JP2002004019A - Galvanized steel sheet - Google Patents

Galvanized steel sheet

Info

Publication number
JP2002004019A
JP2002004019A JP2000189989A JP2000189989A JP2002004019A JP 2002004019 A JP2002004019 A JP 2002004019A JP 2000189989 A JP2000189989 A JP 2000189989A JP 2000189989 A JP2000189989 A JP 2000189989A JP 2002004019 A JP2002004019 A JP 2002004019A
Authority
JP
Japan
Prior art keywords
value
steel sheet
galvanized steel
center line
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000189989A
Other languages
Japanese (ja)
Inventor
Shuji Nomura
修二 野村
Michitaka Sakurai
理孝 櫻井
Yoshiharu Sugimoto
芳春 杉本
Junichi Inagaki
淳一 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000189989A priority Critical patent/JP2002004019A/en
Publication of JP2002004019A publication Critical patent/JP2002004019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a galvanized steel sheet excellent in a press-workability. SOLUTION: This galvanized steel sheet has the peculiarity, in which the surface roughness is >=0.8 μm Ra average roughness in the center line and further, the surface has >=150 PPI value of peak count and <=0.8 μm Wca value of wave in the center line of the filtrated wave and the coated film is a zinc coated film applying no alloying treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部材や建築
用部材などに用いられる亜鉛めっき鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvanized steel sheet used for automobile members, architectural members and the like.

【0002】[0002]

【従来の技術】亜鉛めっき鋼板は自動車用部材や建築用
部材を始めとしてその需要がますます拡大する傾向にあ
る。近年、プレス加工機の加工性能の向上により単位時
間当たりの成形可能枚数が増加し、これによりプレス加
工の生産性が向上している。
2. Description of the Related Art The demand for galvanized steel sheets, such as automobile parts and construction parts, has been increasing. In recent years, the number of molds that can be formed per unit time has increased due to the improvement in the processing performance of a press processing machine, thereby improving the productivity of press processing.

【0003】しかしながら、このような高性能のプレス
加工機を用いて連続的に成形を重ねると、同一材料を使
用しているにもかかわらず、時間の経過とともに材料の
成形性が変化し、プレス割れや型かじり等の不具合が発
生し、成形加工を安定的に継続することが困難になると
いう問題が顕在化してきた。
[0003] However, when such high-performance press machines are used for continuous forming, the formability of the material changes over time despite the use of the same material. Problems such as cracking and mold galling have occurred, and it has become apparent that it is difficult to stably continue the molding process.

【0004】このような問題が生じるのは、高速かつ連
続的な成形を重ねるに伴ってプレス金型の温度が上昇す
ることに起因している。すなわち、プレス成形工程で
は、金型との接触および摺動によって亜鉛めっき鋼板表
面には活性な新生面が露出する。この新生面は反応性が
高いので、金型の温度が上昇すると、金型と新生面との
接触面において凝着反応を生じやすくなる。凝着反応が
生じ始めると亜鉛めっき鋼板と金型との間の摩擦係数が
急激に増大し、加工を繰り返すうちに型かじりを生じ
る。
[0004] Such a problem arises from the fact that the temperature of the press die rises as high-speed and continuous molding is repeated. That is, in the press forming step, an active new surface is exposed on the surface of the galvanized steel sheet by contact and sliding with the mold. Since the new surface has high reactivity, when the temperature of the mold rises, an adhesion reaction easily occurs at the contact surface between the mold and the new surface. When the adhesion reaction starts to occur, the coefficient of friction between the galvanized steel sheet and the mold sharply increases, and the mold seizes during repeated processing.

【0005】型かじり防止対策として、従来から種々の
提案がなされている。その一つとして、プレス成形する
度に水溶性の冷却油をかけて金型を冷却する方法があ
る。しかし、この従来方法では冷却油が周囲に飛散し、
作業環境が悪化するという問題がある。
Various proposals have been made to prevent mold galling. As one of the methods, there is a method of cooling a mold by applying a water-soluble cooling oil every time press molding is performed. However, in this conventional method, cooling oil scatters around,
There is a problem that the working environment deteriorates.

【0006】上記の水溶性冷却油の代わりに極圧添加材
を含有した潤滑油を用いると、冷却油を飛散させること
なく金型の温度を有効に降下させることができる。しか
し、このような潤滑油が付着したプレス成形品は脱脂コ
ストが増加する。
When a lubricating oil containing an extreme pressure additive is used instead of the water-soluble cooling oil, the temperature of the mold can be effectively lowered without scattering the cooling oil. However, a press-formed product to which such a lubricating oil adheres increases the degreasing cost.

【0007】また、単一のプレス成形工程を複数の工程
に分割して1工程当たりの加工量を低減することによっ
て発熱量を低下させ、金型温度の上昇を抑制する方法が
ある。しかし、この方法では、分割された成形工程毎に
金型が必要となるので、作製する金型数が増大する。ま
た、成形工程が多くなることにより成形所要時間が増加
するので生産性が低下する。
There is also a method in which a single press molding process is divided into a plurality of processes to reduce the amount of processing per process, thereby reducing the amount of heat generated and suppressing an increase in mold temperature. However, in this method, a mold is required for each of the divided molding steps, so that the number of molds to be manufactured increases. In addition, since the number of molding steps increases, the time required for molding increases, and the productivity decreases.

