JP2001348403A - Deoxygenation method for aqueous hydrophilic monomer solution and production method for hydrophilic polymer - Google Patents

Deoxygenation method for aqueous hydrophilic monomer solution and production method for hydrophilic polymer

Info

Publication number
JP2001348403A
JP2001348403A JP2000171524A JP2000171524A JP2001348403A JP 2001348403 A JP2001348403 A JP 2001348403A JP 2000171524 A JP2000171524 A JP 2000171524A JP 2000171524 A JP2000171524 A JP 2000171524A JP 2001348403 A JP2001348403 A JP 2001348403A
Authority
JP
Japan
Prior art keywords
aqueous solution
inert gas
hydrophilic monomer
monomer
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000171524A
Other languages
Japanese (ja)
Other versions
JP3600931B2 (en
Inventor
Tetsuya Tsuzuki
哲也 都築
Kenji Ito
賢司 伊藤
Juichi Goto
寿一 後藤
Susumu Miho
享 美保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000171524A priority Critical patent/JP3600931B2/en
Publication of JP2001348403A publication Critical patent/JP2001348403A/en
Application granted granted Critical
Publication of JP3600931B2 publication Critical patent/JP3600931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deoxygenation method for decreasing the concentration of oxygen dissolved in an aqueous hydrophilic monomer solution. SOLUTION: In this deoxygenation method, an aqueous hydrophilic monomer solution and an inert gas in a vol. ratio of the gas to the solution of 3 or higher are fed into a tubular static mixer under such a condition that the pressure loss between the inlet port and outlet port of the mixer is 0.05 MPa or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、親水性単量体水溶
液に溶存している酸素濃度を減少させる脱酸素方法及び
親水性重合体の製造方法である。
The present invention relates to a deoxygenation method for reducing the concentration of oxygen dissolved in an aqueous solution of a hydrophilic monomer and a method for producing a hydrophilic polymer.

【0002】[0002]

【従来の技術】アクリル酸、アクリルアミド及びジメチ
ルアミノエチル(メタ)アクリレートの3級塩または4
級塩等の親水性単量体を重合して得られる親水性重合体
は、吸水性樹脂、廃水処理用の汚泥脱水剤及び製紙用助
剤等として多用されている。親水性単量体の重合におい
ては、単量体は水溶液として使用されるが、水溶液中の
溶存酸素による重合阻害の問題があり、単量体水溶液中
の脱酸素方法が種々検討されている。例えば、重合器に
単量体水溶液を仕込み、重合器下部から窒素等の不活性
ガスを供給するバッチ式の脱酸素方法、気泡塔に単量体
水溶液及び不活性ガスを供給して連続脱気する連続式の
脱酸素方法等がある。
2. Description of the Related Art Tertiary salts of acrylic acid, acrylamide and dimethylaminoethyl (meth) acrylate or 4
BACKGROUND ART A hydrophilic polymer obtained by polymerizing a hydrophilic monomer such as a grade salt is widely used as a water-absorbing resin, a sludge dewatering agent for treating wastewater, an auxiliary for papermaking, and the like. In the polymerization of a hydrophilic monomer, the monomer is used as an aqueous solution. However, there is a problem of inhibition of polymerization due to dissolved oxygen in the aqueous solution, and various methods for deoxygenation in the aqueous monomer solution have been studied. For example, a batch type deoxygenation method in which an aqueous monomer solution is charged into a polymerization vessel and an inert gas such as nitrogen is supplied from a lower portion of the polymerization vessel, and a monomer aqueous solution and an inert gas are supplied to a bubble column to continuously degas. Continuous deoxygenation method.

【0003】[0003]

【発明が解決しようとする課題】しかし、バッチ式の脱
酸素方法では、脱気に長時間を要してしまう問題を有す
るものであった。また、バッチ式の脱酸素方法および連
続式の脱酸素方法のいずれの場合においても、水溶液中
に多孔質フィルタを投入し、その多孔質フィルタから窒
素等の不活性ガスを微細泡として噴出させることによっ
て、溶存酸素を低減させている。しかしながら、記多孔
質フィルタによる置換方法では、溶存酸素量を低減させ
るには多くの不活性ガスと時間を要し、必ずしも経済的
でなく、多孔質フィルタに重合が発生してフィルタが目
詰まりを起こすため、定期的に多孔質フィルタを洗浄し
たり、取り替えなければならない。そこで、本発明は、
かかる不都合を解消する親水性単量体水溶液脱酸素方法
を提供するものである。
However, the batch type deoxidizing method has a problem that a long time is required for deaeration. In both cases of the batch type deoxidation method and the continuous type deoxygenation method, a porous filter is put into an aqueous solution, and an inert gas such as nitrogen is ejected from the porous filter as fine bubbles. This reduces dissolved oxygen. However, in the replacement method using the porous filter, a large amount of inert gas and time are required to reduce the amount of dissolved oxygen, and it is not necessarily economical, and polymerization occurs in the porous filter and the filter becomes clogged. To do so, the porous filter must be periodically cleaned or replaced. Therefore, the present invention
An object of the present invention is to provide a method for deoxidizing an aqueous solution of a hydrophilic monomer which can solve such a disadvantage.

【0004】[0004]

【課題を解決するための手段】本発明者らは、種々の検
討の結果、親水性単量体の円滑な重合には水溶液中の溶
存酸素量を0.05ppm以下とすることが好ましいこ
とを見出し、さらに、この様な条件とすることができる
上、前記した様な問題点を解消する方法として、以下の
方法が有効であることを見出し本発明を完成した。
As a result of various studies, the present inventors have found that the amount of dissolved oxygen in an aqueous solution is preferably 0.05 ppm or less for smooth polymerization of a hydrophilic monomer. The present invention has been completed by finding that the following method is effective as a method for solving the above-mentioned problems in addition to the above-mentioned conditions.

【0005】請求項1の脱酸素方法は、管状静止型混合
器に、親水性単量体水溶液と不活性ガスを、親水性単量
体水溶液の供給容積1に対して不活性ガスの容積3以
上、かつ管状静止型混合器の入口と出口における圧力損
失が0.05MPa以上の条件で供給する方法である
(以下第1発明という)。又、請求項2は、請求項1で
得られた水溶液を、光重合開始剤の存在下に光照射して
重合するものであり、例えば、ベルトコンベアを使用し
て連続重合を可能にする。
According to a first aspect of the present invention, in a tubular static mixer, a hydrophilic monomer aqueous solution and an inert gas are supplied to an inert gas volume of 3 with respect to a supply volume of the hydrophilic monomer aqueous solution. This is a method in which the pressure loss at the inlet and the outlet of the tubular static mixer is supplied under the condition of 0.05 MPa or more (hereinafter referred to as the first invention). A second aspect of the present invention is to polymerize the aqueous solution obtained in the first aspect by irradiating the aqueous solution with light in the presence of a photopolymerization initiator. For example, continuous polymerization can be performed using a belt conveyor.

