JP2002008451A - Anisotropic conductive polymer - Google Patents

Anisotropic conductive polymer

Info

Publication number
JP2002008451A
JP2002008451A JP2000229958A JP2000229958A JP2002008451A JP 2002008451 A JP2002008451 A JP 2002008451A JP 2000229958 A JP2000229958 A JP 2000229958A JP 2000229958 A JP2000229958 A JP 2000229958A JP 2002008451 A JP2002008451 A JP 2002008451A
Authority
JP
Japan
Prior art keywords
conductive
polymer material
filler
conductive polymer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000229958A
Other languages
Japanese (ja)
Inventor
Ryoji Mishima
良治 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000229958A priority Critical patent/JP2002008451A/en
Publication of JP2002008451A publication Critical patent/JP2002008451A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an excellent anisotoropic conductive polymer by giving directivity to a conductive filler of filler-added conductive polymer. SOLUTION: Conductive magnetic powder of nanoparticle size is used as the filler. After the filler is added to a resin, an alternating magnetic field is applied to the resin to arrange the particles in the magnetic field direction and to give anisotoropic conductivity to the resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフィラー添加型導電
性高分子材に関し、より詳しくは、導電性に方向性を持
たせた異方性の導電性高分子材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler-added conductive polymer material, and more particularly, to an anisotropic conductive polymer material having directional conductivity.

【0002】[0002]

【従来の技術】導電性高分子材には、高分子そのものが
導電性を有するものと、絶縁性高分子材に導電性フィラ
ーを添加して導電性を付加するものとの2種類がある。
前者は、有機ポリアセチレン等で導電性は10−5〜1
0−4S/cm程で低く、殆ど実用には至っていない。
2. Description of the Related Art There are two types of conductive polymer materials, one in which the polymer itself has conductivity, and the other in which a conductive filler is added to an insulating polymer material to add conductivity.
The former is an organic polyacetylene or the like and has a conductivity of 10-5 to 1
It is as low as about 0-4 S / cm, and has hardly reached practical use.

【0003】後者のみが唯一実用化されているが、これ
らは熱可塑性樹脂、熱硬化性樹脂、ゴム系エラストマー
に金属粒子やカーボン粒子を添加したものである。又粒
子の代わりに繊維を加えた異方性導電プラスチックもあ
る。導電性フィラーとしてAu、Ag、Cu、カーボン
ブラック、カーボン繊維が用いられるのが一般的であ
る。
[0003] Only the latter is practically used, but these are obtained by adding metal particles or carbon particles to a thermoplastic resin, a thermosetting resin, or a rubber-based elastomer. There is also an anisotropic conductive plastic in which fibers are added instead of particles. In general, Au, Ag, Cu, carbon black, and carbon fiber are used as the conductive filler.

【0004】[0004]

【発明が解決しようとする課題】しかし上記フィラー添
加型の高分子材は、粒子が分散しているため連続的な導
電体とはなり得ず、金属固体等と比べると導電性は著し
く低いという問題があった。
However, the filler-added type polymer material cannot be a continuous conductor because the particles are dispersed, and has a significantly lower conductivity than a metal solid or the like. There was a problem.

【0005】本発明は上記問題を解決するべくなされた
ものであって、その目的とするところは、特定の方向に
高い導電性を有する導電性高分子材を提供することにあ
る。
[0005] The present invention has been made to solve the above problems, and an object of the present invention is to provide a conductive polymer material having high conductivity in a specific direction.

【0006】[0006]

【問題を解決するための手段】上記問題を解決する為に
本発明に係わる導電性高分子のフィラーに導電性を有す
るナノ粒子磁性紛を用いることを特徴とする。導電性ナ
ノ粒子磁性紛には、Ni,Fe,Co等の遷移金属紛、
又はそれらの合金紛、各種フェライト、アルニコ又は希
土磁石、カルコゲナイト金属等の中から選ばれる。高分
子材には通常の熱可塑性、熱硬化性樹脂、各種ゴムエラ
ストマー、シリコーンエラストマー等の中より選ばれ
る。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized in that conductive nanoparticle magnetic powder is used as the filler of the conductive polymer. The conductive nanoparticle magnetic powder includes transition metal powder such as Ni, Fe, Co, etc.
Or, selected from alloy powders thereof, various ferrites, alnico or rare earth magnets, and chalcogenite metals. The polymer material is selected from ordinary thermoplastic and thermosetting resins, various rubber elastomers, silicone elastomers and the like.

