JP2002004414A - Trussed girder structure and method of constructing it - Google Patents

Trussed girder structure and method of constructing it

Info

Publication number
JP2002004414A
JP2002004414A JP2000195054A JP2000195054A JP2002004414A JP 2002004414 A JP2002004414 A JP 2002004414A JP 2000195054 A JP2000195054 A JP 2000195054A JP 2000195054 A JP2000195054 A JP 2000195054A JP 2002004414 A JP2002004414 A JP 2002004414A
Authority
JP
Japan
Prior art keywords
chord
diagonal
truss beam
steel block
beam structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000195054A
Other languages
Japanese (ja)
Inventor
Toru Takeuchi
徹 竹内
Hiroshi Nakamura
博志 中村
Kentaro Nakai
賢太郎 中井
Masanori Fujita
正則 藤田
Kaoru Kamiyama
芳 神山
Hiroshi Inuki
弘志 犬木
Kazuhiro Nagata
一廣 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000195054A priority Critical patent/JP2002004414A/en
Publication of JP2002004414A publication Critical patent/JP2002004414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a form of a trussed girder structure having high accuracy and being easy to assemble on site, while using continuous members for chord members in the direction of main stresses, without requiring a complex formation process for branch connections. SOLUTION: A trussed girder comprises an upper chord member, a lower chord member and diagonal members. A steel block 3 having a recessed surface 18 on its side facing a chord member 1, with the recessed surface 18 partially or entirely in contact with the outer periphery of the chord member 1 and secured thereto, is interposed between each chord member 1 and each diagonal member 2, the block having on it side opposite to the chord member 1a diagonal member connecting plane 21 or a spherical surface or a cylindrical surface which is perpendicular to the axis of the diagonal member 2. The chord members 1 are secured to the steel block 3 and the steel block 3 to the diagonal members 2 to construct the trussed girder structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土木・建築分野に
おける屋根構造等において使用されるトラス梁構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a truss beam structure used for a roof structure in the field of civil engineering and construction.

【0002】[0002]

【従来の技術】従来の土木・建築で用いられてきた立体
トラス構造には、第1従来例として、図21、図22に
示すシステムトラス構造と、第2従来例として、同様
に、図23に示すような簡易トラスシステムも実用化さ
れている。一方、第3従来例として、図24に示す溶接
トラス構造があり、いずれもトラス材として、最も効率
的な鋼管断面を使用している。図21、図22は、シス
テムトラス構造における屋根架構例16を示し、屋根構
造10は、支持構造8で支持されており、図21(a)
は平面図、同(b)は立面図、図22は図21の(イ)
部の拡大図(つまり、接合部詳細図)である。前記各図
では、パイプ状の構成軸部材(つまり、弦材)1およ
び、斜材2の接合部にノード11を介在させ、弦材1と
斜材2を通しボルト5または溶接などにより固着するこ
とにより、立体骨組みを構成したシステムトラスであ
る。前記の通しボルト5により接合を行う場合、当該ボ
ルト5を外部より回転させるためのワッシャー6、通し
ボルト5を送り出すためのスプリング12、応力伝達の
ためのエンドコーン7などが使用される。このシステム
トラスでは、弦材1および斜材2等すべての部材は、ノ
ード11を介して接合されており、主応力方向の部材も
接点毎に分断されている。
2. Description of the Related Art A conventional three-dimensional truss structure used in civil engineering and construction includes a system truss structure shown in FIGS. 21 and 22 as a first conventional example, and a system truss structure shown in FIG. A simple truss system as shown in Fig. 1 has also been put to practical use. On the other hand, as a third conventional example, there is a welded truss structure shown in FIG. 24, and each uses a most efficient steel pipe section as a truss material. 21 and 22 show a roof frame example 16 in the system truss structure, in which the roof structure 10 is supported by the support structure 8, and FIG.
Is a plan view, FIG. 22B is an elevation view, and FIG. 22 is FIG.
FIG. 4 is an enlarged view of a portion (that is, a detailed view of a joint portion). In each of the drawings, a node 11 is interposed between a pipe-shaped constituent shaft member (that is, a chord member) 1 and a diagonal member 2, and the chord member 1 and the diagonal member 2 are passed through and fixed by bolts 5 or welding. This is a system truss with a three-dimensional framework. When joining with the through bolt 5, a washer 6 for rotating the bolt 5 from the outside, a spring 12 for delivering the through bolt 5, an end cone 7 for transmitting stress, and the like are used. In this system truss, all members such as the chord 1 and the diagonal 2 are joined via the node 11, and the member in the main stress direction is also divided for each contact.

【0003】また、図23(a),(b)は共に簡易ト
ラスシステムの接合部を示し、同図(a)は立面図、
(b)は平面図である。この第2従来例では、弦材1お
よび斜材2の各端部をつぶして平面状にすることによっ
て通しボルト5、押さえ材6等により固着している。
FIGS. 23 (a) and 23 (b) show joints of a simple truss system, and FIG. 23 (a) is an elevation view,
(B) is a plan view. In the second conventional example, each end of the chord member 1 and the diagonal member 2 is flattened to be fixed by a through bolt 5, a holding member 6, and the like.

【0004】図24は溶接トラス構造を用いた屋根架構
例16aを示すものであって、同図(a)は立面図、
(b)は側面図、(c)は同図(a)の(ロ)部の拡大
図(つまり、接合部詳細図)である。この第3従来例で
は、分岐継ぎ手溶接接合部4により、弦材1と斜材2を
接合して平面または立体トラス梁を構成し、これを支持
構造8間に並べて架け渡すことにより屋根構造17を形
成する、溶接鋼管梁構造も一般的に使用されている。こ
の溶接トラス構造では、弦材1は主応力方向に連続であ
るが、各斜材2と弦材1は、分岐継ぎ手溶接接合部4と
いう複雑な3次元断面で接しており、溶接・組立てに際
しては高度な切断技術が要求される。
FIG. 24 shows an example of a roof frame 16a using a welded truss structure. FIG.
(B) is a side view, and (c) is an enlarged view of the (b) portion of FIG. In the third conventional example, the chord member 1 and the diagonal member 2 are joined by the branch joint welded joint 4 to form a flat or space truss beam, and the truss beams are arranged and bridged between the support structures 8 to bridge the roof structure 17. A welded steel tube beam structure, which forms the following, is also commonly used. In this welding truss structure, the chord 1 is continuous in the main stress direction, but each diagonal 2 and the chord 1 are in contact with each other in a complicated three-dimensional cross section called a branch joint welding joint 4, and when welding and assembling. Requires advanced cutting technology.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来構造のう
ち図21、図22に示すシステムトラスにおいては、機
械加工による高精度の部材製作が可能な一方、支持構造
間を繋ぐ主応力方向において、弦材1が接点毎にノード
11により分割され、主応力を伝達する接合部が多数必
要となり、材料・加工コストが増大するという問題があ
った。同様に、図23に示す鋼管部材端部を平面状につ
ぶして各接点でボルト接合する簡易トラス構造も、支持
構造間を繋ぐ主応力方向において弦材1が接点毎にノー
ドにより分割され、主応力を伝達するボルト接合部が過
大となりスパンが限定される課題があった。
However, in the system truss shown in FIGS. 21 and 22 among the conventional structures, it is possible to manufacture a high-precision member by machining, but in the main stress direction connecting the support structures, The chord material 1 is divided by the node 11 for each contact point, and a large number of joints for transmitting the main stress are required, and there is a problem that the material and processing costs increase. Similarly, the simple truss structure shown in FIG. 23 in which the ends of the steel pipe members are flattened and bolted at each contact point is also used. In the main stress direction connecting the support structures, the chord material 1 is divided at each contact point by a node, and There has been a problem that the bolt joint for transmitting the stress becomes excessively large and the span is limited.

