JP2002008736A - Mono-block battery and battery assembly - Google Patents

Mono-block battery and battery assembly

Info

Publication number
JP2002008736A
JP2002008736A JP2000186209A JP2000186209A JP2002008736A JP 2002008736 A JP2002008736 A JP 2002008736A JP 2000186209 A JP2000186209 A JP 2000186209A JP 2000186209 A JP2000186209 A JP 2000186209A JP 2002008736 A JP2002008736 A JP 2002008736A
Authority
JP
Japan
Prior art keywords
battery
cell
temperature
electrode plate
monoblock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000186209A
Other languages
Japanese (ja)
Inventor
Takao Omae
孝夫 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000186209A priority Critical patent/JP2002008736A/en
Publication of JP2002008736A publication Critical patent/JP2002008736A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mono-block battery capable of reducing temperature rise and temperature dispersion between cells during use, and provide a battery assembly formed by combining plural mono-block batteries. SOLUTION: This mono-block battery easily transmit heat generated inside a cell element to the outside of the battery by arranging an electrode plate of the cell element in parallel to a battery container wall coming in contact with a heat radiation body and bringing at least one electrode plate of the outermost surfaces of the cell element into contact with the inside surface of the container wall. The battery assembly is formed by combining plural mono-block batteries and housing them into a container or a frame having a partition wall acting as the heat radiation body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モノブロック電池
の耐高温性能の改良および組電池の放熱性の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of high temperature resistance of a monoblock battery and improvement of heat dissipation of a battery pack.

【0002】[0002]

【従来の技術】従来から、自動車用モノブロック電池に
は流動可能な電解液を有するいわゆる液式電池が用いら
れているが、メンテナンスフリー化の要求が強いことか
ら補水が全く不要な密閉式電池が提案されている。密閉
式電池としては、電解液を微細ガラス繊維不織布などに
吸収保持させたリテーナ式密閉電池が一般的である。し
かし、リテーナ式密閉電池は、液式電池に比べて耐高温
性能に劣ると言われている。その理由は次の通りであ
る。流動電解液を有しないために熱容量が小さく、温度
が上がりやすい。また充電中に発生する酸素ガスを負極
板で水に還元しているために、この反応熱も加わってし
まう。
2. Description of the Related Art Conventionally, so-called liquid type batteries having a flowable electrolytic solution have been used as monoblock batteries for automobiles. Has been proposed. As a sealed battery, a retainer sealed battery in which an electrolytic solution is absorbed and held in a fine glass fiber nonwoven fabric or the like is generally used. However, it is said that the retainer type sealed battery is inferior in high temperature resistance performance as compared with the liquid type battery. The reason is as follows. Since there is no flowing electrolyte, the heat capacity is small and the temperature tends to rise. Further, since the oxygen gas generated during charging is reduced to water by the negative electrode plate, the reaction heat is also added.

【0003】自動車用電池は、エンジンルーム内に置か
れるために高温にさらされることが多い。充放電が行わ
れると電池内部からの発熱も加わるために、温度上昇は
深刻なものとなり、何らかの温度抑制対策が必要になっ
てくる。また、電気自動車やハイブリッド自動車用の電
池は、2Vや12Vのモノブロック電池を組み合わせ
て、高電圧で使用されることが一般的である。特にハイ
ブリッド用途では、大電流で充放電されるために電池か
らの発熱が大きくなり、放熱対策が重要になっている。
また、セルが多数配列された場合、内側に置かれたセル
の温度上昇が、外側に置かれたものに比べ大きくなり、
セル毎の温度ばらつきが大きくなってしまう。
[0003] Automotive batteries are often exposed to high temperatures because they are placed in the engine compartment. When charging / discharging is performed, heat from the inside of the battery is also added, so that the temperature rise becomes serious and some kind of temperature suppression measures are required. Further, batteries for electric vehicles and hybrid vehicles are generally used at a high voltage by combining monoblock batteries of 2 V and 12 V. In particular, in hybrid applications, since the battery is charged and discharged with a large current, the heat generated from the battery increases, and heat dissipation measures are important.
Also, when a large number of cells are arranged, the temperature rise of the cells placed inside becomes larger than that of the cells placed outside,
The temperature variation from cell to cell increases.