【0008】[0008]

【発明が解決しようとする課題】このような事情から、
近時、亜鉛めっき鋼板の表面形態を制御することによ
り、金型温度の上昇に起因する型かじりを抑制する提案
がなされている。例えば、特開平6−87002号公報
には、冷延鋼板表面の凹部の数、大きさ、分布等の形態
を制御した後に、亜鉛系のめっき層を冷延鋼板表面上に
被覆してなる亜鉛系めっき鋼板が開示されている。冷延
鋼板の表面形態を上記公報に記載された規定を満たすよ
うに制御するためには、この規定に応じたダルパターン
が形成された表面を有する圧延ロールを用いる必要があ
る。
SUMMARY OF THE INVENTION Under such circumstances,
Recently, proposals have been made to control the surface morphology of a galvanized steel sheet to suppress mold galling caused by an increase in mold temperature. For example, Japanese Patent Application Laid-Open No. 6-87002 discloses a method of controlling the number, size, distribution, and the like of recesses on the surface of a cold-rolled steel sheet, and then coating a zinc-based plating layer on the surface of the cold-rolled steel sheet. A system-plated steel sheet is disclosed. In order to control the surface morphology of the cold-rolled steel sheet so as to satisfy the regulation described in the above publication, it is necessary to use a rolling roll having a surface on which a dull pattern according to the regulation is formed.

【0009】しかしながら、このようなダルパターンを
形成するには、通常のショットダルや放電ダルによる加
工では困難であり、レーザーダルや電子ビームダルによ
る加工が実質的に必須であると考えられる。このよう
に、圧延ロールの表面形態を制御するのにコストが大幅
にかかるので、亜鉛系めっき鋼板の製造コストの上昇を
招くおそれがある。
However, it is difficult to form such a dull pattern by ordinary shot dull or discharge dull, and it is considered that processing by laser dull or electron beam dull is substantially essential. As described above, since controlling the surface morphology of the rolling roll requires a great deal of cost, the production cost of the zinc-based plated steel sheet may be increased.

【0010】本発明は上記の事情に鑑みてなされたもの
であって、その目的とするところはプレス成形性(連続
打点性)に優れた亜鉛めっき鋼板を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a galvanized steel sheet having excellent press formability (continuous hitting property).

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく亜鉛めっき鋼板表面の中心線平均粗さR
aの値に着目し、この値を種々変化させて摩擦係数の温
度依存性につき詳細に調べたところ以下に述べる知見を
得た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have developed a center line average roughness R
Focusing on the value of a, the temperature dependency of the friction coefficient was examined in detail by changing this value in various ways, and the following findings were obtained.

【0012】図1は、横軸に中心線平均粗さRa(μ
m)をとり、縦軸に摩擦係数の値をとって、亜鉛めっき
鋼板の表面のRa値と摩擦係数値との関係について調べ
た結果を示す特性線図である。上記の中心線平均粗さR
aはJIS B 0610に規定されており、カットオ
フ0.8mmの値である。図中の黒丸の分布状態から得
られた曲線は温度が100℃のときの結果を示す特性線
である。また図中の白丸は室温下での結果を示す。この
図から明らかなように、室温下での摩擦係数値はRa値
にかかわらずほぼ一定であるのに対して、100℃での
摩擦係数値はRa値が0.8μmを境にして顕著に遷移
している。そして、Ra値が0.8μm未満の領域では
室温下での摩擦係数値と100℃での摩擦係数値とが大
幅に乖離しているのに対して、Ra値が0.8μm以上
の領域ではほとんど乖離しておらず、金型が温度上昇し
ても摩擦係数値の上昇が抑制されることが判明した。本
発明はかかる知見に基づいてなされたものである。
FIG. 1 shows the center line average roughness Ra (μ
m is a characteristic diagram showing the result of examining the relationship between the Ra value of the surface of the galvanized steel sheet and the friction coefficient value by taking the value of the friction coefficient on the vertical axis. The above center line average roughness R
a is specified in JIS B 0610 and is a value with a cutoff of 0.8 mm. The curve obtained from the distribution of black circles in the figure is a characteristic line showing the result when the temperature is 100 ° C. The white circles in the figure show the results at room temperature. As is clear from this figure, the coefficient of friction at room temperature is almost constant irrespective of the Ra value, whereas the coefficient of friction at 100 ° C. Has transitioned. In the region where the Ra value is less than 0.8 μm, the friction coefficient value at room temperature and the friction coefficient value at 100 ° C. are significantly different, whereas in the region where the Ra value is 0.8 μm or more, It was found that there was almost no deviation, and even if the temperature of the mold increased, the increase in the coefficient of friction was suppressed. The present invention has been made based on such findings.

