is small. For example, in comparison with the case where an ultraviolet curable resin or the like is used as the adhesive, the adhesive layer 9
Therefore, the delay time temperature coefficient of the bonded surface acoustic wave element substrate 5 with respect to the surface acoustic wave propagation direction 4 is further improved. Further, since the main component of the coated glass is silicon oxide, the coated glass has a very high hardness and suppresses the elongation of the piezoelectric substrate 1 as compared with, for example, an ultraviolet curable resin or the like even when a stress occurs due to the thermal expansion of the substrate 1. It is also effective in improving the coefficient of linear thermal expansion.

【0042】基板1と基板2を接合した弾性表面波素子
用基板5は基板接合後に弾性表面波素子を作製する製造
プロセスとして、前工程においては金属薄膜被着工程、
ホトリソグラフィー工程、エッチング工程、さらに後工
程においては半田リフロー工程などの熱処理を伴う工程
を有するため、耐熱性が重要となる。また、各工程にお
いて、有機および無機薬品なども使用されるため耐薬品
性も重要となる。よって、接着層9を用いて基板1と基
板2を接合させる場合には接着層9に耐熱性および耐薬
品性が必須となる。
The surface acoustic wave element substrate 5 in which the substrate 1 and the substrate 2 are joined is a manufacturing process for fabricating the surface acoustic wave element after joining the substrates.
Since the photolithography process, the etching process, and the subsequent process include a process involving a heat treatment such as a solder reflow process, heat resistance is important. In each step, organic and inorganic chemicals are used, so that chemical resistance is also important. Therefore, when bonding the substrate 1 and the substrate 2 using the adhesive layer 9, the adhesive layer 9 must have heat resistance and chemical resistance.

【0043】一例として、接着層9に紫外線硬化型樹脂
を用いた場合について説明する。基板2の接合面に紫外
線硬化型樹脂を塗布し基板接合を行った後、紫外線を照
射するだけで紫外線硬化型樹脂が硬化して基板接合が完
了するため、熱処理も不要な非常に簡便な基板接合法で
ある。しかし、紫外線硬化型樹脂の特性として耐薬品性
は十分であるが、耐熱性が120℃程度と低いため接着
層9としての適用は難しい。
As an example, a case where an ultraviolet curable resin is used for the adhesive layer 9 will be described. After applying an ultraviolet-curing resin to the bonding surface of the substrate 2 and bonding the substrates, the ultraviolet-curing resin is cured only by irradiating ultraviolet rays to complete the bonding of the substrates. It is a joining method. However, the UV-curable resin has sufficient chemical resistance as a characteristic, but is difficult to apply as the adhesive layer 9 because its heat resistance is as low as about 120 ° C.

【0044】別の例として、接着層9に熱硬化型樹脂を
用いた場合について説明する。基板2の接合面に熱硬化
型樹脂を塗布し、熱処理により溶剤を揮発させ硬化させ
た後、熱硬化型樹脂が塗布された基板2を再び加熱し、
熱硬化型樹脂を軟化させた状態で基板1を接合し、基板
接合後に冷却することにより熱硬化型樹脂を硬化させ、
接合が完了する。しかし、熱硬化型樹脂の特性としては
耐薬品性が脆弱で、さらに基板接合後の再加熱により軟
化することもあるため接着層9としての適用は難しい。
As another example, a case where a thermosetting resin is used for the adhesive layer 9 will be described. A thermosetting resin is applied to the bonding surface of the substrate 2, the solvent is volatilized by heat treatment and cured, and then the substrate 2 on which the thermosetting resin is applied is heated again,
The substrate 1 is joined in a state where the thermosetting resin is softened, and the thermosetting resin is cured by cooling after joining the substrates,
Joining is completed. However, it is difficult to apply the thermosetting resin as the adhesive layer 9 because the thermosetting resin has weak chemical resistance and may be softened by reheating after joining the substrates.

【0045】さらに別の例として、接着層9に接着用ワ
ックスを用いた場合について説明する。ホットプレート
などで加熱した基板2の接合面に接着用ワックスを塗
り、接着用ワックスが溶けた状態で基板1を接合した
後、冷却することにより接着用ワックスを硬化させ、接
合が完了するという非常に簡便な基板接合方法である。
しかしながら、接着用ワックスの特性としては耐熱性が
低いことにくわえて、アルコールでも溶けるほど耐薬品
性がないため接着層9としての適用は難しい。
As another example, a case where an adhesive wax is used for the adhesive layer 9 will be described. An adhesive wax is applied to the bonding surface of the substrate 2 heated by a hot plate or the like, and the substrate 1 is bonded in a state where the bonding wax is melted. Then, the bonding wax is cured by cooling, and the bonding is completed. This is a simple and easy substrate bonding method.
However, in addition to the low heat resistance of the adhesive wax, it is difficult to apply it as the adhesive layer 9 because it does not have chemical resistance enough to dissolve in alcohol.

【0046】本実施例において、基板1と基板2を接合
する際に接着層9として用いる主成分が酸化珪素からな
る塗布ガラスは、400℃以上の熱処理においても十分
な耐熱性を示し、また耐薬品性に関しても酸化珪素に準
じた高い耐性を示すため、前記紫外線硬化型樹脂、熱硬
化型樹脂、接着用ワックス等を接着層に使用した場合と
比較するまでもなく、櫛形交差電極3の製造プロセス工
程、半田リフロー工程等に対しても十分な耐熱性、耐薬
品性を示し、強力な接着力が維持できる。
In this embodiment, the coated glass mainly composed of silicon oxide used as the adhesive layer 9 when joining the substrate 1 and the substrate 2 shows sufficient heat resistance even at a heat treatment of 400 ° C. or more. In view of the chemical resistance, which is as high as silicon oxide, the comb-shaped crossed electrode 3 can be manufactured without being compared with the case where the ultraviolet curing resin, the thermosetting resin, the bonding wax, or the like is used for the bonding layer. Shows sufficient heat resistance and chemical resistance even in process steps, solder reflow steps, etc., and can maintain strong adhesive strength.

