JP2002003284A - Hard coating ultrahigh temperature high pressure sintered material - Google Patents

Hard coating ultrahigh temperature high pressure sintered material

Info

Publication number
JP2002003284A
JP2002003284A JP2000178137A JP2000178137A JP2002003284A JP 2002003284 A JP2002003284 A JP 2002003284A JP 2000178137 A JP2000178137 A JP 2000178137A JP 2000178137 A JP2000178137 A JP 2000178137A JP 2002003284 A JP2002003284 A JP 2002003284A
Authority
JP
Japan
Prior art keywords
hard film
coated
sintered body
composite
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000178137A
Other languages
Japanese (ja)
Other versions
JP3476749B2 (en
Inventor
Mamoru Kobata
護 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2000178137A priority Critical patent/JP3476749B2/en
Publication of JP2002003284A publication Critical patent/JP2002003284A/en
Application granted granted Critical
Publication of JP3476749B2 publication Critical patent/JP3476749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0017Refractory metal compounds
    • C04B2103/0019Ti
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0021Compounds of elements having a valency of 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard coating sintered material used for cutting tools, etc., with improved adhesion of hard coating and adjacent material. SOLUTION: This is the hard coating ultrahigh temperature high pressure sintered material consisting of coated base material of ultrahigh temperature high pressure sintered material containing cubic system boron nitride and/or diamond and its coating containing hard coating of one kind of single layer or multi layers of more than two kinds chosen among Ti compounds layers and Ti-Al compounds layers and its coating consisting of cubic system crystal structure. Regarding the hard coating, when an X-ray diffraction is carried out on the indicated range of crystal faces (111), (200), (220), and (311) of the hard coating, (200) crystal face shall show the highest peak strength (shown as 'A') of X-ray diffraction peaks and shall have the relation of A/B>=8.5 against the second highest peak strength (shown as 'B') and the relation of B/C<=2.0 between B and the third highest peak (shown as 'C').

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、立方晶窒化硼素お
よび/またはダイヤモンドを含有する超高温高圧焼結体
の基材上にTi化合物層および/またはTi−Al含有
化合物層の単層または多層でなる硬質膜を含む被膜が被
覆された硬質膜被覆超高温高圧焼結体に関するものであ
る。
[0001] The present invention relates to a single layer or a multilayer of a Ti compound layer and / or a Ti-Al containing compound layer on a substrate of an ultra-high temperature and high pressure sintered body containing cubic boron nitride and / or diamond. The present invention relates to a hard film-coated ultra-high temperature and high pressure sintered body coated with a film including a hard film comprising:

【0002】[0002]

【従来の技術】従来から超高硬度物質であるダイヤモン
ドおよび/または立方晶窒化硼素の粉末と金属および/
またはセラミックスの粉末との混合粉末を超高温高圧装
置により焼結した超高温高圧焼結体が実用されている。
この超高温高圧焼結体を基材とし、この基材上に、化学
蒸着法(以下、「CVD法」という),物理蒸着法(以
下、「PVD法」という)またはプラズマCVD法を利
用して硬質膜を被覆した硬質膜被覆焼結体が提案されて
いる。この硬質膜被覆焼結体の代表的なものに、特開昭
59ー8679号公報、特開昭61ー183187号公
報、特開平1ー96083号公報、特開平1ー9608
4号公報、および特開平7ー24606号公報がある。
2. Description of the Related Art Conventionally, powder of diamond and / or cubic boron nitride, which are ultra-hard materials, and metal and / or
Alternatively, an ultra-high-temperature and high-pressure sintered body obtained by sintering a mixed powder with a ceramic powder using an ultra-high-temperature and high-pressure apparatus has been put to practical use.
The ultra-high-temperature high-pressure sintered body is used as a base material, and a chemical vapor deposition method (hereinafter, referred to as “CVD method”), a physical vapor deposition method (hereinafter, referred to as “PVD method”) or a plasma CVD method is used on the base material. A hard film-coated sintered body coated with a hard film has been proposed. Representative examples of the hard film-coated sintered body include JP-A-59-8679, JP-A-61-183187, JP-A-1-96083, and JP-A-1-9608.
No. 4 and JP-A-7-24606.

【0003】また、従来から超硬合金,サーメットの焼
結合金またはセラミックス焼結体を基材とし、この基材
上に、CVD法,PVD法またはプラズマCVD法を利
用して硬質膜を被覆した被覆焼結部材が多種多様の形態
で実用されてきている。これらの被覆焼結部材のうち、
硬質膜の結晶構造に注目したものの代表的なものに、特
開昭52ー28478号公報、特開平8ー209335
号公報、特開平291353号公報、特開平9ー295
204号公報、特開平9ー300105号公報、特開平
9ー300106号公報、特開平9ー323204号公
報、特開平9ー323205号公報、特開平10ー76
407号公報、特開平10ー76408号公報、特開平
11ー1762号公報、特開平11ー131214号公
報、特開平11ー131215号公報、特開平11ー1
31216号公報、および特開平11ー131217号
公報がある。
[0003] Conventionally, a cemented carbide, a cermet sintered alloy or a ceramic sintered body is used as a base material, and a hard film is coated on the base material using a CVD method, a PVD method or a plasma CVD method. Coated sintered members have been used in a wide variety of forms. Of these coated sintered members,
Representative examples of the crystal structure of the hard film are described in JP-A-52-28478 and JP-A-8-209335.
JP, JP-A-291353, JP-A-9-295
No. 204, JP-A-9-300105, JP-A-9-300106, JP-A-9-323204, JP-A-9-323205, JP-A-10-76
407, JP-A-10-76408, JP-A-11-1762, JP-A-11-131214, JP-A-11-131215, JP-A-11-1-1
There are JP-A-31216 and JP-A-11-131217.

【0004】[0004]

【発明が解決しようとする課題】従来技術として挙げた
引用文献のうち、特開昭59ー8679号公報、特開昭
61ー183187号公報、特開平1ー96083号公
報、特開平1ー96084号公報、および特開平7ー2
4606号公報には、主として立方晶窒化硼素を含有し
た超高温高圧焼結体を基材とし、この基材表面にTiの
炭化物,窒化物,炭窒化物および酸化アルミニウムなど
の硬質膜を単層または多層に被覆した硬質膜被覆焼結体
が開示されている。これら5件の同公報に開示の硬質膜
被覆焼結体は、硬質膜の膜質を主な特徴とする場合、単
層または多層でなる硬質膜の構成を主な特徴とする場
合、焼結体の基材組成成分を主な特徴とする場合などが
ある。これら5件の公報に開示の硬質膜被覆焼結体は、
一見、基材自体の優れた効果と硬質膜自体の優れた効果
を融合させていると考えられるが、特に基材と硬質膜と
の適合性について配慮されていないことから、硬質膜の
剥離により短寿命になるという問題がある。また、近年
のようなエコロジー問題,省資源問題に端を発して、切
削油を使用しないで切削するドライ切削用工具,被削材
の材質変更などを含めた多様化に伴う最適切削工具,さ
らなる高速切削条件,高負荷切削条件,高能率切削条件な
どの市場の要求に適する切削工具などに対しては、同5
件の公報に開示の硬質膜被覆燒結体は、硬質膜の剥離し
易さ、または耐熱性,耐熱衝撃性の不足などにより短寿
命になる傾向が高いという問題がある。
Among the references cited as prior art, Japanese Patent Application Laid-Open Nos. 59-8679, 61-183187, 1-96083, and 1-96084. Patent Publication and JP-A-7-2
Japanese Patent No. 4606 discloses that a base material is an ultra-high-temperature and high-pressure sintered body mainly containing cubic boron nitride, and a single-layer hard film such as a carbide, nitride, carbonitride and aluminum oxide of Ti is formed on the surface of the base material. Alternatively, a hard film-coated sintered body coated in multiple layers is disclosed. The hard film-coated sintered bodies disclosed in these five patent publications are characterized in that when the main characteristic is the film quality of the hard film, when the main characteristic is the configuration of a single-layer or multilayer hard film, In some cases, the composition of the base material is characterized as a main feature. The hard film-coated sintered bodies disclosed in these five publications are:
At first glance, it is considered that the excellent effect of the base material itself and the excellent effect of the hard film itself are fused, but since the compatibility between the base material and the hard film is not particularly considered, the peeling of the hard film There is a problem that the service life is short. Also, starting from recent ecological problems and resource saving problems, dry cutting tools that cut without using cutting oil, optimal cutting tools with diversification including changes in the material of the work material, and more. For cutting tools suitable for market requirements such as high-speed cutting conditions, high-load cutting conditions, high-efficiency cutting conditions, etc.
The hard film-coated sintered body disclosed in the above publication has a problem that the life of the hard film tends to be short due to the easiness of peeling of the hard film or the lack of heat resistance and thermal shock resistance.

【0005】その他の引用文献として挙げた特開昭52
ー28478号公報、特開平8ー209335号公報、
特開平291353号公報、特開平9ー295204号
公報、特開平9ー300105号公報、特開平9ー30
0106号公報、特開平9ー323204号公報、特開
平9ー323205号公報、特開平10ー76407号
公報、特開平10ー76408号公報、特開平11ー1
762号公報、特開平11ー131214号公報、特開
平11ー131215号公報、特開平11ー13121
6号公報、および特開平11ー131217号公報に
は、超硬合金,サーメットの焼結合金またはセラミック
ス焼結体を基材とし、この基材上に、周期律表4a族の
炭化物,窒化物,炭窒化物,ならびにチタンとアルミニ
ウムとを含む複合窒化物、複合炭化物、複合炭窒化物、
複合窒酸化物、複合炭酸化物、複合炭窒酸化物でなるT
i−Al含有化合物の硬質膜が被覆された被覆焼結部材
が開示されている。
[0005] Japanese Patent Application Laid-Open No. Sho 52, cited as another cited reference
-28478, JP-A-8-209335,
JP-A-291353, JP-A-9-295204, JP-A-9-300105, JP-A-9-30
0106, JP-A-9-323204, JP-A-9-323205, JP-A-10-76407, JP-A-10-76408, and JP-A-11-1
762, JP-A-11-131214, JP-A-11-131215, JP-A-11-13121
No. 6 and Japanese Unexamined Patent Publication No. Hei 11-131217 disclose that a cemented carbide, a cermet sintered alloy or a ceramic sintered body is used as a base material, and a carbide or nitride of Group 4a of the periodic table is formed on the base material. , Carbonitride, and composite nitride, composite carbide, composite carbonitride containing titanium and aluminum,
T consisting of composite oxynitride, composite oxycarbonate, composite oxycarbonitride
A coated sintered member coated with a hard film of an i-Al-containing compound is disclosed.

【0006】これら15件の同公報に開示の被覆焼結部
材は、主として基材表面の硬質膜を種々の形態に配向し
たことを特徴とするものである。これら15件の同公報
の中には、硬質膜内の残留圧縮応力を考慮している場
合、または硬質膜内の結晶配向を考慮している場合など
があり、その効果として硬質膜内の粒界破壊の抑制、基
材と硬質膜との密着性の向上、耐摩耗性の向上、安定し
た切削加工、または長寿命の達成などが開示されてい
る。しかしながら、これら15件の同公報に開示の被覆
焼結部材は、硬質膜に存在する結晶の欠陥および歪みを
配慮されていなく、特に基材と硬質膜との適合性につい
て配慮されていないことから、基材と硬質膜との密着性
および硬質膜に隣接する他の膜との密着性に満足できな
く、硬質膜自体の強度,耐摩耗性も満足するまでに至ら
ず、寿命のバラツキが大きく、切削工具として実用した
ときに前述したような市場の要求に対して、主に硬質膜
の剥離の容易さ、または耐熱性,耐熱衝撃性などの不足
により短寿命になるという問題がある。
The coated sintered members disclosed in these fifteen patent publications are characterized in that the hard film mainly on the surface of the base material is oriented in various forms. Among these fifteen patent publications, there are cases where the residual compressive stress in the hard film is taken into consideration, or where the crystal orientation in the hard film is taken into consideration. It discloses suppression of field fracture, improvement in adhesion between a substrate and a hard film, improvement in wear resistance, stable cutting, achievement of long life, and the like. However, the coated sintered members disclosed in these fifteen publications do not consider the crystal defects and distortion present in the hard film, and do not particularly consider the compatibility between the base material and the hard film. , The adhesion between the base material and the hard film and the adhesion of other films adjacent to the hard film are not satisfactory, and the strength and wear resistance of the hard film itself are not satisfied, resulting in a large variation in life. However, when used as a cutting tool, there is a problem that the service life is shortened mainly due to the easiness of peeling of the hard film or the lack of heat resistance and thermal shock resistance against the market requirements as described above.

