JP2001351823A - Evaporation material, method of manufacturing the same, and method of evaporating the same - Google Patents

Evaporation material, method of manufacturing the same, and method of evaporating the same

Info

Publication number
JP2001351823A
JP2001351823A JP2000172360A JP2000172360A JP2001351823A JP 2001351823 A JP2001351823 A JP 2001351823A JP 2000172360 A JP2000172360 A JP 2000172360A JP 2000172360 A JP2000172360 A JP 2000172360A JP 2001351823 A JP2001351823 A JP 2001351823A
Authority
JP
Japan
Prior art keywords
vapor deposition
melting
same
dissolution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000172360A
Other languages
Japanese (ja)
Inventor
Sadao Saito
定雄 斉藤
Akifumi Sato
昭文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000172360A priority Critical patent/JP2001351823A/en
Publication of JP2001351823A publication Critical patent/JP2001351823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporation material capable of forming an evaporated tape which is of high quality, possessed of a small number of splashes and a low scum rate, and available for a medium of recording data such as computer data. SOLUTION: The evaporation material is characterized by the fact that an inclusion, especially a spinel inclusion covering the surface of melt of the evaporation material is set at 10% or below in area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸着テープの製造
に好適に使用できる蒸着用素材、及びこの素材の製造方
法、並びにこの素材を用いた蒸着方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for vapor deposition which can be suitably used for producing a vapor deposition tape, a method for producing this material, and a vapor deposition method using this material.

【0002】[0002]

【従来の技術】蒸着テープは、従来の塗布型磁気テープ
をはるかに上回る高性能を示す磁気記録媒体として、デ
ジタルビデオテープ用として既に実用化されている。蒸
着テープは、強磁性金属からなる蒸着用素材を、ポリエ
チレンテレフタレート等のベースフィルムに蒸着するこ
とにより製造される。蒸着用素材としては、鉄、コバル
ト、ニッケルの3つの強磁性金属か、その合金が選ばれ
る。そのうち、コバルト、又は、コバルトを主成分とし
てニッケル等を含むコバルト系の蒸着用素材が、もっと
も一般的に用いられている。
2. Description of the Related Art Evaporated tapes have already been put into practical use for digital video tapes as magnetic recording media exhibiting performance far exceeding that of conventional coated magnetic tapes. The evaporation tape is manufactured by evaporating an evaporation material made of a ferromagnetic metal on a base film such as polyethylene terephthalate. As the material for vapor deposition, three ferromagnetic metals of iron, cobalt, and nickel or alloys thereof are selected. Among them, cobalt or a cobalt-based deposition material containing cobalt or the like as a main component and nickel or the like is most commonly used.

【0003】[0003]

【発明が解決しようとする課題】近年蒸着テープは、高
密度の記録が可能なことから、コンピュータのデータ等
の情報を記録する媒体としても注目されている。しか
し、データ等の情報記録媒体として使用するためには、
デジタルビデオ等の用途で求められる以上に高い信頼性
が求められる。
In recent years, a vapor-deposited tape has attracted attention as a medium for recording information such as computer data, since high-density recording is possible. However, in order to use it as an information recording medium for data, etc.,
Higher reliability than required for applications such as digital video is required.

【0004】蒸着テープを製造する上で特に問題となる
のは、蒸着時に介在する不純ガス・介在物等が、高真空
中でエネルギー密度の高い電子ビームにより溶解される
際に、スプラッシュと呼ばれる所望粒子径を越えたハネ
を発生し、ベースフィルムに穴をあけたり蒸着ムラを起
こしたりする原因となる。また、発生する介在物がコパ
ルト/アルミニウムを主体としたスピネル構造の酸化物
の場合には、溶解面に浮上し表面を覆うことから、蒸着
ムラを起こしたり、飛散して磁気記録面に異常を発生す
る等の不具合を生じていた。
A particular problem in the production of a vapor deposition tape is that when impurities such as impurities and inclusions that are present during the vapor deposition are melted by an electron beam having a high energy density in a high vacuum, there is a problem called a “splash”. Splashes exceeding the particle diameter are generated, which may cause holes in the base film or uneven deposition. When the inclusions are oxides having a spinel structure mainly composed of coparto / aluminum, they float on the dissolution surface and cover the surface, causing uneven deposition or scattering to cause abnormalities on the magnetic recording surface. Problems such as the occurrence of such a problem.