【0047】弾性表面波素子の遅延時間温度係数は、前
述のとおり単結晶圧電基板の弾性表面波伝搬方向4の線
熱膨張係数と弾性表面波伝搬速度の温度係数との差によ
って決定する。ここで弾性表面波伝搬速度の温度係数に
着目すると、タンタル酸リチウム基板やニオブ酸リチウ
ム基板等では負の値となる性質を持っているため、線熱
膨張係数との差により決まる遅延時間温度係数はより悪
化する。
As described above, the delay time temperature coefficient of the surface acoustic wave element is determined by the difference between the linear thermal expansion coefficient of the single crystal piezoelectric substrate in the surface acoustic wave propagation direction 4 and the temperature coefficient of the surface acoustic wave propagation velocity. Focusing on the temperature coefficient of the surface acoustic wave propagation velocity, since the lithium tantalate substrate, lithium niobate substrate, and the like have a negative value, the delay time temperature coefficient determined by the difference from the linear thermal expansion coefficient Is worse.

【0048】これに対して、本実施例において接着層9
として用いる塗布ガラスは主成分が酸化珪素からなるた
め、弾性表面波伝搬速度の温度係数が正の値となり、線
熱膨張係数との差により決まる遅延時間温度係数は向上
する。塗布ガラスが有するこの性質を利用することによ
り、基板1の線熱膨張係数の値を接着層9の塗布ガラス
が有する弾性表面波伝搬速度の温度係数の値によって相
殺することが可能である。
On the other hand, in the present embodiment, the adhesive layer 9
Since the main component of the coated glass used is silicon oxide, the temperature coefficient of the surface acoustic wave propagation velocity becomes a positive value, and the delay time temperature coefficient determined by the difference from the linear thermal expansion coefficient is improved. By utilizing this property of the applied glass, the value of the linear thermal expansion coefficient of the substrate 1 can be offset by the value of the temperature coefficient of the surface acoustic wave propagation velocity of the applied glass of the adhesive layer 9.

【0049】つまり、塗布ガラスを主成分とする接着層
9が有する弾性波伝搬速度の温度係数が、基板1の弾性
波表面波伝搬方向4の熱膨張係数を相殺する値となるよ
うに、接着層9の膜厚を最適化することにより、接合し
た弾性表面波素子用基板5の弾性表面波伝搬方向4の遅
延時間温度係数が改善できることになる。
That is, the adhesive layer 9 mainly composed of coated glass has an adhesive layer 9 so that the temperature coefficient of the elastic wave propagation velocity has a value that offsets the thermal expansion coefficient of the substrate 1 in the acoustic wave surface wave propagation direction 4. By optimizing the film thickness of the layer 9, the delay time temperature coefficient of the bonded surface acoustic wave element substrate 5 in the surface acoustic wave propagation direction 4 can be improved.

【0050】また本実施例として、基板1と基板2の接
合界面に塗布ガラスを主成分とする接着層9を有する弾
性表面波素子用基板5において、基板2として接合面内
にc軸を有する四ホウ酸リチウム基板を用い、基板1の
弾性表面波伝搬方向4が基板2のc軸と平行となるよう
に接合することにより、接合した弾性表面波素子用基板
5において弾性表面波伝搬方向4の線熱膨張係数が改善
できる。
In this embodiment, a substrate 5 for a surface acoustic wave device having an adhesive layer 9 mainly composed of coated glass at a bonding interface between the substrate 1 and the substrate 2 has a c-axis in the bonding surface as the substrate 2. By using a lithium tetraborate substrate and joining the surface acoustic wave propagation direction 4 of the substrate 1 so as to be parallel to the c-axis of the substrate 2, the surface acoustic wave propagation direction 4 Can have an improved linear thermal expansion coefficient.

【0051】四ホウ酸リチウム基板のc軸の線熱膨張係
数は前述のように約−1.5ppm/℃と負の線熱膨張
係数を示すため、基板1の線熱膨張係数がより大きく改
善できるためである。
Since the linear thermal expansion coefficient of the c-axis of the lithium tetraborate substrate is a negative linear thermal expansion coefficient of about -1.5 ppm / ° C. as described above, the linear thermal expansion coefficient of the substrate 1 is further improved. This is because it can be done.

【0052】また本実施例の別の実施形態として、単結
晶圧電基板である基板1と、基板1に塗布ガラスを主成
分とする接着層9により接合された基板2と、基板1の
基板2との接合面と反対側の面上に形成され弾性表面波
を励振する櫛型交差電極3とを備えた弾性表面波素子に
おいて、基板2として弾性表面波伝搬速度が非常に高速
であるダイアモンド基板を用いると、接合した基板1上
に形成された弾性表面波素子において励振伝搬される弾
性表面波の伝搬速度が速くなるため、高周波化に対して
効果がある。さらに、基板2に用いたダイアモンド基板
には熱伝導性が非常に高いという性質もあるため、弾性
表面波素子の熱伝導率が高くなり、櫛形交差電極3の耐
電力性も向上できる。
As another embodiment of the present embodiment, a substrate 1 which is a single crystal piezoelectric substrate, a substrate 2 joined to the substrate 1 by an adhesive layer 9 mainly composed of coated glass, and a substrate 2 of the substrate 1 A surface acoustic wave element having a comb-shaped cross electrode 3 formed on a surface opposite to a bonding surface with the substrate and having a comb-shaped cross electrode 3 for exciting a surface acoustic wave, wherein the substrate 2 has a very high surface acoustic wave propagation speed. When the surface acoustic wave element formed on the bonded substrate 1 is used, the propagation speed of the surface acoustic wave excited and propagated in the surface acoustic wave element formed on the bonded substrate 1 is increased, which is effective in increasing the frequency. Further, the diamond substrate used as the substrate 2 has a property that the thermal conductivity is very high, so that the thermal conductivity of the surface acoustic wave element is increased, and the power durability of the interdigital transducer 3 can be improved.