【0006】請求項3の脱酸素方法は、気液同時吹き込
みノズルを有する気泡塔の底部に供給配管を設けると共
に、その気泡塔の途中から供給配管に連結する循環配管
を設けて循環量を確保する。そして、親水性単量体水溶
液の供給容積1に対して不活性ガスの容積0.3以上で
供給すると共に、供給配管内の流速が0.1m/s以上
になるようにする方法である(以下第2発明という)。
又、請求項4は、請求項3で得られた水溶液を、光重合
開始剤の存在下に光照射して重合するものであり、例え
ば、ベルトコンベアを使用して連続重合を可能にする。
なお、本明細書においては、アクリレートまたはメタク
リレートを(メタ)アクリレートと表し、アクリル酸ま
たはメタクリル酸を(メタ)アクリル酸と表し、アクリ
ルアミドまたはメタクルアミドを(メタ)アクリルアミ
ドと表す。
According to a third aspect of the present invention, a supply pipe is provided at the bottom of a bubble tower having a gas-liquid simultaneous blowing nozzle, and a circulation pipe is provided from the middle of the bubble tower to be connected to the supply pipe to secure a circulation amount. I do. And it is a method in which the supply volume of the hydrophilic monomer aqueous solution is 1 and the inert gas volume is supplied at 0.3 or more, and the flow velocity in the supply pipe is 0.1 m / s or more ( Hereinafter, referred to as a second invention).
In a fourth aspect, the aqueous solution obtained in the third aspect is polymerized by irradiating light in the presence of a photopolymerization initiator. For example, continuous polymerization can be performed using a belt conveyor.
In this specification, acrylate or methacrylate is represented as (meth) acrylate, acrylic acid or methacrylic acid is represented as (meth) acrylic acid, and acrylamide or methacrylamide is represented as (meth) acrylamide.

【0007】[0007]

【発明の実施の態様】1.親水性単量体水溶液 第1発明及び第2発明における、親水性単量体(以下単
量体という)としては、種々の単量体を使用することが
でき、カチオン性単量体及びアニオン性単量体及びノニ
オン性単量体を挙げることができる。カチオン性単量体
としては、ジメチルアミノエチル(メタ)アクリレート
等のジアルキルアミノアルキル(メタ)アクリレートの
塩酸塩及び硫酸塩等の3級塩;ジアルキルアミノアルキ
ル(メタ)アクリレートの塩化メチル付加物等のハロゲ
ン化アルキル付加物及び塩化ベンジル付加物等のハロゲ
ン化アリール付加物等の4級塩;ジアルキル(メタ)ア
クリルアミドの塩酸塩及び硫酸塩等の3級塩;ジアルキ
ル(メタ)アクリルアミドの塩化メチル付加物等のハロ
ゲン化アルキル付加物及び塩化ベンジル付加物等のハロ
ゲン化アリール付加物等の4級塩等が挙げられる。アニ
オン性単量体としては、(メタ)アクリル酸及びこのナ
トリウム塩等のアルカリ金属塩又はアンモニウム塩;並
びに(メタ)アクリルアミド−2−メチルプロパンスル
ホン酸等の(メタ)アクリルアミドアルキルアルカンス
ルホン酸及びこのアルカリ金属塩又はアンモニウム塩等
が挙げられる。ノニオン性単量体としては、(メタ)ア
クリルアミド、N−メチロール(メタ)アクリルアミド
及びN,N−ジメチル(メタ)アクリルアミド等のアク
リルアミド;ジメチルアミノエチル(メタ)アクリレー
ト等のジアルキルアミノアルキル(メタ)アクリレー
ト;ヒドロキシエチル(メタ)アクリレート及びヒドロ
キシプロピル(メタ)アクリレート等のヒドロキシアル
キル(メタ)アクリレート等が挙げられる。これら単量
体は、2種以上を併用することができる。
DETAILED DESCRIPTION OF THE INVENTION Aqueous solution of hydrophilic monomer In the first invention and the second invention, various monomers can be used as a hydrophilic monomer (hereinafter, referred to as a monomer), and a cationic monomer and an anionic Monomers and nonionic monomers can be mentioned. Examples of the cationic monomer include tertiary salts such as dialkylaminoalkyl (meth) acrylate hydrochloride and sulfate such as dimethylaminoethyl (meth) acrylate; methyl chloride adduct of dialkylaminoalkyl (meth) acrylate and the like. Quaternary salts such as halogenated alkyl adducts and aryl halide adducts such as benzyl chloride adducts; tertiary salts such as dialkyl (meth) acrylamide hydrochloride and sulfate; methyl chloride adducts of dialkyl (meth) acrylamide And quaternary salts such as halogenated aryl adducts such as benzyl chloride adducts. Examples of the anionic monomer include (meth) acrylic acid and alkali metal salts such as sodium salt or ammonium salt thereof; and (meth) acrylamido-2-methylpropanesulfonic acid such as (meth) acrylamidoalkylalkanesulfonic acid and the like. Examples thereof include alkali metal salts and ammonium salts. Nonionic monomers include acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide and N, N-dimethyl (meth) acrylamide; dialkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate Hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; These monomers can be used in combination of two or more.

【0008】単量体水溶液における単量体の濃度は、脱
酸素後に単量体水溶液を使用して重合する工程におい
て、重合が円滑に進行し、得られる親水性重合体の取り
扱いに優れる点で、20〜90重量%が好ましく、より
好ましくは25〜80重量%である。
[0008] The concentration of the monomer in the aqueous monomer solution is such that in the step of polymerizing using the aqueous monomer solution after deoxygenation, the polymerization proceeds smoothly and the resulting hydrophilic polymer is excellent in handling. , Preferably from 20 to 90% by weight, more preferably from 25 to 80% by weight.

【0009】後記する本発明の脱酸素方法により最終的
に得られる単量体水溶液中の酸素濃度としては、0.0
5ppm以下が好ましい。尚、0.05ppmを超える
と、単量体の重合が充分進行しない場合がある。
The oxygen concentration in the aqueous monomer solution finally obtained by the deoxygenation method of the present invention described below is 0.0
It is preferably at most 5 ppm. If it exceeds 0.05 ppm, the polymerization of the monomer may not proceed sufficiently.

【0010】2.不活性ガス 第1発明及び第2発明における、不活性ガスとしては、
窒素、並びにヘリウム及びアルゴン等の希ガス等が挙げ
られ、安価な点で窒素ガスが好ましい。
[0010] 2. Inert gas In the first invention and the second invention, as the inert gas,
Examples of the gas include nitrogen and a rare gas such as helium and argon, and nitrogen gas is preferable from the viewpoint of inexpensiveness.