【0007】上記導電性ナノ粒子磁紛と高分子材の混合
は、液状樹脂に微紛をかき混ぜ、均一に分散させること
もできるが、より分散性を高めるには、磁紛をシランカ
ップリング剤等の高分子界面活性剤で分散処理を施すこ
とが好ましい。更に分散を高めるには、オリゴマーの状
態で微紛を混合し、その後架橋、重合反応によりポリマ
ー化し、粒子混合高分子材を作製することができる。
[0007] The mixing of the conductive nanoparticle magnetic powder and the polymer material can be achieved by stirring the fine powder into the liquid resin and uniformly dispersing it. However, in order to further improve the dispersibility, the magnetic powder must be mixed with a silane coupling agent. It is preferable to carry out a dispersion treatment with a high molecular surfactant such as. In order to further enhance the dispersion, fine particles can be mixed in an oligomer state, and then polymerized by crosslinking and polymerization to produce a particle-mixed polymer material.

【0008】一般にポーラスな高分子材はオリゴマーか
らポリマーへと架橋、重合させる段階で反応条件を制御
することで作製が可能であり、混合すべきナノ粒子の量
と同等以上のナノ孔を導入することができる。
In general, a porous polymer material can be produced by controlling the reaction conditions at the stage of crosslinking and polymerizing from an oligomer to a polymer, and introduces nanopores equal to or more than the amount of nanoparticles to be mixed. be able to.

【0009】上記導電性ナノ粒子を含む高分子材は、交
流磁場を印加することにより、ナノ粒子がマトリックス
中のポアーに沿って配列、磁場方向に連続的な粒子の導
線として形成される。上記方法によれば、ナノ粒子磁紛
は固体高分子材中に存在するポアーを通して容易に再配
列ができ、磁場方向に異方性を有する優れた導電性プラ
スチックを提供できる。ナノ粒子は、粒子径が100n
m以下の粒子がその効果が著しい。模式図1、2参照
The polymer material containing the conductive nanoparticles is formed by applying an alternating magnetic field so that the nanoparticles are arranged along the pores in the matrix and are conductive as particles continuous in the direction of the magnetic field. According to the above method, the nanoparticle magnetic powder can be easily rearranged through the pores existing in the solid polymer material, and an excellent conductive plastic having anisotropy in the magnetic field direction can be provided. Nanoparticles have a particle size of 100n
Particles of m or less have a remarkable effect. See schematic diagrams 1 and 2

【0010】[0010]

【発明の実施の形態】本発明の実施の形態について述べ
る。 本発明の導電性高分子材はフィラーの添加量を少
なくしても、異方性を持たせることにより、優れた導電
性を示すと共に、粒子が導電性磁紛であるため、磁気シ
ールド効果も有し、電磁気シールド材としての実施の形
態が考えられる。
Embodiments of the present invention will be described. The conductive polymer material of the present invention exhibits excellent conductivity by giving anisotropy even when the amount of filler added is small, and also has a magnetic shielding effect because the particles are conductive magnetic powder. And an embodiment as an electromagnetic shielding material is conceivable.

【0011】次に導電性接着材としての、実施の形態が
考えられる。近年環境問題により鉛ハンダが忌避されて
いる中で、それに代わる導電性接着材としての利用が考
えられる。微粒子混合による接着強度の増大、硬化速度
の増大等の副次効果も期待できる。
Next, an embodiment as a conductive adhesive is considered. In recent years, while lead solder has been repelled due to environmental problems, it can be used as a conductive adhesive instead. Secondary effects such as an increase in adhesive strength and an increase in curing speed due to the mixing of fine particles can also be expected.

【0012】それ以外の実施の形態として、導電性フィ
ルム、導電性塗料がある。
Other embodiments include a conductive film and a conductive paint.

【実施例】以下本発明を実施例に基ずき、更に具体的に
説明するが、本発明は要旨を変更しない限り、下記実施
例に何ら限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless the gist is changed.