【0005】本発明は、上記事情に鑑みて、不純物の影
響を評価し、スプラッシュやスカムの発生を少なく信頼
性に優れる蒸着テープの製造が可能な蒸着素材、及びこ
の素材の製造方法と、この素材を用いた蒸着方法を提供
することを課題とする。
The present invention has been made in view of the above circumstances, and has been made in consideration of the above-mentioned circumstances, by evaluating the influence of impurities, producing a vapor-deposited tape capable of producing a highly reliable vapor-deposited tape with less generation of splash or scum, and a method of producing this material. It is an object to provide a vapor deposition method using a material.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の発明として、溶解時に溶解表面
を覆う介在物の面積が、溶解表面全体の面積の10%以
下であることを特徴とする蒸着用素材を提供する。な
お、介在物とは、溶解した金属素材が酸化物や硫化物な
どの不純物のために汚され、凝固後、素材全体に分散
し、スカムやスプラッシュの最大原因となるものであ
る。本発明の蒸着用素材によれば、これら蒸着時の問題
が軽減されテープ品質の信頼性が高くなり、製造歩留ま
り等が大きく向上する。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, the area of the inclusion covering the melting surface at the time of melting is 10% or less of the area of the entire melting surface. Provided is a material for vapor deposition, characterized in that: The inclusions are those in which the dissolved metal material is contaminated by impurities such as oxides and sulfides, solidified and dispersed throughout the material, and is the largest cause of scum and splash. According to the material for vapor deposition of the present invention, these problems at the time of vapor deposition are reduced, the reliability of tape quality is increased, and the production yield and the like are greatly improved.

【0007】また、請求項2に記載の発明として、溶解
時に溶解表面を覆うスピネル系介在物の面積が、溶解表
面全体の面積の10%以下であることを特徴とする蒸着
用素材を提供する。なお、スピネル系介在物とは、スピ
ネル構造をもつ介在物である。また、スピネル構造と
は、XY24の組成をもつ酸化物(X:マグネシウム、
鉄、亜鉛、又はマンガン,Y:アルミニウム又は鉄)に
よく見られる結晶構造で尖晶石MgAl24は代表的な
ものである。等軸晶系で単位格子中には8X,16Y,
32Oだけのイオンがあり、酸素イオンはだいたい面心
立方格子を作り、その間にXとYが入る。この構造の結
晶は安定で分解しにくい。
According to a second aspect of the present invention, there is provided a material for vapor deposition, wherein the area of the spinel-based inclusion covering the dissolution surface during dissolution is 10% or less of the entire area of the dissolution surface. . The spinel-based inclusion is an inclusion having a spinel structure. In addition, a spinel structure refers to an oxide having a composition of XY 2 O 4 (X: magnesium,
Spinel MgAl 2 O 4 is a typical one with a crystal structure often found in iron, zinc or manganese, Y: aluminum or iron). 8X, 16Y,
There are only 32 O ions, and oxygen ions form a face-centered cubic lattice, between which X and Y enter. Crystals of this structure are stable and difficult to decompose.

【0008】溶解材料や使用する耐火物等に含まれるA
23が、ルツボ材のMgOやCoと反応してCo・M
g・Al23等のスピネル系酸化物となり、蒸着面を被
覆し、均一な蒸着膜の生成を妨げたり飛散付着し記録面
を汚染し品質を低下させることがわかっている。
[0008] A contained in the melting material and the refractory to be used
l 2 O 3 reacts with the crucible materials MgO and Co to form Co · M
It has been found that it becomes a spinel-based oxide such as g.Al 2 O 3 , coats a vapor-deposited surface, hinders the formation of a uniform vapor-deposited film or scatters and adheres, contaminating the recording surface and deteriorating the quality.