【0053】つぎに本実施例の弾性表面波素子の製造方
法の一例を図9により説明する。例えば基板1として用
いる鏡面研磨されたX軸を中心にY軸からZ軸方向に3
6°〜46°の角度で回転された面方位を持つタンタル
酸リチウム基板と、基板2として用いる鏡面研磨された
ダイアモンド基板を、接合の前処理として300℃以上
の温度で1時間以上の熱処理を行う。
Next, an example of a method for manufacturing the surface acoustic wave device of this embodiment will be described with reference to FIG. For example, the center of the mirror-polished X-axis used as the substrate 1 is shifted from the Y-axis to the Z-axis by 3
A lithium tantalate substrate having a plane orientation rotated at an angle of 6 ° to 46 ° and a mirror-polished diamond substrate used as the substrate 2 are subjected to a heat treatment at a temperature of 300 ° C. or more for 1 hour or more as a pretreatment for bonding. Do.

【0054】次いで、接合するタンタル酸リチウム基板
とダイアモンド基板を過酸化水素(H22)とアンモニ
ア水溶液(NH4OH)と純水(H2O)を混合した溶液
に約10分程度浸漬させた後、純水によるリンスを行
う。2枚の基板を乾燥させた後、接着層9として塗布ガ
ラスを介して基板接合する工程を行う。まずダイアモン
ド基板の接合面に塗布ガラスを回転塗布する。
Next, the lithium tantalate substrate and the diamond substrate to be bonded are immersed in a solution obtained by mixing hydrogen peroxide (H 2 O 2 ), an aqueous ammonia solution (NH 4 OH) and pure water (H 2 O) for about 10 minutes. After that, rinsing with pure water is performed. After the two substrates are dried, a step of bonding the substrates as a bonding layer 9 via a coating glass is performed. First, a coating glass is spin-coated on the bonding surface of the diamond substrate.

【0055】その後、塗布ガラスを塗布したダイアモン
ド基板を80℃程度に加熱したホットプレート上で5分
程度加熱する。これは塗布ガラスの溶媒である有機溶剤
を蒸発させるために行なう。5分間程度加熱した後、ホ
ットプレート上でタンタル酸リチウム基板の接合面とダ
イアモンド基板の塗布ガラス塗布面とを接合させる。こ
こではパーティクルフリーの接合界面を得ることが特に
重要であり、クラス10以上のクリーン度を持つクリー
ンルームで基板接合を行うことが望ましい。
Thereafter, the diamond substrate coated with the coated glass is heated on a hot plate heated to about 80 ° C. for about 5 minutes. This is performed in order to evaporate the organic solvent which is the solvent of the coated glass. After heating for about 5 minutes, the bonding surface of the lithium tantalate substrate and the coated glass-coated surface of the diamond substrate are bonded on a hot plate. Here, it is particularly important to obtain a particle-free bonding interface, and it is desirable to bond the substrates in a clean room having a class 10 or higher cleanness.

【0056】基板接合後、タンタル酸リチウム基板とダ
イアモンド基板に圧力をかけることで基板接合界面の気
泡を完全に除去する。その後、接合された弾性表面波素
子用基板5は、ダイアモンド基板の線熱膨張係数が支配
的となるようにタンタル酸リチウム基板1の薄板化を行
う。基板研磨装置(図示せず)を用いて、タンタル酸リ
チウム基板1の板厚をダイアモンド基板2の板厚に対し
て3分の1以下となるように研磨する。上記研磨工程
は、粗研磨から仕上げ研磨を段階的に行い、鏡面研磨を
実現する。なお、基板の薄膜化に関しては前記の方法に
こだわるものではなく、基板1の板厚が基板2の板厚に
対して3分の1以下の板厚であれば製法は特に問わな
い。
After bonding the substrates, pressure is applied to the lithium tantalate substrate and the diamond substrate to completely remove bubbles at the interface between the substrates. Thereafter, in the surface acoustic wave element substrate 5 bonded, the lithium tantalate substrate 1 is thinned so that the linear thermal expansion coefficient of the diamond substrate becomes dominant. Polishing is performed using a substrate polishing apparatus (not shown) so that the thickness of the lithium tantalate substrate 1 is one third or less of the thickness of the diamond substrate 2. In the polishing step, mirror polishing is realized by performing rough polishing to finish polishing stepwise. The method of thinning the substrate is not limited to the above-described method, and the manufacturing method is not particularly limited as long as the thickness of the substrate 1 is one third or less of the thickness of the substrate 2.

【0057】タンタル酸リチウム基板を薄板化した後、
150℃の温度で20分の熱処理を行い、さらに200
℃の温度で約1時間程度の熱処理を行なうことにより、
2枚の基板は完全に接合される。
After thinning the lithium tantalate substrate,
A heat treatment at a temperature of 150 ° C. for 20 minutes is performed,
By performing a heat treatment at a temperature of about 1 hour for about 1 hour,
The two substrates are completely bonded.