【0013】[導電性高分子材の作製] 液状の熱硬化
性エポキシ樹脂に体積比で20%の1nm〜100nm
に粒径分布を持つNi粒子紛を混合、攪拌し、均一分散
させた後、所定の硬化材を加え、約60℃の乾燥器中で
約12時間硬化させた。[磁場の印加] 上記作製試料
から長さ20mm、幅5mm、厚さ1mmの薄板を2枚
切り出し、1つは長手方向に1KOeの交流磁界を印加
2〜3秒保持した。
[Preparation of conductive polymer material] A 20% by volume ratio of 1 nm to 100 nm is added to a liquid thermosetting epoxy resin.
After mixing and stirring and uniformly dispersing Ni particle powder having a particle size distribution, a predetermined curing agent was added, and the mixture was cured in a dryer at about 60 ° C. for about 12 hours. [Application of Magnetic Field] Two thin plates having a length of 20 mm, a width of 5 mm, and a thickness of 1 mm were cut out from the above-prepared sample, and one of them was applied with an AC magnetic field of 1 KOe in the longitudinal direction and held for 2 to 3 seconds.

【0014】[導電性の測定] 磁場を印加したもの
と、しないものとの導電性を測定した。長手方向両端面
をアルミ板で面接触させ、高性能テスターにより測定。
磁場を印加しないものでは0.1〜1MΩ.cmである
のに対し、磁場を印加したものでは0.1〜1KΩ.c
mであった。
[Measurement of Conductivity] Conductivity was measured between a case where a magnetic field was applied and a case where a magnetic field was not applied. Both ends in the longitudinal direction are in surface contact with an aluminum plate and measured with a high-performance tester.
In the case where no magnetic field is applied, 0.1 to 1 MΩ. cm to 0.1 to 1 KΩ. c
m.

【0015】[0015]

【発明の効果】本発明のナノ導電性磁性紛を用いた導電
性高分子材は優れた異方性導電性を示し、しかも樹脂硬
化後、導電性を付加できることから、各種基板、電磁波
シールドハウジング、導電性接着材、導電性フィルム等
の応用が可能になる。
The conductive polymer material using the nano-conductive magnetic powder of the present invention exhibits excellent anisotropic conductivity and can add conductivity after the resin is cured. It is possible to apply conductive adhesives, conductive films, and the like.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 磁場印加前 模式図Fig. 1 Schematic diagram before applying magnetic field

【図2】 “ 後 模式図FIG. 2 “Schematic diagram after

【符号の説明】[Explanation of symbols]

1…… ナノ粒子 2…… ポアー 3…… 樹脂 1 ... nanoparticles 2 ... pore 3 ... resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性樹脂、ゴム等の高分子材に導電性を
付与する導電性フィラーにナノ粒子の導電性磁性紛を用
いることを特徴とする異方性導電性高分子材
1. An anisotropic conductive polymer material, wherein a conductive magnetic powder of nanoparticles is used as a conductive filler for imparting conductivity to a polymer material such as an insulating resin or rubber.
【請求項2】ナノ孔を有する絶縁性高分子材にナノ粒子
導電性磁性紛を均一混合することを特徴とする請求項1
の異方性導電性高分子材
2. The method according to claim 1, wherein the conductive magnetic powder of nanoparticles is uniformly mixed with the insulating polymer material having nanopores.
Anisotropic conductive polymer material
【請求項3】ナノ粒子導電性磁性紛を混合したナノ孔を
有する高分子材に交流磁界を印加し、磁場方向にナノ粒
子を配列せしめ、概方向に導電性を付与することを特徴
とする請求項1の異方性導電性高分子材
3. A method of applying an alternating magnetic field to a polymer material having nanopores mixed with nanoparticle conductive magnetic powder, arranging the nanoparticles in the direction of the magnetic field, and imparting conductivity in a general direction. The anisotropic conductive polymer material according to claim 1.
JP2000229958A 2000-06-23 2000-06-23 Anisotropic conductive polymer Pending JP2002008451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229958A JP2002008451A (en) 2000-06-23 2000-06-23 Anisotropic conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229958A JP2002008451A (en) 2000-06-23 2000-06-23 Anisotropic conductive polymer

Publications (1)