【0013】本発明に係る亜鉛めっき鋼板は、表面粗度
を中心線平均粗さRaで0.8μm以上とし、プレス成
形性に優れたものとすることを特徴とする。ここで、
「プレス成形性」とは、連続的に多数の被成形品をプレ
ス成形することにより金型の温度が上昇した場合であっ
ても安定して加工を続けることができる特性をいう。さ
らに詳しくは、プレス成形性の優劣は室温下での摩擦係
数値と高温下での摩擦係数値との差の大小により判定さ
れる。すなわち、摩擦係数の温度依存性が小さいことが
プレス成形性に優れていることになる。
The galvanized steel sheet according to the present invention is characterized in that the surface roughness is 0.8 μm or more in terms of center line average roughness Ra and is excellent in press formability. here,
The “press formability” refers to a characteristic that enables continuous processing even when the temperature of a mold is increased by continuously press-molding a large number of molded articles. More specifically, the superiority of press formability is determined by the magnitude of the difference between the friction coefficient at room temperature and the friction coefficient at high temperature. That is, the low temperature dependence of the friction coefficient means that the press formability is excellent.

【0014】本発明による亜鉛めっき鋼板によれば、温
度上昇に伴う摩擦抵抗の上昇を抑制することができる。
すなわち、亜鉛めっき鋼板の表面粗さをRa値で0.8
μm以上に粗くすると、プレス成形時のめっき皮膜表面
と金型表面との真接触面積は減少する。このため、凝着
反応が生じても凝着反応が生じた部位の面積は小さい。
したがって、金型温度が上昇して凝着現象が起こって
も、金型と亜鉛めっき鋼板との間の摩擦係数値が急激に
上昇するのを抑制できる。
According to the galvanized steel sheet of the present invention, it is possible to suppress an increase in frictional resistance due to an increase in temperature.
That is, the surface roughness of the galvanized steel sheet is 0.8 in Ra value.
When the surface roughness is increased to μm or more, the true contact area between the surface of the plating film and the surface of the mold during press molding decreases. For this reason, even if the adhesion reaction occurs, the area of the site where the adhesion reaction has occurred is small.
Therefore, even if the mold temperature rises and the adhesion phenomenon occurs, it is possible to suppress a sharp increase in the coefficient of friction between the mold and the galvanized steel sheet.

【0015】一方、中心線平均粗さRaの値が過度に大
きいと、後述する塗装後鮮映性が損なわれるおそれがあ
る。このことを勘案してRa値は2.0μm以下である
ことが好ましい。
On the other hand, if the value of the center line average roughness Ra is too large, the after-painting sharpness described later may be impaired. In consideration of this, the Ra value is preferably 2.0 μm or less.

【0016】上述の中心線平均粗さRaが0.8μm以
上である亜鉛めっき鋼板において、このめっき鋼板の表
面はさらにピ−クカウントPPIの値が150以上であ
ることが好ましい。ここで、ピークカウントPPIは、
SAE911で規定されるものであり、1インチ当たり
の凹凸のピーク数である。このPPI値を150以上と
することが好ましい理由を以下に説明する。
In the galvanized steel sheet having the center line average roughness Ra of 0.8 μm or more, the surface of the galvanized steel sheet preferably has a peak count PPI value of 150 or more. Here, the peak count PPI is
It is defined by SAE911, and is the peak number of irregularities per inch. The reason why the PPI value is preferably set to 150 or more will be described below.

【0017】プレス成形工程において、金型と金型内に
流れ込む亜鉛めっき鋼板との接触状態を微視的に観察す
ると、金型表面は亜鉛めっき鋼板表面の凸部、すなわち
亜鉛めっき皮膜表面の凸部と接触している。ここで、亜
鉛めっき鋼板表面のPPI値を150以上と高くするこ
とによって隣り合う凸部の相互間隔が狭まり、プレス成
形時の金型表面と凸部との接触・非接触の繰り返しサイ
クルが短くなる。このため、ある凸部が金型表面と凝着
反応を生じたとしてもその凝着が軽微なうちに次の凹部
が移動してくるので、凝着反応が中断され、それ以上進
行し難くなる。また、PPI値を上記のように高くする
ことにより凹部の数が増加するので、めっき鋼板の表面
全体に潤滑油を十分に行き渡らせることができ、凝着反
応の抑制にさらに寄与する。さらに、PPI値を上記の
ように高くすることによりめっき鋼板表面の断面曲線の
波長が小さくなり、Raの値が0.8μm以上と高くし
たとしても後述するWca値を低く保つことができ、塗
装後鮮映性の観点からも好ましい。このPPI値は、現
在の製造技術では300以上に調整することが困難であ
ると考えられる。このためPPI値は現状では300未
満に調整される。
In the press forming step, when the state of contact between the mold and the galvanized steel sheet flowing into the mold is microscopically observed, the surface of the mold is projected on the surface of the galvanized steel sheet, that is, the convexity of the surface of the galvanized film. In contact with the part. Here, by increasing the PPI value of the surface of the galvanized steel sheet to 150 or more, the interval between adjacent protrusions is reduced, and the cycle of contact / non-contact between the mold surface and the protrusions during press forming is shortened. . For this reason, even if a certain convex portion causes an adhesion reaction with the mold surface, the next concave portion moves while the adhesion is slight, so that the adhesion reaction is interrupted and it is difficult to proceed further. . In addition, since the number of recesses is increased by increasing the PPI value as described above, the lubricating oil can be sufficiently spread over the entire surface of the plated steel sheet, which further contributes to suppressing the adhesion reaction. Further, by increasing the PPI value as described above, the wavelength of the cross-sectional curve of the surface of the plated steel sheet is reduced, and even if the Ra value is increased to 0.8 μm or more, the Wca value described below can be kept low. It is also preferable from the viewpoint of after-image sharpness. It is considered that this PPI value is difficult to adjust to 300 or more with current manufacturing technology. For this reason, the PPI value is currently adjusted to less than 300.