【0058】その後、図10に示すような櫛形交差電極
3を、塗布ガラスによる接着層9を介してダイアモンド
基板2に接合されたタンタル酸リチウム基板1上に、通
常の電極作製工程を行って作製する。このとき櫛形交差
電極3により励振伝搬される弾性表面波が基板1の弾性
表面波伝搬方向4(X軸方向)と一致するように櫛形交
差電極3を配置する。
Thereafter, a comb-shaped cross electrode 3 as shown in FIG. 10 is formed on the lithium tantalate substrate 1 bonded to the diamond substrate 2 via the adhesive layer 9 made of coated glass by performing a normal electrode forming process. I do. At this time, the interdigital transducer 3 is arranged such that the surface acoustic wave excited and propagated by the interdigital transducer 3 coincides with the surface acoustic wave propagation direction 4 (X-axis direction) of the substrate 1.

【0059】上記第2の実施例は、基板1としてX軸を
中心にY軸からZ軸方向に36°〜46°の角度で回転
された面方位を持つタンタル酸リチウム基板について説
明したが、基板1としてX軸を面方位とするタンタル酸
リチウム、もしくはX軸を中心にY軸からZ軸方向に4
1〜64°の範囲の角度で回転された面方位を有するニ
オブ酸リチウム基板を用いた場合も同様の効果がある。
In the second embodiment, a lithium tantalate substrate having a plane orientation rotated at an angle of 36 ° to 46 ° from the Y axis to the Z axis around the X axis as the substrate 1 has been described. Lithium tantalate having a plane orientation of the X axis as the substrate 1, or 4 from the Y axis to the Z axis around the X axis.
The same effect is obtained when a lithium niobate substrate having a plane orientation rotated at an angle in the range of 1 to 64 ° is used.

【0060】また上記第2の実施例は、基板2として酸
化珪素基板、ダイアモンド基板および四ホウ酸リチウム
基板について説明したが、窒化アルミニウム、珪素、窒
化珪素、硼素、酸化硼素、窒化硼素、タンタル酸リチウ
ム、ニオブ酸リチウム、またはそれらの複合材料による
基板においても同様な効果がある。
In the second embodiment, a silicon oxide substrate, a diamond substrate and a lithium tetraborate substrate have been described as the substrate 2. However, aluminum nitride, silicon, silicon nitride, boron, boron oxide, boron nitride, tantalum acid Similar effects are obtained with a substrate made of lithium, lithium niobate, or a composite material thereof.

【0061】[0061]

【発明の効果】以上に説明したように、本発明において
弾性表面波を励振伝搬させる第1の基板の弾性波表面波
伝搬方向と、第1の基板と同じ材料からなる第2の基板
の接合面内で最も熱膨張係数の小さい方向とを平行にし
て接合する構造を提案した。これにより、線熱膨張係数
が改善され、遅延時間温度係数が小さい弾性表面波素子
の作製が可能となる。
As described above, in the present invention, the direction of propagation of the surface acoustic wave of the first substrate for exciting and propagating the surface acoustic wave is joined to the bonding of the second substrate made of the same material as the first substrate. A structure in which the direction in which the coefficient of thermal expansion is the smallest in the plane is parallel to each other is proposed. As a result, the coefficient of linear thermal expansion is improved, and a surface acoustic wave device having a small delay time temperature coefficient can be manufactured.

【0062】また、接合した第1の基板と第2の基板が
同じ材質からなる構造であることから、非常に強力な接
着力の実現でき、さらには接合界面でのバルク波反射の
影響が小さい弾性表面波素子の作製が可能となる。ま
た、同種材料基板どうしを直接接合することにより、異
種材料基板を直接接合する場合と比較して基板破損の発
生が減少するという効果もある。
Further, since the bonded first substrate and second substrate are made of the same material, a very strong adhesive force can be realized, and the influence of bulk wave reflection at the bonding interface is small. It is possible to manufacture a surface acoustic wave device. Further, by directly bonding substrates of the same material, there is also an effect that occurrence of substrate damage is reduced as compared with a case of directly bonding substrates of different materials.

【0063】また、本発明において、第1の基板と第2
の基板の接合に、塗布ガラスを接着層として用いる方法
を提案した。塗布ガラスを用いることにより、耐熱性、
耐薬品性を有する基板接合が簡便かつ安価な方法により
実現が可能となり、線熱膨張係数の小さい基板、弾性表
面波伝搬速度の速い基板、および熱伝導率が高い基板な
ど、あらゆる特性を持つ基板を第2の基板として用いる
ことができるため弾性表面波素子の特性改善が可能とな
る。
In the present invention, the first substrate and the second substrate
A method using a coated glass as an adhesive layer was proposed for bonding substrates. By using coated glass, heat resistance,
Substrate with all characteristics, such as a substrate with low linear thermal expansion coefficient, a substrate with high surface acoustic wave propagation speed, and a substrate with high thermal conductivity. Can be used as the second substrate, so that the characteristics of the surface acoustic wave element can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による弾性表面波素子の
斜視図。
FIG. 1 is a perspective view of a surface acoustic wave device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による第1の基板の面方
位の一例を示す説明図。
FIG. 2 is an explanatory diagram showing an example of a plane orientation of a first substrate according to the first embodiment of the present invention.

【図3】本発明の第1の実施例による第2の基板の面方
位の一例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of a plane orientation of a second substrate according to the first embodiment of the present invention.

【図4】本発明の第1の実施例による弾性表面波素子用
基板の接合方向を示す説明図。
FIG. 4 is an explanatory view showing a bonding direction of the surface acoustic wave element substrate according to the first embodiment of the present invention.

【図5】弾性表面波素子用基板の接合界面でのバルク波
反射を示す説明図。
FIG. 5 is an explanatory view showing bulk wave reflection at a bonding interface of a surface acoustic wave element substrate.