【0011】3.第1の実施の形態 第1発明は、管状静止型混合器に、下記A、Bの条件下
で単量体水溶液と不活性ガスを連続供給する単量体水溶
液の脱酸素方法である。 (A)単量体水溶液の供給容積1に対して不活性ガスの
容積3以上 (B)管状静止型混合器の入口と出口における圧力損失
が0.05MPa以上
3. First Embodiment The first invention is a method of deoxidizing a monomer aqueous solution by continuously supplying a monomer aqueous solution and an inert gas to the tubular stationary mixer under the following conditions A and B. (A) Inert gas volume 3 or more with respect to supply volume 1 of monomer aqueous solution (B) Pressure loss at inlet and outlet of tubular static mixer is 0.05 MPa or more

【0012】本発明で使用する管状静止型混合器は、ス
タティックミキサーとも呼ばれるもので、種々のものが
使用可能である。好ましい管状静止型混合器の例を図1
及び図2に示す。当該管状静止型混合器は、図1(断面
図)、図2(模試図)に示すように、配管内に、水溶液
を2分割するエレメントE(Ea、Eb)が複数個、配
列してあり、順次、2分割しながら混合する形式であ
る。
The tubular static mixer used in the present invention is also called a static mixer, and various mixers can be used. An example of a preferred tubular static mixer is shown in FIG.
And FIG. As shown in FIG. 1 (cross-sectional view) and FIG. 2 (schematic diagram), the tubular stationary mixer has a plurality of elements E (Ea, Eb) for dividing an aqueous solution into two in a pipe. , And mixing them while dividing them into two successively.

【0013】このエレメントEa(Eb)は、入口に於
て左右に分割の仕切壁5が出口に向けて螺旋状に形成し
てあり、前記右入口から入る水溶液(Fa)は左出口か
ら排出される水溶液(Fb)になり、前記左入口からの
水溶液(Fb)は右出口から排出される水溶液(Fa)
になる構造である。そして、前記管状静止型混合器は、
エレメントEaの次にエレメントEaを90゜回転した
エレメントEb、エレメントEa、エレメントEb…の
ように交互に配列してあり、順次、水溶液は分割されな
がら混合される。即ち、最初のエレメントEaから排出
する水溶液Fa、Fbは、次のエレメントEbの入口か
ら(Fa+Fb)/2、(Fa+Fb)’/2となって
流入し、更に、次のエレメントEaの入口から(Fa+
Fb)/4+(Fa+Fb)’/4、なって流入するこ
とによって、順次分割されながら混合する。管状静止型
混合器におけるエレメントの数及び管の太さは、目的に
応じて選択すれば良い。
In the element Ea (Eb), a partition wall 5 divided into right and left at the entrance is formed spirally toward the exit, and the aqueous solution (Fa) entering from the right entrance is discharged from the left exit. Aqueous solution (Fb) from the left inlet, and the aqueous solution (Fa) discharged from the right outlet.
It is a structure that becomes. And the tubular static mixer is
Next to the element Ea, the element Ea is arranged alternately like an element Eb obtained by rotating the element Ea by 90 °, an element Ea, an element Eb..., And the aqueous solution is sequentially mixed while being divided. That is, the aqueous solutions Fa and Fb discharged from the first element Ea flow in from the inlet of the next element Eb as (Fa + Fb) / 2 and (Fa + Fb) ′ / 2, and further flow through the inlet of the next element Ea ( Fa +
Fb) / 4 + (Fa + Fb) ′ / 4, and are mixed while being sequentially divided. The number of elements and the thickness of the tube in the tubular static mixer may be selected according to the purpose.

【0014】第1発明は、管状静止型混合器に、前記
A、Bの条件下で単量体水溶液と不活性ガスを連続供給
する。単量体水溶液の供給容積1に対する不活性ガスの
容積は3以上である必要があり、好ましくは3〜20で
ある。また、管状静止型混合器の入口と出口における圧
力損失が0.05MPa以上以上である必要があり、好
ましくは0.05〜1.0MPaであり、より好ましく
は0.05〜0.5MPaである。単量体水溶液の供給
容積1に対する不活性ガスの容積3に満たない場合は、
または管状静止型混合器の入口と出口における圧力損失
が0.05MPaに満たない場合は、目的の溶存酸素量
とすることができない。
In the first invention, the monomer aqueous solution and the inert gas are continuously supplied to the tubular static mixer under the conditions of A and B. The volume of the inert gas with respect to the supply volume 1 of the aqueous monomer solution needs to be 3 or more, and preferably 3 to 20. Further, the pressure loss at the inlet and the outlet of the tubular static mixer needs to be 0.05 MPa or more, preferably 0.05 to 1.0 MPa, more preferably 0.05 to 0.5 MPa. . In the case where the volume of the inert gas is less than the supply volume 1 of the monomer aqueous solution 3,
Alternatively, if the pressure loss at the inlet and the outlet of the tubular static mixer is less than 0.05 MPa, the target dissolved oxygen amount cannot be obtained.

【0015】単量体水溶液及び不活性ガスの供給速度
は、使用する管状静止型混合器、目的とする前記A及び
Bの条件等に応じて適宜設定すれば良いが、好ましくは
単量体水溶液は0.1〜3.0m/sであり、不活性ガ
スは0.3〜9.0m/sである。単量体水溶液の温度
は、目的に応じて設定すれば良いが、15〜25℃が好
ましい。尚、15℃に満たないと、水溶液の粘度が上昇
して圧力損失が増加し、単位時間当たりの処理量が減少
したり、溶存酸素量を低減できない場合があり、他方、
25℃を超えると、水溶液中の単量体が重合してしまう
場合がある。
The supply rates of the aqueous monomer solution and the inert gas may be appropriately set according to the tubular stationary mixer to be used, the desired conditions A and B, and the like. Is 0.1 to 3.0 m / s, and the inert gas is 0.3 to 9.0 m / s. The temperature of the aqueous monomer solution may be set according to the purpose, but is preferably 15 to 25 ° C. If the temperature is lower than 15 ° C., the viscosity of the aqueous solution increases, the pressure loss increases, the throughput per unit time decreases, and the amount of dissolved oxygen may not be reduced.
When the temperature exceeds 25 ° C., the monomer in the aqueous solution may be polymerized.

【0016】4.第2の実施の形態 第2発明は、図3に示すように、気液同時吹き込みノズ
ルを有する気泡塔の底部に供給配管を設けると共に、前
記気泡塔の途中から前記供給配管に連結する循環配管を
設け、下記C、Dの条件下で単量体水溶液と不活性ガス
を前記供給配管に連続供給する脱酸素方法である。 (C)単量体水溶液の供給容積1に対して不活性ガスの
容積0.3以上 (D)気液供給ノズル内の流速が0.1m/s以上
4. Second Embodiment As shown in FIG. 3, a second invention provides a supply pipe at the bottom of a bubble tower having a gas-liquid simultaneous blowing nozzle, and a circulation pipe connected to the supply pipe from the middle of the bubble tower. And a deoxygenation method in which an aqueous monomer solution and an inert gas are continuously supplied to the supply pipe under the following conditions C and D. (C) Inert gas volume 0.3 or more with respect to supply volume 1 of monomer aqueous solution (D) Flow velocity in gas-liquid supply nozzle is 0.1 m / s or more