【0004】著しい温度上昇やセル間温度のばらつき
は、電池にとって好ましくない。特定セルのみ温度上昇
が激しくなると組電池の特性が変化し制御が困難になる
ばかりか、電池全体が短寿命となってしまう。電気自動
車やハイブリッド自動車用では、1セルでも不具合が起
きると、システム全体がダウンしてしまい深刻な事態を
引き起こす場合があった。
[0004] A remarkable temperature rise or a variation in inter-cell temperature is not preferable for a battery. If the temperature rise of only the specific cell becomes severe, the characteristics of the assembled battery change, and not only control becomes difficult, but also the whole battery has a short life. In the case of an electric vehicle or a hybrid vehicle, if a failure occurs even in one cell, the entire system may be down, causing a serious situation.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、使用中の温度上昇およびセル間の温度ばら
つきを低減することのできるモノブロック電池及びモノ
ブロック電池を複数組み合わせた組電池を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a monoblock battery and an assembled battery combining a plurality of monoblock batteries capable of reducing the temperature rise during use and the temperature variation between cells. To provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明のモノブロック電池は、電池内
のすべてのセル要素は極板面が電槽壁と平行になるよう
に配置され、セル要素最外面のうち少なくとも一方が前
記電槽壁の内側面と接しており、かつ前記電槽壁の外側
面に放熱体が配されていることを特徴とする。また、請
求項2に記載のモノブロック電池は、請求項1に記載の
発明において、放熱体が容器または枠体であることを特
徴とする。
In order to solve the above-mentioned problems, in the monoblock battery according to the first aspect of the present invention, all the cell elements in the battery are arranged so that the electrode plate surface is parallel to the battery case wall. It is characterized in that at least one of the outermost surfaces of the cell elements is in contact with the inner surface of the battery case wall, and a radiator is arranged on the outer surface of the battery case wall. A monoblock battery according to a second aspect is characterized in that, in the first aspect, the heat radiator is a container or a frame.

【0007】また、請求項3に記載のモノブロック電池
は、請求項1又は2に記載の発明において、電槽壁の内
側面と接するセル要素の極板が負極板であることを特徴
とする。
The monoblock battery according to claim 3 is characterized in that, in the invention described in claim 1 or 2, the electrode plate of the cell element in contact with the inner surface of the battery case wall is a negative electrode plate. .

【0008】また、請求項4に記載のモノブロック電池
は、請求項1、2又は3に記載の発明において、モノブ
ロック電池の電槽壁の厚さが負極板の厚さの2倍以下で
あることを特徴とする。
According to a fourth aspect of the present invention, there is provided the monoblock battery according to the first, second or third aspect, wherein the thickness of the battery case wall of the monoblock battery is not more than twice the thickness of the negative electrode plate. There is a feature.

【0009】そして、請求項5に記載の組電池は、請求
項1、2、3又は4に記載の発明において、モノブロッ
ク電池を複数組み合わせてなる組電池において、モノブ
ロック電池が請求項1、2、3又は4記載のものであっ
て、放熱体である仕切り壁を有した容器または枠体に収
納されることを特徴とする。
According to a fifth aspect of the present invention, there is provided the battery pack according to the first, second, third, or fourth aspect, wherein the monoblock battery is a combination of a plurality of the monoblock batteries. Item 2, 3, or 4, characterized by being housed in a container or a frame having a partition wall as a heat radiator.

【0010】[0010]

【発明の実施の形態】以下に、本発明の好ましい実施の
形態を説明するが、本発明は以下の説明に限定されるも
のではない。本発明によるモノブロック電池は、放熱体
が配されている電槽壁と平行にセル要素の極板が配置さ
れ、セル要素最外面のうち少なくとも一方の極板がその
電槽壁の内側面と接することにより、セル要素の内部に
発生した熱を電池外部に移動しやすくしたものである。
より好ましくは、温度上昇が大きい負極板の熱の移動を
容易にするため、負極板を電槽壁の内側面と接すること
が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below, but the present invention is not limited to the following description. In the monoblock battery according to the present invention, the electrode plate of the cell element is arranged in parallel with the battery case wall on which the radiator is arranged, and at least one of the cell element outermost surfaces is formed on the inner surface of the battery case wall. The contact makes it easier for the heat generated inside the cell element to move to the outside of the battery.
More preferably, it is desirable that the negative electrode plate be in contact with the inner surface of the battery case wall in order to facilitate heat transfer of the negative electrode plate having a large temperature rise.