【0018】本発明によれば、亜鉛めっき鋼板の表面は
さらにろ波中心線うねりWcaの値が0.8μm以下で
あることが好ましい。ろ波中心線うねりWcaはJIS
B0610に規定されており、ここでは高域カットオ
フ0.8mmおよび低域カットオフ8mmの値である。
このWca値を0.8μm以下とすることが好ましい理
由を以下に説明する。
According to the present invention, the surface of the galvanized steel sheet preferably has a value of the filter center line waviness Wca of 0.8 μm or less. Filter wave center line undulation Wca is JIS
It is defined in B0610, and here is a value of a high-frequency cutoff of 0.8 mm and a low-frequency cutoff of 8 mm.
The reason why the Wca value is preferably set to 0.8 μm or less will be described below.

【0019】一般にめっき皮膜の表面を粗くすると、め
っき皮膜上に形成された塗膜の表面は鮮映性に劣ること
が知られている。本発明者らは、プレス成形後に塗装さ
れた亜鉛めっき鋼板の鮮映性を優れたものとするために
鋭意検討した。その結果、中心線平均粗さRaにおいて
対象となる短波長の粗さ曲線よりもろ波中心線うねりW
caにおいて対象となる長波長の粗さ曲線に塗装後の鮮
映性は強く依存することを見出した。そして、本発明者
らが鋭意検討した結果、Wcaの値が0.8μm以下で
ある亜鉛めっき鋼板は優れた塗装後鮮映性を有すること
が判明した。一方、ろ波中心線うねりWcaの値を過度
に低くすると、前述のRa値を0.8μm以上にするこ
とが困難になる。このことを勘案して、ろ波中心線うね
りWcaの値は0.3μm以上であることが好ましい。
It is generally known that when the surface of a plating film is roughened, the surface of the coating film formed on the plating film is inferior in sharpness. The present inventors have intensively studied to improve the sharpness of a galvanized steel sheet coated after press forming. As a result, in the center line average roughness Ra, the filtering center line undulation W is smaller than the target short wavelength roughness curve.
It has been found that the sharpness after coating strongly depends on the target long-wavelength roughness curve in ca. As a result of extensive studies by the present inventors, it has been found that a galvanized steel sheet having a Wca value of 0.8 μm or less has excellent post-painting sharpness. On the other hand, if the value of the filtering center line waviness Wca is excessively low, it becomes difficult to make the Ra value 0.8 μm or more. In view of this, it is preferable that the value of the filtering center line waviness Wca is 0.3 μm or more.

【0020】本発明による亜鉛めっき鋼板のめっき皮膜
は合金化処理を施していない亜鉛めっき皮膜であること
が好ましい。この理由は、合金化処理を施していないめ
っき皮膜は合金化の進んだ皮膜よりも柔らかく、表面形
状の制御がより容易であるためである。
The galvanized film of the galvanized steel sheet according to the present invention is preferably a galvanized film that has not been alloyed. The reason for this is that a plating film that has not been subjected to an alloying treatment is softer than a film with advanced alloying, and the control of the surface shape is easier.

【0021】以上説明した本発明の亜鉛めっき鋼板は、
溶融亜鉛めっきや電気亜鉛めっき等により亜鉛めっきさ
れた鋼板をスキンパス圧延することにより調製できる。
このスキンパス圧延の際には、ロール条件又は圧延条
件、或いはこれらのロール条件および圧延条件を組み合
わせた条件により圧延を制御することにより上述の表面
粗さに調整できる。スキンパス圧延工程で用いる圧延ロ
ールとしては、ショットダル加工ロール又は放電ダル加
工ロールを用いることができる。また、レーザーダル加
工ロールや電子ビームダル加工ロールを用いてもよい。
なお、めっき原板の表面粗さを調整することによって、
亜鉛めっき皮膜の表面粗さが調整されるようにしてもよ
い。
The galvanized steel sheet of the present invention described above
It can be prepared by subjecting a steel sheet galvanized by hot-dip galvanizing or electrogalvanizing to skin pass rolling.
In the skin pass rolling, the surface roughness can be adjusted to the above-described surface roughness by controlling the rolling by rolling conditions or rolling conditions or a combination of these rolling conditions and rolling conditions. As a rolling roll used in the skin pass rolling step, a shot dulling roll or an electric dulling roll can be used. Further, a laser dulling roll or an electron beam dulling roll may be used.
In addition, by adjusting the surface roughness of the plating base sheet,
The surface roughness of the galvanized film may be adjusted.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0023】(実施例)下地鋼板としてTi−IF(極
低炭素チタン添加)冷延鋼板を用い、亜鉛めっき付着量
がこの冷延鋼板の両面ともに60g/mとなるように
調整して溶融亜鉛めっき鋼板を製造した。次いで、この
溶融亜鉛めっき鋼板をスキンパス圧延した。スキンパス
圧延工程では圧延条件およびロール条件を種々変化させ
ることにより種々異なる表面粗さに調整しためっき鋼板
を得た。
(Example) Ti-IF (ultra low carbon titanium added) cold rolled steel sheet was used as a base steel sheet, and the zinc coating was adjusted so that the coating weight was 60 g / m 2 on both sides of the cold rolled steel sheet. Galvanized steel sheet was manufactured. Next, the hot-dip galvanized steel sheet was subjected to skin pass rolling. In the skin-pass rolling step, plated steel sheets adjusted to various different surface roughnesses by changing rolling conditions and rolling conditions variously were obtained.