【0006】一方、図24に示す、分岐継ぎ手溶接接合
部4により弦材1と斜材2を接合した溶接鋼管トラス構
造では、弦材断面が主応力方向に連続しているため接合
部重量は軽くて済むが、斜材2の分岐継ぎ手溶接接合部
4が複雑な3次元形状となるため、加工手間がかかり、
また、溶接歪みにより精度が出しにくい点、また工場で
組立てを行うため運搬上嵩ばるなどの問題点があった。
本発明の目的は前記のトラス梁構造において、主応力方
向の弦材は連続部材を使用し、しかも複雑な分岐継ぎ手
加工を必要とせず、かつ高精度で現場組立てが容易な構
造形式を提供することにある。
On the other hand, in the welded steel pipe truss structure shown in FIG. 24 in which the chord member 1 and the diagonal member 2 are joined by the branch joint welding joint 4, the weight of the joint portion is reduced because the chord section is continuous in the main stress direction. Although it suffices to be light, since the branch joint welding joint 4 of the diagonal member 2 has a complicated three-dimensional shape, it takes a lot of processing time,
In addition, there is a problem that it is difficult to obtain accuracy due to welding distortion, and that it is bulky in transportation due to assembly at a factory.
An object of the present invention is to provide a truss beam structure in which a chord member in a main stress direction uses a continuous member, does not require complicated branch joint processing, and is highly accurate and easy to assemble on site. It is in.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
め、本発明は、次のように構成する。第1の発明は、上
下弦材及び斜材により構成されるトラス梁において、前
記弦材と斜材との間に、弦材側に凹面を持ち、当該凹面
の一部又は全部が当該弦材の外周と接して固着され、前
記弦材側と反対の側に斜材の軸心に対して直交する斜材
接合用の平面、または球面或いは円筒面を持つ鋼製ブロ
ックを介在させ、弦材と鋼製ブロックおよび、鋼製ブロ
ックと斜材をそれぞれ固着することにより構成される。
In order to solve the above-mentioned problems, the present invention is configured as follows. A first invention is a truss beam composed of upper and lower chords and diagonal members, and has a concave surface on the chord side between the chord members and diagonal members, and a part or all of the concave surface is the chord member. A steel block having a diagonal joining plane orthogonal to the diagonal axis or a spherical or cylindrical surface is interposed on the side opposite to the chord side and fixed to the outer periphery of the chord. And the steel block, and the steel block and the oblique material are fixed to each other.

【0008】第2の発明は、第1発明のトラス梁構造に
おいて、弦材と斜材の一方または両方に鋼管又は角鋼管
を用いて構成される。
According to a second aspect, in the truss beam structure according to the first aspect, a steel pipe or a square steel pipe is used for one or both of a chord member and a diagonal member.

【0009】第3の発明は、第1または第2発明のトラ
ス梁構造において、鋼製ブロックと弦材は、当該弦材軸
に平行な直線で接し固着して構成されている。
According to a third aspect of the present invention, in the truss beam structure according to the first or second aspect, the steel block and the chord are in contact and fixed by a straight line parallel to the chord axis.

【0010】第4の発明は、第1〜第3発明のトラス梁
構造において、鋼製ブロックと弦材は溶接により固着し
て構成されている。
According to a fourth aspect of the present invention, in the truss beam structure according to the first to third aspects, the steel block and the chord are fixed by welding.

【0011】第5の発明は、第1〜第3発明のトラス梁
構造において、鋼製ブロックと斜材はボルトにより固着
して構成されている。
According to a fifth aspect, in the truss beam structure according to the first to third aspects, the steel block and the diagonal member are fixed to each other with bolts.

【0012】第6の発明は、第5発明のトラス梁構造に
おいて、斜材接合用のボルトを外部ワッシャーを回転さ
せることにより締結する構成とされている。
According to a sixth aspect of the present invention, in the truss beam structure according to the fifth aspect of the present invention, the diagonal member joining bolt is fastened by rotating an external washer.

【0013】第7発明のトラス梁の施工法は、第1〜6
のいずれかの発明のトラス梁構造における、前記鋼製ブ
ロックと弦材の固着を、斜材をガイドにして工場にて行
い、固着後斜材を分離して運搬し、現場で組み立てるこ
とを特徴とする。
[0013] The method of constructing a truss beam according to the seventh invention is as follows.
In the truss beam structure of any one of the inventions, the steel block and the chord are fixed at the factory using the diagonal material as a guide, and after fixing, the diagonal material is separated and transported, and assembled at the site. And

【0014】第8の発明は、複数の上下弦材及び斜材に
より構成されるトラス梁において、前記弦材と斜材との
間に、弦材側に凹面を持ち、当該凹面の一部または全部
が当該弦材の外周と接し、反対側に弦材と斜材接合用の
平行な平面を持つ鋼製ブロックを介在させ、弦材と鋼製
ブロック、鋼製ブロックと端部を平面状につぶした各斜
材を固着することにより構成される。
According to an eighth aspect of the present invention, in a truss beam composed of a plurality of upper and lower chords and diagonal members, a concave surface is provided on the chord side between the chord members and the diagonal members, and a part of the concave surface or The whole is in contact with the outer periphery of the chord material, and a steel block having a parallel plane for joining the chord material and diagonal material is interposed on the opposite side, and the chord material and the steel block, the steel block and the end are made flat. It is constituted by fixing each crushed diagonal material.

【0015】第9の発明は、第8発明の鋼製ブロックの
弦材と接する側と反対側に設ける、前記弦材と平行な斜
材接合用の平面に代えて、斜材と平行な斜材接合用の平
面を持つことを特徴とする。
A ninth aspect of the present invention is a steel block according to the eighth aspect of the present invention, which is provided on a side opposite to a side in contact with the chord material, instead of a plane for joining the diagonal material parallel to the chord material. It has a flat surface for joining materials.

【0016】第10の発明は、第8または第9発明のト
ラス梁構造において、弦材及び斜材に鋼管又は角鋼管を
用いて構成される。
According to a tenth aspect, in the truss beam structure according to the eighth or ninth aspect, a steel pipe or a square steel pipe is used for a chord and a diagonal.

【0017】第11の発明は、第8〜第10発明のトラ
ス梁構造において、鋼製ブロックと弦材は弦材軸に平行
な直線で接し固着して構成される。
According to an eleventh aspect of the present invention, in the truss beam structure according to the eighth to tenth aspects, the steel block and the chord are in contact with and fixed to a straight line parallel to the chord axis.

【0018】第12の発明は、第8〜第11発明のトラ
ス梁構造において、鋼製ブロックと弦材は溶接により固
着して構成される。
According to a twelfth aspect, in the truss beam structure according to the eighth to eleventh aspects, the steel block and the chord are fixed by welding.

【0019】第13の発明は、第8〜第12発明のトラ
ス梁構造において、鋼製ブロックと各斜材はボルトによ
り固着して構成される。
According to a thirteenth aspect, in the truss beam structure according to the eighth to twelfth aspects, the steel block and each diagonal member are fixed by bolts.

【0020】第14発明のトラス梁の施工法は、第8〜
13発明のトラス梁構造における、各斜材の接合ボルト
は鋼製ブロックと弦材を固着する際にあらかじめ鋼製ブ
ロック内に設置されており、端部を平面状につぶした各
斜材を取り付けた後鋼製ブロック外部からナットを締め
ることによって一体化することを特徴とする。
The method for constructing the truss beam of the fourteenth invention is described in the eighth to eighth aspects.
In the truss beam structure of the thirteenth invention, the connecting bolts of each diagonal member are previously installed in the steel block when fixing the steel block and the chord member, and each diagonal member whose end is crushed in a plane is attached. After that, they are integrated by tightening a nut from outside the steel block.

【0021】[0021]

【作用】本発明では、上下弦材と斜材との間に、凹面で
弦材側面に接し、且つ弦材の側と反対側に各斜材との接
合面を持つ鋼製ブロックを介在させることにより、斜材
は第3従来例のような分岐継ぎ手接合を回避して、ボル
ト接合などシステムトラスの持つ簡便で精度のよい接合
方式とすることができ、しかも、弦材は第1従来例のよ
うなノードを使用しないから、連続材のままの効率的な
接合部を実現できる。
According to the present invention, a steel block is provided between the upper and lower chord members and the diagonal members, the concave surface being in contact with the chord side surfaces, and the steel block having a joint surface with each diagonal member on the side opposite to the chord members. As a result, the diagonal member can avoid the branch joint as in the third conventional example, and can be a simple and accurate joining method of the system truss such as bolt connection, and the chord material is the first conventional example. Since no such nodes are used, it is possible to realize an efficient joint as a continuous material.