【0017】本発明では、多孔質フィルターを有しない
気液同時吹き込み気液供給ノズルを介して気泡塔に噴射
する構成であり、多孔質フィルター付き気液供給ノズル
で気泡塔に噴射する場合に生ずる、フィルターに重合物
が付着し目詰まりを起こしてしまうことを回避する。
尚、本発明で使用する気泡塔としては、滞留槽の作用を
し、気液同時吹き込みノズルを有するものであれば、単
量体水溶液の供給容積等を考慮して、種々のものが使用
可能である。又、不活性ガス供給部から気泡塔間の気液
供給ノズルの長さLは、供給配管径(d)の2倍以上が
望ましいし、前記液高さ(H)は、気泡塔の直径Dの3
倍以上が望ましい。
In the present invention, the gas is injected into the bubble column via the gas-liquid simultaneous blowing nozzle which does not have the porous filter. This is caused when the gas-liquid supply nozzle with the porous filter is used to spray the bubble column. Further, it is possible to prevent the polymer from adhering to the filter and causing clogging.
As the bubble column used in the present invention, various types can be used in consideration of the supply volume of the aqueous monomer solution, as long as the column acts as a retention tank and has a gas-liquid simultaneous blowing nozzle. It is. The length L of the gas-liquid supply nozzle between the inert gas supply section and the bubble column is preferably at least twice the diameter of the supply pipe (d), and the liquid height (H) is the diameter D of the bubble column. 3
More than double is desirable.

【0018】第2発明では、気泡塔に上記C、Dの条件
下で単量体水溶液と不活性ガスを前記供給配管に連続供
給する。単量体水溶液の供給容積1に対して不活性ガス
の容積0.3以上である必要があり、好ましくは0.3
〜20である。また、気液供給ノズル内の流速が0.1
m/s以上である必要があり、好ましくは0.1〜10
m/sである。尚、単量体水溶液の供給容積1に対して
不活性ガスの容積0.3に満たない場合、または気液供
給ノズル内の流速が0.1m/sに満たない場合には、
目的の溶存酸素量とすることができない。
In the second invention, an aqueous monomer solution and an inert gas are continuously supplied to the supply pipe under the conditions C and D described above in the bubble column. It is necessary that the volume of the inert gas is not less than 0.3 with respect to the supply volume 1 of the monomer aqueous solution, and preferably 0.3
-20. Further, when the flow velocity in the gas-liquid supply nozzle is 0.1
m / s or more, preferably 0.1 to 10
m / s. When the volume of the inert gas is less than 0.3 with respect to the supply volume 1 of the aqueous monomer solution, or when the flow velocity in the gas-liquid supply nozzle is less than 0.1 m / s,
The desired amount of dissolved oxygen cannot be achieved.

【0019】単量体水溶液及び不活性ガスの供給速度
は、使用する気泡塔、目的とする前記C及びDの条件等
に応じて適宜設定すれば良く、好ましくは単量体水溶液
は0.1〜10.0m/sであり、不活性ガスは0.0
3〜3.0m/sである。又、単量体水溶液の温度は、
目的に応じて設定すれば良いが、15〜25℃が好まし
く、15℃に満たないと、水溶液の粘度が上昇して圧力
損失が増加し、単位時間当たりの処理量が減少したり、
溶存酸素量を低減できない場合があり、他方、25℃を
超えると、水溶液中の単量体が重合してしまう場合があ
る。
The supply rates of the aqueous monomer solution and the inert gas may be appropriately set according to the bubble column to be used, the intended conditions of C and D, and the like. 110.0 m / s, and inert gas is 0.0
It is 3 to 3.0 m / s. The temperature of the monomer aqueous solution is
Although it may be set according to the purpose, it is preferably 15 to 25 ° C, and if it is lower than 15 ° C, the viscosity of the aqueous solution increases, the pressure loss increases, and the throughput per unit time decreases,
In some cases, the amount of dissolved oxygen cannot be reduced. On the other hand, when the temperature exceeds 25 ° C., the monomers in the aqueous solution may be polymerized.

【0020】5.親水性重合体の製造方法 本発明の脱酸素方法で得られた単量体水溶液は、常法に
従い重合することにより、親水性重合体を製造すること
ができる。例えば、単量体水溶液を使用し、アゾ系重合
開始剤及びレドックス重合開始剤等の重合開始剤の存在
下に、加熱・攪拌する重合方法、光重合開始剤の存在下
に光照射する重合方法等が挙げられる。
[5] Method for Producing a Hydrophilic Polymer The aqueous monomer solution obtained by the deoxygenation method of the present invention can be polymerized according to a conventional method to produce a hydrophilic polymer. For example, using a monomer aqueous solution, in the presence of a polymerization initiator such as an azo polymerization initiator and a redox polymerization initiator, a polymerization method of heating and stirring, a polymerization method of irradiating light in the presence of a photopolymerization initiator And the like.

【0021】本発明においては、光重合開始剤の存在下
に光照射する重合方法が好ましく、当該重合方法によれ
ば、重合速度が速いため、短時間に目的の重合体を製造
することができる上、連続重合を容易に実施することが
できる。又、連続重合法によれば、製造装置の小型化が
可能となり、さらに親水性重合体を大量かつ省力化して
製造することができる。さらに、第1発明及び第2発明
と組み合わせることによって、脱酸素工程を連続的に行
え、単量体水溶液中の溶存酸素量を低減できるため、効
果的に重合を進行させることができる。
In the present invention, a polymerization method of irradiating light in the presence of a photopolymerization initiator is preferable. According to the polymerization method, the polymerization rate is high, so that the desired polymer can be produced in a short time. In addition, continuous polymerization can be easily performed. Further, according to the continuous polymerization method, the production apparatus can be reduced in size, and the hydrophilic polymer can be produced in large quantities and with reduced labor. Furthermore, by combining with the first invention and the second invention, the deoxygenation step can be performed continuously and the amount of dissolved oxygen in the aqueous monomer solution can be reduced, so that the polymerization can be effectively advanced.

【0022】この場合に使用される光重合開始剤として
は、種々のものが使用でき、例えば、2,2’−アゾビ
ス(アミノジプロパン)塩等のアゾ化合物、1−ベンゾ
イル−1−ヒドロキシシクロヘキサン及びベンゾフェノ
ン等のケトン、ベンゾイン及びそのアルキルエーテル、
ベンジルケタール、並びにアントラキノン等が挙げられ
る。光重合開始剤の配合割合としては、水溶液中の単量
体に対して、10〜1万ppmが好ましく、より好まし
くは10〜2000ppmである。光重合開始剤は、脱
酸素前の単量体水溶液にあらかじめ添加することも、ま
たは脱酸素後の単量体水溶液に添加することもできる
が、脱気中の単量体の重合を防止できる点で、脱酸素後
の単量体水溶液に添加することが好ましい。
Various photopolymerization initiators can be used in this case, for example, azo compounds such as 2,2'-azobis (aminodipropane) salt, 1-benzoyl-1-hydroxycyclohexane And ketones such as benzophenone, benzoin and its alkyl ether,
Benzyl ketal, anthraquinone and the like. The mixing ratio of the photopolymerization initiator is preferably from 100,000 to 10,000 ppm, more preferably from 10 to 2,000 ppm, based on the monomer in the aqueous solution. The photopolymerization initiator can be added in advance to the aqueous monomer solution before deoxygenation, or can be added to the aqueous monomer solution after deoxygenation, but can prevent polymerization of the monomer during degassing. From the viewpoint, it is preferable to add the monomer aqueous solution after deoxygenation.