【0024】得られた各亜鉛めっき鋼板について、触針
式の粗度計を用い、JIS B 0610に準じて中心
線平均粗さRaおよびろ波中心線うねりWcaを測定し
た。また、SAE911に準じてめっき鋼板の表面につ
き1インチ当たりの凹凸数を測定した。さらに、プレス
成形性(連続打点性)を評価するために、次に説明する
試験により摩擦係数を測定した。
For each of the obtained galvanized steel sheets, the center line average roughness Ra and the filtered center line undulation Wca were measured using a stylus type roughness meter according to JIS B0610. Further, the number of irregularities per inch on the surface of the plated steel sheet was measured according to SAE911. Further, in order to evaluate press formability (continuous hitting property), a friction coefficient was measured by a test described below.

【0025】図2の(a)は摩擦係数を測定する試験の
様子を模式化して示す図であり、図2の(b)は(a)
に示す冶具2bの形状を示す図である。亜鉛めっき鋼板
から採取した試験片1を図2の(a)に示すように冶具
2aおよび2bの間にセットした後に、冶具2a、2b
の間隔を狭めてこの試験片1を両側から拘束する。冶具
2bは断面が縦10mm×横13mmである角柱状であ
って、試験片1と摺動する端面がU字状となっている。
この端面はその横方向、すなわち後述する摺動の方向に
対して直角な方向に沿って曲率半径5mmの曲面をなし
ている。
FIG. 2A is a diagram schematically showing a test for measuring the coefficient of friction, and FIG.
FIG. 3 is a view showing a shape of a jig 2b shown in FIG. After the test piece 1 collected from the galvanized steel sheet was set between the jigs 2a and 2b as shown in FIG.
And the test piece 1 is restrained from both sides. The jig 2b has a prismatic shape having a cross section of 10 mm in length × 13 mm in width, and an end face sliding on the test piece 1 has a U-shape.
This end face has a curved surface with a radius of curvature of 5 mm along its lateral direction, that is, a direction perpendicular to the sliding direction described later.

【0026】冶具2aおよび2bは図示しない加熱装置
により加熱されるようになっている。この加熱装置によ
り冶具2aおよび2bを加熱するとともに試験片1の厚
さ方向に荷重Nを作用させる。次いで、試験片1を引き
抜き速度Vで引き抜く。このとき、試験片1には引き抜
き方向と逆方向の抵抗力を生じる。この抵抗力の値を測
定し、測定した値を荷重Nの値で除して摩擦係数値を求
めた。なお、ここでは荷重Nの値を980Pa(100
kgf)、冶具2aおよび2bの加熱温度を100℃、
引き抜き速度Vを500mm/分とした。また、冶具2
aおよび2bを加熱せずに室温のままとしたときの摩擦
係数の測定も行なった。
The jigs 2a and 2b are heated by a heating device (not shown). The jigs 2 a and 2 b are heated by the heating device and a load N is applied in the thickness direction of the test piece 1. Next, the test piece 1 is pulled out at a drawing speed V. At this time, a resistance force is generated in the test piece 1 in the direction opposite to the pulling direction. The value of the resistance was measured, and the measured value was divided by the value of the load N to obtain a friction coefficient value. Here, the value of the load N is set to 980 Pa (100
kgf), the heating temperature of the jigs 2a and 2b is 100 ° C.
The drawing speed V was 500 mm / min. Jig 2
The coefficient of friction when a and 2b were left at room temperature without heating was also measured.

【0027】図1は、横軸に中心線平均粗さRa(μ
m)をとり、縦軸に摩擦係数の値をとって、亜鉛めっき
鋼板の表面のRa値と摩擦係数値との関係について調べ
た結果を示す特性線図である。図中の黒丸の分布状態か
ら得られた曲線は温度が100℃のときの結果を示す特
性線である。また図中の白丸は室温下での結果を示す。
図からRa値が0.8μm以上の場合に、100℃での
摩擦係数値が室温下での摩擦係数値とほとんど変わらな
くなり優れた連続打点性を示すことが判明した。
FIG. 1 shows the center line average roughness Ra (μ
m is a characteristic diagram showing the result of examining the relationship between the Ra value of the surface of the galvanized steel sheet and the friction coefficient value by taking the value of the friction coefficient on the vertical axis. The curve obtained from the distribution of black circles in the figure is a characteristic line showing the result when the temperature is 100 ° C. The white circles in the figure show the results at room temperature.
From the figure, it was found that when the Ra value was 0.8 μm or more, the coefficient of friction at 100 ° C. was almost the same as the coefficient of friction at room temperature, indicating excellent continuous spotting properties.