【0022】また本発明において、鋼製ブロックと弦材
との間に働く力は弦材軸方向のせん断力のみなので、鋼
製ブロックと弦材との間の接合は、前述のように鋼製ブ
ロックの両端縁部端部の溶接または、ボルト接合のみで
よい。この溶接又はボルト接合は、精度良く機械加工さ
れた斜材をガイドにして工場で行い、溶接後は各部材を
分解して現地へ輸送することができるので、一体で輸送
する必要のある溶接トラス梁構造に比べて輸送効率も良
い。
In the present invention, since the force acting between the steel block and the chord is only the shearing force in the axial direction of the chord, the joint between the steel block and the chord is made as described above. Only welding or bolting of both ends of the block may be sufficient. This welding or bolt joining is performed at the factory using a precision machined diagonal material as a guide, and after welding, each member can be disassembled and transported to the site, so welding truss that needs to be transported together The transportation efficiency is better than the beam structure.

【0023】また、上下弦材と斜材との間に介在させる
鋼製ブロックの斜材との接合面を形成して、この接合面
に斜材の端部を当接してボルト接合し、あるいは、斜材
との接合面は必要に応じて弦材に対して平行な平面、ま
たは斜材に対して平行な平面とし、この接合用の平面
に、平面状につぶした斜材の端部を合わせて通しボルト
等で固着することにより、複雑な溶接開先の必要な各斜
材の分岐継ぎ手接合を回避し、同時に弦材は連続材のま
まの効率的で安価な接合部を実現できる。
Also, a joint surface between the upper and lower chord members and the diagonal member is formed between the upper and lower chord members and the diagonal member, and the end of the diagonal member is brought into contact with the joint surface and bolted, or If necessary, the joint surface with the diagonal material shall be a plane parallel to the chord material, or a plane parallel to the diagonal material, and the end of the flattened diagonal material shall be By jointly fixing them with through bolts and the like, it is possible to avoid branch joint joining of each diagonal material that requires a complicated welding groove, and at the same time, it is possible to realize an efficient and inexpensive joint portion where the chord material is a continuous material.

【0024】[0024]

【発明の実施の形態】次に、本発明の実施形態を図を参
照して詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0025】図1〜図3は、実施形態1に係るトラス梁
構造を示し、図1(a)が弦材と斜材の接合部立面図、
図(b)が図(a)の縦断側面図、図(c)が鋼製ブロ
ックの斜視図、図2が、斜材と弦材を分離した状態の接
合部断面図、図3が、斜材と弦材を接合した状態の接合
部断面図である。
FIGS. 1 to 3 show a truss beam structure according to the first embodiment. FIG. 1 (a) is an elevation view of a joint between a chord member and a diagonal member.
FIG. 2 (b) is a longitudinal side view of FIG. 2 (a), FIG. 2 (c) is a perspective view of a steel block, FIG. 2 is a cross-sectional view of a joint where a diagonal material and a chord material are separated, and FIG. FIG. 4 is a cross-sectional view of a joining portion in a state where a material and a chord material are joined.

【0026】各図に示すように、鋼製ブロック3は凹面
18と、弦材1の外周で、かつ弦材軸方向に平行な両端
接触縁20を有し、さらに、前記凹面18と反対の面に
は、斜材2の端部を面接合させるべく、当該斜材2の軸
線に対し直交する接合平面21とこの接合平面21の中
心部にボルト孔22を有している。この接合平面21と
ボルト孔22の数は、鋼製ブロック3に接合する斜材2
の本数によって決まり、図示例では、鋼製ブロック3に
対し、四方から集まる4本の斜材2の端部を接合させる
べく、4つの接合平面21およびボルト孔22を有して
いる。鋼製ブロック3において、前記の接合平面21を
形成したときは斜材2の端部も平面として、両接合平面
の面接触により鋼製ブロック3と斜材2を接合する(詳
細は後述する)。
As shown in the figures, the steel block 3 has a concave surface 18 and contact edges 20 at both ends on the outer periphery of the chord 1 and parallel to the chord axial direction. The surface has a joining plane 21 orthogonal to the axis of the oblique member 2 and a bolt hole 22 at the center of the joining plane 21 so that the ends of the oblique member 2 are joined to each other. The number of the joining planes 21 and the number of the bolt holes 22 are determined by the number of the diagonal members 2 joined to the steel block 3.
In the illustrated example, the steel block 3 has four joint planes 21 and bolt holes 22 to join the ends of four diagonal members 2 gathered from all sides. In the steel block 3, when the joint plane 21 is formed, the end of the diagonal member 2 is also a plane, and the steel block 3 and the diagonal member 2 are joined by surface contact between both joint planes (details will be described later). .

【0027】鋼製ブロック3は機械加工によって製作し
てもよく、また鋳造、鍛造によって製作しても良い。
The steel block 3 may be manufactured by machining, or may be manufactured by casting or forging.

【0028】鋼製ブロック3は図示のように、その凹面
18を弦材1の外周面に貼り付くように配置しかつ、両
端接触縁20を弦材軸方向に平行配置したうえ、この両
端接触縁20と弦材1の外周面との間を溶接23で接合
する。弦材1と鋼製ブロック3との溶接は、工場におい
て、鋼製ブロック3に斜材2を仮接合して、溶接位置を
合わせながら行う。
As shown in the drawing, the steel block 3 is arranged so that its concave surface 18 is stuck to the outer peripheral surface of the chord material 1 and both end contact edges 20 are arranged in parallel with the chord material axial direction. The edge 20 and the outer peripheral surface of the chord 1 are joined by welding 23. The welding of the chord material 1 and the steel block 3 is performed in a factory by temporarily joining the diagonal member 2 to the steel block 3 and adjusting the welding position.

【0029】前記の溶接が終わったならば、鋼製ブロッ
ク3から斜材2を分離し、現場へは、弦材1に鋼製ブロ
ック3が溶接された状態で運搬される。現場において、
弦材1を所定の配置に組んだうえ、弦材1に予め溶接さ
れている鋼製ブロック3に斜材2をねじまたは溶接で接
合する。
After the welding is completed, the diagonal member 2 is separated from the steel block 3 and transported to the site in a state where the steel block 3 is welded to the chord member 1. In the field,
After assembling the string 1 in a predetermined arrangement, the diagonal 2 is joined to the steel block 3 previously welded to the string 1 by screwing or welding.

【0030】図2、図3に示すように、斜材2を鋼製ブ
ロック3にボルト接合するには、図18で説明したのと
同様に行う。つまり、鋼管製の斜材2の端部にエンドコ
ーン7を溶接29で固着し、エンドコーン7の先端から
突出させたボルト5を、このボルト5に嵌合係止したワ
ッシャー6を外部から回すことで鋼製ブロック3のボル
ト孔22に螺合して行う。
As shown in FIGS. 2 and 3, the connection of the diagonal member 2 to the steel block 3 by bolts is performed in the same manner as described with reference to FIG. That is, the end cone 7 is fixed to the end of the steel pipe diagonal member 2 by welding 29, and the bolt 5 protruding from the end of the end cone 7 is turned from the outside with the washer 6 fitted and locked to the bolt 5. This is performed by screwing into the bolt hole 22 of the steel block 3.

【0031】鋼製ブロック3の斜材2との接合面は、当
該斜材2の軸線に直交する接合平面21に代えて、球
面、または円筒面としてもよく、その場合は、斜材2の
接合端面も球面、または円筒面とする。この接合面は、
機械加工などにより各部材方向に向けて加工されるた
め、斜材2と鋼製ブロック3とは常に共通の直交面を持
つ接合端部により接合できる。したがって、図1(a)
に示すように斜材2から鋼製ブロック3へ伝達せられる
圧縮力13は、ワッシャー6の支圧により、引張り力1
4はボルト5の引張り力により弦材1に伝達され、合成
されたせん断力15は溶接部23により弦材1に伝達さ
れる。
The joint surface of the steel block 3 with the diagonal member 2 may be a spherical surface or a cylindrical surface instead of the joint plane 21 perpendicular to the axis of the diagonal member 2. The joining end surface is also a spherical surface or a cylindrical surface. This joint surface
Since the diagonal member 2 and the steel block 3 can be always joined by a joint end portion having a common orthogonal plane because the members are processed in the direction of each member by machining or the like. Therefore, FIG.
As shown in the figure, the compressive force 13 transmitted from the diagonal member 2 to the steel block 3 is caused by the supporting force of the washer 6 and the tensile force 1
4 is transmitted to the chord 1 by the tensile force of the bolt 5, and the combined shearing force 15 is transmitted to the chord 1 by the welding portion 23.