【図6】本発明の第1の実施例による弾性表面波素子用
基板の製造工程を示す断面図。
FIG. 6 is a sectional view showing a manufacturing process of the surface acoustic wave element substrate according to the first embodiment of the present invention.

【図7】本発明の第1の実施例による弾性表面波素子の
断面図。
FIG. 7 is a sectional view of the surface acoustic wave device according to the first embodiment of the present invention.

【図8】本発明の第2の実施例による弾性表面波素子の
斜視図。
FIG. 8 is a perspective view of a surface acoustic wave device according to a second embodiment of the present invention.

【図9】本発明の第2の実施例による弾性表面波素子用
基板の製造工程を示す断面図。
FIG. 9 is a sectional view showing a manufacturing process of the surface acoustic wave element substrate according to the second embodiment of the present invention.

【図10】本発明の第2の実施例による弾性表面波素子
の断面図。
FIG. 10 is a sectional view of a surface acoustic wave device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1の基板、2…第2の基板、3…櫛形交差電極、
4…第1の基板の弾性表面波伝搬方向、5…弾性表面波
素子用基板、6…第2の基板の熱膨張係数が最も小さい
方向、7…バルク波、8…反射波、9…接着層。
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 2 ... 2nd board | substrate, 3 ... comb-shaped crossing electrode,
4: the direction of propagation of the surface acoustic wave of the first substrate, 5: the substrate for the surface acoustic wave element, 6: the direction of the smallest thermal expansion coefficient of the second substrate, 7: bulk wave, 8: reflected wave, 9: adhesion layer.

フロントページの続き (72)発明者 礒部 敦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5J097 AA16 AA22 EE08 FF01 GG01 GG03 GG04 GG05 HA03 KK09 KK10 Continuation of the front page (72) Inventor Atsushi Isobe 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5J097 AA16 AA22 EE08 FF01 GG01 GG03 GG04 GG05 HA03 KK09 KK10