【0023】当該製造方法はバッチ式でも連続式でも行
うことができるが、前記の通り、生産性等に優れるた
め、連続重合方法を採用することが好ましい。又、連続
重合方法としては、種々の方法が採用され、気密室内に
設置された液溜め部を有する連続ベルトと、気密室上部
に固定された光源からなる装置を使用する方法が好まし
い。具体的には、連続ベルトの一方より、単量体水溶液
を目的の深さを維持する様に連続的に供給する。尚、酸
素による単量体の重合阻害の影響が特に大きい単量体を
使用する場合や、凝集剤の製造等のように高重合度の重
合体を製造する場合においては、これを防止するため、
気密室内に窒素等の不活性ガスを連続的に供給すること
が好ましい。又、当該ベルトは単量体水溶液と共に連続
的に移動し、固定された光源の下に単量体水溶液が供給
される。単量体水溶液は、当該光源で照射される光によ
り重合させる。
The production method can be carried out by a batch method or a continuous method. However, as described above, it is preferable to employ a continuous polymerization method because of excellent productivity and the like. As the continuous polymerization method, various methods are adopted, and it is preferable to use a device including a continuous belt having a liquid reservoir installed in an airtight chamber and a light source fixed to an upper portion of the airtight chamber. Specifically, the monomer aqueous solution is continuously supplied from one of the continuous belts so as to maintain a desired depth. In the case of using a monomer having a particularly large effect of inhibiting polymerization of the monomer by oxygen, or in the case of producing a polymer having a high degree of polymerization such as production of a flocculant, to prevent this. ,
It is preferable to continuously supply an inert gas such as nitrogen into the airtight chamber. The belt moves continuously with the aqueous monomer solution, and the aqueous monomer solution is supplied under a fixed light source. The monomer aqueous solution is polymerized by light emitted from the light source.

【0024】尚、より好ましい実施態様として、管状静
止型混合器又は気泡塔と連結された、図4に示す構造の
ベルトコンベア方式の重合装置を使用する親水性重合体
の製造方法について説明する。また、図4(A)は全体
図、図4(B)はA〜A断面図である。
As a more preferred embodiment, a method for producing a hydrophilic polymer using a belt conveyor type polymerization apparatus having a structure shown in FIG. 4 connected to a tubular static mixer or a bubble column will be described. 4A is an overall view, and FIG. 4B is a cross-sectional view along AA.

【0025】図4において、11は連続ベルトで、連続
ベルト11を前後端に設けたローラ12、12’で回転
させる。前記連続ベルト11は、可撓性を有するものが
好ましく、より好ましくは樹脂により形成されているも
のである。連続ベルト11はその中央側に長手方向に沿
って液溜め部17を有するものが好ましく、巾方向断面
が凹状を有すれば、種々の形状のものが使用可能であ
り、特に(B)に示すような巾方向断面が舟型のものが
好ましい。
In FIG. 4, reference numeral 11 denotes a continuous belt, and the continuous belt 11 is rotated by rollers 12, 12 'provided at the front and rear ends. The continuous belt 11 preferably has flexibility, and is more preferably formed of resin. The continuous belt 11 preferably has a liquid reservoir 17 along the longitudinal direction at the center thereof, and various shapes can be used as long as the widthwise cross section has a concave shape. A boat having such a cross section in the width direction is preferable.

【0026】図4において、13は前記連続ベルト11
の進行方向に沿って配設された断面ロ字状の気密室で、
前記ベルト11は気密室13を貫通して通り抜けてい
る。その空間には、必要に応じて窒素ガス等の不活性ガ
スを供給して不活性ガス雰囲気とする。又、前記気密室
13の上面14は光透過性のガラス等の光透過性材料で
形成されており、気密室13の上方に備えられた複数の
光源15から照射される光を透過できるようになってい
る。
In FIG. 4, reference numeral 13 denotes the continuous belt 11.
The airtight chamber with a rectangular cross section arranged along the traveling direction of
The belt 11 passes through the airtight chamber 13. An inert gas atmosphere such as nitrogen gas is supplied to the space as needed to create an inert gas atmosphere. The upper surface 14 of the hermetic chamber 13 is formed of a light-transmitting material such as light-transmitting glass so that light emitted from a plurality of light sources 15 provided above the hermetic chamber 13 can be transmitted. Has become.

【0027】管状静止型混合器又は気泡塔から供給され
た単量体水溶液は、酸素濃度を所定値(0.05ppm
以下)にした光重合開始剤と混合器16で混合され、重
合装置中にベルト11上に供給する。
The aqueous monomer solution supplied from the tubular static mixer or the bubble column has an oxygen concentration of a predetermined value (0.05 ppm).
The mixture is mixed with the photopolymerization initiator described below in the mixer 16 and supplied onto the belt 11 in the polymerization apparatus.

【0028】連続ベルト11上に供給された単量体水溶
液は、ベルト11の移動に伴われて下流側に搬送される
と共に、光源15によって光照射される。光源として
は、通常光重合用光源として用いられる、紫外、可視光
線が照射できる市販品が適宜利用できる。
The monomer aqueous solution supplied onto the continuous belt 11 is conveyed downstream along with the movement of the belt 11 and is irradiated with light by the light source 15. As the light source, a commercially available product which can be irradiated with ultraviolet light or visible light, which is usually used as a light source for photopolymerization, can be appropriately used.

【0029】光照射により、単量体水溶液中の単量体の
重合が開始し、連続ベルト11上で重合しながら下流側
に搬送される親水性重合体層は、重合が完了した状態で
気密室13の最下流部を通って搬出され、連続ベルト1
1から剥離される。得られた親水性重合体は、常法に従
い切断、粉砕、乾燥され、粉末製品とされ、吸水性樹
脂、凝集剤等として各種用途に使用される。
By the light irradiation, the polymerization of the monomer in the aqueous monomer solution starts, and the hydrophilic polymer layer conveyed to the downstream side while being polymerized on the continuous belt 11 is vaporized in a state where the polymerization is completed. It is carried out through the most downstream part of the closed room 13 and is
Peeled from 1. The obtained hydrophilic polymer is cut, pulverized and dried according to a conventional method to obtain a powder product, which is used for various applications as a water-absorbing resin, a coagulant and the like.