【0028】図2は横軸に中心線平均粗さRa(μm)
をとり、縦軸に摩擦係数をとって、ピークカウントPP
I値が150以上である表面の亜鉛めっき鋼板と150
未満である表面の亜鉛めっき鋼板とについて、Ra値と
摩擦係数値との関係を調べた結果を示す特性線図であ
る。なお、この図の横軸にとった摩擦係数は、前述の図
3で説明した冶具2aおよび2bを100℃に加熱した
場合に求められる値である。図2において黒丸の分布状
態から得られた曲線AはPPI値が150以上220以
下である亜鉛めっき鋼板の結果を示す特性線であり、白
丸の分布状態から得られた曲線BはPPI値が17以上
150未満である亜鉛めっき鋼板の結果を示す特性線で
ある。
FIG. 2 shows the center line average roughness Ra (μm) on the horizontal axis.
And the vertical axis is the coefficient of friction, and the peak count PP
Galvanized steel sheet having a surface with an I value of 150 or more and 150
It is a characteristic diagram which shows the result of having investigated the relationship between Ra value and a friction coefficient value about the galvanized steel plate of the surface which is less than. The coefficient of friction shown on the horizontal axis in this figure is a value obtained when the jigs 2a and 2b described above with reference to FIG. 3 are heated to 100 ° C. In FIG. 2, a curve A obtained from the distribution of black circles is a characteristic line showing a result of a galvanized steel sheet having a PPI value of 150 or more and 220 or less, and a curve B obtained from the distribution of white circles has a PPI value of 17 It is a characteristic line which shows the result of the galvanized steel plate which is more than 150 or less.

【0029】図2から特性線A、BはともにRa値が
0.8μmを境にして急激に摩擦係数値が減少する顕著
な遷移を示し、Ra値が0.8μm以上の領域でとる摩
擦係数の値は0.8μm未満の領域でとる摩擦係数の値
に比べて大幅に低下している。Ra値が0.8μm以上
の領域においてこれらの特性線A、Bを比較すると、特
性線Aは特性線Bよりも低くシフトしている。したがっ
て、この図からRa値が0.8μm以上かつPPI値が
150以上の表面の亜鉛めっき鋼板は、より優れたプレ
ス成形性(連続打点性)を有することが判明した。
From FIG. 2, both characteristic lines A and B show a remarkable transition in which the friction coefficient value sharply decreases at the boundary of Ra value of 0.8 μm, and the friction coefficient taken in the region where Ra value is 0.8 μm or more. Is significantly lower than the value of the coefficient of friction in the region of less than 0.8 μm. Comparing these characteristic lines A and B in the region where the Ra value is 0.8 μm or more, the characteristic line A is shifted lower than the characteristic line B. Therefore, from this figure, it was found that the galvanized steel sheet having a surface with a Ra value of 0.8 μm or more and a PPI value of 150 or more has more excellent press formability (continuous spotting property).

【0030】次に、鮮映性を評価するにあたり、中心線
平均粗さRaが0.8μm以上であって種々のろ波中心
線うねりWca値をとる表面の亜鉛めっき鋼板から試験
片を採取した。そして各試験片を日本パーカーライジン
グ株式会社製の「PB−L3080」を使用して化成処
理した。次いで関西ペイント株式会社製の「EL−20
00」、「TP−37(グレー)」および「TM−13
(RC)」の各塗料を用いて、ED塗装、中塗り塗装お
よび上塗り塗装した。こうして3コート塗装された各試
験片について、スガ試験機株式会社製の「写像鮮明度測
定装置NSIC型」を用いて写像鮮明度「NSIC値」
を測定した。この装置は、黒板研磨ガラスを測定したと
きにNSIC値が100となるように校正されている。
すなわち、塗装後鮮映性はNSIC値が100に近いほ
ど優れているものとして評価される。
Next, in evaluating the sharpness, test pieces were sampled from a galvanized steel sheet having a center line average roughness Ra of 0.8 μm or more and various filter center line undulation Wca values. . Each test piece was subjected to a chemical conversion treatment using “PB-L3080” manufactured by Nippon Parker Rising Co., Ltd. Next, "EL-20" manufactured by Kansai Paint Co., Ltd.
00 "," TP-37 (gray) "and" TM-13
(RC) ", ED coating, intermediate coating and top coating were performed. For each of the test specimens coated in 3 coats, the mapping clarity “NSIC value” was measured using “Mapping clarity measuring device NSIC type” manufactured by Suga Test Instruments Co., Ltd.
Was measured. This device is calibrated so that the NSIC value is 100 when measuring blackboard polished glass.
That is, the sharpness after painting is evaluated as being better as the NSIC value is closer to 100.