【0011】さらに、より好ましくは電槽壁を熱の移動
を容易にするため、電槽壁の厚さを負極板の厚さの2倍
以下とすることが望ましい。そして、本発明のモノブロ
ック電池を複数個組み合わせ、放熱体である仕切り壁を
有した容器または枠体に収納して組電池にすることによ
り、組電池においてもセル要素に発生した熱の移動が容
易になる。
More preferably, in order to facilitate the transfer of heat through the battery case wall, it is desirable that the thickness of the battery case wall be twice or less the thickness of the negative electrode plate. Then, by combining a plurality of the monoblock batteries of the present invention and storing them in a container or a frame having a partition wall as a radiator to form an assembled battery, even in the assembled battery, the heat generated in the cell elements can be transferred. It will be easier.

【0012】これらにより、電池使用中の温度上昇およ
びセル間の温度ばらつきを低減することができ、また、
組電池使用中の温度上昇およびセル間の温度ばらつきを
低減することができる。
Thus, the temperature rise during use of the battery and the temperature variation between cells can be reduced.
It is possible to reduce a temperature rise and a temperature variation between cells during use of the assembled battery.

【0013】[0013]

【実施例】以下、本発明をより具体的に示す実施例につ
いて説明する。
EXAMPLES Examples of the present invention will be described below in more detail.

【0014】(実施例1)まず、従来型12Vモノブロ
ック鉛蓄電池について温度上昇を測定するための試験を
行った。
(Example 1) First, a test for measuring the temperature rise of a conventional 12 V monoblock lead-acid battery was conducted.

【0015】従来型の供試電池として図1及び2に示す
ような、電圧12V、電池容量28Ah/5hRのリテ
ーナ式密閉鉛蓄電池を使用した。セル要素1は、正極板
2、負極板3、微細ガラス繊維セパレータ4を積層して
作られている。6つのセル要素を電槽に収納する。鉛蓄
電池の場合1セルの起電力が2Vなので、6つのセルを
直列接続することで12V電池となる。セルとセルの間
はセル間隔壁5で仕切られている。セル間隔壁5に設け
られた***を通じて、各セルの端子部を電気抵抗溶接な
どの方法で接続し、ふたを溶着して電池が完成する。
As a conventional test battery, a closed lead-acid storage battery having a voltage of 12 V and a battery capacity of 28 Ah / 5 hR as shown in FIGS. 1 and 2 was used. The cell element 1 is formed by laminating a positive electrode plate 2, a negative electrode plate 3, and a fine glass fiber separator 4. The six cell elements are housed in a battery case. In the case of a lead storage battery, since the electromotive force of one cell is 2 V, a 12 V battery is obtained by connecting six cells in series. The cells are separated from each other by cell spacing walls 5. The terminals of each cell are connected by a method such as electric resistance welding through small holes provided in the cell spacing wall 5, and the lid is welded to complete the battery.

【0016】試験条件は次のようにした。エンジンルー
ム内の高温状態を再現するために、温度60℃、湿度3
0%の恒温室に電池を入れた。そして放電28A×1分、
充電14.8V(最大電流28A)×2分の充放電サイクル試験
を繰り返した。この時、電池内の1,2,3セル目に温
度センサを取り付け、サイクル試験中の温度推移を計測
した。1セル目は端セル、3セル目は中央のセルであ
る。
The test conditions were as follows. Temperature 60 ℃, humidity 3
The batteries were placed in a 0% constant temperature room. And discharge 28A x 1 minute,
The charge / discharge cycle test of charging 14.8 V (maximum current 28 A) × 2 minutes was repeated. At this time, temperature sensors were attached to the first, second, and third cells in the battery, and the temperature transition during the cycle test was measured. The first cell is an end cell, and the third cell is a central cell.

【0017】測定結果を図3に示す。試験開始時の温度
は、いずれのセルも60℃である。時間の経過とともに
各セルとも温度が上昇する。1セル目は78℃、2セル
目は82℃で温度が飽和した。3セル目は90℃程度で
上昇は緩やかになったが、少しずつ上昇し続けたため、
試験をうち切った。1セル目は電池の端にあるので、セ
ル要素からの熱エネルギーが外部へと逃げやすく、比較
的温度上昇が少なかったものと思われる。それに対し3
セル目は、外部への放熱経路が少なく、2,4セルから
の熱エネルギーも受け取るために、著しい温度上昇が起
こってしまう。
FIG. 3 shows the measurement results. The temperature at the start of the test was 60 ° C. for all cells. As time passes, the temperature of each cell rises. The temperature was saturated at 78 ° C. in the first cell and 82 ° C. in the second cell. The third cell gradually increased at about 90 ° C, but continued to increase little by little.
The test was terminated. Since the first cell is located at the end of the battery, it is considered that heat energy from the cell elements easily escaped to the outside, and the temperature rise was relatively small. 3
The cells have a small heat radiation path to the outside and also receive heat energy from the second and fourth cells, so that a remarkable temperature rise occurs.