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】単結晶圧電基板である第1の基板と、前記
第1の基板に接合された第2の基板と、前記第1の基板
の前記第2の基板との接合面と反対側の面上に形成され
弾性波を励振する櫛型交差電極とを備えた弾性表面波素
子において、前記第2の基板は前記第1の基板と同一材
質の基板であり、前記第1の基板の前記弾性波の伝搬方
向における前記第2の基板の熱膨張係数は、前記第1の
基板の同方向の熱膨張係数より小さいことを特徴とする
弾性表面波素子。
1. A first substrate which is a single crystal piezoelectric substrate, a second substrate bonded to the first substrate, and a side opposite to a bonding surface of the first substrate with the second substrate. And a comb-shaped cross electrode that excites an acoustic wave and is formed on the surface of the first substrate, wherein the second substrate is a substrate of the same material as the first substrate, The surface acoustic wave element according to claim 1, wherein a thermal expansion coefficient of the second substrate in a propagation direction of the elastic wave is smaller than a thermal expansion coefficient of the first substrate in the same direction.
【請求項2】請求項1記載の弾性表面波素子において、
前記第2の基板の厚さは前記第1の基板の厚さの3倍以
上であることを特徴とする弾性表面波素子。
2. The surface acoustic wave device according to claim 1, wherein
The thickness of the second substrate is at least three times the thickness of the first substrate.
【請求項3】請求項1または2記載の弾性表面波素子に
おいて、前記第1および第2の基板はタンタル酸リチウ
ムであり、前記第2の基板のZ軸は前記第2の基板の接
合面内に存在し、前記第1の基板の前記弾性波の伝搬方
向は前記第2の基板のZ軸と平行であることを特徴とす
る弾性表面波素子。
3. The surface acoustic wave device according to claim 1, wherein the first and second substrates are made of lithium tantalate, and a Z-axis of the second substrate is a bonding surface of the second substrate. Wherein the direction of propagation of the acoustic wave on the first substrate is parallel to the Z-axis of the second substrate.
【請求項4】請求項1または2記載の弾性表面波素子に
おいて、前記第1および第2の基板はタンタル酸リチウ
ムであり、前記第1の基板の面方位はX軸を中心にY軸
からZ軸方向に36°〜46°の範囲の角度で回転され
た方向であり、前記第2の基板の面方位はY軸方向もし
くはX軸方向であり、前記第1の基板の前記弾性波の伝
搬方向は前記第1の基板のX軸方向であり、前記第1の
基板のX軸は前記第2の基板のZ軸と平行であることを
特徴とする弾性表面波素子。
4. The surface acoustic wave device according to claim 1, wherein the first and second substrates are made of lithium tantalate, and the plane orientation of the first substrate is from the Y axis around the X axis. A direction rotated by an angle in the range of 36 ° to 46 ° in the Z-axis direction, the plane orientation of the second substrate is the Y-axis direction or the X-axis direction, and the direction of the elastic wave of the first substrate is A surface acoustic wave element wherein a propagation direction is an X-axis direction of the first substrate, and an X-axis of the first substrate is parallel to a Z-axis of the second substrate.
【請求項5】請求項1または2記載の弾性表面波素子に
おいて、前記第1および第2の基板はタンタル酸リチウ
ムであり、前記第1および第2の基板の面方位はX軸を
中心にY軸からZ軸方向に36°〜46°の範囲の角度
で回転された方向であり、前記第1の基板の前記弾性波
の伝搬方向は前記第1の基板のX軸方向であり、前記第
1の基板のX軸は前記第2の基板のX軸と直交すること
を特徴とする弾性表面波素子。
5. The surface acoustic wave device according to claim 1, wherein said first and second substrates are made of lithium tantalate, and said first and second substrates have a plane orientation centered on an X axis. A direction rotated by an angle in a range of 36 ° to 46 ° from a Y axis to a Z axis direction, a propagation direction of the elastic wave of the first substrate is an X axis direction of the first substrate, A surface acoustic wave device wherein the X axis of the first substrate is orthogonal to the X axis of the second substrate.
【請求項6】請求項1または2記載の弾性表面波素子に
おいて、前記第1および前記第2の基板はタンタル酸リ
チウムであり、前記第1の基板の面方位はX軸方向であ
り、前記第2の基板の面方位はY軸方向もしくはX軸方
向であり、前記第1の基板の前記弾性波の伝搬方向は前
記第1の基板のY軸からZ軸方向に112°の角度で回
転された方向であり、前記第1の基板のY軸からZ軸方
向に112°の角度で回転された方向は前記第2の基板
のZ軸と平行であることを特徴とする弾性表面波素子。
6. The surface acoustic wave device according to claim 1, wherein the first and second substrates are made of lithium tantalate, and the plane orientation of the first substrate is an X-axis direction. The plane orientation of the second substrate is the Y-axis direction or the X-axis direction, and the propagation direction of the elastic wave of the first substrate is rotated at an angle of 112 ° in the Z-axis direction from the Y-axis of the first substrate. A surface acoustic wave element, wherein a direction rotated by 112 ° from the Y axis of the first substrate to the Z axis is parallel to the Z axis of the second substrate. .
【請求項7】請求項1または2記載の弾性表面波素子に
おいて、前記第1および前記第2の基板はニオブ酸リチ
ウムであり、前記第2の基板のZ軸は前記第2の基板の
接合面内に存在し、前記第1の基板の前記弾性波の伝搬
方向は前記第2の基板のZ軸と平行であることを特徴と
する弾性表面波素子。
7. The surface acoustic wave device according to claim 1, wherein the first and second substrates are made of lithium niobate, and a Z axis of the second substrate is a junction of the second substrate. A surface acoustic wave device which is present in a plane, wherein a propagation direction of the acoustic wave of the first substrate is parallel to a Z axis of the second substrate.
【請求項8】請求項1または2記載の弾性表面波素子に
おいて、前記第1および前記第2の基板はニオブ酸リチ
ウムであり、前記第1の基板の面方位はX軸を中心にY
軸からZ軸方向に41〜64°の範囲の角度で回転され
た方向であり、前記第2の基板の面方位はY軸方向もし
くはX軸方向であり、前記第1の基板の前記弾性波の伝
搬方向は前記第1の基板のX軸方向であり、前記第1の
基板のX軸は前記第2の基板のZ軸と平行であることを
特徴とする弾性表面波素子。
8. The surface acoustic wave device according to claim 1, wherein the first and second substrates are made of lithium niobate, and a plane orientation of the first substrate is Y around an X axis.
A direction rotated by an angle in the range of 41 to 64 ° in the Z-axis direction from the axis, the plane orientation of the second substrate is the Y-axis direction or the X-axis direction, and the elastic wave of the first substrate is Is a direction of the X-axis of the first substrate, and the X-axis of the first substrate is parallel to the Z-axis of the second substrate.
【請求項9】請求項1または2記載の弾性表面波素子に
おいて、前記第1および前記第2の基板はニオブ酸リチ
ウムであり、前記第1および前記第2の基板の面方位は
X軸を中心にY軸からZ軸方向に41〜64°の範囲の
角度で回転された方向であり、前記第1の基板の前記弾
性波の伝搬方向は前記第1の基板のX軸方向であり、前
記第1の基板のX軸は前記第2の基板のX軸と直交する
ことを特徴とする弾性表面波素子。
9. The surface acoustic wave device according to claim 1, wherein said first and second substrates are made of lithium niobate, and said first and second substrates have an X-axis plane orientation. A direction rotated from the Y axis to the Z axis at an angle in the range of 41 to 64 ° from the center, and the propagation direction of the elastic wave of the first substrate is the X axis direction of the first substrate; A surface acoustic wave device wherein an X axis of the first substrate is orthogonal to an X axis of the second substrate.
【請求項10】請求項1または2記載の弾性表面波素子
において、前記第2の基板は四ホウ酸リチウム単結晶で
あり、前記第2の基板の四ホウ酸リチウム単結晶のc軸
は前記第2の基板の接合面内に存在し、前記第1の基板
の前記弾性波の伝搬方向は前記第2の基板の四ホウ酸リ
チウム単結晶のc軸と平行であることを特徴とする弾性
表面波素子。
10. The surface acoustic wave device according to claim 1, wherein the second substrate is a lithium tetraborate single crystal, and the c-axis of the lithium tetraborate single crystal of the second substrate is The elastic wave is present in a bonding surface of the second substrate, and a propagation direction of the elastic wave of the first substrate is parallel to a c-axis of the lithium tetraborate single crystal of the second substrate. Surface wave element.
【請求項11】請求項1ないし10のいずれか記載の弾
性表面波素子において、前記第1の基板と前記第2の基
板の接合は、前記第1の基板と前記第2の基板の接合界
面に塗布ガラスを主成分とする接着層を有することを特
徴とする弾性表面波素子。
11. The surface acoustic wave device according to claim 1, wherein the first substrate and the second substrate are bonded at a bonding interface between the first substrate and the second substrate. A surface acoustic wave element comprising an adhesive layer mainly composed of coated glass.
【請求項12】単結晶圧電基板である第1の基板と、前
記第1の基板に接合された第2の基板と、前記第1の基
板の前記第2の基板との接合面と反対側の面上に形成さ
れ弾性波を励振する櫛型交差電極とを備えた弾性表面波
素子において、塗布ガラスを主成分とする接着層を接合
界面に有し、前記第2の基板の厚さは前記第1の基板の
厚さの3倍以上であることを特徴とする弾性表面波素
子。
12. A first substrate which is a single crystal piezoelectric substrate, a second substrate bonded to the first substrate, and a side opposite to a bonding surface of the first substrate with the second substrate. A surface acoustic wave element having a comb-shaped cross electrode that excites an acoustic wave and is formed on the surface of A surface acoustic wave device having a thickness of at least three times the thickness of the first substrate.
【請求項13】請求項12項記載の弾性表面波素子にお
いて、前記塗布ガラスを主成分とする接着層が有する弾
性波伝搬速度の温度係数が、前記第1の基板の前記弾性
波の伝搬方向の熱膨張係数を相殺する値となるように、
塗布ガラス層の膜厚を最適化したことを特徴とする弾性
表面波素子。
13. The surface acoustic wave element according to claim 12, wherein the temperature coefficient of the propagation speed of the elastic wave of the adhesive layer containing the coated glass as a main component is the propagation direction of the elastic wave on the first substrate. So as to have a value that offsets the coefficient of thermal expansion of
A surface acoustic wave device characterized in that the thickness of a coating glass layer is optimized.
【請求項14】請求項11ないし13記載の弾性表面波
素子用の基板を製造する方法であって、前記第1および
前記第2の基板を熱処理した後に洗浄する第1工程と、
前記第1もしくは前記第2の基板の接合面に塗布ガラス
膜を塗布した後、加熱により塗布ガラス膜の溶剤を蒸発
させる第2工程と、前記第1の基板と前記第2の基板を
接合させる第3工程と、基板接合後に加熱処理を行う第
4工程により、前記第1の基板と前記第2の基板を塗布
ガラス層を介して接合することを特徴とする弾性表面波
素子用基板の製造方法。
14. A method for manufacturing a substrate for a surface acoustic wave device according to claim 11, wherein a first step of cleaning the first and second substrates after heat-treating the first and second substrates.
A second step of applying a coating glass film to the bonding surface of the first or second substrate and then evaporating a solvent of the coating glass film by heating; and bonding the first substrate and the second substrate. Manufacturing a substrate for a surface acoustic wave device, wherein the first substrate and the second substrate are joined via a coating glass layer by a third step and a fourth step of performing a heat treatment after the substrate is joined. Method.
【請求項15】請求項12または13記載の弾性表面波
素子において、前記第1の基板は、X軸を中心にY軸か
らZ軸方向に36°〜46°の範囲の角度で回転された
面方位を有するタンタル酸リチウム、X軸を面方位とす
るタンタル酸リチウム、またはX軸を中心にY軸からZ
軸方向に41〜64°の範囲の角度で回転された面方位
を有するニオブ酸リチウムであることを特徴とする弾性
表面波素子。
15. The surface acoustic wave device according to claim 12, wherein the first substrate is rotated at an angle in the range of 36 ° to 46 ° from the Y axis to the Z axis around the X axis. Lithium tantalate having a plane orientation, lithium tantalate having a plane orientation along the X axis, or Z around the X axis from the Y axis
A surface acoustic wave device comprising lithium niobate having a plane orientation rotated in the axial direction at an angle in the range of 41 to 64 °.
【請求項16】請求項12または13記載の弾性表面波
素子において、前記第2の基板は、ダイヤモンド、窒化
アルミニウム、珪素、酸化珪素、窒化珪素、硼素、酸化
硼素、窒化硼素、タンタル酸リチウム、ニオブ酸リチウ
ム、四ホウ酸リチウムのいずれかまたはそれらの複合材
料からなることを特徴とする弾性表面波素子。
16. A surface acoustic wave device according to claim 12, wherein said second substrate comprises diamond, aluminum nitride, silicon, silicon oxide, silicon nitride, boron, boron oxide, boron nitride, lithium tantalate, A surface acoustic wave device comprising any one of lithium niobate and lithium tetraborate or a composite material thereof.
JP2000194887A 2000-06-23 2000-06-23 Surface acoustic wave device Expired - Fee Related JP3952666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000194887A JP3952666B2 (en) 2000-06-23 2000-06-23 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000194887A JP3952666B2 (en) 2000-06-23 2000-06-23 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2002009584A true JP2002009584A (en) 2002-01-11
JP3952666B2 JP3952666B2 (en) 2007-08-01