【0009】また、請求項3に記載の発明として、請求
項1又は請求項2に記載の蒸着用素材を製造するための
蒸着用素材の製造方法であって、原料を真空溶解法にて
2回以上溶解することを特徴とする蒸着用素材の製造方
法を提供する。本方法によれば、溶解を繰り返すことに
より蒸着に悪影響を及ぼすと考えられる不純性分や介在
物を効果的に除去することができる。なお、具体的な溶
解法に特に限定はなく、真空高周波溶解の繰り返し、電
子ビームによる溶解の繰り返し、真空高周波溶解と電子
ビームによる溶解の組み合わせ等を適宜採用できる。
According to a third aspect of the present invention, there is provided a method for producing a vapor deposition material for producing the vapor deposition material according to the first or second aspect, wherein the raw material is formed by a vacuum melting method. Disclosed is a method for producing a material for vapor deposition, wherein the material is dissolved at least once. According to this method, it is possible to effectively remove impurities and inclusions that are considered to have an adverse effect on deposition by repeating dissolution. The specific dissolution method is not particularly limited, and repetition of vacuum high-frequency melting, repetition of melting with an electron beam, a combination of vacuum high-frequency melting and melting with an electron beam, or the like can be appropriately employed.

【0010】また、請求項4に記載の発明として、請求
項1又は請求項2に記載の蒸着用素材を製造するための
蒸着用素材の製造方法であって、連続鋳造法により、直
接製品や近似製品素材を作り加工工程を短縮することを
特徴とする蒸着用素材の製造方法を提供する。本方法に
よれば、インゴット鋳造時に関連部材から耐火物等の異
物を巻き込まなくてよい。また、加熱冷却が繰り返され
る塑性加工段階を省略できるので、ガス吸収等による素
材の劣化を防ぐことができる。
According to a fourth aspect of the present invention, there is provided a method for producing a vapor deposition material for producing the vapor deposition material according to the first or second aspect. Provided is a method for producing a material for vapor deposition, characterized in that an approximate product material is produced and a processing step is shortened. According to this method, foreign matter such as a refractory does not need to be involved from the related members during casting of the ingot. Further, since the plastic working step in which heating and cooling are repeated can be omitted, deterioration of the material due to gas absorption or the like can be prevented.

【0011】また、請求項5に記載の発明として、請求
項1又は請求項2に記載の蒸着用素材を用いることを特
徴とする蒸着方法を提供する。本方法によれば、信頼性
の高い蒸着テープ、特にデータストリーマ等のコンピュ
ータ用途に適した蒸着テープを製造することができる。
According to a fifth aspect of the present invention, there is provided a vapor deposition method using the material for vapor deposition according to the first or second aspect. According to this method, a highly reliable evaporation tape, particularly an evaporation tape suitable for computer use such as a data streamer can be manufactured.

【0012】[0012]

【発明の実施の形態】コバルト系蒸着用素材を用いた蒸
着テープについて、図1のようにスプラッシュとスカム
の確認試験を行った。まず銅製の蒸着ハース1内に上記
各素材2のペレットを入れ、シヤッター4を閉じた状態
で電子銃で加熱・溶解させた。完全に溶解するまでの
間、溶解ハース1の上面はシャッター4で遮蔽したまま
とした。そして、完全に溶解後、30秒間シャッターを
開放して、上方のガラス基板3に蒸着を行った。その
後、ガラス基板3を取り出し、溶解ハース1の素材2の
液面中央の直上の評価面5において、100mm四方
(10000mm2)あたりに発生しているスプラッシ
ュ6の数を、100倍の実体顕微鏡を用いて計測した。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a test for confirming splash and scum was performed on a vapor deposition tape using a cobalt-based material for vapor deposition. First, pellets of each of the above materials 2 were put in a copper evaporation hearth 1 and heated and melted by an electron gun with the shutter 4 closed. Until complete dissolution, the upper surface of dissolution hearth 1 was kept shielded by shutter 4. After complete dissolution, the shutter was opened for 30 seconds, and vapor deposition was performed on the upper glass substrate 3. After that, the glass substrate 3 is taken out, and the number of splashes 6 generated around 100 mm square (10000 mm 2 ) on the evaluation surface 5 immediately above the center of the liquid surface of the material 2 of the melting hearth 1 is measured by a 100 × stereo microscope. It measured using.