【0018】次にこのような温度変化を引き起こす原因
を調べた。正極板、負極板に温度センサを取り付け充放
電サイクル中の温度を測定し、セル要素からの発熱箇所
を明らかにした。図4は、充放電1サイクルあたりの正
極板と負極板の温度変化を示したものである。充電時、
正負極板とも温度が上昇しているが、その温度変化は負
極板の方が大きい。これは、正極から発生した酸素ガス
の還元反応(発熱反応)が負極板上で起こるためであ
る。放電時には正負極板とも温度が低下しているが、こ
れは放電は吸熱反応であるためである。これらのサイク
ルが繰り返されて次第にセル全体の温度は上昇していく
のである。
Next, the cause of such a temperature change was examined. Temperature sensors were mounted on the positive and negative plates to measure the temperature during the charge / discharge cycle, and the locations of heat generation from the cell elements were clarified. FIG. 4 shows a temperature change of the positive electrode plate and the negative electrode plate per charge / discharge cycle. When charging,
Although the temperature of both the positive and negative electrode plates is rising, the temperature change is larger in the negative electrode plate. This is because a reduction reaction (exothermic reaction) of oxygen gas generated from the positive electrode occurs on the negative electrode plate. At the time of discharge, the temperature of both the positive and negative electrodes decreases, because the discharge is an endothermic reaction. By repeating these cycles, the temperature of the entire cell gradually rises.

【0019】以上示したような著しい温度上昇やセル間
温度のばらつきは、電池にとって好ましくない。特定セ
ルのみ温度上昇が激しくなるとモノブロック電池の特性
が変化し制御が困難になるばかりか、電池が短寿命とな
ってしまう。これらの試験結果から、温度上昇やセル間
温度のばらつきを抑制するために次の方法が考えられ
る。 1.セル要素から外部へと熱を移動しやすくするため
に、セル要素を電槽壁に接触させる。 2.電槽壁を温度の伝わりやすいものとする。 3.温度上昇が大きい負極板を放熱しやすくするため
に、負極板を電槽壁に接触させる。
The remarkable temperature rise and the inter-cell temperature variation as described above are not preferable for the battery. If the temperature rise of only a specific cell becomes severe, the characteristics of the monobloc battery change and control becomes difficult, and the battery has a short life. From these test results, the following methods can be considered to suppress the temperature rise and the variation in the temperature between cells. 1. To facilitate the transfer of heat from the cell element to the outside, the cell element is brought into contact with the battery case wall. 2. Make the battery case wall easy to transmit the temperature. 3. The negative electrode plate is brought into contact with the battery case wall so that the negative electrode plate having a large temperature rise is easily radiated.

【0020】この条件を満たすものとして、図5に示す
ような本発明品のモノブロック電池を作製した。すなわ
ち、モノブロック電池内のセル要素1を極板が電槽壁6
と平行になるように置き、セル要素最外面の一方の負極
板を電槽壁6の内側面と接触させ、さらにその電槽壁の
外側面は放熱体と接している構造としたものである。セ
ル要素から発生した熱エネルギーは、電槽壁を伝わり電
池外部の放熱体へと伝わる。そして、放熱体から空気中
へと放出される。今回は、放熱体として熱伝導性の高い
金属銅で作られた容器を用いた。本実施例では、各セル
要素は負極板を外側に配置し電槽壁に接触させ、樹脂製
の電槽は、電槽壁の厚みが負極板厚みの約2倍のものを
用いた。
Assuming that these conditions were satisfied, a monoblock battery of the present invention as shown in FIG. 5 was produced. That is, the electrode plate of the cell element 1 in the monoblock battery is
, And one negative electrode plate on the outermost surface of the cell element is brought into contact with the inner surface of the battery case wall 6, and the outer surface of the battery case wall is in contact with the radiator. . The heat energy generated from the cell element is transmitted to the battery case wall and to the heat radiator outside the battery. Then, the heat is released from the radiator into the air. This time, we used a container made of metal copper with high thermal conductivity as a heat radiator. In this embodiment, each cell element has a negative electrode plate arranged outside and brought into contact with a battery case wall, and a resin case having a battery case wall thickness of about twice the negative electrode plate thickness is used.