【0030】[0030]

【実施例】(1)実施例1〜4及び比較例1〜4 図1に示す構成の管状静止型混合器を使用し、種々の条
件のもとで測定した。単量体水溶液として、アクリルア
ミド水溶液(濃度40重量%、モノマーの液温度:15
℃、溶存酸素濃度:7〜8ppm)を使用し、不活性ガ
スとして、窒素ガスを使用した。断面積(581mm
2)の管状静止型混合器を使用し、単量体水溶液供給量
(F)、窒素流量(G)、窒素ガス量と単量体水溶液供
給量の比(ガス/液比)、管状静止型混合器の入口圧P
1、管状静止型混合器の出口圧P2、圧力損失(P1−
P2)、管状静止型混合器から排出される単量体水溶液
の溶存酸素濃度(DO)の測定データを、表1に示す。
EXAMPLES (1) Examples 1 to 4 and Comparative Examples 1 to 4 Measurements were made under various conditions using a tubular stationary mixer having the structure shown in FIG. As the monomer aqueous solution, an acrylamide aqueous solution (concentration 40% by weight, liquid temperature of the monomer: 15
C., dissolved oxygen concentration: 7 to 8 ppm), and nitrogen gas was used as an inert gas. Cross-sectional area (581mm
Using the tubular stationary mixer of 2), the supply amount of monomer aqueous solution (F), the flow rate of nitrogen (G), the ratio of the amount of nitrogen gas to the supply amount of monomer aqueous solution (gas / liquid ratio), Mixer inlet pressure P
1. Outlet pressure P2, pressure loss (P1-
P2), Table 1 shows measurement data of the dissolved oxygen concentration (DO) of the aqueous monomer solution discharged from the tubular static mixer.

【0031】[0031]

【表1】 [Table 1]

【0032】尚、比較例1、2から、単量体水溶液供給
量に対する不活性ガス供給量との比(以下ガス/液比と
いう)が3.0以上であっても、管状静止型混合器前後
の圧力損失が0.05MPaより小さいとき、又、比較
例3、4から、管状静止型混合器前後の圧力損失が0.
05MPa以上であっても、ガス/液比が3.0より小
さい条件では、何れも溶存酸素濃度を0.05ppm以
下にならなかった。
From Comparative Examples 1 and 2, even if the ratio of the supply amount of the inert gas to the supply amount of the aqueous monomer solution (hereinafter referred to as the gas / liquid ratio) is 3.0 or more, the tubular stationary mixer was used. When the pressure loss before and after is smaller than 0.05 MPa, and from Comparative Examples 3 and 4, the pressure loss before and after the tubular static mixer is 0.1 MPa.
Even when the gas / liquid ratio was less than 3.0, the dissolved oxygen concentration did not become 0.05 ppm or less.

【0033】(2)実施例5〜7及び比較例5〜7 図2に示す構成の気泡塔を使用し、種々の条件で測定し
た。単量体水溶液としては、前記実施例1〜4と同様の
ものを使用し、不活性ガスとして、窒素ガスを使用し
た。単量体水溶液と窒素ガスを供給配管(d=30m
m)を介して、気泡塔(直径D=200mm)、液高さ
(H=600mm)の底部から供給すると共に、気泡塔
の途中から供給配管に連結する循環配管を設け、気泡塔
内の水溶液の一部を循環(循環量G)させた。尚、ガス
液混合状態の供給配管の長さLは、供給配管径(d)の
2倍以上の150mmである。
(2) Examples 5 to 7 and Comparative Examples 5 to 7 Measurements were made under various conditions using a bubble column having the structure shown in FIG. The same aqueous monomer solution as in Examples 1 to 4 was used, and nitrogen gas was used as an inert gas. Supply piping for monomer aqueous solution and nitrogen gas (d = 30m
m), a circulation pipe is provided from the bottom of the bubble tower (diameter D = 200 mm) and liquid height (H = 600 mm), and a circulation pipe is connected from the middle of the bubble tower to a supply pipe. Was circulated (circulation amount G). The length L of the supply pipe in the gas-liquid mixed state is 150 mm, which is twice or more the supply pipe diameter (d).

【0034】次に、この気泡塔を使用して、単量体水溶
液を用いて、供給配管の基で、単量体水溶液流量(F)
と循環量(R)及び窒素ガス供給量(G)の供給配管内
の液ガス速度(v)、供給単量体水溶液流量(F)、循
環量(R)、不活性ガスの供給量(G)、不活性ガス量
(G)に対する供給モノマー量(F)と循環量(G)を
加算した比(ガス/液比)、気泡塔から排出のモノマー
の溶存酸素濃度(DO)の測定データを表2に示す。
Next, using the bubble column, the monomer aqueous solution is used, and the flow rate of the monomer aqueous solution (F)
Gas flow rate (v), supply monomer aqueous solution flow rate (F), circulation rate (R), inert gas supply rate (G) ), The ratio (gas / liquid ratio) obtained by adding the supply monomer amount (F) and the circulation amount (G) to the inert gas amount (G), and the measurement data of the dissolved oxygen concentration (DO) of the monomer discharged from the bubble column. It is shown in Table 2.

【0035】[0035]

【表2】 [Table 2]

【0036】尚、比較例5では、ガス/液比が本発明の
条件に満たない0.2で、供給配管内の液ガス速度が本
発明の条件に満たない0.06m/sであり、比較例6
では本発明のガス/液比を満たす0.4であるが供給配
管の液ガス速度が0.06m/sの低速であり、比較例
7では本発明の液ガス速度を満たす0.2m/sである
がガス/液比が0.2であり、何れも、溶存酸素濃度は
0.05ppm以下にならなかった。
In Comparative Example 5, the gas / liquid ratio was 0.2 which did not satisfy the condition of the present invention, and the liquid gas velocity in the supply pipe was 0.06 m / s which did not satisfy the condition of the present invention. Comparative Example 6
Is 0.4 which satisfies the gas / liquid ratio of the present invention, but the liquid gas velocity in the supply pipe is as low as 0.06 m / s. In Comparative Example 7, 0.2 m / s which satisfies the liquid gas velocity of the present invention However, the gas / liquid ratio was 0.2, and the dissolved oxygen concentration did not become 0.05 ppm or less in any case.

【0037】(3)実施例8 前記実施例の管状静止型混合器と連結された、図4に示
す構造のベルトコンベア方式の重合装置を使用し重合を
行った。単量体水溶液の単量体純分に対して重量基準
で、光重合開始剤として1−ベンゾイル−1−ヒドロキ
シシクロヘキサンが30ppm及びアゾビスアミジノプ
ロパン塩酸塩が1800ppmとなる水溶液を調製し、
さらに2分間窒素でバブリングし、これを重合開始剤タ
ンクに仕込んだ。実施例1の条件で供給された単量体水
溶液を、この光重合開始剤水溶液と混合器6で混合し
て、重合装置に供給した。光源として20Wケミカルラ
ンプ(株式会社東芝製、商品名「FL20BL」)を用
いて、5W/m2の照射強度で紫外線を照射した。重合
は容易に進行し、得られた親水性重合体は、0.5%塩
粘度120mPa・sと高重合度のものであり、各種性
能に優れるものであった。
(3) Example 8 Polymerization was carried out using a belt conveyor type polymerization apparatus having the structure shown in FIG. 4 and connected to the tubular static mixer of the above example. An aqueous solution in which 1-benzoyl-1-hydroxycyclohexane is 30 ppm and azobisamidinopropane hydrochloride is 1800 ppm as a photopolymerization initiator is prepared on a weight basis with respect to the monomer pure content of the monomer aqueous solution,
The mixture was bubbled with nitrogen for another 2 minutes and charged into a polymerization initiator tank. The aqueous monomer solution supplied under the conditions of Example 1 was mixed with the aqueous photopolymerization initiator solution in the mixer 6 and supplied to the polymerization apparatus. Ultraviolet light was irradiated at an irradiation intensity of 5 W / m 2 using a 20 W chemical lamp (trade name “FL20BL” manufactured by Toshiba Corporation) as a light source. The polymerization proceeded easily, and the obtained hydrophilic polymer had a high degree of polymerization of 0.5% salt viscosity of 120 mPa · s, and was excellent in various performances.