【0032】図4(a)、(b)は他の実施形態を示
す。第1の実施形態として図1に示した例では、鋼製ブ
ロック3の凹面18の曲率が弦材1の外周面の曲率と殆
ど同じであり、それ故に、凹面18と弦材1の外周面が
略全面的に接していた。これに対し、他の実施形態とし
て図4(a)に示す例では、鋼製ブロック3の凹面18
の曲率が、弦材外径の曲率よりも大きく、それ故に、凹
面18と弦材1の外周面との間に、間隙25が形成され
ていて、鋼製ブロック3は、その両端接触縁20におけ
る溶接23のみで弦材1の外周面に接合されている。こ
のような場合でも、両端接触縁20における溶接23に
よりせん断力は伝達可能であり、せん断力と弦材芯の偏
心を考慮すれば異なる径の弦材に対しても共通の鋼製ブ
ロック3を使用することができる。
FIGS. 4A and 4B show another embodiment. In the example shown in FIG. 1 as the first embodiment, the curvature of the concave surface 18 of the steel block 3 is almost the same as the curvature of the outer peripheral surface of the chord 1, and therefore, the concave surface 18 and the outer peripheral surface of the chord 1 Was almost completely in contact. On the other hand, in the example shown in FIG. 4A as another embodiment, the concave surface 18 of the steel block 3 is used.
Is greater than the curvature of the outer diameter of the chord, so that a gap 25 is formed between the concave surface 18 and the outer peripheral surface of the chord 1, and the steel block 3 Are joined to the outer peripheral surface of the chord material 1 only by the welding 23. Even in such a case, the shear force can be transmitted by the welding 23 at the contact edges 20 at both ends, and if the shear force and the eccentricity of the chord core are taken into consideration, the common steel block 3 can be used for chords having different diameters. Can be used.

【0033】図4(b)は弦材1に角鋼管を用いた使用
例で、この角鋼管製の弦材1に鋼製ブロック3を溶接し
た例である。この例では、角鋼管の角部24が凹面18
の中央部に接しており、角部24の両側に間隙25が形
成されている。つまり、鋼製ブロック3の両端接触縁2
0が角鋼管の直角に交わるフラットな2つの面に接し、
その両端接触縁20を溶接することで、鋼製ブロック3
が角鋼管で構成された弦材1に接合されている。この例
でも、鋼製ブロック3の両端接触縁20が弦材1に接し
て、溶接23等で接合されていれば、力の伝達を行うこ
とができる。
FIG. 4 (b) shows an example of use in which a square steel pipe is used for the chord material 1, in which a steel block 3 is welded to the chord material 1 made of a square steel pipe. In this example, the corner 24 of the square steel pipe is
, And a gap 25 is formed on both sides of the corner 24. That is, both ends contact edge 2 of steel block 3
0 touches two flat surfaces that intersect at right angles of the square steel pipe,
By welding the contact edges 20 at both ends, the steel block 3
Are joined to a chord 1 made of a square steel pipe. Also in this example, if the contact edges 20 at both ends of the steel block 3 are in contact with the chord material 1 and are joined by welding 23 or the like, the force can be transmitted.

【0034】なお、弦材1の断面形状は丸鋼管、角鋼管
に限らず、他の異形断面でも良く、外周面の2箇所と、
鋼製ブロック3の両端接触縁20が弦材1の主軸方向に
平行に接触し、溶接できる構造であれば良い。
The cross-sectional shape of the chord 1 is not limited to a round steel pipe or a square steel pipe, but may be another deformed cross section.
Any structure may be used as long as the contact edges 20 at both ends of the steel block 3 contact in parallel with the main axis direction of the chord 1 and can be welded.

【0035】また、図4(b)において、一方の斜材2
(図中右側)は、鋼製ブロック3に対し、図1〜図3と
同様、接合ボルト5で結合されている。これに対して、
他方の斜材2(図中左側)は、鋼製ブロック3に対し、
当該鋼製ブロック3および、斜材2のそれぞれに形成さ
れる円筒断面接合部26に溶接により接合されており、
このような接合例でも良い。
In FIG. 4B, one of the diagonal members 2
(Right side in the figure) is connected to the steel block 3 with the joining bolt 5 as in FIGS. 1 to 3. On the contrary,
The other diagonal member 2 (left side in the figure) is
The steel block 3 and the cylindrical cross section 26 formed on each of the diagonal members 2 are joined by welding,
Such a bonding example may be used.

【0036】図5、図6はさらに他の実施形態を示す。
前述した図3、図4の実施形態では、鋼製ブロック3は
両端接触縁20の溶接接合であるのに対し、図5、図6
の例では、鋼製ブロック3の外側から当該鋼製ブロック
3を貫通してボルト27を弦材1の外周面にねじ込むこ
とで、鋼製ブロック3を弦材1に固着した例を示す。他
の構成は前の実施形態と同じである。
FIGS. 5 and 6 show still another embodiment.
In the embodiment of FIGS. 3 and 4 described above, the steel block 3 is a welded joint of the contact edges 20 at both ends, whereas FIGS.
In the example, the steel block 3 is fixed to the string 1 by screwing a bolt 27 to the outer peripheral surface of the string 1 through the steel block 3 from the outside of the steel block 3. Other configurations are the same as the previous embodiment.

【0037】図7(a),(b),(c)はさらに他の
実施形態を示す。この実施形態では、鋼製ブロック3の
斜材2との接合面を、当該斜材2の軸線に接線が直交す
る所定の曲率(R)を有する接合球面21aとし、この
接合球面21aに4個のボルト孔22を開設し、このボ
ルト孔22を介して鎖線で軸線(イ)を示す方向に斜材
2を接合する鋼製ブロック3の例を示す。
FIGS. 7A, 7B and 7C show still another embodiment. In this embodiment, the joint surface of the steel block 3 with the diagonal member 2 is a joint spherical surface 21a having a predetermined curvature (R) whose tangent is orthogonal to the axis of the diagonal member 2, and four joint spherical surfaces 21a are provided. An example of the steel block 3 in which the bolt holes 22 are opened and the diagonal members 2 are joined through the bolt holes 22 in the direction shown by the chain line in the direction of the axis (a).

【0038】図8(a),(b),(c)はさらに他の
実施形態を示す。図8(a)の例は、弦材1に固着され
た鋼製ブロック3に、斜材2を接合するための接合平面
21と、ボルト孔22が、当該円筒断面の弦材1の周方
向に一列に、かつ弦材軸方向に1個または複数個設けら
れた例を示す。図8(b)の例は、鋼製ブロック3に接
合平面21と、ボルト孔22が、円筒断面の弦材1の周
方向に三列並設された例を示す。図8(c)の例は、そ
れぞれ接合平面21と、ボルト孔22が、弦材1の周方
向に二列設けられた三つの鋼製ブロック3が、円筒断面
の弦材1の外周を取り囲むように配置された例を示す。
FIGS. 8A, 8B and 8C show still another embodiment. In the example of FIG. 8A, a joining plane 21 for joining the diagonal member 2 to the steel block 3 fixed to the chord member 1 and a bolt hole 22 are formed in the circumferential direction of the chord member 1 having the cylindrical cross section. Fig. 1 shows an example in which one or a plurality are provided in a line and in the chord axial direction. The example of FIG. 8B shows an example in which a joint plane 21 and bolt holes 22 are arranged in the steel block 3 in three rows in the circumferential direction of the chord 1 having a cylindrical cross section. In the example of FIG. 8C, three steel blocks 3 in each of which the joining plane 21 and the bolt holes 22 are provided in two rows in the circumferential direction of the chord 1 surround the outer periphery of the chord 1 having a cylindrical cross section. An example is shown below.