【0007】本発明は、上述のような問題点を解決した
もので、具体的には、主として超高温高圧焼結体の基材
と、この基材に隣接して被覆される硬質膜との結晶構造
的な適合性、硬質膜の結晶の欠陥,歪み,結晶構造およ
び結晶配向を配慮することにより、基材と硬質膜との密
着性を極端に高めて、硬質膜の特性のバラツキを抑制
し、高靭性,高硬度性,耐摩耗性,耐酸化性,耐熱衝撃
性,耐欠損性,耐溶着性のある硬質膜とし、切削工具と
しての使用領域を拡大し、被削材との耐溶着性を向上さ
せた硬質膜とすることにより一層長寿命を達成させた硬
質膜被覆超高温高圧焼結体の提供を目的とするものであ
る。
The present invention has solved the above-mentioned problems. Specifically, the present invention mainly relates to a base material of an ultra-high-temperature high-pressure sintered body and a hard film coated adjacent to the base material. Considering the crystal structure compatibility, crystal defects, distortion, crystal structure and crystal orientation of the hard film, the adhesion between the base material and the hard film is extremely increased, and the variation in the characteristics of the hard film is suppressed. It is a hard film with high toughness, high hardness, abrasion resistance, oxidation resistance, thermal shock resistance, fracture resistance, and welding resistance. It is an object of the present invention to provide a hard film-coated ultra-high-temperature and high-pressure sintered body having a longer service life by using a hard film having improved weldability.

【0008】[0008]

【課題を解決するための手段】本発明者は、CVD法,
PVD法およびプラズマPVD法に関する硬質膜の成膜
についての研究、特にPVD法による硬質膜についての
研究を長期に亘って行ってきた結果、立方晶窒化硼素お
よび/またはダイヤモンドを含有する超高温高圧焼結体
でなる基材の表面にTi化合物層および/またはTi−
Al含有化合物層でなる硬質膜を被覆させる場合に、最
適な硬質膜構成があるという知見を得たものである。こ
の知見を具体的に説明すると、硬質膜の成膜時における
プラズマ密度の向上およびイオン化効率の向上を行い、
さらに気相法エピタキシャル成長させる状態にすると、
硬質膜内の歪みが均一に緩和されること、硬質膜の結晶
の欠陥が抑制されること、微細結晶の硬質膜が得られる
こと、従来には見られない極端に最適な状態に配向され
た結晶の硬質膜となることから、硬質膜自体の強度,耐
摩耗性,耐酸化性および耐熱性を向上させることが可能
となり、硬質膜と基材との密着性の向上が顕著になると
いう第1の知見と、硬質膜の結晶の配向状態は、硬質膜
の表面からX線回折した場合に、硬質膜中の他の結晶面
に対し(200)結晶面のピーク強度が極端に高くなる
ことにより判断できるという第2の知見が主なものであ
る。これらの知見に基づいて、本発明を完成するに至っ
たものである。
Means for Solving the Problems The present inventors have proposed a CVD method,
As a result of long-term research on hard film formation related to the PVD method and the plasma PVD method, particularly on hard film formation by the PVD method, it has been found that ultra-high-temperature and high-pressure sintering containing cubic boron nitride and / or diamond is performed. A Ti compound layer and / or Ti-
It has been found that when a hard film made of an Al-containing compound layer is coated, there is an optimum hard film configuration. To explain this finding concretely, the plasma density and the ionization efficiency at the time of forming the hard film were improved.
Further, when the state is to be grown by vapor phase epitaxial growth,
The strain in the hard film is uniformly alleviated, the crystal defects of the hard film are suppressed, the hard film of fine crystals is obtained, and it is oriented to an extremely optimal state not seen conventionally. Since the hard film becomes a crystalline hard film, the strength, wear resistance, oxidation resistance and heat resistance of the hard film itself can be improved, and the adhesion between the hard film and the base material is significantly improved. The finding of 1 and the crystal orientation of the hard film show that the peak intensity of the (200) crystal plane becomes extremely higher than the other crystal planes in the hard film when X-ray diffraction is performed from the surface of the hard film. The main finding is that it can be determined by the following. Based on these findings, the present invention has been completed.

【0009】本発明の硬質膜被覆超高温高圧焼結体は、
立方晶窒化硼素および/またはダイヤモンドを含有する
超高温高圧焼結体でなる基材の表面に被膜が被覆されて
おり、該被膜は、チタンの炭化物,窒化物,炭窒化物,
炭酸化物,窒酸化物,炭窒酸化物でなるTi化合物層、
ならびにチタンとアルミニウムとを含む複合窒化物、複
合炭化物、複合炭窒化物、複合窒酸化物、複合炭酸化
物、複合炭窒酸化物でなるTi−Al含有化合物層の中
から選ばれた1種の単層または2種以上の多層の硬質膜
を有しており、該基材に隣接して被覆される該硬質膜が
立方晶結晶構造からなり、該硬質膜の表面から銅ターゲ
ットを用いて、該硬質膜の(111),(200),
(220)および(311)の結晶面が表示される範囲
をX線回折したときに、X線回折ピークの中で(20
0)結晶面が第1番目に高いピーク強度(「A」と表
す)を示し、第2番目に高いピーク強度(「B」と表
す)に対する該第1番目に高いピーク強度の比が8.5
以上(A/B≧8.5)からなり、かつ第3番目に高い
ピーク強度(「C」と表す)に対する該第2番目に高い
ピーク強度(B)の比が2.0以下(B/C≦2.0)
でなることを特徴とするものである。
The hard film-coated ultra-high temperature and high pressure sintered body of the present invention
A coating is coated on the surface of a substrate made of an ultra-high temperature and high pressure sintered body containing cubic boron nitride and / or diamond, and the coating is made of titanium carbide, nitride, carbonitride,
A Ti compound layer made of carbonate, nitride, or carbonitride;
And one selected from a composite nitride containing titanium and aluminum, a composite carbide, a composite carbonitride, a composite nitride, a composite carbonate, and a Ti-Al-containing compound layer composed of a composite carbonitride. Having a single layer or a multilayer hard film of two or more types, the hard film coated adjacent to the base material has a cubic crystal structure, using a copper target from the surface of the hard film, (111), (200),
When X-ray diffraction was performed on the range where the crystal planes of (220) and (311) were displayed, (20)
0) The crystal plane exhibits the first highest peak intensity (denoted "A"), and the ratio of the first highest peak intensity to the second highest peak intensity (denoted "B") is 8. 5
(A / B ≧ 8.5), and the ratio of the second highest peak intensity (B) to the third highest peak intensity (denoted as “C”) is 2.0 or less (B / B C ≦ 2.0)
Is characterized by the following.

【0010】本発明の硬質膜被覆超高温高圧焼結体は、
気相法エピタキシャル成長技術を応用して、Ti化合物
層およびTi−Al含有化合物層の単層または多層でな
る硬質膜における(200)結晶面の配向を強くし、硬
質膜内の歪みを極力抑制することにより、硬質膜自体の
強度、靱性を高めると共に、耐摩耗性も優れるというシ
ナージ効果を発揮させたものである。この硬質膜の表面
から銅ターゲットを用いてX線回折したときに、第2番
目に高いピーク強度(B)に対する(200)結晶面の
ピーク強度(A)が8.5未満(A/B<8.5)で、
かつ第3番目に高いピーク強度(C)に対する該第2番
目に高いピーク強度(B)の比が2.0を越えて高くな
る(B/C>2.0)場合には、(200)結晶面への
配向性が弱く、膜内の欠陥および歪みが大きくなり、上
述のシナージ効果が弱くなることから、上述のような結
晶面のピーク高さ比と定めたものである。この結晶面の
ピーク強度比は、A/B≧9.0およびB/C≦1.5
からなることが好ましく、特にA/B≧10.0および
B/C≦1.5でなる場合には、より一層の結晶配向性
の促進および欠陥や歪みの抑制が惹起されて、基材との
密着性を高めることになり、好ましいことである。
[0010] The hard film-coated ultra-high-temperature and high-pressure sintered body of the present invention comprises:
By applying a vapor phase epitaxial growth technique, the orientation of the (200) crystal plane in a hard film composed of a single layer or a multilayer of a Ti compound layer and a Ti-Al-containing compound layer is strengthened, and distortion in the hard film is suppressed as much as possible. Thereby, the strength and toughness of the hard film itself are enhanced, and the synergy effect that the wear resistance is excellent is exhibited. When the surface of the hard film is subjected to X-ray diffraction using a copper target, the peak intensity (A) of the (200) crystal plane with respect to the second highest peak intensity (B) is less than 8.5 (A / B <A). 8.5)
And when the ratio of the second highest peak intensity (B) to the third highest peak intensity (C) exceeds 2.0 (B / C> 2.0), (200) Since the orientation to the crystal plane is weak, the defects and strain in the film increase, and the synergy effect described above is weakened, the peak height ratio of the crystal plane is determined as described above. The peak intensity ratio of this crystal plane is A / B ≧ 9.0 and B / C ≦ 1.5.
In particular, when A / B ≧ 10.0 and B / C ≦ 1.5, further promotion of crystal orientation and suppression of defects and strains are caused, and Is improved, which is preferable.

【0011】[0011]

【発明の実施の態様】本発明の硬質膜被覆超高温高圧焼
結体における基材は、従来から実用または周知となって
いる立方晶窒化硼素および/またはダイヤモンドを含有
した超高温高圧焼結体を用いることがきる。具体的に
は、例えば立方晶窒化硼素の含有した超高温高圧焼結体
の基材では、立方晶窒化硼素の含有量を20〜98重量
%と、残部が周期律表の4a,5a,6a族の金属,M
n,Fe,Ni,Co,Si,Al,Mgの金属、これ
らの合金、これらの炭化物、窒化物、酸化物、硼化物、
およびこれらの相互固溶体の中から選ばれた1種以上の
補強分散物質とでなる立方晶窒化硼素含有焼結体を挙げ
ることができる。また、例えばダイヤモンドの含有した
超高温高圧焼結体の基材では、ダイヤモンドの含有量を
70〜99重量%と、残部が上述の補強分散物質とでな
るダイヤモンド含有焼結体を挙げることができる。さら
に、例えば立方晶窒化硼素とダイヤモンドの混在した超
高温高圧焼結体の基材では、立方晶窒化硼素の含有量を
15〜80重量%と、ダイヤモンドの含有量を15〜8
0重量%と、残部が上述の補強分散物質とでなる焼結体
を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The base material of the hard film-coated ultra-high-temperature and high-pressure sintered body of the present invention is an ultra-high-temperature and high-pressure sintered body containing cubic boron nitride and / or diamond which has been conventionally used or known. Can be used. Specifically, for example, in a base material of an ultra-high-temperature and high-pressure sintered body containing cubic boron nitride, the content of cubic boron nitride is 20 to 98% by weight, and the remainder is 4a, 5a, 6a in the periodic table. Group metal, M
metals of n, Fe, Ni, Co, Si, Al, Mg, their alloys, their carbides, nitrides, oxides, borides,
And a cubic boron nitride-containing sintered body comprising one or more types of reinforcing and dispersing substances selected from these mutual solid solutions. Further, for example, in the case of a base material of an ultra-high-temperature high-pressure sintered body containing diamond, a diamond-containing sintered body having a diamond content of 70 to 99% by weight and a balance of the above-mentioned reinforcing dispersion material can be given. . Further, for example, in a base material of an ultra-high-temperature and high-pressure sintered body in which cubic boron nitride and diamond are mixed, the content of cubic boron nitride is 15 to 80% by weight, and the content of diamond is 15 to 8%.
A sintered body including 0% by weight and the balance of the above-mentioned reinforcing dispersion material can be given.