【0021】効果を確認するために、同様の充放電サイ
クル試験を行った。試験結果を図6に示した。各セルの
温度は、2セル目がわずかに高いものの、約72℃で飽
和に達した。従来型電池ではこの試験で、1セル目78
℃、2セル目82℃、3セル目90℃という結果であっ
たのに対して、非常に大きな温度上昇抑制効果およびセ
ル間温度ばらつき抑制効果が得られた。なお、4,5,
6セル目は対照的な位置であるので同様な温度になって
いることが確認されている。また、セル要素最外面に正
極板を配した場合も、ほぼ同様の効果を示した。
In order to confirm the effect, a similar charge / discharge cycle test was performed. The test results are shown in FIG. The temperature of each cell reached saturation at about 72 ° C., although the second cell was slightly higher. In the conventional battery, in this test, the first cell 78
Although the results were 82 ° C. for the second cell and 90 ° C. for the third cell, a very large temperature rise suppressing effect and an inter-cell temperature variation suppressing effect were obtained. In addition, 4,5
Since the sixth cell is a contrasting position, it has been confirmed that the temperature is similar. Also, when the positive electrode plate was arranged on the outermost surface of the cell element, almost the same effect was exhibited.

【0022】次に電槽壁厚みの影響を調査した。電槽壁
の厚みは、より薄いものほど放熱効果が大きくなるもの
と考えられるため、本発明品において電槽壁の厚みを変
えた電槽を用いて温度上昇試験を行った。試験条件は同
様とし、100サイクルで試験をうち切り、その時の電
池内部の温度を比較した。
Next, the effect of the battery case wall thickness was investigated. It is considered that the thinner the battery case wall, the greater the heat radiation effect. Therefore, a temperature rise test was performed using the battery case of the present invention in which the battery case wall thickness was changed. The test conditions were the same, the test was terminated after 100 cycles, and the temperatures inside the battery at that time were compared.

【0023】その結果、図7に示すように、電槽壁の厚
みが負極板の2倍以下では、電池内の温度差は小さい
が、3倍程度になると急激に大きくなっている。これは
樹脂の熱伝導性が小さいために、電池内部の特に発熱の
大きな負極板から外部への熱移動を阻害したためと考え
られる。従って、電槽壁の厚みは2倍以下とするのが好
ましいことがわかった。
As a result, as shown in FIG. 7, the temperature difference in the battery is small when the thickness of the battery case wall is not more than twice the thickness of the negative electrode plate, but increases rapidly when the thickness is about three times. This is presumably because the thermal conductivity of the resin was low, which hindered heat transfer from the negative electrode plate, which generates a large amount of heat, to the outside inside the battery. Therefore, it was found that it is preferable that the thickness of the battery case wall be twice or less.

【0024】発熱体には、フィンを設置することで放熱
効果が得られることが一般的に知られている。本発明品
においても、金属部分にフィンを設置すれば同様な効果
を得ることができる。
It is generally known that a heat dissipating effect can be obtained by installing fins on the heating element. In the product of the present invention, a similar effect can be obtained by providing fins on the metal portion.

【0025】(実施例2)次に組電池の実施例を説明す
る。まず、従来型12Vモノブロック電池10を従来通
りの方法で組み合わせて作製した36Vの組電池につい
て温度上昇を測定するための試験を行った。従来型の供
試電池として図1及び2に示すような12V、15Ah
/5hRのリテーナ式密閉鉛蓄電池を使用した。
(Embodiment 2) Next, an embodiment of an assembled battery will be described. First, a test was performed to measure the temperature rise of a 36V assembled battery manufactured by combining the conventional 12V monoblock batteries 10 by a conventional method. 12V, 15Ah as shown in FIGS. 1 and 2 as a conventional test battery
A closed lead-acid battery of / 5 hR with a retainer was used.

【0026】この電池3個を図8のように金属製の容器
に収納して、端子8を直列に接続した。各電池は、隙間
なくお互いに接触した状態で組み込まれている。端子8
間は接続ケーブル9で接続されている。
The three batteries were housed in a metal container as shown in FIG. 8, and the terminals 8 were connected in series. The batteries are assembled in a state where they contact each other without any gap. Terminal 8
The connection is established by a connection cable 9.