【0031】図4は、横軸にろ波中心線うねりWca
(μm)をとり、縦軸にNSIC値をとって、ろ波中心
線うねりWca値とNSIC値との関係について調べた
結果を示す特性線図である。この図からWca値が0.
8μm以下の領域ではWca値の増加に伴ってNSIC
値が減少していくもののその減少率は小さいため、高い
NSIC値となり優れた塗装後鮮映性を示すことが判明
した。これに対して、Wca値が0,8μmを超える領
域ではWca値の増加に伴ってNSIC値が減少しかつ
その減少率が大きいため、低いNSIC値となり塗装後
鮮映性に劣ることが判明した。
FIG. 4 shows the filtering center line undulation Wca on the horizontal axis.
FIG. 7 is a characteristic diagram showing a result of examining a relationship between a filtering center line undulation Wca value and an NSIC value by taking an NSIC value on a vertical axis (μm). From this figure, the Wca value is set to 0.
In the region of 8 μm or less, NSIC increases with increasing Wca value.
Although the value decreased, the rate of decrease was small, so that it became clear that the NSIC value was high and excellent post-painting clarity was exhibited. On the other hand, in the region where the Wca value exceeds 0.8 μm, the NSIC value decreases with the increase of the Wca value, and the rate of the decrease is large, so that the NSIC value becomes low and the post-painting sharpness is poor. .

【0032】[0032]

【発明の効果】以上説明したとおり、本発明によれば、
優れたプレス成形性を有する亜鉛めっき鋼板を提供でき
る。このため、連続的に多数の亜鉛めっき鋼板をプレス
成形する場合において金型の温度が上昇しても摩擦係数
が上昇するのを抑制でき、型かじり等の成形不良が生じ
るのを抑制することができるので、安定して成形加工を
継続することができる。また、プレス成形性のみならず
塗装後鮮映性にも優れた、自動車用の外板等の部材とし
て極めて有用な亜鉛めっき鋼板を提供できる。
As described above, according to the present invention,
A galvanized steel sheet having excellent press formability can be provided. For this reason, when a large number of galvanized steel sheets are continuously press-formed, even if the temperature of the mold rises, it is possible to suppress the increase in the friction coefficient, and to suppress the occurrence of molding defects such as mold galling. Therefore, the molding process can be stably continued. Further, it is possible to provide a galvanized steel sheet which is excellent not only in press formability but also in sharpness after coating and is extremely useful as a member such as an outer panel for automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中心線平均粗さRaと摩擦係数との関係につい
て調べた結果を示す特性図。
FIG. 1 is a characteristic diagram showing a result of examining a relationship between a center line average roughness Ra and a friction coefficient.

【図2】ピークカウントPPI値が150以上である表
面の亜鉛めっき鋼板と150未満である表面の亜鉛めっ
き鋼板とについて、中心線平均粗さRaと100℃の加
熱下での摩擦係数との関係を調べた結果を示す特性線
図。
FIG. 2 shows the relationship between the center line average roughness Ra and the coefficient of friction under heating at 100 ° C. for a galvanized steel sheet having a peak count PPI value of 150 or more and a galvanized steel sheet having a surface count of less than 150. FIG. 4 is a characteristic diagram showing the result of examining the graph.

【図3】ろ波中心線うねりWcaとNSIC値との関係
について調べた結果を示す特性線図。
FIG. 3 is a characteristic diagram showing a result of examining a relationship between a filtering center line undulation Wca and an NSIC value.

【図4】(a)は摩擦係数の測定を模式的に示す図、
(b)は(a)の冶具2bの形状を示す図。
FIG. 4A is a view schematically showing measurement of a coefficient of friction.
(B) is a figure showing the shape of jig 2b of (a).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 芳春 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 稲垣 淳一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K024 AA05 BA03 BB02 BC01 DA01 DB07 GA08 4K027 AA02 AA22 AB02 AB42 AC18 AC87 AD15 AE11 AE25  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiharu Sugimoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Junichi Inagaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term (reference) in Honko Pipe Co., Ltd. 4K024 AA05 BA03 BB02 BC01 DA01 DB07 GA08 4K027 AA02 AA22 AB02 AB42 AC18 AC87 AD15 AE11 AE25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面の粗度を中心線平均粗さRaで0.
8μm以上とし、プレス成形性に優れたものとすること
を特徴とする亜鉛めっき鋼板。
1. The surface roughness is defined as a center line average roughness Ra of 0.1.
A galvanized steel sheet having a thickness of 8 μm or more and having excellent press formability.
【請求項2】 さらに、前記表面は、ピ−クカウントP
PIの値が150以上であることを特徴とする請求項1
に記載の亜鉛めっき鋼板。
2. The method according to claim 1, wherein the surface has a peak count P.
2. The value of PI is 150 or more.
2. A galvanized steel sheet according to claim 1.
【請求項3】 さらに、前記表面は、ろ波中心線うねり
Wcaの値が0.8μm以下であることを特徴とする請
求項1または2に記載の亜鉛めっき鋼板。
3. The galvanized steel sheet according to claim 1, wherein the surface has a filtering center line waviness Wca of 0.8 μm or less.
【請求項4】 めっき皮膜が合金化処理を施していない
亜鉛皮膜であることを特徴とする請求項1ないし3のう
ちいずれか1項に記載の亜鉛めっき鋼板。
4. The galvanized steel sheet according to claim 1, wherein the plating film is a zinc film that has not been subjected to an alloying treatment.
JP2000189989A 2000-06-23 2000-06-23 Galvanized steel sheet Pending JP2002004019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189989A JP2002004019A (en) 2000-06-23 2000-06-23 Galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189989A JP2002004019A (en) 2000-06-23 2000-06-23 Galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2002004019A true JP2002004019A (en) 2002-01-09