【0012】これらの基材のうち、立方晶窒化硼素を4
0〜98重量%と、残部がTiの炭化物,窒化物,炭窒
化物,硼化物,Alの窒化物,酸化物,硼化物,Siの
窒化物,炭化物,Mgの酸化物,Wの炭化物,およびこ
れらの相互固溶体,TiとAlとMgを含む複合硼化
物,複合硼窒化物,ならびにAl,Ti,Co,Ni,
Si,これらの相互合金、金属間化合物の中から選ばれ
た少なくとも1種の補強分散物質とを含有する超高温高
圧焼結体でなる場合には、基材自体の強度、高硬度など
の特性に優れること、基材表面に被覆される硬質膜の配
向が容易に優れるようになること、すなわち(11
1),(200),(220)および(311)の結晶
面のうち、(200)結晶面のX線回折ピークが他の結
晶面に対し、極端に高くなり、基材と硬質膜との密着性
に優れること、硬質膜中の欠陥が抑制されることから、
好ましいことである。
Of these substrates, cubic boron nitride is
0 to 98% by weight, with the balance being Ti carbides, nitrides, carbonitrides, borides, Al nitrides, oxides, borides, Si nitrides, carbides, Mg oxides, W carbides, And their mutual solid solutions, composite borides containing Ti, Al and Mg, composite boronitrides, and Al, Ti, Co, Ni,
In the case of an ultra-high-temperature and high-pressure sintered body containing at least one kind of reinforcing and dispersing substance selected from Si, their mutual alloys and intermetallic compounds, properties such as strength and high hardness of the substrate itself And that the orientation of the hard film coated on the substrate surface becomes easily excellent, that is, (11)
Among the crystal planes of (1), (200), (220) and (311), the X-ray diffraction peak of the (200) crystal plane is extremely higher than the other crystal planes, and the X-ray diffraction peak of the base material and the hard film is higher. Because it has excellent adhesion and the defects in the hard film are suppressed,
It is a good thing.

【0013】これらの基材は、表面精度を高くすると、
基材表面に被覆される硬質膜の表面精度も高くなる傾向
を示し、例えば、切削工具として使用した場合に摩擦抵
抗が低くなって硬質膜表面および被削材表面の荒れが抑
制されて、寿命向上効果が高くなることから好ましいこ
とである。基材の表面精度は、JIS規格B0601に
規定されている表面粗さにおける中心線平均粗さである
Raで0.1μm以下が好ましく、より好ましいのはR
aが0.05μm以下からなるものである。
[0013] When these substrates have high surface accuracy,
The surface accuracy of the hard film coated on the base material surface also tends to be higher, for example, when used as a cutting tool, the frictional resistance is reduced and the hard film surface and the work material surface are suppressed from roughening, and the life is shortened. This is preferable because the effect of improvement is enhanced. The surface accuracy of the substrate is preferably 0.1 μm or less as Ra, which is the center line average roughness in the surface roughness specified in JIS B0601, and more preferably R
a is not more than 0.05 μm.

【0014】これらの基材表面に被覆される被膜の構成
は、具体的に大別すると、基材表面に隣接して直接硬質
膜のみが被覆される場合、基材表面に硬質膜と硬質膜以
外の他の膜とが被覆される場合がある。このうち、後者
の被膜構成について説明すると、基材ー硬質膜ー他の膜
が順次被覆された構成、基材ー硬質膜ー他の膜ー硬質膜
が順次被覆された構成、硬質膜と他の膜とがそれぞれ2
回以上繰り返して積層された構成を挙げることができ
る。これらのうち、基材に隣接して被覆される硬質膜が
立方晶結晶構造からなり、かつ上述したX線回折による
結晶配向が行われているものである。
The structure of the coating film coated on the surface of the base material can be roughly classified into a hard film and a hard film on the surface of the base material when only the hard film is directly coated adjacent to the surface of the base material. There may be a case where a film other than the above is coated. Among them, the latter coating composition will be described. A configuration in which a base material-hard film-other film is sequentially coated, a configuration in which a substrate-hard film-other film-hard film is sequentially coated, a hard film and other And the membrane of each 2
And a configuration in which the layers are repeatedly stacked two or more times. Among these, the hard film coated adjacent to the base material has a cubic crystal structure, and the crystal orientation is performed by the above-described X-ray diffraction.

【0015】これらの被膜表面は、基材に隣接して被覆
される硬質膜の表面がそのまま被膜表面となる場合、ま
たは他の膜が被膜表面となる場合などがある。この被膜
表面は、JIS規格B0601に規定されている表面粗
さにおける中心線平均粗さRaで0.1μm以下、好ま
しくは0.05μm以下にすると、切削工具として使用
した場合に、被削材への損傷が緩和されること、切削抵
抗が緩和されること、切粉の排出が容易になることか
ら、より一層の長寿命となり、好ましいことである。
The surface of the coating may be such that the surface of the hard film coated adjacent to the substrate is the coating surface as it is, or another film is the coating surface. When the surface of the coating film has a center line average roughness Ra of 0.1 μm or less, preferably 0.05 μm or less in the surface roughness specified in JIS standard B0601, when used as a cutting tool, it becomes a work material. This is preferable because the damage to the metal is reduced, the cutting resistance is reduced, and the chips are easily discharged, so that the life is further extended.

【0016】この被膜構成として、硬質膜の基本的な構
成について、さらに具体的に詳細に説明すると、基材ー
TiN層、基材ーTiC層、基材ーTi(N,C)層、
基材ーTi(N,O)層、基材ーTi(C,O)層、基
材ーTi(N,C,O)層、基材ー(Ti,Al)N
層、基材ー(Ti,Al)(N,C)層、基材ー(T
i,Al)(N,O)層、基材ーTiN層ー(Ti,A
l)N層、基材ーTi(N,C)層ー(Ti,Al)N
層、基材ーTi(N,O)層ー(Ti,Al)N層、基
材ーTi(C,O)層ー(Ti,Al)N層、基材ーT
i(N,C,O)層ー(Ti,Al)N層、またはこれ
らを3層以上積層した硬質膜を代表例として挙げること
ができる。
The basic structure of the hard film will be described in more detail as the film structure. The base material is a TiN layer, a base material is a TiC layer, a base material is a Ti (N, C) layer,
Base material-Ti (N, O) layer, Base material-Ti (C, O) layer, Base material-Ti (N, C, O) layer, Base material- (Ti, Al) N
Layer, substrate (Ti, Al) (N, C) layer, substrate (T
i, Al) (N, O) layer, base material-TiN layer-(Ti, A
l) N layer, substrate-Ti (N, C) layer-(Ti, Al) N
Layer, substrate-Ti (N, O) layer-(Ti, Al) N layer, substrate -Ti (C, O) layer-(Ti, Al) N layer, substrate -T
A typical example is an i (N, C, O) layer- (Ti, Al) N layer or a hard film obtained by laminating three or more of these layers.

【0017】また、これらの硬質膜を応用した被膜構成
としては、基材ーTiN層−Al 23層、基材ーTi
(N,O)層−Al23層、基材ー(Ti,Al)N層
−Al23層、基材ー(Ti,Al)(N,O)層−A
23層、基材ーTiN層−(Ti,Al)N層−Al
23層、基材ーTiN層ー(Ti,Al)(N,O)層
−Al23層、基材ーTiN層−柱状晶Ti(C,N)
層−Al23層、基材ーTi(N,O)層−柱状晶Ti
(C,N)層−Al23層、基材ーTiN層−Al23
層−TiN層、基材ーTi(N,O)層−Al23層−
TiN層、基材ー(Ti,Al)N層−Al23層−T
iN層、基材ー(Ti,Al)(N,O)層−Al23
層−TiN層、基材ーTiN層−(Ti,Al)N層−
Al23層−TiN層、基材ーTiN層ー(Ti,A
l)(N,O)層−Al23層−TiN層、基材ーTi
N層−柱状晶Ti(C,N)層−Al23層ーTiN
層、または基材ーTi(N,O)層−柱状晶Ti(C,
N)層−Al23層ーTiN層、を代表例として挙げる
ことができる。
Further, a coating composition using these hard films is applied.
As the base material-TiN layer-Al TwoOThreeLayer, substrate-Ti
(N, O) layer-AlTwoOThreeLayer, base material (Ti, Al) N layer
-AlTwoOThreeLayer, Substrate (Ti, Al) (N, O) Layer-A
lTwoOThreeLayer, substrate-TiN layer- (Ti, Al) N layer-Al
TwoOThreeLayer, substrate-TiN layer-(Ti, Al) (N, O) layer
-AlTwoOThreeLayer, substrate-TiN layer-columnar crystal Ti (C, N)
Layer-AlTwoOThreeLayer, substrate-Ti (N, O) layer-columnar Ti
(C, N) layer-AlTwoOThreeLayer, substrate-TiN layer-AlTwoOThree
Layer-TiN layer, substrate-Ti (N, O) layer-AlTwoOThreeLayer-
TiN layer, base material (Ti, Al) N layer-AlTwoOThreeLayer-T
iN layer, base material (Ti, Al) (N, O) layer-AlTwoOThree
Layer-TiN layer, substrate-TiN layer-(Ti, Al) N layer-
AlTwoOThreeLayer-TiN layer, substrate-TiN layer-(Ti, A
l) (N, O) layer-AlTwoOThreeLayer-TiN layer, substrate-Ti
N layer-columnar Ti (C, N) layer-AlTwoOThreeLayer-TiN
Layer or substrate-Ti (N, O) layer-columnar Ti (C,
N) Layer-AlTwoOThreeLayer-TiN layer as a representative example
be able to.

【0018】これらの被膜構成のうち、基材に隣接して
被覆される単層または多層の硬質膜でなる場合には、硬
質膜が基材に含有されている立方晶窒化硼素および/ま
たはダイヤモンドと同一結晶構造であることにより密着
性に優れること、被膜の被覆工程が簡易であること、工
程時間の短縮となること、品質管理上のバラツキが少な
くなること、および硬質膜被覆時における基材中の立方
晶窒化硼素および/またはダイヤモンドの逆変換防止効
果が容易であることから、好ましいことである。また、
基材に隣接する硬質膜と、この硬質膜に隣接する酸化ア
ルミニウムの層とでなる被膜構成、もしくは硬質膜と酸
化アルミニウムの層を繰り返して積層した被膜構成にす
ると、上述した基材に隣接して被覆される硬質膜の効果
とさらに高温領域での耐熱性、耐酸化性、耐磨耗性を高
めるという酸化アルミニウムの層による効果とを相乗的
に発揮させ得ることから、好ましいことである。
In the case of a single-layer or multi-layer hard film coated adjacent to the base material, cubic boron nitride and / or diamond containing the hard film in the base material. Excellent adhesion due to having the same crystal structure as above, simpler coating process, shorter process time, less variation in quality control, and substrate for hard film coating This is preferable because the effect of preventing reverse conversion of cubic boron nitride and / or diamond therein is easy. Also,
A hard film adjacent to the base material and a coating structure composed of an aluminum oxide layer adjacent to the hard film, or a coating structure in which the hard film and the aluminum oxide layer are repeatedly laminated to form a coating structure adjacent to the base material described above. This is preferable because the effect of the hard film to be coated with the aluminum oxide layer and the effect of the aluminum oxide layer of increasing the heat resistance, oxidation resistance, and abrasion resistance in a high temperature region can be synergistically exhibited.