Publication Number Publication Date
JP2002008451A true JP2002008451A (en) 2002-01-11

Family

ID=18722985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229958A Pending JP2002008451A (en) 2000-06-23 2000-06-23 Anisotropic conductive polymer

Country Status (1)

Country Link
JP (1) JP2002008451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100628A1 (en) * 2003-05-05 2004-11-18 Infineon Technologies Ag Electrical element comprising lines made of carbonated plastic, and method and device for the production thereof
US7193317B2 (en) 2002-07-03 2007-03-20 Hitachi, Ltd. Semiconductor module and power conversion device
CN100405506C (en) * 2004-11-26 2008-07-23 鸿富锦精密工业(深圳)有限公司 Conducting material with anisotropy
WO2013140908A1 (en) 2012-03-22 2013-09-26 ソニー株式会社 Reception device, reception method, program, decryption processing device, reception processing system, and information processing device
JP2015505501A (en) * 2012-02-01 2015-02-23 コーニンクレッカ フィリップス エヌ ヴェ Nanoparticle RF shield used in MRI equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193317B2 (en) 2002-07-03 2007-03-20 Hitachi, Ltd. Semiconductor module and power conversion device
US7508068B2 (en) 2002-07-03 2009-03-24 Hitachi, Ltd. Semiconductor module and power conversion device
WO2004100628A1 (en) * 2003-05-05 2004-11-18 Infineon Technologies Ag Electrical element comprising lines made of carbonated plastic, and method and device for the production thereof
US7709379B2 (en) 2003-05-05 2010-05-04 Infineon Technologies Ag Electrical device comprising conductors made of carbonized plastic, and method and apparatus for the production thereof
CN100405506C (en) * 2004-11-26 2008-07-23 鸿富锦精密工业(深圳)有限公司 Conducting material with anisotropy
JP2015505501A (en) * 2012-02-01 2015-02-23 コーニンクレッカ フィリップス エヌ ヴェ Nanoparticle RF shield used in MRI equipment
WO2013140908A1 (en) 2012-03-22 2013-09-26 ソニー株式会社 Reception device, reception method, program, decryption processing device, reception processing system, and information processing device

Similar Documents

Publication Publication Date Title
Hong et al. Anisotropic electromagnetic interference shielding properties of polymer-based composites with magnetically-responsive aligned Fe3O4 decorated reduced graphene oxide
EP3543287B1 (en) Composition for 3 dimensional printing
JPS6195070A (en) Conductive thermosetting dispersion composition
EP3354684B1 (en) Composition for 3d printing
JP2002008451A (en) Anisotropic conductive polymer
CN110783052A (en) Composite rare earth anisotropic bonded magnet and preparation method thereof
Tokonami et al. Green electroless plating method using gold nanoparticles for conducting microbeads: Application to anisotropic conductive films
JP2012124449A (en) Thermally conductive composite particle, thermally conductive sheet and manufacturing method therefor
JPH0394078A (en) Production of electrically conductive particles
Yang et al. Fabrication and characteristic of conductive and ferromagnetic hollow composite microcapsules
TW202000461A (en) Electromagnetic wave absorber and electromagnetic wave absorber composition
JP5757228B2 (en) Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
CN104875445A (en) Magnetic and conductive rubber elastic body composite material and preparation method thereof
WO2012111837A1 (en) High-performance thermal interface films and methods thereof
CN111063475B (en) Low-percolation threshold conductive slurry and preparation method and application thereof
US20170001388A1 (en) A body comprising a particle structure and method for making the same
JP5768676B2 (en) Anisotropic conductive film, manufacturing method thereof, connection structure and manufacturing method thereof
CN109983063B (en) Thermosetting composition
Fang et al. Electromagnetic composite films based on polypyrrole hydro-sponge and Fe3O4 ferrofluid
CN1467231A (en) Nanometer composite double maleimide resin and method for preparing the same
Stancu et al. Structure and Properties of Polyethylene-BasedMagnetic Composites
KR102354937B1 (en) Composition
CN110903652B (en) Flexible stretchable conductive composite material of fishing net structure and preparation method and application thereof
JP2002301726A (en) Method for manufacturing conductive plastic composite material
CN117423488A (en) Layered composite conductive material, and preparation method and application thereof