【0038】(4)比較例8 比較例1の条件で供給された単量体水溶液を使用する以
外は、実施例8と同様にして重合を行った。重合が不充
分に進行したため、得られた親水性重合体は、0.5%
塩粘度90mPa・sと低重合度であり、各種性能に劣
るものであった。
(4) Comparative Example 8 Polymerization was carried out in the same manner as in Example 8, except that the aqueous monomer solution supplied under the conditions of Comparative Example 1 was used. Because the polymerization proceeded insufficiently, the obtained hydrophilic polymer was 0.5%
The salt viscosity was as low as 90 mPa · s and the polymerization degree was poor.

【0039】(5)実施例9 前記実施例の気泡塔と連結された、図4に示す構造のベ
ルトコンベア方式の重合装置を使用し、実施例5の条件
で供給された単量体水溶液を使用する以外は、実施例8
と同様にして重合を行った。重合は容易に進行し、得ら
れた親水性重合体は、0.5%塩粘度123mPa・s
と高重合度のものであり、各種性能に優れるものであっ
た。
(5) Embodiment 9 Using a belt conveyor type polymerization apparatus having the structure shown in FIG. 4 connected to the bubble column of the above embodiment, the monomer aqueous solution supplied under the conditions of Embodiment 5 was used. Example 8 except for use
Polymerization was carried out in the same manner as described above. The polymerization proceeds easily, and the obtained hydrophilic polymer has a 0.5% salt viscosity of 123 mPa · s.
And a high degree of polymerization, and were excellent in various performances.

【0040】(6)比較例9 比較例5の条件で供給された単量体水溶液を使用する以
外は、実施例9と同様にして重合を行った。重合が不充
分に進行したため、得られた親水性重合体は、0.5%
塩粘度83mPa・sと低重合度であり、各種性能に劣
るものであった。
(6) Comparative Example 9 The polymerization was carried out in the same manner as in Example 9 except that the monomer aqueous solution supplied under the conditions of Comparative Example 5 was used. Because the polymerization proceeded insufficiently, the obtained hydrophilic polymer was 0.5%
It had a salt viscosity of 83 mPa · s and a low degree of polymerization, and was inferior in various performances.

【0041】[0041]

【発明の効果】以上のように、管状静止型混合器を使用
して脱酸素を行うと、単量体水溶液を、極めて簡便に好
ましい溶存酸素濃度の0.05ppm以下に低減するこ
とができると共に、単量体が停留する箇所がないので重
合が発生することもなく、経済性に富む方法である。ま
た、気泡塔を使用することによって、(ガス/液比)が
0.3以上で、且つ、供給配管の液ガス速度vが0.1
m/s以上である条件を満たせば、簡便に、好ましい溶
存酸素濃度に低減することができる。そして、この気泡
塔方式は、簡便な装置であり、単量体が停留する箇所が
ないので重合も発生せず、経済性に富む方法である。さ
らに、これら脱酸素方法で得られた単量体水溶液を、光
重合開始剤の存在下に、光照射することにより、親水性
重合体を短時間に重合することが可能となるため、連続
重合を効率的に実施することができる。連続重合方法に
よれば、製造装置の小型化ができると共に、親水性重合
体を大量かつ省力化して製造することができる。
As described above, when deoxygenation is carried out using a tubular stationary mixer, the aqueous monomer solution can be reduced to a preferable dissolved oxygen concentration of 0.05 ppm or less extremely easily and at the same time. Since there is no place where the monomer stays, polymerization does not occur, and this method is economical. Further, by using a bubble column, the (gas / liquid ratio) is 0.3 or more, and the liquid gas velocity v of the supply pipe is 0.1
If the condition of m / s or more is satisfied, the concentration of dissolved oxygen can be easily reduced to a preferable concentration. The bubble column method is a simple device, and has no place where the monomer stays, so that polymerization does not occur, and is a highly economical method. Furthermore, by irradiating the aqueous monomer solution obtained by these deoxygenation methods with light in the presence of a photopolymerization initiator, it becomes possible to polymerize the hydrophilic polymer in a short time. Can be efficiently implemented. According to the continuous polymerization method, the production apparatus can be reduced in size, and the hydrophilic polymer can be produced in large quantities and with reduced labor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態に於ける管状静止型混合器に
よる脱酸素方法のフロー図である。
FIG. 1 is a flowchart of a deoxygenation method using a tubular static mixer according to a first embodiment.

【図2】管状静止型混合器の模試図である。FIG. 2 is a schematic diagram of a tubular static mixer.

【図3】第2の実施の形態に於ける気泡塔による脱酸素
方法のフロー図である。
FIG. 3 is a flowchart of a deoxygenation method using a bubble column in a second embodiment.

【図4】(A)は単量体の連続重合装置の概念を示す全
体図、(B)はA〜A断面図である。
FIG. 4 (A) is an overall view showing the concept of a continuous polymerization apparatus for monomers, and FIG. 4 (B) is a cross-sectional view along AA.

【符号の説明】[Explanation of symbols]