【0039】図9(a),(b),(c),(d)はさ
らに他の実施形態を示す。この実施形態の接合方式は、
斜材2の端部7をつぶしてボルト接合するものである。
図9(a)が接合部立面図、(b)が接合部断面図、
(c)が見上げの接合部平面図、(d)が鋼製ブロック
詳細図である。鋼製ブロック3は端部で弦材1の側面に
接触するような凹面18を持ち、弦材1の軸方向に平行
な両端線上で弦材1の外面に接する接触縁20を溶接す
ることにより弦材1に固着される。
FIGS. 9A, 9B, 9C and 9D show still another embodiment. The joining method of this embodiment is as follows.
The end 7 of the diagonal member 2 is crushed and bolted.
9A is an elevation view of a joint, FIG. 9B is a sectional view of the joint,
(C) is a plan view of a joint portion looking up, and (d) is a detailed view of a steel block. The steel block 3 has a concave surface 18 at the end to be in contact with the side surface of the chord 1, and by welding a contact edge 20 contacting the outer surface of the chord 1 on both end lines parallel to the axial direction of the chord 1. It is fixed to the string 1.

【0040】鋼製ブロック3の反対側には、それぞれ弦
材1に平行な斜材接合用の平面21bおよびボルト孔2
2を有している。各斜材2は端部7が平面状につぶさ
れ、鋼製ブロック3の平面に接するように曲げられてい
て、この端部7は前記斜材接合用の平面21bに当てが
われ、ボルト孔22に通しボルト5を挿入することで、
押さえ材6を介して鋼製ブロック3に接合される。通し
ボルト5が一本の場合は斜材2の角度に拘わらず自由に
回転させて組み立て、通しボルト5を締め付けることに
より摩擦接合で斜材2を鋼製ブロック3に固定すること
ができる。斜材2から鋼製ブロック3へ伝達される圧縮
力13および引張力14は通しボルト5および押さえ材
6により伝達され、合成されたせん断力15は接触縁2
0部の溶接により弦材1に伝達される。
On the opposite side of the steel block 3, a plane 21b for connecting diagonal members and a bolt hole 2
Two. Each diagonal member 2 is flattened at its end 7 and bent so as to be in contact with the plane of the steel block 3. The end 7 is applied to the diagonal member joining plane 21b, and bolt holes are formed. By inserting the bolt 5 through 22
It is joined to the steel block 3 via the pressing member 6. When there is only one through bolt 5, the slant 2 can be fixed to the steel block 3 by frictional joining by freely rotating and assembling regardless of the angle of the slant 2 and tightening the through bolt 5. The compressive force 13 and the tensile force 14 transmitted from the diagonal member 2 to the steel block 3 are transmitted by the through bolt 5 and the pressing member 6, and the combined shear force 15 is applied to the contact edge 2.
It is transmitted to the chord material 1 by welding the zero part.

【0041】鋼製ブロック3は鋳造、鍛造によって製作
してもよいし、溝型断面等の圧延材を切断して製作して
もよい。
The steel block 3 may be manufactured by casting or forging, or may be manufactured by cutting a rolled material such as a channel-shaped cross section.

【0042】また、通しボルト5は鋼製ブロック3を工
場で弦材1に溶接する際、あらかじめ挿入しておくこと
もできる。この場合には、各部材を分解して運搬し、施
工現場にて組立て時に斜材2の端部ボルト孔を通しボル
ト5に通した後、押さえ材6およびナットを通しボルト
5に締め付けることにより全体を一体化することが容易
に実現できる。
Further, the through bolts 5 can be inserted in advance when the steel block 3 is welded to the string 1 at the factory. In this case, each member is disassembled and transported, and after assembling at the construction site, after passing through the end bolt hole of the diagonal member 2 and the bolt 5, the holding member 6 and the nut are tightened to the bolt 5. The whole can be easily integrated.

【0043】図10は上記接合方式(図9)の応用例を
示す。図10(a)は弦材1に角型鋼管を用いた例、
(b)は弦材1にH断面を用いた例である。このよう
に、弦材1には鋼製ブロック3が端部の2辺で接するこ
とのできる任意の断面形状をとることができ、また斜材
2も端部7を平面状につぶすことのできる任意の断面形
状を用いることができる。
FIG. 10 shows an application example of the above-mentioned joining method (FIG. 9). FIG. 10A shows an example in which a square steel pipe is used for the chord material 1.
(B) is an example in which an H section is used for the chord material 1. As described above, the string member 1 can have any cross-sectional shape in which the steel block 3 can be in contact with the two sides of the end, and the diagonal member 2 can also crush the end 7 in a plane. Any cross-sectional shape can be used.

【0044】図11は接合方式の別の応用例を示す。図
11(a),(b)は鋼製ブロック3と斜材2を接合す
る通しボルト5を一本でなく、複数本使用した例で、
(a)は立面図、(b)は見上げの平面図である。この
ように斜材2より弦材1に伝達するせん断力がボルト一
本では不足する場合は、必要に応じボルト本数を増やす
ことができる。同図(c),(d)は鋼製ブロック3に
斜材2を分離して接合した例で、(c)が立面図、
(d)が見上げの平面図である。
FIG. 11 shows another application example of the joining method. FIGS. 11 (a) and 11 (b) show an example in which a plurality of bolts 5 are used to join the steel block 3 and the diagonal member 2 instead of one.
(A) is an elevation view, (b) is a plan view looking up. When the shear force transmitted from the slant member 2 to the chord member 1 is insufficient with one bolt, the number of bolts can be increased as necessary. 2C and 2D are examples in which the diagonal member 2 is separated and joined to the steel block 3, and FIG.
(D) is a plan view of looking up.

【0045】図12(a)、(b)、(c)は、接合方
式のさらに他の実施形態を示す。この実施形態の接合方
式では、鋼製ブロック3は、端部で弦材1の側面に接す
るような凹面18を持ち、弦材1の軸方向に平行な両端
縁上で弦材1の外面に接する接触縁20を溶接すること
により、弦材1に固着される。
FIGS. 12 (a), 12 (b) and 12 (c) show still another embodiment of the joining method. In the joining method of this embodiment, the steel block 3 has a concave surface 18 that is in contact with the side surface of the chord 1 at an end portion, and is formed on the outer surface of the chord 1 on both ends parallel to the axial direction of the chord 1. It is fixed to the chord material 1 by welding the contact edges 20 that are in contact.

【0046】鋼製ブロック3の反対側には、弦材方向に
斜材に対して平行な当該斜材接合用の平面21c及びボ
ルト孔22を有している。各斜材2は端部7が平面状に
つぶされていて、この平面状部を鋼製ブロック3の前記
斜材接合用の平面21cに接するように当てがい、ボル
ト孔22に通しボルト5を挿入し、押え材6を介して斜
材2の端部が鋼製ブロック3に接合される。
On the opposite side of the steel block 3, there is a flat surface 21c for connecting the diagonal members and a bolt hole 22 parallel to the diagonal members in the chord direction. The end 7 of each diagonal member 2 is flattened, and the flat part is applied to the steel block 3 so as to be in contact with the diagonal member joining plane 21c, and the bolt 5 is passed through the bolt hole 22. It is inserted, and the end of the diagonal member 2 is joined to the steel block 3 via the holding member 6.

【0047】通しボルト5が一本の場合は斜材2の角度
に拘わらず自由に回転させて組立て、通しボルト5を締
め付けることにより、摩擦接合で斜材2を鋼製ブロック
3へ固定することができる。斜材2から鋼製ブロック3
へ伝達される圧縮力13および引張力14は通しボルト
5および押え材6に伝達され、合成されたせん断力15
は接触縁20部の溶接により弦材1に伝達される。
When there is only one through bolt 5, the slant 2 is fixed to the steel block 3 by friction welding by freely rotating and assembling regardless of the angle of the slant 2, and tightening the through bolt 5. Can be. From diagonal 2 to steel block 3
The compression force 13 and the tension force 14 transmitted to the bolts 5 and the pressing members 6 are transmitted to the
Is transmitted to the chord 1 by welding the contact edge 20.