【0027】試験条件は次のようにした。36V組電池
を温度60℃、湿度30%の恒温室に電池を入れた。そ
して放電30A×1分、充電14.8V(最大電流30
A)×2分の充放電サイクル試験を繰り返した。この
時、各電池の1,3セル目のセル要素に温度センサを接
触させ、サイクル試験中の温度推移を計測した。電池N
o.1,3は両端の電池、電池No.2は中央の電池で
ある。また1セル目は端セル、3セル目は中央のセルで
ある。
The test conditions were as follows. The 36V assembled battery was placed in a constant temperature room at a temperature of 60 ° C. and a humidity of 30%. Then discharge 30A × 1 minute, charge 14.8V (maximum current 30
A) The charge / discharge cycle test for 2 minutes was repeated. At this time, the temperature sensor was brought into contact with the first and third cell elements of each battery, and the temperature transition during the cycle test was measured. Battery N
o. Nos. 1 and 3 are batteries at both ends, battery Nos. 2 is a center battery. The first cell is an end cell, and the third cell is a central cell.

【0028】その結果、図9に示すように、試験開始時
の温度は、いずれのセルも60℃である。時間の経過と
ともに各セルとも温度が上昇する。電池No.1、3の
1セル目は78℃、電池No.2の1セル目は82℃で
温度が飽和した。電池No.1、3の3セル目は90℃
程度で上昇は緩やかになったが、少しずつ上昇し続け
た。電池No.2の3セル目は、温度上昇が著しく、1
00℃を越えても上昇を続けたため、途中で試験をうち
切った。電池No.1、3の1セル目は電池の端にある
ので、セル要素からの熱エネルギーが外部へと逃げやす
く、比較的温度上昇が少なかったものと思われる。それ
に対し各電池の3セル目は、外部への放熱経路が少な
く、2,4セルからの熱エネルギーも受け取るために、
著しい温度上昇が起こってしまう。特に電池No.2の
3セル目は、周囲から温度を受け取るのみで、放熱経路
が全くないために異常な温度上昇が引き起こされてい
る。
As a result, as shown in FIG. 9, the temperature at the start of the test was 60 ° C. for all cells. As time passes, the temperature of each cell rises. Battery No. The first cells of the battery Nos. 1 and 3 were at 78 ° C. The temperature of the first cell of No. 2 was saturated at 82 ° C. Battery No. The third cell of 1 and 3 is 90 ° C
The rate of increase gradually slowed, but continued to rise gradually. Battery No. In the third cell of No. 2, the temperature rise was remarkable.
Since the temperature continued to rise even when the temperature exceeded 00 ° C., the test was stopped halfway. Battery No. Since the first cells 1 and 3 are located at the ends of the battery, it is considered that the heat energy from the cell elements easily escaped to the outside and the temperature rise was relatively small. On the other hand, the third cell of each battery has few heat radiation paths to the outside and receives heat energy from two or four cells.
A significant temperature rise will occur. In particular, the battery No. The third cell 2 receives only the temperature from the surroundings and has no heat dissipation path, causing an abnormal temperature rise.

【0029】温度上昇を抑えるために本発明品の組電池
を作製した。まず図5 に示すような本発明品のモノブ
ロック電池11を作製し、これらの電池を仕切り壁12
を有する容器内に収納して図10に示すような組電池と
した。モノブロック電池内のセル要素を極板が電槽壁と
平行になるように置き、セル要素最外面のうち少なくと
も一方を電槽壁の内側面と接触させ、電槽壁の外側面は
放熱体である仕切り壁と接している構造としている。セ
ル要素から発生した熱エネルギーは、電槽壁を伝わり電
池と電池との間においた放熱体である仕切り壁12へと
伝わる。仕切り壁12は熱伝導性が非常に高いので、熱
は素早く容器全体に伝わり、容器の側面から空気中へと
放出される。今回は、放熱体として熱伝導性の高い金属
銅で作られた容器を用いた。
An assembled battery according to the present invention was manufactured to suppress a rise in temperature. First, a monoblock battery 11 of the present invention as shown in FIG.
The battery was housed in a container having a battery pack as shown in FIG. The cell element in the monoblock battery is placed so that the electrode plate is parallel to the battery case wall, and at least one of the cell element outermost surfaces is brought into contact with the inside surface of the battery case wall, and the outside surface of the battery case wall is a radiator. Is in contact with the partition wall. The thermal energy generated from the cell elements is transmitted through the battery case wall to the partition wall 12 which is a radiator placed between the batteries. Since the partition wall 12 has a very high thermal conductivity, heat is quickly transmitted to the entire container and is released from the side of the container into the air. This time, we used a container made of metal copper with high thermal conductivity as a heat radiator.