Family

ID=18689539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189989A Pending JP2002004019A (en) 2000-06-23 2000-06-23 Galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2002004019A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041382B2 (en) * 2002-07-29 2006-05-09 Jfe Steel Corporation Coated steel sheet provided with electrodeposition painting having superior appearance
JP2006265614A (en) * 2005-03-23 2006-10-05 Jfe Steel Kk Galvanized steel sheet superior in image clarity after having been painted
US7338718B2 (en) 2003-04-18 2008-03-04 Jfe Steel Corporation Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
DE112009001879T5 (en) 2008-07-30 2011-07-28 Pangang Group Panzhihua Iron & Steel Research Institute Co., Ltd., Sichuan Province 617000 Hot-dip galvanized steel plate and production process for it
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
WO2018062341A1 (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Steel sheet for motorcycle fuel tank, and fuel tank member
JP7063430B1 (en) * 2021-01-22 2022-05-09 Jfeスチール株式会社 A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.
US11873561B2 (en) 2016-12-14 2024-01-16 Posco Co., Ltd Method for producing hot-dip galvanized steel sheet having excellent press formability and image clarity after painting, and hot-dip galvanized steel sheet produced thereby

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041382B2 (en) * 2002-07-29 2006-05-09 Jfe Steel Corporation Coated steel sheet provided with electrodeposition painting having superior appearance
US7338718B2 (en) 2003-04-18 2008-03-04 Jfe Steel Corporation Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
JP2006265614A (en) * 2005-03-23 2006-10-05 Jfe Steel Kk Galvanized steel sheet superior in image clarity after having been painted
DE112009001879T5 (en) 2008-07-30 2011-07-28 Pangang Group Panzhihua Iron & Steel Research Institute Co., Ltd., Sichuan Province 617000 Hot-dip galvanized steel plate and production process for it
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
US10683560B2 (en) 2014-10-09 2020-06-16 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallization annealed flat steel product, and method for the production thereof
WO2018062341A1 (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Steel sheet for motorcycle fuel tank, and fuel tank member
WO2018061061A1 (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Fuel tank member
JP6354915B1 (en) * 2016-09-30 2018-07-11 Jfeスチール株式会社 Steel plate and fuel tank member for motorcycle fuel tank
US11873561B2 (en) 2016-12-14 2024-01-16 Posco Co., Ltd Method for producing hot-dip galvanized steel sheet having excellent press formability and image clarity after painting, and hot-dip galvanized steel sheet produced thereby
JP7063430B1 (en) * 2021-01-22 2022-05-09 Jfeスチール株式会社 A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.

Similar Documents

Publication Publication Date Title
JP2002004019A (en) Galvanized steel sheet
CN113481451B (en) Pre-coated steel plate for hot forming, preparation method thereof, hot forming steel member and application thereof
US5629099A (en) Alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability and method for manufacturing same
JP3139231B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability and clarity after painting
US7041382B2 (en) Coated steel sheet provided with electrodeposition painting having superior appearance
JP3149801B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH02185959A (en) Production of hot dip galvanized steel sheet having superior vividness
JP4543566B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent press formability
JP3367466B2 (en) Galvannealed steel sheet
JP3201117B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability, powdering resistance and clarity after painting
JP2855392B2 (en) Cold rolled plate
JP3979275B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent press formability
JP2019155474A (en) Roll for rolling, surface treatment steel plate, cool rolling steel plate and production method thereof
JP3302910B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and sharpness
KR102281203B1 (en) Roll for skin pass rolling having excellent press formability and image clarity and manufacturing method of coated steel sheet using the same
JP2002004020A (en) Galvanized steel sheet
JP7264324B1 (en) Galvanized steel sheet
JP3368647B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability, powdering resistance and sharpness after painting
JP2004190074A (en) Galvannealed steel sheet superior in formability
WO2023162371A1 (en) Galvanized steel sheet
JP2001247950A (en) Hot dip galvanized steel sheet excellent in press formability and its production method
JPH07124604A (en) Manufacture of hot-dip zincing steel sheet excellent in coating clarity
KR100495620B1 (en) Manufacturing method of galvannealed steel sheet for electric application and automotive
JPH0827556A (en) Galvannealed steel sheet excellent in press formability, image clarity after coating and powdering resistance
JP3372851B2 (en) Hot-dip Zn-coated steel sheet with excellent scratch resistance