【0048】図13、図14、図15は、図12に示す
接合方式の応用例を示す。図13は、通しボルト5を2
本にした例であり、複数本の通しボルト5を用いること
ができる。図14は、弦材1に角型鋼管を用いた例、図
15は、弦材1にH型断面材を用いた例である。このよ
うに弦材1には鋼製ブロック3が端部の2辺で接するこ
とができる任意の断面形状をとることができ、また、斜
材2も端部7を平面状につぶすことができる任意の断面
形状を用いることができる。
FIGS. 13, 14 and 15 show examples of application of the joining method shown in FIG. FIG. 13 shows that
In this example, a plurality of through bolts 5 can be used. FIG. 14 shows an example in which a square steel pipe is used for the chord 1, and FIG. 15 shows an example in which an H-shaped cross section is used for the chord 1. As described above, the string member 1 can have any cross-sectional shape in which the steel block 3 can be in contact with the two sides of the end, and the diagonal member 2 can also crush the end 7 in a plane. Any cross-sectional shape can be used.

【0049】次に、図16および、図17は図1、図
9、または図12の接合方式を用いて3角形断面を持つ
立体トラス梁28を構成し、屋根架構16を構築した例
を示すもので、図16が全体斜視図、図17(a)が拡
大梁側面図、同図(b)が図(a)におけるA−A断面
図、同(c)が、A−A断面における変形例を示す図で
ある。
Next, FIGS. 16 and 17 show an example in which a three-dimensional truss beam 28 having a triangular cross section is constructed by using the joining method shown in FIG. 1, 9 or 12, and the roof frame 16 is constructed. 16 is an overall perspective view, FIG. 17 (a) is an enlarged beam side view, FIG. 17 (b) is an AA sectional view in FIG. 17 (a), and FIG. 17 (c) is a deformation in AA section. It is a figure showing an example.

【0050】立体トラス梁28は、図17(b)に示す
ように断面をV字形に構成し、頂部を直交する母屋9で
繋ぐこともできるし、図17(c)に示すように、W形
に連続させ、折板構造とすることもできる。また、本発
明に係る立体トラス梁は、図18(a)〜(c)や、図
19(a)、(b)の各図に示す立体トラス梁28のよ
うに、曲げたり、勾配を付けたり、梁せいを変化させる
ことも可能である。
The space truss beam 28 has a V-shaped cross section as shown in FIG. 17 (b), and the tops can be connected by a purlin 9 which is orthogonal. Alternatively, as shown in FIG. The shape can be continued to form a folded plate structure. Further, the space truss beam according to the present invention is bent or provided with a gradient like the space truss beam 28 shown in FIGS. 18A to 18C and FIGS. 19A and 19B. And it is also possible to change the beam.

【0051】図20(a),(b)は、本発明による立
体トラス梁構造の別の応用例を示すものであって、同図
(a)はドーム屋根30を示し、同図(b)はタワー3
1である。このような梁以外の立体トラス構造にも本発
明を適用でき、その場合も、弦材1と斜材2を鋼製ブロ
ック3で結合することによる既述の作用、効果を有効に
発揮させることができる。
FIGS. 20 (a) and 20 (b) show another application example of the space truss beam structure according to the present invention. FIG. 20 (a) shows a dome roof 30 and FIG. Is Tower 3
It is one. The present invention can be applied to a three-dimensional truss structure other than such a beam, and in this case, the above-described operation and effect by connecting the chord member 1 and the diagonal member 2 with the steel block 3 can be effectively exhibited. Can be.

【0052】[0052]

【発明の効果】本発明によると、トラス梁構造における
上下弦材と斜材との間に、全面または両端接触縁で弦材
側面に接する凹面および、凹面と反対側に各斜材との接
合に適した接合面を持つ鋼製ブロックを介在させたの
で、弦材と斜材との接合には、従来例のような分岐継ぎ
手接合を回避し、ボルト接合などシステムトラスの持つ
簡便で精度のよい接合方式をとすることができる。しか
も弦材は、従来例のように軸方向に分断されず主応力方
向に連続しているので、連続材のままの効率的な接合部
を実現でき、トラス梁構造の材料点数・加工コストの低
減、高精度での現場組立ての容易性、高い輸送効率等を
実現できる。
According to the present invention, between the upper and lower chord members and the diagonal members in the truss beam structure, a concave surface which is in contact with the chord side surfaces on the entire surface or at the contact edges at both ends, and a joint with each diagonal member on the opposite side to the concave surface. A steel block with a suitable joint surface is interposed, so that the joint between the chord and the diagonal material avoids the branch joint joint as in the conventional example and the simple and accurate A good joining method can be achieved. In addition, the chord is continuous in the main stress direction without being divided in the axial direction unlike the conventional example, so that an efficient joint can be realized as a continuous material, and the number of materials and the processing cost of the truss beam structure are reduced. Reduction, ease of on-site assembly with high accuracy, high transport efficiency, etc. can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示し、(a)が弦材
と斜材の接合部立面図、(b)が同(a)の縦断側面
図、(c)が鋼製ブロックの斜視図である。
1A and 1B show a first embodiment of the present invention, wherein FIG. 1A is an elevational view of a joint between a chord member and a diagonal member, FIG. 1B is a vertical side view of FIG. 1A, and FIG. It is a perspective view of a block.

【図2】図1の斜材と弦材を分離した状態の接合部断面
図である。
FIG. 2 is a cross-sectional view of a joint in a state where a diagonal member and a chord member of FIG. 1 are separated.

【図3】図1の斜材と弦材を接合した状態の接合部断面
図である。
FIG. 3 is a cross-sectional view of a joining portion in a state where a diagonal member and a chord member of FIG. 1 are joined.

【図4】(a)、(b)は、弦材と鋼製ブロックの間に
間隙が形成される2つの実施形態の縦断側面図である。
4 (a) and 4 (b) are longitudinal side views of two embodiments in which a gap is formed between a chord and a steel block.

【図5】弦材と鋼製ブロックとの接合手段が図2と異な
る実施形態において、斜材と弦材を分離した状態の接合
部断面図である。
FIG. 5 is a cross-sectional view of a joint portion in a state where a diagonal member and a string member are separated in an embodiment in which a joining member between a string member and a steel block is different from that in FIG. 2;

【図6】弦材と鋼製ブロックとの接合手段が図2と異な
る実施形態において、斜材と弦材を接合した状態の接合
部断面図である。
FIG. 6 is a cross-sectional view of a joint where a diagonal member and a string member are joined in an embodiment in which the joining means of the string member and the steel block is different from that of FIG. 2;

【図7】(a),(b),(c)は本発明の他の実施形
態として、前記と異なる構成の鋼製ブロックを示す平面
図と側面図と正面図である。
FIGS. 7 (a), (b), and (c) are a plan view, a side view, and a front view showing a steel block having a different configuration from the above, as another embodiment of the present invention.

【図8】(a),(b),(c)は、本発明のさらに他
の実施形態として、前記と異なる構成の鋼製ブロックの
3つの例を示すそれぞれの正面図である。
FIGS. 8 (a), (b), and (c) are front views showing three examples of steel blocks having different configurations from the above, as still another embodiment of the present invention.

【図9】(a),(b),(c),(d)は、本発明の
さらに他の実施形態を示し、(a)は接合部立面図、
(b)は接合部断面図、(c)は見上げの接合部平面
図、(d)は鋼製ブロック詳細図である。
9 (a), 9 (b), 9 (c), and 9 (d) show still another embodiment of the present invention, and FIG.
(B) is a sectional view of the joint, (c) is a plan view of the joint as seen upward, and (d) is a detailed view of a steel block.

【図10】(a),(b)は弦材が図9と異なる実施形
態における斜材と弦材を接合した状態の接合部断面図で
ある。
FIGS. 10 (a) and (b) are cross-sectional views showing a state where the oblique material and the chord material are joined in an embodiment in which the chord material is different from that of FIG. 9;

【図11】弦材と鋼製ブロックとの接合手段が図9と異
なる実施形態を示し、(a),(c)は立面図、
(b),(d)は見上げの平面図である。
11 shows an embodiment in which the joining means between the chord material and the steel block is different from that of FIG. 9, (a) and (c) are elevational views,
(B), (d) is a plan view of looking up.

【図12】弦材と鋼製ブロックとの接合手段が前の各図
と異なる他の実施形態を示し、(a)が弦材と斜材の接
合部立面図、(b)が同(a)の縦断側面図、(c)が
鋼製ブロックの斜視図である。
FIGS. 12A and 12B show another embodiment in which the joining means between the chord material and the steel block is different from the previous figures, wherein FIG. 12A is an elevation view of the joining part between the chord material and the oblique material, and FIG. FIG. 2A is a longitudinal side view, and FIG. 2C is a perspective view of a steel block.