Family

ID=18693644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000194887A Expired - Fee Related JP3952666B2 (en) 2000-06-23 2000-06-23 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3952666B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343359A (en) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk Method of manufacturing surface acoustic wave element
WO2005069486A1 (en) * 2004-01-19 2005-07-28 Murata Manufacturing Co., Ltd. Acoustic boundary wave device
JP2006304206A (en) * 2005-04-25 2006-11-02 Shin Etsu Chem Co Ltd Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2010153961A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing compound substrate, and compound substrate
JP2012105191A (en) * 2010-11-12 2012-05-31 Taiyo Yuden Co Ltd Elastic wave device
JP2013046107A (en) * 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Elastic wave device and module
JP2013236276A (en) * 2012-05-09 2013-11-21 Shin Etsu Chem Co Ltd Lithium tantalate single crystal of stoichiometric composition for surface acoustic wave element, method for manufacturing the same and composite piezoelectric substrate for surface acoustic wave element
JPWO2013031651A1 (en) * 2011-09-02 2015-03-23 株式会社村田製作所 Elastic wave device and manufacturing method thereof
US9130539B2 (en) 2012-08-29 2015-09-08 Murata Manufacturing Co. Ltd. Elastic wave device with stacked piezoelectric substrates
CN105281699A (en) * 2014-06-20 2016-01-27 株式会社村田制作所 Elastic wave device
JP2017220778A (en) * 2016-06-07 2017-12-14 太陽誘電株式会社 Acoustic wave device
JP2018093329A (en) * 2016-12-01 2018-06-14 日本碍子株式会社 Elastic wave element
KR20200126420A (en) * 2018-03-16 2020-11-06 프렉엔시스 Transducer structure for source suppression of SAW filter device
TWI722388B (en) * 2018-02-19 2021-03-21 日商Ndk聲表濾波器股份有限公司 Surface acoustic wave device
WO2021177341A1 (en) * 2020-03-03 2021-09-10 株式会社村田製作所 Acoustic wave device
WO2021177340A1 (en) * 2020-03-03 2021-09-10 株式会社村田製作所 Acoustic wave device
US11979132B2 (en) 2018-03-29 2024-05-07 Soitec Method for manufacturing a substrate for a radiofrequency filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292100B2 (en) 2019-05-16 2023-06-16 NDK SAW devices株式会社 Surface acoustic wave devices, filter circuits and electronic components