【0013】さらに、試験後に冷却したハース1の残湯
8より試片を取り出し、表面に発生しているスカムの大
きさと試片の大きさを測定し、素材平面積に占めるスカ
ムの面積をスカム率として併せ測定した。具体的には、
水冷銅ハース1上で試験片を電子ビームで溶解後電子ビ
ームの電流を徐々に絞り介在物を試験片中央に凝集さ
せ、次いで電流を遮断し30分間前記試験片を冷却させ
て自由凝固させた後試験片を取り出しこの試験片の面積
に対する介在物の面積比を計測することにより求めた。
Further, a test piece is taken out from the residual hot water 8 of the hearth 1 cooled after the test, and the size of the scum generated on the surface and the size of the test piece are measured. It was also measured as a percentage. In particular,
After the test piece was melted with an electron beam on a water-cooled copper hearth 1, the current of the electron beam was gradually squeezed to cause the inclusions to agglomerate at the center of the test piece. Then, the current was cut off and the test piece was cooled for 30 minutes to allow free solidification. Thereafter, the test piece was taken out, and the area ratio of the inclusions to the area of the test piece was measured.

【0014】図2に示すように、スカム率が10%以下
(Zone1)になると、スプラッシュ数が急激に減少
することが明らかとなった。なお、スカム率は低ければ
低い程良いが、加工性・コスト・安定性等製造不可避の
要因を考慮すると、実用上、0.1〜10%の範囲とす
ることが望ましい。
As shown in FIG. 2, when the scum ratio becomes 10% or less (Zone 1), it becomes clear that the number of splashes sharply decreases. The lower the scum ratio, the better. However, in consideration of factors inevitable in manufacturing, such as workability, cost, and stability, it is practically desirable to set the range to 0.1 to 10%.

【0015】[0015]

【実施例】(実施例1)原料を真空中で高周波溶解して
インゴットとしたものを再度真空高周波溶解して再びイ
ンゴットとした。そして、このインゴットに熱間加工を
施し、表面を研磨し黒皮を除去し、φ10mm×25m
mに切断加工しペレットとしたものを実施例1の蒸着用
素材として得た。
EXAMPLES (Example 1) Ingots obtained by high frequency melting of raw materials in a vacuum were again subjected to vacuum high frequency melting to obtain ingots again. Then, the ingot is subjected to hot working, the surface is polished and black scale is removed, and φ10 mm × 25 m
m was formed into a pellet, which was obtained as a material for vapor deposition in Example 1.

【0016】(比較例1)原料を真空中で高周波溶解し
てインゴットとしたものをインゴットとした。そして、
このインゴットに熱間加工を施し、表面を研磨し黒皮を
除去し、φ10mm×25mmに切断加工しペレットと
したものを比較例1の蒸着用素材として得た。
(Comparative Example 1) Ingots obtained by high frequency melting of raw materials in a vacuum were used as ingots. And
This ingot was subjected to hot working, the surface was polished to remove black scale, and cut into a piece of φ10 mm × 25 mm to obtain a pellet, which was obtained as a material for vapor deposition in Comparative Example 1.

【0017】(実施例2)図3の連続鋳造装置を用いて
連続鋳造を行った。図3において、原料11は高周波コ
イル12を備えた溶解槽13に入れられる。銅製の溶解
槽13の下部に設けられた出口管14には、ジャケット
構造の水冷式冷却装置15が取り付けられている。冷却
された鋳造品16はロール17によって引き出されるよ
うになっている。この鋳造品16を実施例2の蒸着用素
材とした。
Example 2 Continuous casting was performed using the continuous casting apparatus shown in FIG. In FIG. 3, a raw material 11 is put in a melting tank 13 having a high-frequency coil 12. A water cooling type cooling device 15 having a jacket structure is attached to an outlet pipe 14 provided at a lower portion of the copper melting tank 13. The cooled casting 16 is drawn out by a roll 17. This casting 16 was used as the material for vapor deposition in Example 2.

【0018】本装置では、高周波溶解された原料11に
介在物が混入していても、介在物は溶解した段階で比重
差から上部に浮上するので、排出口14からは介在物が
かなりの程度除去された原料が排出される。排出された
原料は冷却装置15により半凝固状態となるが、水冷銅
鋳型と接触した面では凝固が完了している。これを、対
をなすロール17を回転させることにより連続的に引き
抜き直ちにニアネットや直接使用可能な素材形状の鋳造
品とするものである。この間、耐火物からなる鋳型を用
いないので、耐火物を不純物として巻き込んだりスピネ
ル系介在物を生成したりしない。また、インゴットから
ペレット等に熱間加工をする行程もかなり省略できるの
で、加熱冷却の繰り返しに伴うガス吸収等による素材の
劣化も回避できる。
In this apparatus, even if inclusions are mixed in the high-frequency-dissolved raw material 11, the inclusions rise to the upper part due to a difference in specific gravity at the stage of melting, so that a considerable amount of the inclusions is discharged from the outlet 14. The removed material is discharged. The discharged raw material is brought into a semi-solid state by the cooling device 15, but the solidification is completed on the surface in contact with the water-cooled copper mold. This is continuously pulled out by rotating the pair of rolls 17 and immediately cast into a near net or a cast of a material shape that can be used directly. During this time, since the mold made of the refractory is not used, the refractory is not involved as an impurity or spinel inclusions are not generated. In addition, since the process of hot working the pellets or the like from the ingot can be considerably omitted, deterioration of the material due to gas absorption and the like due to repeated heating and cooling can be avoided.

【0019】(実施例3)図3の装置の高周波コイル1
2に代えて電子銃を用い、電子ビームにより溶解させた
素材について同様に冷却装置15による冷却、ロール1
7による引き抜きを行い、実施例3の蒸着用素材として
鋳造品16を得た。この製造方法では、高周波コイルで
はなく電子銃により溶解させるので、より高温で溶解さ
せることができる。そのため、不純物を高温で飛散させ
ることができるので、より高純度とすることが期待でき
る。
(Embodiment 3) High-frequency coil 1 of the apparatus shown in FIG.
An electron gun is used in place of the material 2 and the material melted by the electron beam is similarly cooled by the cooling device 15,
7, and a casting 16 was obtained as a material for vapor deposition in Example 3. In this manufacturing method, melting is performed not by a high-frequency coil but by an electron gun, so that melting can be performed at a higher temperature. Therefore, impurities can be scattered at a high temperature, and higher purity can be expected.

【0020】(比較例2)比較例として、従来どおり、
高周波溶解後に耐火物の鋳型に鋳造し、凝固・冷却する
ことによる蒸着用素材も得た。
(Comparative Example 2) As a comparative example,
After high-frequency melting, it was cast into a refractory mold, and solidified and cooled to obtain a material for vapor deposition.

【0021】上記各蒸着用素材について。成分分析置及
び評価結果を表1に示す。その結果いずれの実施例につ
いても、スプラッシュ数、スカム率共に低い値が得られ
た。特に、電子銃を用いた連続鋳造法が介在物の低減に
効果のあることが確認された。
Each of the above-mentioned materials for vapor deposition. Table 1 shows the component analysis results and the evaluation results. As a result, a low value was obtained for both the number of splashes and the scum rate in any of the examples. In particular, it was confirmed that the continuous casting method using an electron gun was effective in reducing inclusions.

【0022】[0022]

【表1】 [Table 1]

【0023】なお、上記製造方法の他に、1回以上の高
周波溶解により製作したインゴットを、熱間加工せず
に、再度溶解して連続鋳造してもよい。また、連続鋳造
法は、図3のように横から引き抜く装置に限らず、図4
のように溶解槽の下から引き抜く形の装置を用いて行っ
てもよい。なお、図4の詳しい説明は省略するが、図3
と同一の構成部材には同一の参照番号を付した。
In addition to the above-described manufacturing method, an ingot manufactured by one or more high-frequency melting operations may be melted again and continuously cast without hot working. Further, the continuous casting method is not limited to a device for drawing from the side as shown in FIG.
As described in the above, it may be carried out using a device that is pulled out from under the melting tank. Although detailed description of FIG. 4 is omitted, FIG.
The same components as those described above are denoted by the same reference numerals.

【0024】[0024]

【発明の効果】以上、説明したように、本発明の蒸着用
素材によれば、介在物、特にスピネル系介在物を適切に
抑えているので、スプラッシュやスカムの発生をを非常
に小さくすることができる。また、本発明の蒸着用素材
によれば、かかる蒸着用素材を得ることができる。さら
に、かかる蒸着用素材を用いた蒸着方法によれば、信頼
性の高い蒸着テープを得ることができる。
As described above, according to the material for vapor deposition of the present invention, inclusions, particularly spinel-based inclusions, are appropriately suppressed, so that the generation of splash and scum can be made extremely small. Can be. According to the material for vapor deposition of the present invention, such a material for vapor deposition can be obtained. Furthermore, according to the vapor deposition method using such a material for vapor deposition, a highly reliable vapor deposition tape can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の蒸着用素材について評価する実験方
法を説明する図である。
FIG. 1 is a diagram illustrating an experimental method for evaluating a material for vapor deposition according to the present invention.

【図2】 スカム率とドロップアウト数の関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the scum rate and the number of dropouts.

【図3】 連続鋳造装置を示す図である。FIG. 3 is a view showing a continuous casting apparatus.

【図4】 他の連続鋳造装置を示す図である。FIG. 4 is a view showing another continuous casting apparatus.

【符号の説明】[Explanation of symbols]

11 原料 12 高周波コイル 13 溶解槽 14 出口管 15 冷却装置 16 鋳造品 Reference Signs List 11 raw material 12 high-frequency coil 13 melting tank 14 outlet pipe 15 cooling device 16 casting

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA11 AA25 BA06 BA24 BD11 CA01 DB01 DB08 5D112 AA05 BB05 FA02 FB02 5E049 AA04 BA06 HC02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K029 AA11 AA25 BA06 BA24 BD11 CA01 DB01 DB08 5D112 AA05 BB05 FA02 FB02 5E049 AA04 BA06 HC02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶解時に溶解表面を覆う介在物の面積
が、溶解表面全体の面積の10%以下であることを特徴
とする蒸着用素材。
1. A material for vapor deposition, wherein an area of an inclusion covering a dissolution surface during dissolution is 10% or less of an area of the entire dissolution surface.
【請求項2】 溶解時に溶解表面を覆うスピネル系介在
物の面積が、溶解表面全体の面積の10%以下であるこ
とを特徴とする蒸着用素材。
2. A material for vapor deposition, wherein the area of the spinel-based inclusion covering the dissolution surface during dissolution is 10% or less of the area of the entire dissolution surface.
【請求項3】 請求項1又は請求項2に記載の蒸着用素
材を製造するための蒸着用素材の製造方法であって、原
料を真空溶解法にて2回以上溶解することを特徴とする
蒸着用素材の製造方法。
3. A method for producing a material for vapor deposition according to claim 1, wherein the material is melted twice or more by a vacuum melting method. Manufacturing method of material for vapor deposition.
【請求項4】 請求項1又は請求項2に記載の蒸着用素
材を製造するための蒸着用素材の製造方法であって、連
続鋳造法によることを特徴とする蒸着用素材の製造方
法。
4. A method for producing a material for vapor deposition for producing the material for vapor deposition according to claim 1 or 2, wherein the method is a continuous casting method.
【請求項5】 請求項1又は請求項2に記載の蒸着用素
材を用いることを特徴とする蒸着方法。
5. A vapor deposition method using the material for vapor deposition according to claim 1 or 2.
JP2000172360A 2000-06-08 2000-06-08 Evaporation material, method of manufacturing the same, and method of evaporating the same Pending JP2001351823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172360A JP2001351823A (en) 2000-06-08 2000-06-08 Evaporation material, method of manufacturing the same, and method of evaporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172360A JP2001351823A (en) 2000-06-08 2000-06-08 Evaporation material, method of manufacturing the same, and method of evaporating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008251555A Division JP2009074175A (en) 2008-09-29 2008-09-29 Stock for vapor deposition, and information recording medium

Publications (1)

Publication Number Publication Date
JP2001351823A true JP2001351823A (en) 2001-12-21

Family

ID=18674771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172360A Pending JP2001351823A (en) 2000-06-08 2000-06-08 Evaporation material, method of manufacturing the same, and method of evaporating the same

Country Status (1)

Country Link
JP (1) JP2001351823A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184368A (en) * 1984-10-01 1986-04-28 Sumitomo Electric Ind Ltd Vacuum deposition method
JPH02311394A (en) * 1989-05-25 1990-12-26 Daido Steel Co Ltd W target material
JPH05311424A (en) * 1992-05-12 1993-11-22 Dowa Mining Co Ltd Sputtering target for forming thin metal film and its production
JPH10116749A (en) * 1996-10-08 1998-05-06 Sony Corp Metal thin film recording medium and production of magnetic material therefor
JPH10206035A (en) * 1997-01-23 1998-08-07 Shinko Electric Co Ltd High frequency vacuum melting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184368A (en) * 1984-10-01 1986-04-28 Sumitomo Electric Ind Ltd Vacuum deposition method
JPH02311394A (en) * 1989-05-25 1990-12-26 Daido Steel Co Ltd W target material
JPH05311424A (en) * 1992-05-12 1993-11-22 Dowa Mining Co Ltd Sputtering target for forming thin metal film and its production
JPH10116749A (en) * 1996-10-08 1998-05-06 Sony Corp Metal thin film recording medium and production of magnetic material therefor
JPH10206035A (en) * 1997-01-23 1998-08-07 Shinko Electric Co Ltd High frequency vacuum melting apparatus

Similar Documents

Publication Publication Date Title
US8152976B2 (en) AG-based alloy sputtering target
US11145443B2 (en) R-T-B-based magnet material alloy and method for producing the same
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP4016399B2 (en) Method for producing Fe-Co-B alloy target material
JP2010018884A (en) Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2000199054A (en) Aluminum alloy sputtering target material
JP2011108328A (en) Ag ALLOY THERMAL DIFFUSION CONTROL FILM USED IN MAGNETIC RECORDING MEDIUM FOR THERMALLY ASSISTED RECORDING, AND MAGNETIC RECORDING MEDIUM
Xu et al. Microstructure evolution and grain refinement mechanism of rapidly solidified single-phase copper based alloys
Ren et al. Microstructure and properties of Al-6.0 Mg-0.3 Sc alloy deposited by double-wire arc additive manufacturing
Hou et al. Acceleration mechanism of Ti2O3 on TiN formation and δ-ferrite nucleation of ferritic stainless steel
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JP2001351823A (en) Evaporation material, method of manufacturing the same, and method of evaporating the same
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2009074175A (en) Stock for vapor deposition, and information recording medium
CN111971412B (en) Sputtering target, method for producing same, and method for producing magnetic recording medium
JP2001351824A (en) Evaporation material and data recording medium
JP3509011B2 (en) Method for Refining Production Materials for Target Material for Al-based Sputtering
JPS62214142A (en) Production of aluminum alloy substrate of high cleanliness for magnetic disk
KR100470536B1 (en) Method for Manufacturing Aluminum-based Alloy Target Material and Aluminum- based Alloy Material Target Obtained through the Method
JP2001223183A (en) Al-FAMILY ELECTRODE FILM AND LIQUID CRYSTAL DISPLAY
CN114480983B (en) Fe alloy for refining grains by utilizing solute interaction at front edge of solidification interface and preparation method thereof
CN102485948A (en) FeCoTaZr alloy sputtering target material and manufacture method thereof
JP2018006685A (en) Indium target member and method of manufacturing the same
JP2006307345A (en) Sputtering target
JP4614479B2 (en) Production of high purity alloy sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021