【図13】図12の応用例1を示す弦材と斜材の接合部
立面図である。
13 is an elevational view of a joint between a chord member and a diagonal member, showing application example 1 of FIG. 12;

【図14】図12の応用例2を示す弦材と斜材の接合部
縦断側面図である
14 is a longitudinal sectional side view of a joint between a chord member and a diagonal member, showing application example 2 of FIG. 12;

【図15】図12の応用例3を示す弦材と斜材の接合部
縦断側面図である
15 is a longitudinal sectional side view of a joint between a chord member and a diagonal member, showing application example 3 of FIG. 12;

【図16】図1の接合方式を用いてなる3角形断面を持
つ立体トラス梁で構築した屋根架構の全体斜視図であ
る。
FIG. 16 is an overall perspective view of a roof frame constructed of a space truss beam having a triangular cross section using the joining method of FIG. 1;

【図17】(a)は図9の拡大梁立面図、(b)は同図
(a)のA−A線断面図、(c)はA−A線における変
形例の断面図である。
17A is an enlarged elevational view of the beam in FIG. 9, FIG. 17B is a cross-sectional view taken along the line AA in FIG. 17A, and FIG. 17C is a cross-sectional view of a modification taken along the line AA in FIG. .

【図18】(a),(b),(c)は本発明が実施され
る立体梁トラス構造の3例を示す側面説明図である。
FIGS. 18 (a), (b) and (c) are side explanatory views showing three examples of a three-dimensional beam truss structure in which the present invention is implemented.

【図19】(a),(b)は本発明が実施される立体梁
トラス構造の他の2例を示す側面説明図である。
FIGS. 19 (a) and (b) are explanatory side views showing two other examples of the three-dimensional beam truss structure in which the present invention is implemented.

【図20】(a),(b)は本発明による立体梁トラス
構造の他の応用例として、ドーム屋根とタワーを示す説
明斜視図である。
FIGS. 20 (a) and (b) are explanatory perspective views showing a dome roof and a tower as another application example of the three-dimensional beam truss structure according to the present invention.

【図21】(a),(b)は第1従来例のシステムトラ
ス構造における屋根架構の平面図と側面図である。
FIGS. 21A and 21B are a plan view and a side view of a roof frame in the system truss structure of the first conventional example.

【図22】図21の(イ)部の拡大図(つまり、ノード
接合部詳細図)である。
FIG. 22 is an enlarged view of a part (a) of FIG. 21 (that is, a detailed view of a node junction part).

【図23】(a),(b)は第2従来例の簡易トラスシ
ステムにおける接合部の拡大図であり、(a)は立面
図、(b)は平面図である。
FIGS. 23 (a) and 23 (b) are enlarged views of a joint in the simple truss system of the second conventional example, (a) is an elevation view, and (b) is a plan view.

【図24】(a)は第3従来例の溶接トラス構造におけ
る屋根架構の立面図、(b)は側面図、(c)は図
(a)の(ロ)部の拡大図(つまり、分岐継手溶接接合
部の詳細図)である。
24 (a) is an elevation view of a roof frame in a third conventional welding truss structure, FIG. 24 (b) is a side view, and FIG. 24 (c) is an enlarged view of a portion (b) of FIG. FIG. 3 is a detailed view of a branch joint welded joint).

【符号の説明】[Explanation of symbols]

1 弦材 2 斜材 3 鋼製ブロック 4 溶接接合部 5 接合ボルト 6 ワッシャー、押さえ材 7 エンドコーン、端部 8 支持構造 9 母屋 10 屋根構造 11 ノード 12 ボルト送り出し用スプリング 13 斜材からの圧縮力 14 斜材からの引張力 15 せん断力 16 屋根架構例 17 屋根構造 18 凹面 20 両端接触縁 21 平面 21a 接合球面 21b 接合面 21c 接合面 22 ボルト孔 23 溶接 24 角部 25 間隙 26 円筒断面接合部 27 ボルト 28 立体トラス梁 29 溶接 DESCRIPTION OF SYMBOLS 1 String material 2 Diagonal material 3 Steel block 4 Welding joint 5 Joining bolt 6 Washer, holding material 7 End cone, end 8 Support structure 9 Purlin 10 Roof structure 11 Node 12 Bolt delivery spring 13 Compression force from diagonal material 14 Tensile force from diagonal material 15 Shear force 16 Roof frame example 17 Roof structure 18 Concave surface 20 Both-end contact edge 21 Flat surface 21a Joint spherical surface 21b Joint surface 21c Joint surface 22 Bolt hole 23 Weld 24 Corner 24 25 Gap 26 Cylindrical joint 27 Bolt 28 space truss beam 29 welding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中井 賢太郎 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 藤田 正則 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 神山 芳 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 犬木 弘志 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 永田 一廣 千葉市稲毛区長沼町135 東京エコン建鉄 株式会社内 Fターム(参考) 2E125 AA15 AA35 AB01 AB15 AC15 AC16 AG14 AG16 AG41 AG58 AG59 BB09 BB16 BB31 BB32 BB33 BC06 BC07 BC08 BD01 BE02 CA03 CA15 2E163 FA12 FB32 FB45 FB49  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kentaro Nakai 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Masanori Fujita 2-6-3, Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Yoshiyoshi Kamiyama 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Hiroshi Inuki 2-6, Otemachi, Chiyoda-ku, Tokyo 3 Nippon Steel Corporation (72) Inventor Kazuhiro Nagata 135 Naganuma-cho, Inage-ku, Chiba City Tokyo Ekon Corporation Iron Corporation F-term (reference) 2E125 AA15 AA35 AB01 AB15 AC15 AC16 AG14 AG16 AG41 AG58 AG59 BB09 BB16 BB31 BB32 BB33 BC06 BC07 BC08 BD01 BE02 CA03 CA15 2E163 FA12 FB32 FB45 FB49