【0019】これらの被膜を構成するのに必須となる基
材に隣接する硬質膜は、単層または多層でなるTi化合
物層の場合がある。このTi化合物層は、Ti(Cx
y,Ozw[ただし、xは非金属元素中の炭素(C)
元素の原子比、yは非金属元素中の窒素(N)元素の原
子比、zは非金属元素中の酸素(O)元素の原子比、w
は金属元素であるチタン(Ti)元素に対する非金属元
素の原子比を表し、それぞれがx+y+z=1、0.5
≧x≧0、1≧y≧0.5、0.5≧z≧0、1.05
≧w≧0.7の関係にある]で表されるTi化合物層で
なる場合には、上述の硬質膜の効果を容易に発揮させ得
ることから、好ましいことである。
The hard film adjacent to the substrate, which is essential for forming these films, may be a single or multilayer Ti compound layer. This Ti compound layer is composed of Ti (C x ,
N y , O z ) w [where x is carbon (C) in a nonmetallic element
Atomic ratio of elements, y is the atomic ratio of nitrogen (N) element in the nonmetallic element, z is the atomic ratio of oxygen (O) element in the nonmetallic element, w
Represents the atomic ratio of the nonmetal element to the titanium element (Ti), which is a metal element, and x + y + z = 1 and 0.5, respectively.
≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.5 ≧ z ≧ 0, 1.05
.Gtoreq.w.gtoreq.0.7] is preferable because the effect of the hard film can be easily exerted.

【0020】また、基材に隣接する硬質膜は、単層また
は多層でなるTi−Al含有化合物層の場合がある。こ
のTi−Al含有化合物層は、(Tia,Alb
(Cx,Ny,Ozw[ただし、aは金属元素中のTi
(チタン)元素の原子比、bは金属元素中のAl(アル
ミニウム)元素の原子比、xは非金属元素中の炭素
(C)元素の原子比、yは非金属元素中の窒素(N)元
素の原子比、zは非金属元素中の酸素(O)元素の原子
比、wは金属元素の合計に対する非金属元素の原子比を
表し、それぞれがa+b=1、0.8≧a≧0.4、x
+y+z=1、0.5≧x≧0、1≧y≧0.5、0.
5≧z≧0、1.05≧w≧0.7の関係にある]で表
されるTi−Al含有化合物層でなる場合には、基材と
硬質膜と酸化アルミニウムの層との各界面における密着
性および整合性に優れること、高温における耐磨耗性,
耐酸化性に優れることから、好ましいことである。さら
に、硬質膜は、Ti化合物層とTi−Al含有化合物層
とでなる多層からなる場合もあり、この硬質膜の構成
は、上述と同様の効果とともに、より広い温度領域にお
いて耐磨耗性,耐酸化性を発揮させ得ることから、好ま
しいことである。
The hard film adjacent to the substrate may be a single-layer or multilayer Ti-Al-containing compound layer. This Ti—Al-containing compound layer is composed of (Ti a , Al b )
(C x , N y , O z ) w [where a is Ti in the metal element
(Titanium) element atomic ratio, b is atomic ratio of Al (aluminum) element in metal element, x is atomic ratio of carbon (C) element in nonmetal element, y is nitrogen (N) in nonmetal element The atomic ratio of the elements, z is the atomic ratio of the oxygen (O) element in the nonmetal element, and w is the atomic ratio of the nonmetal element to the total of the metal elements, where a + b = 1 and 0.8 ≧ a ≧ 0, respectively. .4, x
+ Y + z = 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.
5 ≧ z ≧ 0, 1.05 ≧ w ≧ 0.7], each interface between the base material, the hard film, and the aluminum oxide layer Excellent adhesion and consistency at high temperatures, abrasion resistance at high temperatures,
This is preferable because of its excellent oxidation resistance. Further, the hard film may be composed of a multilayer composed of a Ti compound layer and a Ti-Al-containing compound layer. The structure of the hard film has the same effect as described above, as well as abrasion resistance in a wider temperature range. This is preferable because oxidation resistance can be exhibited.

【0021】これらの基材に隣接する硬質膜を含めた全
ての硬質膜中において、Ti−Al含有化合物層が存在
している場合には、Ti−Al含有化合物層中のAl元
素含有量がTi−Al含有化合物層の表面側から基材側
に向かって減少していること、いわゆる傾斜組成の硬質
膜にすると基材と硬質膜との密着性が優れること、硬質
膜自体の強度,靱性に優れて、欠陥,歪みおよび残留応
力が減少すること、硬質膜表面の耐酸化性,耐摩耗性お
よび耐腐食性が優れることから、好ましいことである。
このときのAl元素の減少は、階段状,ノコギリの刃状
にミクロ的に増減があるとしてもマクロ的には段階的に
減少する場合、放物線状,直線状に連続的に減少してい
る場合でもよいものである。
When the Ti—Al-containing compound layer is present in all of the hard films including the hard film adjacent to these substrates, the content of the Al element in the Ti—Al-containing compound layer is reduced. It decreases from the surface side of the Ti-Al-containing compound layer toward the base material side. When a hard film having a so-called gradient composition is used, the adhesion between the base material and the hard film is excellent, and the strength and toughness of the hard film itself It is preferable because it is excellent in reducing defects, distortion and residual stress, and excellent in oxidation resistance, abrasion resistance and corrosion resistance of the hard film surface.
The reduction of the Al element at this time is a stepwise or sawtooth-shaped microscopic increase / decrease but a macroscopic stepwise decrease, or a parabolic or linear continuous decrease. But it is good.

【0022】これらのTi化合物層および/またはTi
ーAl含有化合物層でなる硬質膜、特に基材に隣接する
硬質膜は、該硬質膜中に周期律表の4a,5a,6a族
金属,鉄族金属,Al,Si,Mn,Mgこれらの合金
または金属間化合物の中の少なくとも1種の硬質膜強化
物質が微量含有されている場合がある。これらの硬質膜
強化物質のうち、Ni,Co,W,Mo,Al,Tiの
金属、これらの相互合金,これらの金属間化合物の中か
ら選ばれた少なくとも1種でなる場合には、欠陥、歪み
が緩和されて前述の硬質膜の効果がより一層向上し、顕
著となることから、好ましいことである。特に、基材に
含有している元素、具体的には、例えば前述の立方晶窒
化硼素含有焼結体でなる基材の場合は、補強分散物質を
構成する元素からなると、前述の硬質膜の効果ととも
に、基材と硬質膜との密着性の効果もより一層向上する
ことから、好ましいことである。
These Ti compound layers and / or Ti
A hard film composed of an Al-containing compound layer, particularly a hard film adjacent to a substrate, includes a metal of the 4a, 5a, 6a group of the periodic table, an iron group metal, Al, Si, Mn, and Mg. At least one kind of the hard film strengthening material in the alloy or the intermetallic compound may be contained in a trace amount. Among these hard film strengthening materials, when they are at least one selected from Ni, Co, W, Mo, Al, and Ti metals, their mutual alloys, and their intermetallic compounds, defects, This is preferable because distortion is alleviated and the effect of the above-mentioned hard film is further improved and remarkable. In particular, the element contained in the base material, specifically, for example, in the case of a base material made of the above-mentioned cubic boron nitride-containing sintered body, if it is made of the element constituting the reinforcing dispersion material, This is preferable because the effect of adhesion between the base material and the hard film is further improved together with the effect.

【0023】これらの硬質膜強化物質の含有量として
は、具体的には、硬質膜と硬質膜強化物質との合計に対
し、3体積%以下、好ましくは1体積%以下含有してい
ると、複合硬質膜の表面からの垂直方向および水平方向
の両方からの耐圧壊強度,耐圧縮強度に優れるととも
に、耐摩耗性にも優れるという相乗効果が発揮されるこ
とから、好ましいことである。
The content of these hard film reinforcing substances is, specifically, not more than 3% by volume, preferably not more than 1% by volume, based on the total of the hard film and the hard film reinforcing substance. This is preferable because the composite hard film exhibits a synergistic effect in that it has excellent pressure-resistant crushing strength and compressive strength both in the vertical direction and the horizontal direction from the surface and also has excellent wear resistance.

【0024】また、硬質膜自体の構造としては、基材表
面に対し垂直方向に柱状に成長した柱状結晶が含まれて
いる場合には、複合硬質膜の表面からの耐圧壊強度が向
上し、耐剥離性、耐微小チッピング性に優れることか
ら、好ましいことである。この柱状結晶を含む硬質膜
は、具体的には、硬質膜全体が柱状結晶の層でなる場
合、粒状結晶と柱状結晶との混在した層でなる場合、粒
状結晶の層と柱状結晶の層との積層でなる場合、または
これらの粒状結晶と柱状結晶のそれぞれの中に前述した
硬質膜強化物質が微量含有されている場合を例示するこ
とができる。
When the hard film itself has a columnar crystal which grows in a columnar direction in a direction perpendicular to the surface of the base material, the crush resistance from the surface of the composite hard film is improved, This is preferable because it has excellent peeling resistance and micro chipping resistance. The hard film containing the columnar crystals, specifically, when the entire hard film is formed of a columnar crystal layer, when the hard film is formed of a mixed layer of granular crystals and columnar crystals, a layer of granular crystals and a layer of columnar crystals. Or a case in which each of the granular crystal and the columnar crystal contains a trace amount of the above-mentioned hard film strengthening substance.

【0025】以上のような各種の態様でなる本発明の硬
質膜被覆超高温高圧燒結体は、各種の用途に実用できる
ものであり、具体的には、例えば旋削工具,フライス工
具,ドリル,エンドミルに代表される切削工具、ダイス
などの型工具からスリッタ−などの切断刃,裁断刃など
の耐摩耗用工具として実用できるものである。これらの
うち、本発明の硬質膜被覆超高温高圧燒結体は、ミクロ
的に温度,摩擦、熱衝撃および圧縮衝撃などが最も過酷
な条件となる切削工具、特にドリル,エンドミルなどの
回転切削工具,スローアウエイチップなどの切削工具と
して使用する場合には、基材と硬質膜の特性を最適に発
揮させ得ることから、好ましいことである。この硬質膜
被覆超高温高圧燒結体を切削工具として使用する場合に
は、前述した表面における面精度の問題の他に、刃こぼ
れ、チッピングなどに関連する切刃の問題がある。この
切刃の問題は、例えば面取りおよび/またはR形などの
ホーニング形状により解決することも好ましく、特に被
膜厚さが切刃稜線部に向かって減少していると、被膜の
耐剥離性、切刃の微小チッピング性に優れることから好
ましいことである。
The ultra-high-temperature and high-pressure sintered body coated with a hard film according to the present invention in the above-described various embodiments can be used for various uses. Specifically, for example, a turning tool, a milling tool, a drill, an end mill It can be used as a wear-resistant tool such as a cutting tool such as a die, a die tool, and a cutting blade such as a slitter and a cutting blade. Among them, the hard film-coated ultra-high-temperature and high-pressure sintered body of the present invention is a cutting tool in which temperature, friction, thermal shock, compression impact, and the like are most severe in microscopic conditions, especially rotary cutting tools such as drills and end mills, When used as a cutting tool such as a throw-away tip, it is preferable because the properties of the base material and the hard film can be optimally exhibited. When this hard film-coated ultra-high-temperature and high-pressure sintered body is used as a cutting tool, there is a problem of a cutting edge related to blade spilling, chipping, and the like, in addition to the above-described surface accuracy problem on the surface. It is also preferable to solve the problem of the cutting edge by, for example, chamfering and / or a honing shape such as an R-shape. This is preferable because the blade has excellent chipping properties.

【0026】また、被膜を構成する各層の膜厚さは、用
途、形状および被膜の構成により、選択することが好ま
しく、最も過酷な切削工具などに使用する場合には、被
膜の総膜厚さを1〜20μmにすることが好ましいこと
である。また、耐磨耗工具などに使用する場合には、さ
らに被膜の膜厚さを厚くすることも可能であるが、被覆
工程が長時間となることなどから、上述の総膜厚さ程度
にしておくことが好ましいことである。以上に詳述して
きた硬質膜を初め、基材に含有する補強分散物質は、化
学量論組成でなる場合、または非化学量論組成でなる場
合でもよく、実質的には非化学量論組成からなっている
場合が多いものである。
The thickness of each layer constituting the coating is preferably selected depending on the application, shape and composition of the coating. When used for the most severe cutting tools, the total thickness of the coating is determined. Is preferably set to 1 to 20 μm. In addition, when used for wear-resistant tools, it is possible to further increase the thickness of the coating, but since the coating process takes a long time, etc. It is preferable to keep it. Including the hard film described in detail above, the reinforcing dispersion material contained in the base material may be composed of a stoichiometric composition or may be composed of a non-stoichiometric composition. Often consist of

【0027】この本発明の硬質膜被覆超高温高圧燒結体
は、従来から市販されている立方晶窒化硼素系焼結体,
ダイヤモンド系焼結体に代表される超高温高圧焼結体ま
たは前述した立方晶窒化硼素含有の超高温高圧焼結体を
基材とし、この基材の表面を、必要に応じて研磨し、超
音波洗浄、有機溶剤洗浄などを行った後に、従来から行
われているPVD法,CVD法またはプラズマCVD法
により基材上に被膜を被覆して作製することができる。
特に、基材表面に隣接して被覆される硬質膜は、以下の
PVD法で作製すると、プラズマ密度の向上とイオン化
効率の向上が可能となること、硬質膜自体の気相エピタ
キシャル結晶成長および結晶配向が容易となること、硬
質膜の特性および密着性がより優れることから、好まし
いことである。
The hard film-coated ultra-high-temperature and high-pressure sintered body of the present invention is a commercially available cubic boron nitride-based sintered body,
The base material is an ultra-high-temperature and high-pressure sintered body typified by a diamond-based sintered body or the above-described ultra-high-temperature and high-pressure sintered body containing cubic boron nitride, and the surface of the substrate is polished if necessary. After performing sonic cleaning, organic solvent cleaning, or the like, a substrate can be formed by coating a film on a substrate by a conventional PVD method, CVD method, or plasma CVD method.
In particular, when the hard film coated adjacent to the substrate surface is manufactured by the following PVD method, the plasma density and the ionization efficiency can be improved. This is preferable because the orientation becomes easy and the properties and adhesion of the hard film are more excellent.

【0028】基材表面に隣接して被覆される硬質膜を被
覆するための方法として、重要な特徴について具体的に
詳述すると、基材の表面は、従来から行われているブラ
スト処理,ショットピーニング処理,研磨処理,バレル
処理の中の少なくとも1種の機械的処理と、酸性もしく
はアルカリ性の電解液による電解エッチング,酸溶液,
アルカリ溶液による表面腐食、または水,有機溶液によ
る洗浄の中の少なくとも1種の化学的処理と、この機械
的処理と化学的処理を同時または別々に行う処理方法と
から選択される処理を行うと、基材表面の欠陥を除去で
きること、硬質膜の密着性を高め得ること、膜内歪みを
抑制できること、膜内の欠陥を抑制できることから、好
ましいことである。また、基材は、このような機械的処
置および/または化学的処理と、低温による熱処理を付
加して、上述の効果を高めることも好ましいことであ
る。
As a method for coating a hard film to be coated adjacent to the surface of the substrate, the important features will be specifically described in detail. At least one mechanical treatment of peening, polishing, and barrel treatment, and electrolytic etching with an acidic or alkaline electrolyte, an acid solution,
When a treatment selected from at least one kind of chemical treatment in surface corrosion with an alkali solution or cleaning with water or an organic solution and a treatment method of performing the mechanical treatment and the chemical treatment simultaneously or separately is performed. This is preferable because defects on the surface of the base material can be removed, adhesion of the hard film can be increased, distortion in the film can be suppressed, and defects in the film can be suppressed. In addition, it is also preferable that the base material is subjected to such a mechanical treatment and / or a chemical treatment and a heat treatment at a low temperature to enhance the above-mentioned effect.

【0029】硬質膜の被覆方法は、スパッター法やイオ
ンプレーテイング法に代表されるPVD法により行うこ
とが好ましく、これらのうち、マグネトロンスパッター
法またはアークプラズマイオンプレーテイング法により
行うと、硬質膜の調整が容易であることから、特に好ま
しいことである。具体的には、例えばイオンプレーテイ
ング装置の反応容器内に基材を配置し、基材表面をボン
バード処理する場合に、金属元素および/または窒素元
素のイオンによるボンバード処理、もしくは金属元素イ
オンと非金属元素イオンとの両方によるボンバード処理
を施すと、上述の効果を高めることになり、好ましいこ
とである。
The hard film is preferably coated by a PVD method typified by a sputtering method or an ion plating method. Of these, a magnetron sputtering method or an arc plasma ion plating method is preferred. This is particularly preferable because the adjustment is easy. Specifically, for example, when a substrate is placed in a reaction vessel of an ion plating apparatus and the surface of the substrate is subjected to a bombardment treatment, a bombardment treatment with ions of a metal element and / or a nitrogen element, or a non-contact with a metal element ion is performed. Performing the bombardment treatment with both metal element ions enhances the above-described effects, which is preferable.

【0030】さらに具体的な硬質膜の被覆方法は、反応
容器の構造、プラズマの調整など装置自体の影響を重要
視する必要があり、例えば高電圧の電源(場合によって
はパルス状高電圧と高周波を付加)でイオンの加速とプ
ラズマを発生させる装置、磁界によるプラズマの調整可
能な装置を使用すること、その他、反応容器内の雰囲気
圧力,温度,アーク放電電流.電圧,基材バイアス電
圧,試料の配置などについて配慮する必要があり、これ
らのうち、従来の条件に対し、特にアーク放電電圧を高
くすること、基材バイアス電圧を高くすること、従来か
ら行われている気相エピタキシャル結晶成長方法を取り
入れること、試料の回転および上下動などが重要な要件
となる。
In a more specific method for coating a hard film, it is necessary to give importance to the influence of the apparatus itself such as the structure of the reaction vessel and the adjustment of plasma. For example, a high-voltage power supply (pulsed high voltage and high-frequency Use a device that accelerates ions and generates plasma, adjusts plasma using a magnetic field, and uses other parameters such as atmospheric pressure, temperature, and arc discharge current in the reaction vessel. It is necessary to consider the voltage, the substrate bias voltage, the arrangement of the sample, etc. Among these, it is necessary to increase the arc discharge voltage, the substrate bias voltage, and the conventional conditions. Importance of the vapor phase epitaxial crystal growth method used, rotation and vertical movement of the sample are important requirements.

【0031】[0031]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施試験1】以上に詳述してきた本発明の実施形態に
ついて、さらに具体的な代表例として実施試験により説
明する。まず、従来の配合,混合,成形,焼結の各工程
を経て作製されたISO規格によるSNGN12040
8形状相当の超硬合金を台金とし、この超硬合金台金の
刃先となるコーナ部に表1に示した組成成分でなる立方
晶窒化硼素含有の超高温高圧焼結体の基材を接合し、複
合焼結体を得た。この複合焼結体は、超硬合金台金と表
1に示した立方晶窒化硼素含有組成成分を圧力5.5G
Pa,温度1773Kの超高温高圧焼結により、直接接
合したものである。また、複合焼結体は、超硬合金台金
と超高温高圧焼結体を銀ロー付けにより接合した場合で
もよい。これらの複合焼結体の上下面と外周面を270
#のダイヤモンド砥石で研削加工を施し、刃先部に40
0#ダイヤモンド砥石により−25°×0.10mmの
ホーニング加工を施し、さらに表面を湿式ブラスト処
理,洗浄処理および乾燥処理を行った後、アークイオン
プレーテイング装置により硬質膜を被覆した。
[Embodiment Test 1] The embodiment of the present invention described in detail above will be described as a more specific representative example by an execution test. First, the SNGN 12040 according to the ISO standard manufactured through the conventional blending, mixing, molding, and sintering steps.
A cemented carbide having a shape equivalent to 8 shapes is used as a base metal, and a base material of a cubic boron nitride-containing ultra-high-temperature and high-pressure sintered body containing cubic boron nitride having a composition shown in Table 1 is provided at a corner portion serving as a cutting edge of the cemented carbide base metal. Joining was performed to obtain a composite sintered body. This composite sintered body was prepared by mixing a cemented carbide base metal and the cubic boron nitride-containing composition shown in Table 1 with a pressure of 5.5 G.
It was directly joined by ultra-high-temperature and high-pressure sintering at 1773K Pa and temperature. Further, the composite sintered body may be a case in which the cemented carbide base metal and the ultra-high temperature and high pressure sintered body are joined by silver brazing. The upper and lower surfaces and outer peripheral surface of these composite sintered bodies are 270
Grind with a diamond wheel #
Honing was performed at -25 ° × 0.10 mm with a 0 # diamond grindstone, and the surface was subjected to wet blasting, washing, and drying, and then a hard film was coated with an arc ion plating apparatus.

【0032】処理方法は、反応容器内の各複合焼結体表
面(特に基材表面)をボンバード処理した後、硬質膜を
被覆した。ボンバード処理は、反応容器内の雰囲気を真
空,基材の温度を823〜873K,アーク電流を60
〜80A,基材のバイアス電圧をー400〜ー700V
とし、ArーN2ガスボンバードにより行った。硬質膜
の被覆は、反応容器内のガス流量を150〜450SC
CM,蒸発源をTi金属(Ti化合物層用)またはTi
−Al合金(Ti−Al含有化合物層用),アーク電圧
を150〜350V,アーク電流を150〜250A,
複合焼結体の基材温度を773〜923K,複合焼結体
の基材バイアス電圧をー100〜ー200Vにより行
い、表2に示した本発明品1〜10を得た。
In the treatment method, the surface of each composite sintered body in the reaction vessel (particularly, the surface of the base material) was subjected to a bombardment treatment, and then coated with a hard film. In the bombarding process, the atmosphere in the reaction vessel is vacuum, the temperature of the substrate is 823 to 873K, and the arc current is 60.
~ 80A, bias voltage of substrate is -400 ~ -700V
The test was performed using Ar-N 2 gas bombardment. The coating of the hard film has a gas flow rate in the reaction vessel of 150 to 450 SC.
CM, evaporation source is Ti metal (for Ti compound layer) or Ti
-Al alloy (for Ti-Al containing compound layer), arc voltage 150-350V, arc current 150-250A,
The substrate temperature of the composite sintered body was 773 to 923 K, and the substrate bias voltage of the composite sintered body was from -100 to -200 V, to thereby obtain inventive products 1 to 10 shown in Table 2.

【0033】このときの硬質膜被覆時の反応容器内雰囲
気は、TiN層および(Ti,Al)N層の場合がN2
ガス組成、Ti(C,N)層の場合がN2−C24ガス
組成、TiC層の場合がCH4ガス組成、Ti(N,
O)層の場合がN2−CO−CO 2ガス組成、Ti(C,
N,O)層の場合がN2−CH4−COガス組成で行い、
本発明品4の蒸発源には、Ti元素の多い合金からAl
元素の多い合金に切り替えて行い、表2に示した硬質膜
が被覆された本発明品1〜10を得た。
At this time, the atmosphere in the reaction vessel when the hard film is coated
In the case of TiN layer and (Ti, Al) N layer, NTwo
Gas composition, Ti (C, N) layer is NTwo-CTwoHFourgas
Composition, TiC layer is CHFourGas composition, Ti (N,
O) layer is NTwo-CO-CO TwoGas composition, Ti (C,
N, O) layer is NTwo-CHFour-CO gas composition,
As the evaporation source of the product 4 of the present invention, an alloy containing a large amount of Ti
The test was performed by switching to an alloy containing many elements, and the hard film shown in Table 2
Of the present invention 1 to 10 were coated.

【0034】比較として、市販されている立方晶窒化硼
素含有の超高温高圧焼結体を、超硬合金に銀ロー付けし
て得た同形状の複合焼結体の表面にそれぞれ表3に示し
た硬質膜を被覆して比較品1〜5を得た。複合焼結体の
表面粗さは、上述の本発明品1〜10に使用の複合焼結
体の表面がRa=0.01〜0.005μmに対し、比
較品1〜5に使用の複合焼結体の表面がRa=0.1〜
0.05μmであった。比較品1〜5における複合焼結
体の表面処理は、上述した本発明品の表面処理のうち、
湿式ブラスト処理を除いて、その他はほぼ同様に処理し
た。また、同比較品1〜5におけるボンバード処理は、
Arガスにて行い、硬質膜の被覆は、上述した本発明品
の硬質膜の処理条件のうち、アーク電圧を10〜50
V,アーク電流を150〜200A,基材バイアス電圧
をー80〜ー200Vとした以外は、ほぼ同様に処理し
た。
For comparison, Table 3 shows the surfaces of composite sintered bodies of the same shape obtained by soldering a commercially available ultra-high-temperature and high-pressure sintered body containing cubic boron nitride to a cemented carbide and silver-brazing them. Comparative products 1 to 5 were obtained by coating the resulting hard film. The surface roughness of the composite sintered body was such that the surface of the composite sintered body used for the above-described present invention products 1 to 10 was Ra = 0.01 to 0.005 μm, whereas the composite sintered body used for the comparative products 1 to 5 was Ra. Ra = 0.1 ~
It was 0.05 μm. The surface treatment of the composite sintered body in the comparative products 1 to 5 is one of the surface treatments of the present invention described above.
Except for the wet blast treatment, the others were treated in substantially the same manner. In addition, the bombard treatment in the same comparative products 1 to 5,
The hard film was coated with Ar gas and the arc voltage was set to 10 to 50 out of the processing conditions of the hard film of the present invention described above.
V, the arc current was 150 to 200 A, and the substrate bias voltage was -80 to -200 V.

【0035】こうして得た本発明品1〜10および比較
品1〜5のそれぞれについて、X線回折装置により、C
uターゲットを用いて、硬質膜表面から回折角度2θ=
30〜80度の範囲を回折し、硬質膜の(111)結晶
面,(200)結晶面,(220)結晶面,(311)
結晶面の各ピーク強度を測定した。ピーク強度の測定
は、横軸が回折角(2θ)度で、縦軸がピーク強度を表
すX線回折パターンのうち、それぞれ第1番目〜第3番
目までの強度の高いピークの高さをmm単位で測定し、
その結果を表4および5に示した。表4の本発明品1〜
10における第1番目に高いピークは、(200)結晶
面であり、第2番目および第3番目に高いピークは、
(111)結晶面,(220)結晶面,(311)結晶
面がほとんど大差ないが、(111)結晶面および(3
11)結晶面を測定した。表5の比較品1〜5は、同様
に(200)結晶面、(111)結晶面および(31
1)結晶面を測定した。このときの本発明品1〜10の
硬質膜は、立方晶結晶構造からなっていることを確認し
た。
With respect to each of the products 1 to 10 of the present invention and the comparative products 1 to 5 thus obtained, C
Using a u target, the diffraction angle 2θ =
Diffracted in the range of 30 to 80 degrees, the (111) crystal plane, (200) crystal plane, (220) crystal plane, and (311) crystal plane of the hard film.
Each peak intensity of the crystal plane was measured. In the measurement of the peak intensity, the horizontal axis indicates the diffraction angle (2θ) degrees, and the vertical axis indicates the height of the first to third highest intensity peaks in mm in the X-ray diffraction pattern indicating the peak intensity. Measured in units,
The results are shown in Tables 4 and 5. Inventive products 1 of Table 4
The first highest peak in 10 is the (200) crystal plane, and the second and third highest peaks are
Although the (111) crystal plane, the (220) crystal plane, and the (311) crystal plane hardly differ, the (111) crystal plane and the (3
11) The crystal plane was measured. Comparative products 1 to 5 in Table 5 similarly have (200) crystal plane, (111) crystal plane and (31) crystal plane.
1) The crystal plane was measured. At this time, it was confirmed that the hard films of the present invention products 1 to 10 had a cubic crystal structure.

【0036】これらの本発明品1〜10および比較品1
〜5について、走査型電子顕微鏡,金属顕微鏡,EDS
装置,ビッカース硬さ試験機および引っ掻き硬さ試験機
に相当するスクラッチ試験機を用いて、主として硬質膜
の状態を調査した。これらの調査結果のうち、硬質膜の
膜厚さは、表2および3に示した。硬質膜の耐剥離性と
して測定したスクラッチ強度は、それぞれの結果を表6
に示した。なお、本発明品1〜10の硬質膜のうち、酸
素の含有した硬質膜は、その硬質膜層中の酸素含有量が
非金属元素全体に対し、0.2原子比であった。(T
i,Al)Nの硬質膜層は、ほぼTi:Al=1:1で
あり、このうち本発明品4が基材側から膜表面に向かっ
てAl元素の漸増した傾斜組成の(Ti,Al)N硬質
膜層であった。また、本発明品5、10におけるTi
(C,N)の硬質膜層は、柱状晶結晶からなっていた。
These inventive products 1 to 10 and comparative product 1
Scanning electron microscope, metallographic microscope, EDS
Using a device, a Vickers hardness tester and a scratch tester corresponding to a scratch hardness tester, the state of the hard film was mainly investigated. Among these results, the thickness of the hard film is shown in Tables 2 and 3. Table 6 shows the scratch strength measured as the peel resistance of the hard film.
It was shown to. In addition, among the hard films of the present invention products 1 to 10, the hard film containing oxygen had an oxygen content in the hard film layer of 0.2 atomic ratio to the entire nonmetallic element. (T
The hard film layer of (i, Al) N is almost Ti: Al = 1: 1. Among them, the product 4 of the present invention has a (Ti, Al) having a gradually increasing gradient composition of Al element from the substrate side toward the film surface. ) N hard film layer. In addition, in the products 5 and 10 of the present invention,
The (C, N) hard film layer was composed of columnar crystals.

【0037】次いで、本発明品1〜10および比較品1
〜5を用いて、以下の切削条件により乾式連続切削試験
を行った。切削条件は、被削材がFCD70,切削速度
が500m/min,送りが0.1mm/rev,切り
込みが0.3mm,工具形状がSNGN120408,
により行った。切削試験の結果は、切刃のチッピング,
被覆層の剥離したとき、平均逃げ面摩耗量が0.2mm
に達したときを工具寿命とし、そのときのそれぞれの切
削時間を求めて、最短寿命の試料を1とし、最短寿命の
試料に対する寿命比として、表6に併記した。
Next, products 1 to 10 of the present invention and comparative product 1
-5, a dry continuous cutting test was performed under the following cutting conditions. The cutting conditions were as follows: the work material was FCD70, the cutting speed was 500 m / min, the feed was 0.1 mm / rev, the cut was 0.3 mm, the tool shape was SNGN120408,
Was performed. The result of the cutting test is
When the coating layer is peeled off, the average flank wear is 0.2 mm
Is reached, the tool life is determined, and the respective cutting time at that time is determined. The sample with the shortest life is set to 1, and the life ratio to the sample with the shortest life is also shown in Table 6.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【実施試験2】実施試験1の表2に示した本発明品1,
2,3,4,10および表3に示した比較品1〜5を用
いて、それぞれの硬質膜表面に、さらにその他の膜とし
て、従来からの方法によりAl23およびTiNの膜を
被覆し、それぞれ表7に示した本発明品11〜15およ
び表8に示した比較品6〜10を得た。こうして得た本
発明品11〜15および比較品6〜10について、実施
試験1と同様に硬質膜とその他の膜を調査し、被膜表面
からのスクラッチ強度を求めて、その結果を表9に示し
た。また、本発明品11〜15および比較品6〜10に
ついて、実施試験1の切削条件と同様にして切削試験を
行い、比較品1に対するそれぞれの寿命比を求めて、表
9に併記した。
[Test 2] Inventive products 1 and 2 shown in Table 2 of Test 1
Using 2, 3, 4, 10 and Comparative Examples 1 to 5 shown in Table 3, each hard film surface was coated with a film of Al 2 O 3 and TiN as a further film by a conventional method. Then, inventive products 11 to 15 shown in Table 7 and comparative products 6 to 10 shown in Table 8 were obtained. With respect to the inventive products 11 to 15 and comparative products 6 to 10 thus obtained, a hard film and other films were investigated in the same manner as in the test 1, and the scratch strength from the surface of the film was determined. Was. In addition, cutting tests were performed on the inventive products 11 to 15 and the comparative products 6 to 10 in the same manner as the cutting conditions of the practical test 1, and the respective life ratios with respect to the comparative product 1 were determined.

【0045】[0045]

【表7】 [Table 7]

【0046】[0046]

【表8】 [Table 8]

【0047】[0047]

【表9】 [Table 9]

【0048】[0048]

【実施試験3】実施試験1の本発明品に使用した複合焼
結体のうち、基材を表10に示した組成成分とした以外
は、ほぼ同様にして本発明品16〜20用の複合焼結体
を得た。これらの複合焼結体の表面に、実施試験1およ
び2と同様にして硬質膜,その他の膜を被覆し、表11
に示した本発明品16〜20を得た。これらの本発明品
16〜20について、実施試験1と同様に、硬質膜表面
におけるX線回折による結晶面ピーク高さ比を求めて、
その結果を表12に示した。また、本発明品16〜20
について、実施試験1および2とほぼ同様にして、硬質
膜または被膜表面からのスクラッチ強度を求めて、その
結果を表13に示した。次に、本発明品16〜20と実
施試験1における比較品1を用いて、被削材がAl−S
i合金,切削速度が300m/min,送りが0.1m
m/rev,切り込みが0.2mm,工具形状がSNG
N120408,の切削条件により乾式旋削試験を行
い、比較品1に対するそれぞれの寿命比を求めて、その
結果を表13に併記した。このときの本発明品18およ
び19は、被膜の膜厚さが稜線部に向かって減少するよ
うに、ダイヤモンド粉末とブラシによるブラシホーニン
グ処理を行ったものである。また、本発明品16〜20
の硬質膜中には、極微量のCoおよび/またはNiが含
有されていた。
Example 3 Of the composite sintered bodies used for the product of the present invention in Example 1, the composites for the products 16 to 20 of the present invention were prepared in substantially the same manner except that the base material was changed to the composition shown in Table 10. A sintered body was obtained. A hard film and other films were coated on the surfaces of these composite sintered bodies in the same manner as in Tests 1 and 2, and
Of the present invention 16 to 20 shown in FIG. For these inventive products 16 to 20, the crystal plane peak height ratio by X-ray diffraction on the surface of the hard film was determined in the same manner as in the execution test 1.
Table 12 shows the results. In addition, the present invention products 16 to 20
, The scratch strength from the surface of the hard film or the coating film was obtained in substantially the same manner as in the execution tests 1 and 2, and the results are shown in Table 13. Next, using the products 16 to 20 of the present invention and the comparative product 1 in the practical test 1, the work material was Al-S
i alloy, cutting speed 300m / min, feed 0.1m
m / rev, depth of cut is 0.2mm, tool shape is SNG
A dry turning test was performed under the cutting conditions of N120408, and the respective life ratios with respect to the comparative product 1 were determined. The results are also shown in Table 13. At this time, the products 18 and 19 of the present invention have been subjected to a brush honing treatment with diamond powder and a brush so that the film thickness of the coating decreases toward the ridge. In addition, the present invention products 16 to 20
Contained a very small amount of Co and / or Ni.

【0049】[0049]

【表10】 [Table 10]

【0050】[0050]

【表11】 [Table 11]

【0051】[0051]

【表12】 [Table 12]

【0052】[0052]

【表13】 [Table 13]

【0053】[0053]

【発明の効果】本発明の硬質膜被覆超高温高圧焼結体
は、基材と硬質膜との結晶構造による配慮と、製法によ
る配慮により、気相法エピタキシャルに近似した結晶成
長と結晶配向による硬質膜が被覆されていること、硬質
膜自体の歪み,欠陥が抑制されていること、微細結晶の
硬質膜であること、場合によっては柱状晶結晶および/
または微量の金属などの硬質膜強化物質が含まれた硬質
膜であることから、従来の硬質膜被覆焼結体または本発
明から外れた硬質膜被覆焼結体に対比して、基材と硬質
膜および硬質膜と他の膜などとの密着性および耐剥離性
が非常に優れていること、複合硬質膜自体の高靱性,高
強度,耐熱性,耐熱衝撃性,耐酸化性および耐摩耗性が
優れていること、その結果として例えば切削工具として
使用した場合に、切削工具として重要視される高靭性,
耐摩耗性,耐熱衝撃性,耐欠損性,耐酸化性および耐溶
着性が顕著に向上し、長寿命化が達成されること、切削
加工における高効率化が達成されること、バラツキが小
さく安定しているという顕著な効果がある。
According to the present invention, the hard film-coated ultra-high-temperature and high-pressure sintered body of the present invention has a crystal growth and crystal orientation similar to those of the vapor phase epitaxial method due to the consideration of the crystal structure of the substrate and the hard film and the consideration of the manufacturing method. That the hard film is covered, that distortion and defects of the hard film itself are suppressed, that the hard film is a fine crystal hard film, and that the columnar crystal and / or
Or, since it is a hard film containing a hard film strengthening substance such as a trace amount of metal, the base material and the hard film coated sintered body are different from the conventional hard film coated sintered body or the hard film coated sintered body deviated from the present invention. Excellent adhesion and peeling resistance between the film and the hard film and other films, high toughness, high strength, heat resistance, thermal shock resistance, oxidation resistance and abrasion resistance of the composite hard film itself Is excellent, as a result, for example, when used as a cutting tool, high toughness that is regarded as important as a cutting tool,
Abrasion resistance, thermal shock resistance, fracture resistance, oxidation resistance and welding resistance are remarkably improved to achieve long life, high efficiency in cutting work, small variation and stable There is a remarkable effect that.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/06 C23C 14/06 P Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C23C 14/06 C23C 14/06 P

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】立方晶窒化硼素および/またはダイヤモン
ドを含有する超高温高圧焼結体でなる基材の表面に被膜
が被覆されており、該被膜は、チタンの炭化物,窒化
物,炭窒化物,炭酸化物,窒酸化物,炭窒酸化物でなる
Ti化合物層、ならびにチタンとアルミニウムとを含む
複合窒化物、複合炭化物、複合炭窒化物、複合窒酸化
物、複合炭酸化物、複合炭窒酸化物でなるTi−Al含
有化合物層の中から選ばれた1種の単層または2種以上
の多層でなる硬質膜を有しており、該硬質膜が立方晶結
晶構造からなり、該硬質膜の表面から銅ターゲットを用
いて、該硬質膜の(111),(200),(220)
および(311)の結晶面が表示される範囲をX線回折
したときに、X線回折ピークの中で(200)結晶面が
第1番目に高いピーク強度(「A」と表す)を示し、第
2番目に高いピーク強度(「B」と表す)に対する該第
1番目に高いピーク強度の比が8.5以上(A/B≧
8.5)からなり、かつ第3番目に高いピーク強度
(「C」と表す)に対する該第2番目に高いピーク強度
(B)の比が2.0以下(B/C≦2.0)でなる硬質
膜被覆超高温高圧焼結体。
1. A coating film is coated on the surface of a substrate made of an ultra-high-temperature high-pressure sintered body containing cubic boron nitride and / or diamond, and the coating film is made of titanium carbide, nitride, carbonitride. Compound layer comprising titanium, carbon oxides, nitric oxides, carbonitrides, and composite nitrides, composite carbides, composite carbonitrides, composite nitrides, composite carbonates, composite carbonitrides containing titanium and aluminum A hard film composed of one kind of single layer or two or more kinds selected from Ti-Al-containing compound layers made of a material, wherein the hard film has a cubic crystal structure, (111), (200), (220) of the hard film using a copper target from the surface of
When X-ray diffraction is performed on the range in which the crystal planes of (311) are displayed, the (200) crystal plane has the first highest peak intensity (denoted as “A”) among the X-ray diffraction peaks, The ratio of the first highest peak intensity to the second highest peak intensity (denoted as "B") is 8.5 or more (A / B ≧
8.5) and the ratio of the second highest peak intensity (B) to the third highest peak intensity (denoted as “C”) is 2.0 or less (B / C ≦ 2.0) An ultra-high temperature and high pressure sintered body coated with a hard film.
【請求項2】上記基材は、立方晶窒化硼素を40〜98
重量%と、残部がTiの炭化物,窒化物,炭窒化物,硼
化物,Alの窒化物,酸化物,硼化物,Siの窒化物,
炭化物,Mgの酸化物,Wの炭化物,およびこれらの相
互固溶体,TiとAlとMgを含む複合硼化物,複合硼
窒化物,ならびにAl,Ti,Co,Ni,Si,これ
らの相互合金、金属間化合物の中から選ばれた少なくと
も1種の補強分散物質とを含有する請求項1に記載の硬
質膜被覆超高温高圧焼結体。
2. The substrate according to claim 1, wherein the cubic boron nitride is 40 to 98%.
% By weight, with the balance being Ti carbides, nitrides, carbonitrides, borides, Al nitrides, oxides, borides, Si nitrides,
Carbides, oxides of Mg, carbides of W, and their mutual solid solutions, composite borides, composite boronitrides containing Ti, Al, and Mg, and Al, Ti, Co, Ni, Si, their alloys, metals The hard film-coated ultra-high-temperature high-pressure sintered body according to claim 1, comprising at least one kind of reinforcing dispersion material selected from intermetallic compounds.
【請求項3】上記基材は、該基材の表面粗さがJIS規
格のRaによる平均表面粗さで0.1μm以下からなる
請求項1または2に記載の硬質膜被覆超高温高圧焼結
体。
3. The ultra-high-temperature high-pressure sintering method according to claim 1, wherein the substrate has a surface roughness of 0.1 μm or less in terms of an average surface roughness according to JIS standard Ra. body.
【請求項4】上記被膜は、上記硬質膜と、該硬質膜に隣
接して被覆された酸化アルミニウムの層を含んだ積層で
なる請求項1〜3のいずれか1項に記載の硬質膜被覆超
高温高圧焼結体。
4. The hard film coating according to claim 1, wherein the coating is a laminate including the hard film and a layer of aluminum oxide coated adjacent to the hard film. Ultra high temperature and high pressure sintered body.
【請求項5】上記被膜は、該被膜の表面粗さがJIS規
格のRaによる平均表面粗さで0.1μm以下からなる
請求項1〜4のいずれか1項に記載の硬質膜被覆超高温
高圧焼結体。
5. The coating film according to claim 1, wherein the coating has an average surface roughness of 0.1 μm or less according to Ra according to JIS standards. High pressure sintered body.
【請求項6】上記硬質膜は、上記基材の表面に対し、垂
直方向に柱状でなる柱状結晶が含まれている請求項1〜
5のいずれか1項に記載の硬質膜被覆超高温高圧焼結
体。
6. The hard film contains columnar crystals which are columnar in a direction perpendicular to the surface of the substrate.
6. The hard film-coated ultrahigh-temperature and high-pressure sintered body according to any one of items 5 to 5.
【請求項7】上記硬質膜は、上記基材に隣接して被覆さ
れている請求項1〜6のいずれか1項に記載の硬質膜被
覆超高温高圧焼結体。
7. The ultra-high temperature and high pressure sintered body coated with a hard film according to claim 1, wherein said hard film is coated adjacent to said base material.
【請求項8】上記基材に隣接して被覆される上記硬質膜
は、チタンの炭化物,窒化物,炭窒化物,炭酸化物,窒
酸化物,炭窒酸化物の中の少なくとも1種のTi化合物
層でなる請求項7に記載の硬質膜被覆超高温高圧焼結
体。
8. The hard film, which is coated adjacent to the base material, comprises at least one of titanium carbide, nitride, carbonitride, carbonate, nitride, and carbonitride. The hard film-coated ultra-high temperature and high pressure sintered body according to claim 7, which is a compound layer.
【請求項9】上記Ti化合物層は、Ti(Cx,Ny,O
zwで表されるTi化合物層、[ただし、xは非金属元
素中の炭素(C)元素の原子比、yは非金属元素中の窒
素(N)元素の原子比、zは非金属元素中の酸素(O)
元素の原子比、wは金属元素であるチタン(Ti)元素
に対する非金属元素の原子比を表し、それぞれがx+y
+z=1、0.5≧x≧0、1≧y≧0.5、0.5≧
z≧0、1.05≧w≧0.7の関係にある]を含有す
る請求項8に記載の硬質膜被覆超高温高圧焼結体。
9. The Ti compound layer comprises Ti (C x , N y , O
z ) Ti compound layer represented by w [where x is the atomic ratio of carbon (C) element in the nonmetallic element, y is the atomic ratio of nitrogen (N) element in the nonmetallic element, and z is the nonmetallic element Oxygen in element (O)
The atomic ratio of the element, w, represents the atomic ratio of the non-metallic element to the titanium (Ti) element, which is a metallic element, and each is x + y
+ Z = 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.5 ≧
z ≧ 0, 1.05 ≧ w ≧ 0.7].
【請求項10】上記基材に隣接して被覆される上記硬質
膜は、チタンとアルミニウムとを含む複合窒化物、複合
炭化物、複合炭窒化物、複合窒酸化物、複合炭酸化物、
複合炭窒酸化物の中の少なくとも1種のTi−Al含有
化合物層でなる請求項7に記載の硬質膜被覆超高温高圧
焼結体。
10. The hard film, which is coated adjacent to the base material, is a composite nitride containing titanium and aluminum, a composite carbide, a composite carbonitride, a composite nitride oxide, a composite carbonate,
The hard film-coated ultra-high-temperature and high-pressure sintered body according to claim 7, comprising at least one type of a Ti-Al-containing compound layer in the composite carbonitride.
【請求項11】上記Ti−Al含有化合物層は、(Ti
a,Alb)(Cx,Ny,Ozwで表されるTi−Al含
有化合物層[ただし、aは金属元素中のTi(チタン)
元素の原子比、bは金属元素中のAl(アルミニウム)
元素の原子比、xは非金属元素中の炭素(C)元素の原
子比、yは非金属元素中の窒素(N)元素の原子比、z
は非金属元素中の酸素(O)元素の原子比、wは金属元
素の合計に対する非金属元素の合計の原子比を表し、そ
れぞれがa+b=1、0.8≧a≧0.4、x+y+z
=1、0.5≧x≧0、1≧y≧0.5、0.5≧z≧
0、1.05≧w≧0.7の関係にある]を含有する請
求項10に記載の硬質膜被覆超高温高圧焼結体。
11. The Ti—Al-containing compound layer comprises (Ti
a , Al b ) (C x , N y , O z ) Ti-Al-containing compound layer represented by w [where a is Ti (titanium) in the metal element
Element atomic ratio, b is Al (aluminum) in metal element
X is the atomic ratio of the carbon (C) element in the nonmetallic element, y is the atomic ratio of the nitrogen (N) element in the nonmetallic element, z
Represents the atomic ratio of the oxygen (O) element in the nonmetal element, w represents the atomic ratio of the total nonmetal element to the total metal element, and a + b = 1, 0.8 ≧ a ≧ 0.4, x + y + z, respectively.
= 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.5 ≧ z ≧
0, 1.05 ≧ w ≧ 0.7].
【請求項12】上記硬質膜は、上記Ti化合物層と上記
Ti−Al含有化合物層との2層以上の多層である請求
項1〜6のいずれか1項に記載の硬質膜被覆超高温高圧
焼結体。
12. The ultra-high-temperature and high-pressure coating for a hard film according to claim 1, wherein the hard film is a multilayer of at least two layers of the Ti compound layer and the Ti—Al-containing compound layer. Sintered body.
【請求項13】上記硬質膜は、上記Ti−Al含有化合
物層中のAl元素含有量が該Ti−Al含有化合物層の
表面から上記基材側に向かって減少した傾斜組成でなる
請求項10〜12のいずれか1項に記載の硬質膜被覆超
高温高圧焼結体。
13. The hard film has a gradient composition in which the content of Al element in the Ti-Al-containing compound layer decreases from the surface of the Ti-Al-containing compound layer toward the base material. 13. The hard film-coated ultra-high-temperature and high-pressure sintered body according to any one of items 12 to 12.
【請求項14】上記基材に隣接して被覆される上記硬質
膜は、該硬質膜中にNi,Co,W,Mo,Al,Ti
の金属、これらの相互合金,これらの金属間化合物の中
から選ばれた少なくとも1種の硬質膜強化物質が含有さ
れている請求項7〜13のいずれか1項に記載の硬質膜
被覆超高温高圧焼結体。
14. The hard film coated adjacent to the base material includes Ni, Co, W, Mo, Al, Ti in the hard film.
The hard film-coated ultra-high temperature according to any one of claims 7 to 13, which comprises at least one hard film reinforcing material selected from the group consisting of metals, their alloys, and these intermetallic compounds. High pressure sintered body.
【請求項15】上記請求項1〜14のいずれか1項に記
載の硬質膜被覆超高温高圧焼結体は、切削工具として用
いられる硬質膜被覆超高温高圧焼結体。
15. An ultra-high-temperature and high-pressure sintered body coated with a hard film according to any one of claims 1 to 14, which is used as a cutting tool.
【請求項16】上記切削工具は、上記被膜の膜厚さが稜
線部に向かって減少している請求項15に記載の硬質膜
被覆超高温高圧焼結体。
16. The hard film-coated ultra-high-temperature and high-pressure sintered body according to claim 15, wherein in the cutting tool, the film thickness of the coating decreases toward the ridge.
JP2000178137A 2000-06-14 2000-06-14 Ultra-high pressure and high pressure sintered body Expired - Lifetime JP3476749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178137A JP3476749B2 (en) 2000-06-14 2000-06-14 Ultra-high pressure and high pressure sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000178137A JP3476749B2 (en) 2000-06-14 2000-06-14 Ultra-high pressure and high pressure sintered body

Publications (2)

Publication Number Publication Date
JP2002003284A true JP2002003284A (en) 2002-01-09
JP3476749B2 JP3476749B2 (en) 2003-12-10

Family

ID=18679612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178137A Expired - Lifetime JP3476749B2 (en) 2000-06-14 2000-06-14 Ultra-high pressure and high pressure sintered body

Country Status (1)

Country Link
JP (1) JP3476749B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001093A1 (en) * 2002-06-24 2003-12-31 Kobelco Research Institute, Inc. Silver alloy sputtering target and process for producing the same
JP2004074324A (en) * 2002-08-13 2004-03-11 Hitachi Tool Engineering Ltd Aluminum oxide-coated tool
US6821919B2 (en) * 2001-11-29 2004-11-23 National Cheng Kung University Superior toughness and adhesive strength ceramic coating of titanium aluminum carbon nitride-amorphous carbon nanocomposite
WO2007057995A1 (en) * 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH
US7357975B2 (en) * 2004-03-12 2008-04-15 Metaplas Ionon Oberflachenveredelungstechnik Gmbh Carbon-containing hard coating and a method for depositing a hard coating onto a substrate
JP2008183627A (en) * 2007-01-26 2008-08-14 Kyocera Corp Surface coated tool
US7524569B2 (en) * 2003-06-27 2009-04-28 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
WO2009096476A1 (en) 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
US7758976B2 (en) * 2005-10-04 2010-07-20 Sumitomo Electric Hardmetal Corp. cBN sintered body for high surface integrity machining and cBN sintered body cutting tool
US7838132B2 (en) * 2004-09-10 2010-11-23 Sandvik Intellectual Property Ab PVD-coated cutting tool insert
US20110020079A1 (en) * 2008-04-17 2011-01-27 Ralf Tabersky Coating process, workpiece or tool and its use
JP2011224685A (en) * 2010-04-16 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011224684A (en) * 2010-04-16 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
US8178220B2 (en) 2004-04-30 2012-05-15 Sumitomo Electric Hardmetal Corp. Surface-covered cubic boron nitride sintered body tool and method of manufacturing the same
US20120201615A1 (en) * 2011-02-07 2012-08-09 Kennametal Inc. Cubic Aluminum Titanium Nitride Coating and Method of Making Same
JP2012232348A (en) * 2011-04-28 2012-11-29 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material, having superior peeling resistance
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
CN114515519A (en) * 2022-03-16 2022-05-20 南京工业大学 Mixed matrix carbon molecular sieve membrane, preparation method and composite material prepared by using the same2H4/C2H6Use in separations
DE112021006657T5 (en) 2020-12-25 2023-10-12 Kyocera Corporation COATED TOOL AND CUTTING TOOL

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821919B2 (en) * 2001-11-29 2004-11-23 National Cheng Kung University Superior toughness and adhesive strength ceramic coating of titanium aluminum carbon nitride-amorphous carbon nanocomposite
WO2004001093A1 (en) * 2002-06-24 2003-12-31 Kobelco Research Institute, Inc. Silver alloy sputtering target and process for producing the same
JP2004074324A (en) * 2002-08-13 2004-03-11 Hitachi Tool Engineering Ltd Aluminum oxide-coated tool
US7794860B2 (en) 2003-06-27 2010-09-14 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
US7524569B2 (en) * 2003-06-27 2009-04-28 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
US7357975B2 (en) * 2004-03-12 2008-04-15 Metaplas Ionon Oberflachenveredelungstechnik Gmbh Carbon-containing hard coating and a method for depositing a hard coating onto a substrate
US8178220B2 (en) 2004-04-30 2012-05-15 Sumitomo Electric Hardmetal Corp. Surface-covered cubic boron nitride sintered body tool and method of manufacturing the same
US7838132B2 (en) * 2004-09-10 2010-11-23 Sandvik Intellectual Property Ab PVD-coated cutting tool insert
US7758976B2 (en) * 2005-10-04 2010-07-20 Sumitomo Electric Hardmetal Corp. cBN sintered body for high surface integrity machining and cBN sintered body cutting tool
CN100584804C (en) * 2005-11-18 2010-01-27 住友电工硬质合金株式会社 CBN sintered body for high-quality surface property machining, cBN sintered body cutting tool, and method of cutting work therewith
US7771847B2 (en) 2005-11-18 2010-08-10 Sumitomo Electric Hardmetal Corp. cBN sintered body for high surface integrity machining, cBN sintered body cutting tool, and cutting method using the same
JP4528786B2 (en) * 2005-11-18 2010-08-18 住友電工ハードメタル株式会社 High-quality surface texture machining cBN sintered body, cBN sintered body cutting tool, and cutting method using the same
JPWO2007057995A1 (en) * 2005-11-18 2009-04-30 住友電工ハードメタル株式会社 High-quality surface texture machining cBN sintered body, cBN sintered body cutting tool, and cutting method using the same
KR101270840B1 (en) * 2005-11-18 2013-06-05 스미또모 덴꼬오 하드메탈 가부시끼가이샤 cBN SINTERED BODY FOR HIGH SURFACE INTEGRITY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND CUTTING METHOD USING THE SAME
WO2007057995A1 (en) * 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. cBN SINTERED BODY FOR HIGH-QUALITY SURFACE PROPERTY MACHINING, cBN SINTERED BODY CUTTING TOOL, AND METHOD OF CUTTING WORK THEREWITH
JP2008183627A (en) * 2007-01-26 2008-08-14 Kyocera Corp Surface coated tool
JP5116777B2 (en) * 2008-01-29 2013-01-09 京セラ株式会社 Cutting tools
WO2009096476A1 (en) 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
EP2243578A1 (en) * 2008-01-29 2010-10-27 Kyocera Corporation Cutting tool
US8415033B2 (en) 2008-01-29 2013-04-09 Kyocera Corporation Cutting tool
EP2243578A4 (en) * 2008-01-29 2012-06-06 Kyocera Corp Cutting tool
US20110020079A1 (en) * 2008-04-17 2011-01-27 Ralf Tabersky Coating process, workpiece or tool and its use
US8702912B2 (en) * 2008-04-17 2014-04-22 Kennametal Inc. Coating process, workpiece or tool and its use
JP2011224684A (en) * 2010-04-16 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011224685A (en) * 2010-04-16 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
US20120201615A1 (en) * 2011-02-07 2012-08-09 Kennametal Inc. Cubic Aluminum Titanium Nitride Coating and Method of Making Same
US8409702B2 (en) * 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
JP2012232348A (en) * 2011-04-28 2012-11-29 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material, having superior peeling resistance
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
US10184187B2 (en) 2013-08-16 2019-01-22 Kennametal Inc. Low stress hard coatings and applications thereof
DE112021006657T5 (en) 2020-12-25 2023-10-12 Kyocera Corporation COATED TOOL AND CUTTING TOOL
CN114515519A (en) * 2022-03-16 2022-05-20 南京工业大学 Mixed matrix carbon molecular sieve membrane, preparation method and composite material prepared by using the same2H4/C2H6Use in separations
CN114515519B (en) * 2022-03-16 2022-10-04 南京工业大学 Mixed matrix carbon molecular sieve membrane, preparation method and composite membrane prepared by using same 2 H 4 /C 2 H 6 Use in separations

Also Published As

Publication number Publication date
JP3476749B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP2002003284A (en) Hard coating ultrahigh temperature high pressure sintered material
EP1801260B1 (en) Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material
US7939186B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP3599628B2 (en) Composite hard film coated member
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5293330B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4883480B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883478B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials
JP2012066341A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2007136654A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel
JP5246596B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5686247B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP2008018508A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP4748447B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in high-speed cutting of hard difficult-to-cut materials
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP5332737B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

R150 Certificate of patent or registration of utility model

Ref document number: 3476749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term