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331092B2 (en) 2003-05-14 2008-02-19 Fujitsu Media Devices Limited Method and manufacturing surface acoustic wave device
JP2004343359A (en) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk Method of manufacturing surface acoustic wave element
WO2005069486A1 (en) * 2004-01-19 2005-07-28 Murata Manufacturing Co., Ltd. Acoustic boundary wave device
KR100850861B1 (en) * 2004-01-19 2008-08-06 가부시키가이샤 무라타 세이사쿠쇼 Acoustic boundary wave device
US7486001B2 (en) 2004-01-19 2009-02-03 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2006304206A (en) * 2005-04-25 2006-11-02 Shin Etsu Chem Co Ltd Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2010153961A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing compound substrate, and compound substrate
US8773000B2 (en) 2010-11-12 2014-07-08 Taiyo Yuden Co., Ltd. Acoustic wave device
JP2012105191A (en) * 2010-11-12 2012-05-31 Taiyo Yuden Co Ltd Elastic wave device
US9000867B2 (en) 2011-08-22 2015-04-07 Taiyo Yuden Co., Ltd. Acoustic wave device and module
JP2013046107A (en) * 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Elastic wave device and module
JPWO2013031651A1 (en) * 2011-09-02 2015-03-23 株式会社村田製作所 Elastic wave device and manufacturing method thereof
JP2013236276A (en) * 2012-05-09 2013-11-21 Shin Etsu Chem Co Ltd Lithium tantalate single crystal of stoichiometric composition for surface acoustic wave element, method for manufacturing the same and composite piezoelectric substrate for surface acoustic wave element
US9130539B2 (en) 2012-08-29 2015-09-08 Murata Manufacturing Co. Ltd. Elastic wave device with stacked piezoelectric substrates
CN105281699A (en) * 2014-06-20 2016-01-27 株式会社村田制作所 Elastic wave device
JP2017220778A (en) * 2016-06-07 2017-12-14 太陽誘電株式会社 Acoustic wave device
US10250231B2 (en) 2016-06-07 2019-04-02 Taiyo Yuden Co., Ltd. Acoustic wave device
JP2018093329A (en) * 2016-12-01 2018-06-14 日本碍子株式会社 Elastic wave element
TWI722388B (en) * 2018-02-19 2021-03-21 日商Ndk聲表濾波器股份有限公司 Surface acoustic wave device
KR20200126420A (en) * 2018-03-16 2020-11-06 프렉엔시스 Transducer structure for source suppression of SAW filter device
JP2021516904A (en) * 2018-03-16 2021-07-08 フレクエンシスFrec’N’Sys Converter structure for source suppression in SAW filter devices
US11606079B2 (en) 2018-03-16 2023-03-14 Frec'n'sys Transducer structure for source suppression in saw filter devices
KR102561687B1 (en) * 2018-03-16 2023-08-02 소이텍 Transducer structure for source suppression in SAW filter devices
US11979132B2 (en) 2018-03-29 2024-05-07 Soitec Method for manufacturing a substrate for a radiofrequency filter
WO2021177341A1 (en) * 2020-03-03 2021-09-10 株式会社村田製作所 Acoustic wave device
WO2021177340A1 (en) * 2020-03-03 2021-09-10 株式会社村田製作所 Acoustic wave device

Also Published As

Publication number Publication date
JP3952666B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP2002009584A (en) Surface acoustic wave device
US8421314B2 (en) Composite substrate, elastic wave device using the same, and method for manufacturing composite substrate
JP4657002B2 (en) Composite piezoelectric substrate
JP3929983B2 (en) Bonding substrate, surface acoustic wave element, surface acoustic wave device, and manufacturing method thereof
JP3880150B2 (en) Surface acoustic wave device
JP3187231U (en) Composite board
JP2004343359A (en) Method of manufacturing surface acoustic wave element
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
WO2011158636A1 (en) Composite substrate
US11777469B2 (en) Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and bonded substrate manufacturing method
JP7057288B2 (en) Hybrid construction for surface acoustic wave devices
JP2005229455A (en) Compound piezoelectric substrate
KR20150034715A (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
JP2005347295A (en) Compound piezoelectric substrate
TW202029643A (en) Acoustic wave devices
KR20110083451A (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JPH10335974A (en) Elastic boundary wave element
US20100269319A1 (en) Method for manufacturing surface acoustic wave device
KR20210141345A (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP2003124767A (en) Surface acoustic wave element and production method therefor
US11658635B2 (en) Joined body of piezoelectric material substrate and support substrate, and acoustic wave element
JP2000278087A (en) Surface acoustic wave device
JPH08153915A (en) Composite piezoelectric substrate and its manufacture
JP2002026684A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees