JP2001350045A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JP2001350045A
JP2001350045A JP2000167338A JP2000167338A JP2001350045A JP 2001350045 A JP2001350045 A JP 2001350045A JP 2000167338 A JP2000167338 A JP 2000167338A JP 2000167338 A JP2000167338 A JP 2000167338A JP 2001350045 A JP2001350045 A JP 2001350045A
Authority
JP
Japan
Prior art keywords
optical waveguide
core
light
optical
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000167338A
Other languages
Japanese (ja)
Other versions
JP3530463B2 (en
Inventor
Takashi Saida
隆志 才田
Ryoichi Kasahara
亮一 笠原
Yasuhiro Hida
安弘 肥田
Akio Sugita
彰夫 杉田
Takuya Tanaka
拓也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000167338A priority Critical patent/JP3530463B2/en
Publication of JP2001350045A publication Critical patent/JP2001350045A/en
Application granted granted Critical
Publication of JP3530463B2 publication Critical patent/JP3530463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide, capable of enlarging a field shape of light in the lateral direction and in the longitudinal direction and reducing coupling loss, using simple structure. SOLUTION: The optical waveguide 20, consisting of a tapered optical waveguide 21 which smoothly enlarges the width of a core and a light field converting optical waveguide 22 which is connected to one end of the tapered optical waveguide 21, is formed on a substrate 2, the core of the light field converting optical waveguide 22 is formed into multilayered structure, which is composed of at least three layers laminated in the direction orthogonal to the substrate 2 and in which refractive indexes of adjacent layers are different from each other, and whereby the confinement of light in the core is weakened locally. Thus, the field of light is longitudinally widened, and the field of light is widened longitudinally and laterally, respectively coupled with an effect of laterally widening the field of light by the tapered optical waveguide 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光導波路に関する
ものであり、さらに詳しくは光導波路中の光のフィール
ドの形状を変化させるための光導波路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide, and more particularly, to an optical waveguide for changing a shape of a light field in the optical waveguide.

【0002】[0002]

【従来の技術】光通信の急速な進展に伴い、光導波路部
品の高機能化・経済化への要求が高まっている。光導波
路部品を高機能化する、あるいは経済化するためには、
光導波路の光の閉じ込めを強くすることが有効である。
2. Description of the Related Art With the rapid progress of optical communication, there is an increasing demand for high-performance and economical optical waveguide components. In order to make optical waveguide components highly functional or economical,
It is effective to strengthen the confinement of light in the optical waveguide.

【0003】光の閉じ込めを強くすれば、光導波路の曲
げ半径を小さくでき、寄り添う光導波路の間隔を狭くで
き、かつ光導波路要素のそれぞれのサイズを小さくでき
る。この結果、光導波路部品の大きさを小さくできるの
で、多くの機能を集積化した光回路を製造することが可
能となり、あるいは一回の工程で製造できる光導波路部
品の数を多くすることが可能となる。
[0003] If the confinement of light is increased, the bending radius of the optical waveguide can be reduced, the distance between the optical waveguides that are close to each other can be reduced, and the size of each optical waveguide element can be reduced. As a result, since the size of the optical waveguide component can be reduced, it is possible to manufacture an optical circuit in which many functions are integrated, or it is possible to increase the number of optical waveguide components that can be manufactured in one process. Becomes

【0004】しかしながら、光の閉じ込めを強くする
と、光導波路部品と、光ファイバを始めとするその他の
光部品との結合損夫が大きくなるという問題がある。
However, if the confinement of light is increased, there is a problem that the coupling loss between the optical waveguide component and other optical components such as an optical fiber is increased.

【0005】従来、光導波路部品と他の光部品との結合
損失を低減するために光のフィールドを変化させる構造
として、(1)コアの幅だけを広げる横方向テーパ光導
波路、(2)コアの幅とともに高さを広げる縦・横方向
テーパ光導波路、(3)通常のコア層の上に第2のコア
層を作製する2層テーパ光導波路、(4)コアの屈折率
をドーパント(添加剤)の拡散現象等を用いて徐々に変
化させる屈折率変化光導波路、(5)屈折率の異なる異
種のコアを互いに入り組むように構成する断熱光導波路
構造変換等が知られている。
Conventionally, as a structure for changing a light field in order to reduce a coupling loss between an optical waveguide component and another optical component, (1) a laterally tapered optical waveguide in which only the width of a core is increased, and (2) a core. Vertical and horizontal tapered optical waveguides that increase in height along with the width of (3), (3) a two-layer tapered optical waveguide in which a second core layer is formed on an ordinary core layer, and (4) a dopant (doping) And (5) adiabatic optical waveguide structure conversion in which different kinds of cores having different refractive indices are formed so as to be intertwined with each other.

【0006】[0006]

【発明が解決しようとする課題】これらの構造により、
光導波路部品と他の光部品との結合損失の低減が実現さ
れているが、実用化には次のような課題があった。
With these structures,
Although reduction of the coupling loss between the optical waveguide component and other optical components has been realized, there are the following problems in practical use.

【0007】即ち、(1)の構造は通常の光導波路の製
造工程だけで形成できるが、光のフィールドを横方向に
しか広げないため、接続損失が小さくできないという問
題があった。また、(2)乃至(5)の構造では、光の
フィールドを横方向だけでなく縦方向にも広げるために
接続損失を低減できるが、付加的で複雑な製造工程が必
要であるという問題があった。このような付加的な製造
工程が加わると、単に光導波路部品の価格が高くなるだ
けでなく、光導波路部品自身の性能も劣化する可能性が
あって歩留まりが悪くなるという問題があった。
That is, although the structure (1) can be formed only by the ordinary optical waveguide manufacturing process, there is a problem that the connection loss cannot be reduced because the light field is expanded only in the horizontal direction. In the structures (2) to (5), the connection loss can be reduced because the light field is spread not only in the horizontal direction but also in the vertical direction, but there is a problem that an additional and complicated manufacturing process is required. there were. When such an additional manufacturing process is added, not only the price of the optical waveguide component is simply increased, but also the performance of the optical waveguide component itself may be deteriorated, resulting in a problem that the yield is deteriorated.

【0008】図1は前述した(1)の構造、即ち従来の
横方向テーパ光導波路による結合損失の低減構造を示す
もので、基板1上にテーパ光導波路11と入出力用光導
波路12とが形成されている。この場合、図面の左方向
から入力された光は、テーパ光導波路11により横方向
に広げられて、入出力用光導波路12より外に出力す
る。
FIG. 1 shows the structure (1) described above, that is, a structure for reducing coupling loss by a conventional laterally tapered optical waveguide. A tapered optical waveguide 11 and an input / output optical waveguide 12 are formed on a substrate 1. Is formed. In this case, the light input from the left side of the drawing is expanded in the horizontal direction by the tapered optical waveguide 11 and output outside the input / output optical waveguide 12.

【0009】また、図2は従来の横方向テーパ光導波路
の端部における光のフィールドの断面形状を示すもので
あり、基板1上に、下部クラッド111、横方向に幅を
広げられたコア112及び上部クラッド113が形成さ
れてなっている。この場合の光のフィールド114は、
図示するように、主に横方向にだけ広がった形となり、
縦方向には広がらないため、横も縦も広い光ファイバ中
のフィールドと形状が一致せず、損失が発生する。
FIG. 2 shows a cross-sectional shape of a light field at an end of a conventional laterally tapered optical waveguide. A lower clad 111 is provided on a substrate 1 and a core 112 whose width is increased in the lateral direction. And an upper cladding 113. The light field 114 in this case is
As shown in the figure, the shape spreads mainly only in the horizontal direction,
Since the optical fiber does not spread in the vertical direction, the shape does not match the shape of the field in the optical fiber which is wide and wide, and loss occurs.

【0010】例えば、コアとクラッドとの比屈折率差が
1.5%、高さ4.3μm、幅4.0μmの矩形のコア
を有する石英系光導波路では、通常の光ファイバとの接
続損失は一点あたり約1.5dBとなる。この石英系光
導波路において図1に示した横方向テーパ光導波路を適
用して、入出力端部でコア幅を12μm程度まで広げれ
ば、接続損失はおよそ一点あたり0.8dBまで低減で
きる。しかし、一点あたりの接続損失が0.8dBある
と入出力での接続損失は1.6dBとなり、30%もの
光が入出力で失われることになる。
For example, in a quartz optical waveguide having a rectangular core having a relative refractive index difference of 1.5% between a core and a clad, a height of 4.3 μm, and a width of 4.0 μm, a connection loss with an ordinary optical fiber is lost. Is about 1.5 dB per point. By applying the lateral tapered optical waveguide shown in FIG. 1 to the silica optical waveguide and widening the core width to about 12 μm at the input and output ends, the connection loss can be reduced to about 0.8 dB per point. However, if the connection loss per point is 0.8 dB, the connection loss at the input and output is 1.6 dB, and as much as 30% of the light is lost at the input and output.

【0011】本発明の目的は、簡易な構造で光のフィー
ルドの形状を横方向及び縦方向に拡大でき、結合損失を
低減できる光導波路を提供することにある。
An object of the present invention is to provide an optical waveguide which can expand the shape of a light field in a horizontal direction and a vertical direction with a simple structure and can reduce a coupling loss.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の請求項1では、基板上にクラッド及びコ
アが形成されてなる光導波路において、前記光導波路の
一部が、コアの幅をなめらかに拡大するテーパ光導波路
と、該テーパ光導波路の一端に接続された第2の光導波
路とよりなり、前記第2の光導波路は、前記基板に対し
て直交する方向に積層された少なくとも3つの層からな
り、隣接する層の屈折率が互いに異なる多層構造のコア
を備えていることを特徴とする光導波路を提案する。
According to a first aspect of the present invention, there is provided an optical waveguide having a clad and a core formed on a substrate, wherein a part of the optical waveguide is a core. And a second optical waveguide connected to one end of the tapered optical waveguide, wherein the second optical waveguide is stacked in a direction orthogonal to the substrate. In addition, the present invention proposes an optical waveguide including a core having a multilayer structure including at least three layers and adjacent layers having different refractive indexes.

【0013】前記構成によれば、テーパ光導波路の一端
に接続される第2の光導波路のコアを、基板に対して直
交する方向に積層された少なくとも3つの層よりなり、
隣接する層の屈折率が互いに異なる多層構造とすること
で、コアにおける光の閉じ込めを局所的に弱くし、これ
によって光のフィールドを縦に広げることができ、テー
パ光導波路による光のフィールドを横に広げる効果と相
俟って、光のフィールドを縦と横にそれぞれ広げること
ができる。
According to the above configuration, the core of the second optical waveguide connected to one end of the tapered optical waveguide is composed of at least three layers stacked in a direction perpendicular to the substrate,
By having a multilayer structure in which adjacent layers have different refractive indices, light confinement in the core is locally weakened, whereby the light field can be extended vertically, and the light field by the tapered optical waveguide can be expanded horizontally. The field of light can be expanded both vertically and horizontally, in combination with the effect of widening the light.

【0014】また、本発明の請求項2では、前記多層構
造のコアはコアの材料とクラッドの材料とを交互に配置
して構成されることを特徴とする請求項1記載の光導波
路を提案する。
According to a second aspect of the present invention, there is provided the optical waveguide according to the first aspect, wherein the core having the multilayer structure is constituted by alternately arranging a core material and a clad material. I do.

【0015】前記構成によれば、通常の光導波路の製造
工程と同一の工程で、本発明の光導波路を製造すること
ができる。
According to the above configuration, the optical waveguide of the present invention can be manufactured in the same process as that for manufacturing an ordinary optical waveguide.

【0016】また、本発明の請求項3では、前記第2の
光導波路のテーパ光導波路に接続されない一端が開放端
であることを特徴とする請求項1また2記載の光導波路
を提案する。
According to a third aspect of the present invention, there is provided the optical waveguide according to the first or second aspect, wherein one end of the second optical waveguide that is not connected to the tapered optical waveguide is an open end.

【0017】前記構成によれば、光ファイバを始めとす
る他の光部品との接続損失の小さな光導波路を提供する
ことができる。
According to the above configuration, it is possible to provide an optical waveguide having a small connection loss with other optical components such as an optical fiber.

【0018】また、本発明の請求項4では、前記光導波
路が石英系光導波路であることを特徴とする請求項1乃
至3いずれか記載の光導波路を提案する。
According to a fourth aspect of the present invention, there is provided the optical waveguide according to any one of the first to third aspects, wherein the optical waveguide is a silica-based optical waveguide.

【0019】前記構成によれば、作製が容易で安定な光
導波路構造を提供することができる。
According to the above configuration, it is possible to provide a stable and stable optical waveguide structure.

【0020】[0020]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】なお、以下に説明する実施の形態では、光
導波路としてシリコン基板上に形成した矩形の断面を有
する石英系光導波路を使用した光導波路について説明す
る。これは、この組み合わせが安定で制御性の良い光導
波路を提供できるからである。しかしながら、本発明は
この例に限定されるものではない。
In the embodiment described below, an optical waveguide using a quartz optical waveguide having a rectangular cross section formed on a silicon substrate as an optical waveguide will be described. This is because this combination can provide an optical waveguide that is stable and has good controllability. However, the invention is not limited to this example.

【0022】図3は本発明の光導波路の実施の形態の一
例を示すものである。
FIG. 3 shows an embodiment of the optical waveguide according to the present invention.

【0023】図3に示すように、本実施の形態の光導波
路20は、シリコン基板上2に形成された、コアの幅を
なめらかに拡大するテーパ光導波路21と、該テーパ光
導波路21の一端に接続された第2の光導波路(以下、
光フィールド変換用光導波路と呼ぶ。)22とよりなっ
ている。また、光フィールド変換用光導波路22は、基
板2に対して直交する方向に積層された少なくとも3つ
の層からなり、隣接する層の屈折率が互いに異なる多層
構造のコアを備えている。
As shown in FIG. 3, an optical waveguide 20 according to the present embodiment includes a tapered optical waveguide 21 formed on a silicon substrate 2 for smoothly increasing the core width, and one end of the tapered optical waveguide 21. To the second optical waveguide (hereinafter, referred to as
It is called an optical waveguide for optical field conversion. ) 22. Further, the optical field conversion optical waveguide 22 includes at least three layers stacked in a direction orthogonal to the substrate 2 and has a multilayered core in which adjacent layers have different refractive indexes.

【0024】ここで、本実施の形態では、光フィールド
変換用光導波路22のコアがコアの材料とクラッドの材
料とを交互に配置して構成した多層構造の例について説
明する。これは、この組み合わせが通常の光導波路の製
造と全く同じ工程での、本発明の光導波路の製造を可能
にするからである。しかしながら、本発明はこの例に限
定されるものではなく、クラッドともコアとも異なる材
料を用いて多層構造を構成することも、もちろん可能で
ある。
Here, in the present embodiment, an example of a multilayer structure in which the core of the optical waveguide for optical field conversion 22 is constituted by alternately arranging the material of the core and the material of the clad will be described. This is because this combination allows the manufacture of the optical waveguide of the present invention in exactly the same steps as the manufacture of a normal optical waveguide. However, the present invention is not limited to this example, and it is of course possible to configure a multilayer structure using a material different from both the cladding and the core.

【0025】また、本実施の形態では、光導波路20が
光導波路の端部にある、即ち光フィールド変換用光導波
路22のテーパ光導波路21に接続されない一端が開放
端である例を示しているが、これはこの配置が光ファイ
バ等の他の光部品との接続損失を低減できる光導波路を
提供できるからである。しかしながら、本発明はこの例
に限定されるものではなく、光導波路20は中央にあっ
ても良い。
Further, in this embodiment, an example is shown in which the optical waveguide 20 is at the end of the optical waveguide, that is, one end of the optical field conversion optical waveguide 22 which is not connected to the tapered optical waveguide 21 is an open end. This is because this arrangement can provide an optical waveguide that can reduce connection loss with other optical components such as an optical fiber. However, the present invention is not limited to this example, and the optical waveguide 20 may be located at the center.

【0026】例えば、異種の光導波路を基板上に形成す
るような場合には、光導波路20を異種光導波路の境界
付近に配設することで、これら光導波路間の接続損失を
低減することが可能となる。さらに、光導波路に溝を設
けてフィルタや波長板等の他の部品を搭載するような場
合にも、光導波路20を溝の近辺に配設することで、溝
における回折損失を抑制することができる。このよう
に、光導波路20は光導波路端部にあっても良く、ま
た、光導波路中央部にあっても良い。
For example, in the case where different types of optical waveguides are formed on a substrate, the connection loss between these optical waveguides can be reduced by disposing the optical waveguide 20 near the boundary between the different types of optical waveguides. It becomes possible. Furthermore, even in a case where a groove is provided in the optical waveguide and other components such as a filter and a wavelength plate are mounted, by arranging the optical waveguide 20 near the groove, diffraction loss in the groove can be suppressed. it can. Thus, the optical waveguide 20 may be at the end of the optical waveguide or at the center of the optical waveguide.

【0027】さらに、本実施の形態の光導波路20で
は、テーパ光導波路21と光フィールド変換用光導波路
22がそれぞれ独立にあるとしたが、本発明はこの例に
限定されるものではなく、例えば光フィールド変換用光
導波路が横方向に幅をなめらかに変化させるテーパ光導
波路となっていても、もちろん良い。
Furthermore, in the optical waveguide 20 of the present embodiment, the tapered optical waveguide 21 and the optical field conversion optical waveguide 22 are independently provided, but the present invention is not limited to this example. Of course, the optical waveguide for optical field conversion may be a tapered optical waveguide that smoothly changes the width in the horizontal direction.

【0028】さて、図1の実施の形態において、導波路
の比屈折率は1.5%とし、導波路の厚みは4.3μ
m、テーパ光導波路21の入力用光導波路側の幅は4.
0μm、出力用光導波路側の幅は11μm、光フィール
ド変換用光導波路22のコアの層数は5とし、コア材料
の層の幅は1μm、クラッド材料の層の幅は2μmとし
た。
In the embodiment of FIG. 1, the relative refractive index of the waveguide is 1.5%, and the thickness of the waveguide is 4.3 μm.
m, the width of the tapered optical waveguide 21 on the input optical waveguide side is 4.
The width of the output optical waveguide side was 11 μm, the number of core layers of the optical field conversion optical waveguide 22 was 5, the core material layer width was 1 μm, and the cladding material layer width was 2 μm.

【0029】このようにすると、光フィールド変換用光
導波路22では、光はコアの屈折率とクラッドの屈折率
との平均の屈折率を感じるために、光のフィールドは縦
方向にも広がることとなり、光ファイバを始めとする比
較的光の閉じ込めの弱い光部品との接続損失を低減する
ことが可能となる。
In this way, in the optical waveguide for optical field conversion 22, since the light senses the average refractive index of the refractive index of the core and the refractive index of the clad, the light field spreads in the vertical direction. In addition, it is possible to reduce the connection loss with an optical component such as an optical fiber that has relatively weak light confinement.

【0030】図4は本実施の形態の光導波路の製造工程
を示すもので、以下、工程順に説明する。
FIG. 4 shows a manufacturing process of the optical waveguide according to the present embodiment, which will be described below in the order of the processes.

【0031】(a)基板2としてシリコン基板を用い、
基板2上に下部クラッド221と、コア層222とを火
炎堆積法により形成する。
(A) A silicon substrate is used as the substrate 2,
A lower cladding 221 and a core layer 222 are formed on the substrate 2 by a flame deposition method.

【0032】火炎堆積法はSiCl4を主成分とするガ
ラス形成原料ガスにより、酸水素バーナーの火炎内でS
iO2を主成分とするガラス微粒子を形成し、基板にガ
ラス微粒子層を堆積する方法であり、堆積したガラス微
粒子層を基板とともに電気炉で加熱して、透明なガラス
膜を形成する。
The flame deposition method uses a glass-forming raw material gas containing SiCl 4 as a main component to generate sulfur in a flame of an oxyhydrogen burner.
This is a method of forming glass fine particles mainly composed of iO 2 and depositing a glass fine particle layer on a substrate, wherein the deposited glass fine particle layer is heated together with the substrate in an electric furnace to form a transparent glass film.

【0033】始めに、基板2上に下部クラッド221用
ガラス微粒子を堆積し、コア層222用ガラス微粒子を
堆積した後、電気炉にて透明ガラス化した。コア層22
2用ガラス微粒子層には、屈折率を高くするためにGe
2を添加している。
First, glass fine particles for the lower clad 221 were deposited on the substrate 2 and glass fine particles for the core layer 222 were deposited. Core layer 22
In order to increase the refractive index, the glass fine particle layer for
O 2 is added.

【0034】(b)コア層222の不要部分を反応性イ
オンエッチング法により除去して、櫛の歯状のコア22
2aを形成する。
(B) The unnecessary portion of the core layer 222 is removed by a reactive ion etching method, and the comb-shaped core 22 is removed.
2a is formed.

【0035】(c)下部クラッド221と同等の屈折率
を有する上部クラッド223を、コア222aを覆うよ
うに形成する。上部クラッド223の形成には、再度、
火炎堆積法によりガラス微粒子を堆積し、電気炉で加熱
した。
(C) An upper clad 223 having the same refractive index as the lower clad 221 is formed so as to cover the core 222a. To form the upper cladding 223,
Glass particles were deposited by a flame deposition method and heated in an electric furnace.

【0036】以上説明した本実施の形態の光導波路の製
造工程は、通常の石英系光導波路の製造工程とほぼ同じ
である。本実施の形態の光導波路は、余分な製造工程を
必要とすることなく実現できる利点を有する。
The manufacturing process of the optical waveguide according to the present embodiment described above is almost the same as the manufacturing process of a normal silica-based optical waveguide. The optical waveguide of the present embodiment has an advantage that can be realized without requiring an extra manufacturing step.

【0037】ここで、多層構造のコアを備えた光フィー
ルド変換用光導波路22において、光がコアの屈折率と
クラッドの屈折率との平均値を感じるためには、コアの
材料からなる層を光が閉じ込められないような薄さにす
ることが必要である。石英系光導波路のようにコアとク
ラッドとの屈折率差が比較的小さな光導波路では、この
必要な薄さが大きくて済むので、作製に対する負担が極
めて小さいという特徴がある。
Here, in the optical field conversion optical waveguide 22 having a multilayered core, in order for light to sense the average value of the refractive index of the core and the refractive index of the cladding, a layer made of the material of the core must be formed. It is necessary to make it thin so that light cannot be confined. An optical waveguide having a relatively small difference in refractive index between a core and a clad, such as a silica-based optical waveguide, is characterized in that the required thickness is large and the burden on the fabrication is extremely small.

【0038】図5は、前記作製した本実施の形態の光導
波路と、比屈折率0.3%を有する通常の光ファイバと
の接続損失を測定した結果を示すものである。接続損失
の再現性を確認するために同じ構造を33個作製し、そ
れぞれTM,TEの各モードについて接続損失を測定し
た。平均損失は約0.45dBであり、偏波依存性は
0.1dB以下、ばらつきは0.1dB以内であった。
従来のテーパ光導波路を用いる手法と比べて、約0.3
5dBの改善が得られていることが分かる。
FIG. 5 shows the result of measuring the connection loss between the optical waveguide of the present embodiment fabricated as described above and a normal optical fiber having a relative refractive index of 0.3%. In order to confirm the reproducibility of the connection loss, 33 same structures were produced, and the connection loss was measured for each of the TM and TE modes. The average loss was about 0.45 dB, the polarization dependence was 0.1 dB or less, and the variation was within 0.1 dB.
Compared to the conventional method using a tapered optical waveguide, about 0.3
It can be seen that an improvement of 5 dB has been obtained.

【0039】また、図6は前記作製した本実施の形態の
光導波路の端部における光のフィールドの断面形状を示
すものである。図6に示すように、本実施の形態の光導
波路端部での断面には、基板2上に、下部クラッド22
1と、コア222aと、上部クラッド223とが配設さ
れている。この時、コアがコアの材料とクラッドの材料
とからなる多層構造を備えているので、光のフィールド
224は横だけでなく縦にも広がり、光ファイバ中の横
も縦も広い光のフィールドとほぼ形状が一致するので、
上述のような損失の低減が図れる。
FIG. 6 shows a cross-sectional shape of a light field at the end of the optical waveguide of the present embodiment. As shown in FIG. 6, the cross section at the end of the optical waveguide of the present embodiment has
1, a core 222a, and an upper clad 223. At this time, since the core has a multilayer structure composed of the core material and the cladding material, the light field 224 spreads not only in the horizontal direction but also in the vertical direction, and the light field 224 in the optical fiber is wide and wide. Since the shapes almost match,
The loss as described above can be reduced.

【0040】[0040]

【発明の効果】以上詳細に説明したように、本発明によ
れば、光の閉じ込めの強い光導波路において、光ファイ
バ等の他の光部品との接続損失を簡易に低減することが
できる光導波路を提供することができ、量産性、機能性
に富んだ低損失で実用的な光導波路部品を提供すること
ができる。
As described above in detail, according to the present invention, in an optical waveguide having a strong light confinement, an optical waveguide which can easily reduce a connection loss with another optical component such as an optical fiber. And a low-loss and practical optical waveguide component rich in mass productivity and functionality can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の横方向テーパ光導波路を示す説明図FIG. 1 is an explanatory view showing a conventional laterally tapered optical waveguide.

【図2】従来の横方向テーパ光導波路における光のフィ
ールドの断面形状を示す説明図
FIG. 2 is an explanatory view showing a cross-sectional shape of a light field in a conventional laterally tapered optical waveguide.

【図3】本発明の光導波路の実施の形態の一例を示す説
明図
FIG. 3 is an explanatory view showing an example of an embodiment of the optical waveguide of the present invention.

【図4】本実施の形態の光導波路の製造工程を示す説明
FIG. 4 is an explanatory view showing a manufacturing process of the optical waveguide of the embodiment.

【図5】本実施の形態の光導波路と通常の光ファイバと
の接続損失の測定結果を示す図
FIG. 5 is a diagram showing a measurement result of a connection loss between the optical waveguide of the present embodiment and a normal optical fiber;

【図6】本実施の形態の光導波路における光のフィール
ドの断面形状を示す説明図
FIG. 6 is an explanatory diagram showing a cross-sectional shape of a light field in the optical waveguide according to the present embodiment.

【符号の説明】[Explanation of symbols]

2:基板、20:光導波路、21:テーパ光導波路、2
2:光フィールド変換用光導波路、221:下部クラッ
ド、222a:コア、223:上部クラッド、224:
光のフィールド。
2: substrate, 20: optical waveguide, 21: tapered optical waveguide, 2
2: optical waveguide for optical field conversion, 221: lower cladding, 222a: core, 223: upper cladding, 224:
Light field.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 肥田 安弘 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 杉田 彰夫 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 田中 拓也 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H037 BA24 CA36 2H047 KA03 KA13 KA15 MA05 QA04 TA01 TA31  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Hida 2-3-1 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Akio Sugita 2-3-3, Otemachi, Chiyoda-ku, Tokyo No. 1 Nippon Telegraph and Telephone Corporation (72) Takuya Tanaka Inventor F-term (reference) 2H037 BA24 CA36 2H047 KA03 KA13 KA15 MA05 QA04 TA01 2-3-1 Otemachi, Chiyoda-ku, Tokyo TA31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上にクラッド及びコアが形成されて
なる光導波路において、 前記光導波路の一部が、コアの幅をなめらかに拡大する
テーパ光導波路と、該テーパ光導波路の一端に接続され
た第2の光導波路とよりなり、 前記第2の光導波路は、前記基板に対して直交する方向
に積層された少なくとも3つの層からなり、隣接する層
の屈折率が互いに異なる多層構造のコアを備えているこ
とを特徴とする光導波路。
1. An optical waveguide having a clad and a core formed on a substrate, wherein a part of the optical waveguide is connected to one end of the tapered optical waveguide that smoothly expands the width of the core. The second optical waveguide is composed of at least three layers stacked in a direction perpendicular to the substrate, and has a multilayer structure in which adjacent layers have different refractive indexes. An optical waveguide, comprising:
【請求項2】 前記多層構造のコアはコアの材料とクラ
ッドの材料とを交互に配置して構成されることを特徴と
する請求項1記載の光導波路。
2. The optical waveguide according to claim 1, wherein the core of the multilayer structure is formed by alternately arranging a core material and a clad material.
【請求項3】 前記第2の光導波路のテーパ光導波路に
接続されない一端が開放端であることを特徴とする請求
項1また2記載の光導波路。
3. The optical waveguide according to claim 1, wherein one end of the second optical waveguide that is not connected to the tapered optical waveguide is an open end.
【請求項4】 前記光導波路が石英系光導波路であるこ
とを特徴とする請求項1乃至3いずれか記載の光導波
路。
4. The optical waveguide according to claim 1, wherein said optical waveguide is a silica-based optical waveguide.
JP2000167338A 2000-06-05 2000-06-05 Optical waveguide Expired - Lifetime JP3530463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167338A JP3530463B2 (en) 2000-06-05 2000-06-05 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167338A JP3530463B2 (en) 2000-06-05 2000-06-05 Optical waveguide

Publications (2)

Publication Number Publication Date
JP2001350045A true JP2001350045A (en) 2001-12-21
JP3530463B2 JP3530463B2 (en) 2004-05-24

Family

ID=18670506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167338A Expired - Lifetime JP3530463B2 (en) 2000-06-05 2000-06-05 Optical waveguide

Country Status (1)

Country Link
JP (1) JP3530463B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350115A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its manufacturing method
JP2014157211A (en) * 2013-02-15 2014-08-28 Fujitsu Ltd Spot size converter, light source, optical transmitter, optical receiver, and optical transceiver
JP2014191301A (en) * 2013-03-28 2014-10-06 Fujitsu Ltd Spot size converter, manufacturing method thereof and optical integrated circuit device
JP2015215578A (en) * 2014-05-13 2015-12-03 日本電信電話株式会社 Optical waveguide element, and polarization separator using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288102A (en) * 1990-04-04 1991-12-18 Fujitsu Ltd Manufacture of light beam shape converting element
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH06194536A (en) * 1992-12-24 1994-07-15 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH07174929A (en) * 1993-11-01 1995-07-14 Sumitomo Electric Ind Ltd Light branching device and optical parts
JPH08146248A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Optical coupling device and its production
JPH1090537A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer circuit
JPH10221554A (en) * 1997-02-06 1998-08-21 Hitachi Ltd Waveguide type semiconductor optical element and optical communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288102A (en) * 1990-04-04 1991-12-18 Fujitsu Ltd Manufacture of light beam shape converting element
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH06194536A (en) * 1992-12-24 1994-07-15 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH07174929A (en) * 1993-11-01 1995-07-14 Sumitomo Electric Ind Ltd Light branching device and optical parts
JPH08146248A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Optical coupling device and its production
JPH1090537A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer circuit
JPH10221554A (en) * 1997-02-06 1998-08-21 Hitachi Ltd Waveguide type semiconductor optical element and optical communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350115A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its manufacturing method
JP2014157211A (en) * 2013-02-15 2014-08-28 Fujitsu Ltd Spot size converter, light source, optical transmitter, optical receiver, and optical transceiver
JP2014191301A (en) * 2013-03-28 2014-10-06 Fujitsu Ltd Spot size converter, manufacturing method thereof and optical integrated circuit device
JP2015215578A (en) * 2014-05-13 2015-12-03 日本電信電話株式会社 Optical waveguide element, and polarization separator using the same

Also Published As

Publication number Publication date
JP3530463B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JP3581224B2 (en) Planar optical waveguide device
US5500916A (en) Method for making Bragg reflectors for waveguides
CN112051641A (en) Inclined grating type polarization beam splitter applying slit waveguide structure and manufacturing method
US20120201492A1 (en) Optical branching element and optical branching circuit, and manufacturing method thereof
US6775454B2 (en) Silica-based optical waveguide circuit and fabrication method thereof
JP2001350045A (en) Optical waveguide
JP3911271B2 (en) Optical waveguide and method for manufacturing the same
JPH05323138A (en) Laminated optical waveguide circuit
JP3602514B2 (en) Fabrication method of quartz optical waveguide circuit
JP3679036B2 (en) Waveguide type optical circuit
KR100322126B1 (en) Optical waveguide wafer and method of forming the same
JPH06110091A (en) Waveguide type optical coupling circuit
JP4114791B2 (en) Laminated optical waveguide
JPH095549A (en) Optical circuit and method for manufacturing the same
WO2022044101A1 (en) Optical waveguide component and method for manufacturing same
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
JPH05307124A (en) Optical coupling circuit
JP3783924B2 (en) Manufacturing method of laminated interlayer optical directional coupler
US5440656A (en) Waveguide type optical component having optical coupling sections with different coupling efficiencies
JP3795848B2 (en) Optical planar circuit type optical element manufacturing method
CN212647048U (en) Inclined grating type polarization beam splitter applying slit waveguide structure
JPH06235832A (en) Optical waveguide
JP2001033642A (en) Optical waveguide structure
JP2001091775A (en) Manufacturing of laminated type quartz system waveguide
JP2005043497A (en) Optical waveguide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

R151 Written notification of patent or utility model registration

Ref document number: 3530463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term