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 上下弦材及び斜材により構成されるトラ
ス梁において、前記弦材と斜材との間に、弦材側に凹面
を持ち、当該凹面の一部又は全部が当該弦材の外周と接
して固着され、前記弦材側と反対の側に斜材の軸心に対
して直交する斜材接合用の平面、または球面或いは円筒
面を持つ鋼製ブロックを介在させ、弦材と鋼製ブロック
および、鋼製ブロックと斜材をそれぞれ固着することに
より構成されるトラス梁構造。
1. A truss beam composed of upper and lower chords and diagonal members, wherein the truss member has a concave surface on the chord side between the chord members and the diagonal members, and a part or all of the concave surface is formed of the chord members. A steel block having a diagonal joining plane orthogonal to the axis of the diagonal, or a spherical or cylindrical surface is interposed on the side opposite to the chord and fixed to the outer periphery. A truss beam structure composed of a steel block and a steel block and a diagonal member fixed to each other.
【請求項2】 前記トラス梁構造において、弦材と斜材
の一方または両方に鋼管又は角鋼管を用いた請求項1記
載のトラス梁構造。
2. The truss beam structure according to claim 1, wherein in the truss beam structure, a steel pipe or a square steel pipe is used for one or both of a chord member and a diagonal member.
【請求項3】 前記トラス梁構造において、鋼製ブロッ
クと弦材は、当該弦材軸に平行な直線で接し固着されて
いる請求項1または2記載のトラス梁構造。
3. The truss beam structure according to claim 1, wherein in the truss beam structure, the steel block and the chord member are in contact with and fixed by a straight line parallel to the chord axis.
【請求項4】 前記トラス梁構造において、鋼製ブロッ
クと弦材は溶接により固着されている請求項1〜3のい
ずれかに記載のトラス梁構造。
4. The truss beam structure according to claim 1, wherein in the truss beam structure, the steel block and the chord are fixed by welding.
【請求項5】 前記トラス梁構造において、鋼製ブロッ
クと斜材はボルトにより固着されている請求項1〜4の
いずれかに記載のトラス梁構造。
5. The truss beam structure according to claim 1, wherein in the truss beam structure, the steel block and the diagonal member are fixed by bolts.
【請求項6】 前記トラス梁構造において、斜材接合用
のボルトを外部ワッシャーを回転させることにより締結
する請求項5記載のトラス梁構造。
6. The truss beam structure according to claim 5, wherein in the truss beam structure, bolts for joining diagonal members are fastened by rotating an external washer.
【請求項7】 請求項1〜6のいずれかに記載のトラス
梁構造における、前記鋼製ブロックと弦材の固着は、斜
材をガイドにして工場にて行い、固着後斜材を分離して
運搬し、現場で組み立てることを特徴とするトラス梁の
施工法。
7. The truss beam structure according to any one of claims 1 to 6, wherein the steel block and the chord material are fixed at a factory using the diagonal material as a guide, and after the fixing, the diagonal material is separated. A truss beam construction method characterized in that it is transported and assembled on site.
【請求項8】 複数の上下弦材及び斜材により構成され
るトラス梁において、前記弦材と斜材との間に、弦材側
に凹面を持ち、当該凹面の一部または全部が当該弦材の
外周と接し、反対側に弦材と平行な斜材接合用の平面を
持つ鋼製ブロックを介在させ、弦材と鋼製ブロック、鋼
製ブロックと端部を平面状につぶした各斜材を固着する
ことにより構成されるトラス梁構造。
8. A truss beam composed of a plurality of upper and lower chord members and diagonal members, wherein the chord member and the diagonal member have a concave surface on the chord material side, and a part or all of the concave surface is the string. A steel block that is in contact with the outer periphery of the lumber and has a flat plane for joining diagonal members parallel to the chord members on the opposite side is interposed. A truss beam structure constructed by fixing materials.
【請求項9】 複数の上下弦材及び斜材により構成され
るトラス梁において、前記弦材と斜材との間に、弦材側
に凹面を持ち、当該凹面の一部または全部が当該弦材の
外周と接し、反対側に斜材と平行な斜材接合用の平面を
持つ鋼製ブロックを介在させ、弦材と鋼製ブロック、鋼
製ブロックと端部を平面状につぶした各斜材を固着する
ことにより構成されるトラス梁構造。
9. A truss beam composed of a plurality of upper and lower chord members and diagonal members, wherein the chord member and the diagonal members have a concave surface on the chord material side, and a part or all of the concave surface is the string. A steel block that is in contact with the outer periphery of the timber and has a plane for joining diagonal members parallel to the diagonal members on the opposite side, and the chord members and the steel blocks, and the steel blocks and the ends that flatten the ends are flattened. A truss beam structure constructed by fixing materials.
【請求項10】 前記トラス梁構造において、弦材及び
斜材に鋼管又は角鋼管を用いた請求項8又は9記載のト
ラス梁構造。
10. The truss beam structure according to claim 8, wherein the truss beam structure uses a steel pipe or a square steel pipe for a chord member and a diagonal member.
【請求項11】 前記トラス梁構造において、鋼製ブロ
ックと弦材は弦材軸に平行な直線で接し固着されている
請求項8〜9の何れかに記載のトラス梁構造。
11. The truss beam structure according to claim 8, wherein in the truss beam structure, the steel block and the chord member are in contact with and fixed to each other in a straight line parallel to the chord axis.
【請求項12】 前記トラス梁構造において、鋼製ブロ
ックと弦材は溶接により固着されている請求項8〜11
の何れかに記載のトラス梁構造。
12. In the truss beam structure, the steel block and the chord are fixed by welding.
A truss beam structure according to any one of the above.
【請求項13】 前記トラス梁構造において、鋼製ブロ
ックと各斜材はボルトにより固着されている請求項8〜
12のいずれかに記載のトラス梁構造。
13. In the truss beam structure, the steel block and each diagonal member are fixed by bolts.
13. The truss beam structure according to any one of 12 above.
【請求項14】 請求項8〜13の何れかに記載のトラ
ス梁構造における、各斜材の接合ボルトは鋼製ブロック
と弦材を固着する際にあらかじめ鋼製ブロック内に設置
されており、端部を平面状につぶした各斜材を取り付け
た後鋼製ブロック外部からナットを締めることによって
一体化することを特徴とするトラス梁の施工法。
14. The truss beam structure according to any one of claims 8 to 13, wherein the connecting bolts of each diagonal member are previously installed in the steel block when the steel block and the chord member are fixed. A method of constructing a truss beam, wherein each diagonal member having a flattened end is attached and then integrated by tightening a nut from outside the steel block.
JP2000195054A 1999-10-27 2000-06-28 Trussed girder structure and method of constructing it Pending JP2002004414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195054A JP2002004414A (en) 1999-10-27 2000-06-28 Trussed girder structure and method of constructing it

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30490599 1999-10-27
JP2000121128 2000-04-21
JP2000-121128 2000-04-21
JP11-304905 2000-04-21
JP2000195054A JP2002004414A (en) 1999-10-27 2000-06-28 Trussed girder structure and method of constructing it

Publications (1)

Publication Number Publication Date
JP2002004414A true JP2002004414A (en) 2002-01-09

Family

ID=27338719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195054A Pending JP2002004414A (en) 1999-10-27 2000-06-28 Trussed girder structure and method of constructing it

Country Status (1)

Country Link
JP (1) JP2002004414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285833A (en) * 2007-05-15 2008-11-27 Sankyo Tateyama Aluminium Inc Simple building
JP2009535538A (en) * 2006-04-28 2009-10-01 マーク シー カーター Modular folding display booth structure
CN104343205A (en) * 2014-09-25 2015-02-11 上海泰大建筑科技有限公司 Novel plate truss structure
US9183880B2 (en) 2003-04-04 2015-11-10 Sony Corporation Imaging device and recording control system
CN106088360A (en) * 2016-07-08 2016-11-09 中国航空规划设计研究总院有限公司 A kind of large span two-tube lower edge of list truss structure connects node and truss structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9183880B2 (en) 2003-04-04 2015-11-10 Sony Corporation Imaging device and recording control system
JP2009535538A (en) * 2006-04-28 2009-10-01 マーク シー カーター Modular folding display booth structure
JP2008285833A (en) * 2007-05-15 2008-11-27 Sankyo Tateyama Aluminium Inc Simple building
CN104343205A (en) * 2014-09-25 2015-02-11 上海泰大建筑科技有限公司 Novel plate truss structure
CN106088360A (en) * 2016-07-08 2016-11-09 中国航空规划设计研究总院有限公司 A kind of large span two-tube lower edge of list truss structure connects node and truss structure
CN106088360B (en) * 2016-07-08 2018-09-18 中国航空规划设计研究总院有限公司 A kind of two-tube lower edge connecting node of large span list truss structure and truss structure

Similar Documents

Publication Publication Date Title
US4577449A (en) Prefabricated structural connector for steel-frame buildings
US4603519A (en) Geodesically reinforced honeycomb structures
CA3063748C (en) Rolling block restraint connector
JP2002004414A (en) Trussed girder structure and method of constructing it
JPH1122001A (en) Structure of junction between closed section column and beam
US5150556A (en) Chord truss roof structure
KR102453459B1 (en) Column-beam construction structure and column-beam construction method using joint assembly with flange joint member
CN211974285U (en) Convenient aluminum alloy truss device for high-altitude overhanging area operation
JP2000096707A (en) Connection method of steel pipe column and steel frame beam, and diaphragm therefor
JP3207792B2 (en) Membrane structure
JP2002194845A (en) Roof structure of structure, method of manufacturing roof structure unit and execution method of roof
JP2007309020A (en) Joining structure of steel frame cantilever beam and steel frame small beam
JP2004156291A (en) Bridge girder structure and erection method for bridge girder
JP2001342710A (en) Reinforcing structure of beam, floor of residence or wall structure of building and method of designing reinforcing structure of beam
JP2878643B2 (en) Spherical mesh skeleton structure
JP5734592B2 (en) Flat truss structure
CN220538896U (en) Sleeve type assembly structure of steel structure box girder
JP4029340B2 (en) Steel frame structure
JP6847552B2 (en) Truss assembly structure and assembly method
JP7162457B2 (en) Joining structure of retrofitted brace
JP3763072B2 (en) Roof unit and roof structure
JP2002348957A (en) Steel frame structure
JPH07207771A (en) Steel pipe joining structure
JPH04124338A (en) Construction for column/beam joining section
JPH04336142A (en) Joint structure of space truss

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102