【0030】本発明品の効果を確認するために、同様の
充放電サイクル試験を行い、各電池の1,2セル目のセ
ル要素の温度を測定した。電池No.1,3は両端の電
池、電池No.2は中央の電池である。また1セル目は
端セル、2セル目は中央のセルである。試験結果を図1
1に示した。電池No.1の1,2セル目はほぼ同じ温
度で推移し、約78℃で飽和に達した。電池No.2の
1,2セル目は、約80℃で飽和に達した。中央の電池
である電池No.3は、電池No.1,2に比べて数度
高く、1セル目で約82℃、2セル目で約83℃であっ
た。従来型組電池ではこの試験で、中央電池の中央セル
で100℃以上という結果であったのに対して、本発明
の組電池は非常に大きな温度上昇抑制効果およびセル間
温度ばらつき抑制効果が得られることがわかった。
In order to confirm the effects of the product of the present invention, a similar charge / discharge cycle test was performed, and the temperatures of the first and second cell elements of each battery were measured. Battery No. Nos. 1 and 3 are batteries at both ends, battery Nos. 2 is a center battery. The first cell is an end cell, and the second cell is a central cell. Figure 1 shows the test results
1 is shown. Battery No. The first and second cells of No. 1 remained at almost the same temperature and reached saturation at about 78 ° C. Battery No. The first and second cells of 2 reached saturation at about 80 ° C. Battery No. which is the central battery No. 3 is a battery No. The temperature was about 82 ° C. in the first cell and about 83 ° C. in the second cell. In the conventional battery pack, the test showed that the temperature of the central cell of the central battery was 100 ° C. or higher. I knew it could be done.

【0031】なお、本実施例の組電池では複数のモノブ
ロック電池を容器に収納したが、放熱体である仕切り壁
を有する枠体に収納してもほぼ同様の効果を示す。
In the assembled battery of this embodiment, a plurality of monoblock batteries are housed in a container. However, the same effect can be obtained even when housed in a frame having a partition wall as a heat radiator.

【0032】[0032]

【発明の効果】本発明を用いると、モノブロック電池使
用中の温度上昇およびセル間の温度ばらつきを低減する
ことができる。
According to the present invention, it is possible to reduce a temperature rise during use of a monoblock battery and a temperature variation between cells.

【0033】また、組電池に本発明を適用することによ
って、電池使用中の温度上昇およびセル間の温度ばらつ
きを低減することができる。
Further, by applying the present invention to a battery pack, it is possible to reduce a temperature rise during use of the battery and a temperature variation between cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来型12Vモノブロック鉛蓄電池を示す外観
図及び横断面図
FIG. 1 is an external view and a cross-sectional view showing a conventional 12V monoblock lead-acid battery.

【図2】従来型電池のセル要素の構造を示す要部断面図FIG. 2 is a sectional view of a main part showing a structure of a cell element of a conventional battery.

【図3】従来型電池の温度測定結果FIG. 3 shows a temperature measurement result of a conventional battery.

【図4】充放電中の正負極板の温度変化FIG. 4 Temperature change of positive and negative plates during charging and discharging

【図5】本発明のモノブロック電池を示す模式図FIG. 5 is a schematic view showing a monoblock battery of the present invention.

【図6】本発明品の温度測定結果FIG. 6 shows a result of temperature measurement of the product of the present invention.

【図7】電槽隔壁厚さと電池内温度との関係FIG. 7: Relationship between battery case partition wall thickness and battery internal temperature

【図8】従来型36V組電池を示す模式図FIG. 8 is a schematic diagram showing a conventional 36V assembled battery.

【図9】従来型36V組電池の温度測定結果FIG. 9 shows a result of temperature measurement of a conventional 36V battery pack.

【図10】本発明の36V組電池を示す模式図FIG. 10 is a schematic diagram showing a 36V battery pack of the present invention.

【図11】本発明の36V組電池の温度測定結果FIG. 11 shows a result of temperature measurement of a 36V battery pack according to the present invention.