11 連続ベルト 12、12’ ローラ 13 気密室 15 光源 11 Continuous belt 12, 12 'Roller 13 Airtight chamber 15 Light source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 寿一 名古屋市港区昭和町17番地の23 東亞合成 株式会社生産技術研究所内 (72)発明者 美保 享 名古屋市港区昭和町17番地の23 東亞合成 株式会社生産技術研究所内 Fターム(参考) 4J011 AA03 DA04 DB13 DB18 DB22 DB27 HA02 HB10 HB12 HB17 QA02 QA03 QA06 QA07 QA34 QA38 QA40 SA22 SA32 SA52 SA63 SA79 UA01 VA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Juichi Goto 23-17 Toa Gosei Co., Ltd., Minato-ku, Nagoya City Inside Production Engineering Research Laboratories (72) Inventor Takashi Miho 23 Toa 17-17 Showa-cho, Minato-ku Nagoya City Synthetic Co., Ltd. Production Technology Laboratory F-term (reference) 4J011 AA03 DA04 DB13 DB18 DB22 DB27 HA02 HB10 HB12 HB17 QA02 QA03 QA06 QA07 QA34 QA38 QA40 SA22 SA32 SA52 SA63 SA79 UA01 VA02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 管状静止型混合器に、下記A、Bの条件
下で親水性単量体水溶液と不活性ガスを連続供給するこ
とを特徴とする親水性単量体水溶液の脱酸素方法。 (A)親水性単量体水溶液の供給容積1に対して不活性
ガスの容積3以上 (B)管状静止型混合器の入口と出口における圧力損失
が0.05MPa以上
1. A method for deoxidizing a hydrophilic monomer aqueous solution, comprising continuously supplying a hydrophilic monomer aqueous solution and an inert gas to a tubular stationary mixer under the following conditions A and B: (A) Inert gas volume 3 or more with respect to supply volume 1 of hydrophilic monomer aqueous solution 1 (B) Pressure loss at inlet and outlet of tubular static mixer is 0.05 MPa or more
【請求項2】 管状静止型混合器に、下記A、Bの条件
下で親水性単量体水溶液と不活性ガスを連続供給して得
られた水溶液を、光重合開始剤の存在下に光照射して重
合することを特徴とする親水性重合体の製造方法。 (A)親水性単量体水溶液の供給容積1に対して不活性
ガスの容積3以上 (B)管状静止型混合器の入口と出口における圧力損失
が0.05MPa以上
2. An aqueous solution obtained by continuously supplying an aqueous solution of a hydrophilic monomer and an inert gas to the tubular static mixer under the following conditions A and B is subjected to light irradiation in the presence of a photopolymerization initiator. A method for producing a hydrophilic polymer, comprising irradiating and polymerizing. (A) Inert gas volume 3 or more with respect to supply volume 1 of hydrophilic monomer aqueous solution 1 (B) Pressure loss at inlet and outlet of tubular static mixer is 0.05 MPa or more
【請求項3】 気液同時吹き込みノズルを有する気泡塔
の底部に供給配管を設けると共に、前記気泡塔の途中か
ら前記供給配管に連結する循環配管を設け、下記C、D
の条件下で親水性単量体水溶液と不活性ガスを前記供給
配管に連続供給することを特徴とする親水性単量体水溶
液の脱酸素方法。 (C)親水性単量体水溶液の供給容積1に対して不活性
ガスの容積0.3以上 (D)気液供給ノズル内の流速が0.1m/s以上
3. A supply pipe is provided at the bottom of a bubble tower having a gas-liquid simultaneous blowing nozzle, and a circulation pipe is provided from the middle of the bubble tower to be connected to the supply pipe.
A method for deoxidizing a hydrophilic monomer aqueous solution, comprising continuously supplying an aqueous solution of a hydrophilic monomer and an inert gas to the supply pipe under the conditions of (C) Inert gas volume 0.3 or more with respect to supply volume 1 of hydrophilic monomer aqueous solution (D) Flow rate in gas-liquid supply nozzle is 0.1 m / s or more
【請求項4】 気液同時吹き込みノズルを有する気泡塔
の底部に供給配管を設けると共に、前記気泡塔の途中か
ら前記供給配管に連結する循環配管を設け、下記C、D
の条件下で、親水性単量体水溶液と不活性ガスを前記供
給配管に連続供給して得られた水溶液を、光重合開始剤
の存在下に光照射して重合することを特徴とする親水性
重合体の製造方法。 (C)親水性単量体水溶液の供給容積1に対して不活性
ガスの容積0.3以上 (D)供給配管内の流速が0.1m/s以上
4. A supply pipe is provided at the bottom of a bubble tower having a gas-liquid simultaneous blowing nozzle, and a circulation pipe is provided from the middle of the bubble tower to be connected to the supply pipe.
Under the conditions described above, the aqueous solution obtained by continuously supplying the aqueous solution of the hydrophilic monomer and the inert gas to the supply pipe is irradiated with light in the presence of a photopolymerization initiator to polymerize. Method for producing functional polymer. (C) Inert gas volume 0.3 or more with respect to supply volume 1 of hydrophilic monomer aqueous solution (D) Flow velocity in supply pipe is 0.1 m / s or more
JP2000171524A 2000-06-08 2000-06-08 Method for producing hydrophilic polymer Expired - Lifetime JP3600931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000171524A JP3600931B2 (en) 2000-06-08 2000-06-08 Method for producing hydrophilic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000171524A JP3600931B2 (en) 2000-06-08 2000-06-08 Method for producing hydrophilic polymer

Publications (2)

Publication Number Publication Date
JP2001348403A true JP2001348403A (en) 2001-12-18
JP3600931B2 JP3600931B2 (en) 2004-12-15

Family

ID=18674061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000171524A Expired - Lifetime JP3600931B2 (en) 2000-06-08 2000-06-08 Method for producing hydrophilic polymer

Country Status (1)

Country Link
JP (1) JP3600931B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926756B1 (en) 2005-09-07 2015-03-25 Basf Se Polymerization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926756B1 (en) 2005-09-07 2015-03-25 Basf Se Polymerization method

Also Published As

Publication number Publication date
JP3600931B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
FI63425B (en) FOER REFRIGERATION FOR WATER REFRIGERATION HOEGMOLEKYLAERA ACRYLIC POLYMER LAEMPLIGA I SYNNERHET FOER BEHANDLING AV VATTEN
US7601786B2 (en) Tubular reactor with coaxial cylinders and process using this reactor
CN105612186B (en) Reversed-phase polymerization method
US10604611B2 (en) Reverse-phase polymerisation process
JPS61126103A (en) Production of polymer
KR20170076464A (en) Ozone Water Treatment System Using Lower Energy
Xie et al. Preparation of microbubbles with the generation of Dean vortices in a porous membrane
Guo et al. Reaction kinetics of non-catalyzed jet aeration oxidation of magnesium sulfite
AU2003218963A1 (en) Apparatus and method for degassing liquids
EP0520826A1 (en) Recarbonation of water
JP3600931B2 (en) Method for producing hydrophilic polymer
CN101842322A (en) Method and apparatus for aeration
EP0293010A2 (en) Method of producing gradient gel medium membrane for electrophoresis
CN108911263A (en) A kind of trade effluent removal of heavy metal ions device and its minimizing technology
RU2148589C1 (en) Continuous method and device for halogenation of elastomers
US4521552A (en) Process for making an emulsion polymer
WO2018209032A1 (en) System for stably infusing gas into liquid and delivering the gas-infused liquid into another liquid
JP2002003509A (en) Method for producing water-containing polymer
JPS584687B2 (en) Cohesive monomers and polymers
JP3468166B2 (en) Sewage treatment equipment
JP3882553B2 (en) Method for producing water-soluble polymer
NZ208219A (en) Clarifying fluids by settling in separate quiescent chamber within main container
JPS6068097A (en) Removing apparatus of n and p in sewage
CN218890506U (en) Chemical adding device for sewage purification
US4011161A (en) Treatment of waste water produced in the manufacture of expandable polystyrene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3600931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term