【符号の説明】[Explanation of symbols]

1 セル要素 2 正極板 3 負極板 4 微細ガラス繊維セパレータ 5 セル間隔壁 6 電槽壁 7 容器 8 端子 9 接続ケーブル 10 従来型12Vモノブロック電池 11 本発明の12Vモノブロック電池 12 仕切り壁 DESCRIPTION OF SYMBOLS 1 Cell element 2 Positive electrode plate 3 Negative electrode plate 4 Fine glass fiber separator 5 Cell spacing wall 6 Battery case wall 7 Container 8 Terminal 9 Connection cable 10 Conventional 12V monoblock battery 11 12V monoblock battery of the present invention 12 Partition wall

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電池内のすべてのセル要素は極板面が電槽
壁と平行になるように配置され、セル要素最外面のうち
少なくとも一方が前記電槽壁の内側面と接しており、か
つ前記電槽壁の外側面に放熱体が配されていることを特
徴とするモノブロック電池。
1. All the cell elements in a battery are arranged such that the electrode plate surface is parallel to the battery case wall, and at least one of the cell element outermost surfaces is in contact with the inside surface of the battery case wall; A monoblock battery, wherein a radiator is arranged on an outer surface of the battery case wall.
【請求項2】放熱体が容器または枠体であることを特徴
とする請求項1記載のモノブロック電池。
2. The monoblock battery according to claim 1, wherein the radiator is a container or a frame.
【請求項3】電槽壁の内側面と接するセル要素の極板が
負極板であることを特徴とする請求項1又は2記載のモ
ノブロック電池。
3. The monoblock battery according to claim 1, wherein the electrode plate of the cell element in contact with the inner surface of the battery case wall is a negative electrode plate.
【請求項4】モノブロック電池の電槽壁の厚さが負極板
の厚さの2倍以下であることを特徴とする請求項1、2
又は3記載のモノブロック電池。
4. The monoblock battery according to claim 1, wherein the thickness of the battery case wall is not more than twice the thickness of the negative electrode plate.
Or the monoblock battery according to 3.
【請求項5】モノブロック電池を複数組み合わせてなる
組電池において、モノブロック電池が請求項1、2、3
又は4記載のものであって、放熱体である仕切り壁を有
した容器または枠体に収納されることを特徴とする組電
池。
5. An assembled battery comprising a plurality of combined monoblock batteries, wherein the monoblock battery is a battery.
Or the battery pack according to 4, wherein the battery pack is housed in a container or a frame having a partition wall as a heat radiator.
JP2000186209A 2000-06-21 2000-06-21 Mono-block battery and battery assembly Pending JP2002008736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186209A JP2002008736A (en) 2000-06-21 2000-06-21 Mono-block battery and battery assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186209A JP2002008736A (en) 2000-06-21 2000-06-21 Mono-block battery and battery assembly

Publications (1)

Publication Number Publication Date
JP2002008736A true JP2002008736A (en) 2002-01-11

Family

ID=18686409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186209A Pending JP2002008736A (en) 2000-06-21 2000-06-21 Mono-block battery and battery assembly

Country Status (1)

Country Link
JP (1) JP2002008736A (en)

Similar Documents

Publication Publication Date Title
US20210167437A1 (en) Battery module, and battery pack and vehicle comprising the same
JP4833420B2 (en) Battery pack
US10749226B2 (en) Battery module, and battery pack and vehicle comprising the same
JP5211022B2 (en) Lithium ion secondary battery
JP4286909B2 (en) Mechanical and thermal improvements in metal hydride batteries, battery modules, and battery packs
EP2416438B1 (en) Battery module having improved safety
JP6686286B2 (en) Prismatic secondary battery and assembled battery using the same
KR101252944B1 (en) Battery pack with enhanced radiating ability
KR101983391B1 (en) Cooling Device for Battery Module and Battery Module Assembly having the same
KR101898295B1 (en) Battery Module Assembly and Method of manufacturing the same
JP2000164186A (en) Storage battery
CN209860115U (en) Battery module
CN108376755B (en) Battery for electric vehicle
EP3379639B1 (en) Battery module, battery pack comprising same, and vehicle
US20180026294A1 (en) Battery cell, battery module and production method
KR20190065077A (en) Cylindrical Secondary Battery having Hollow portion filled with Thermal Conductive Resin
JP3543572B2 (en) Rechargeable battery
Trinidad et al. High power valve regulated lead-acid batteries for new vehicle requirements
JPH11213962A (en) Storage battery
CN115395170B (en) Battery module for a vehicle, vehicle and method for producing a battery module
US20220349950A1 (en) Battery, electric apparatus, and method for preparing battery
JP4479753B2 (en) Power storage device
KR20190099597A (en) Secondary Battery having Heat Absorbing Additive
JP2002008736A (en) Mono-block battery and battery assembly
JP2009016235A (en) Power storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213