JP2001345309A - Ceramic heater for heating semiconductor - Google Patents

Ceramic heater for heating semiconductor

Info

Publication number
JP2001345309A
JP2001345309A JP2000164076A JP2000164076A JP2001345309A JP 2001345309 A JP2001345309 A JP 2001345309A JP 2000164076 A JP2000164076 A JP 2000164076A JP 2000164076 A JP2000164076 A JP 2000164076A JP 2001345309 A JP2001345309 A JP 2001345309A
Authority
JP
Japan
Prior art keywords
sintered body
ceramic
body layer
based sintered
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000164076A
Other languages
Japanese (ja)
Other versions
JP3344650B2 (en
Inventor
Masahiko Ichijima
雅彦 市島
Mitsuhiro Fujita
光広 藤田
Shinichiro Aonuma
伸一朗 青沼
Shigeko Muramatsu
滋子 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2000164076A priority Critical patent/JP3344650B2/en
Publication of JP2001345309A publication Critical patent/JP2001345309A/en
Application granted granted Critical
Publication of JP3344650B2 publication Critical patent/JP3344650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic heater for heating a semiconductor, which can be obtained at a low cost, and is excellent in efficiency and suited to heating and processing a semiconductor. SOLUTION: This ceramic heater is provided with an aluminum nitride-based sintered layer 1 forming a heat radiating/heating surface, a ceramics-sintered layer 3 having a low thermal conductivity which is made integral with the rear surface of the heat radiating/heating surface of the layer 1, and a resistance heat generating element 2 which is embedded in the layer 1 or the layer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体熱処理用セ
ラミックヒーターに係り、さらに詳しくは半導体ウェハ
ーを効率的に加熱できる半導体熱処理用セラミックヒー
ターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater for heat treating a semiconductor, and more particularly, to a ceramic heater for heat treating a semiconductor which can efficiently heat a semiconductor wafer.

【0002】半導体の製造に当たっては、たとえば半導
体ウェハーに対するプラズマCVD、プラズマエッチン
グ、光エッチングなどの加工処理が施される。これらの
加工処理は、一般的に、被加工体を面状ヒーター上に配
置し、被加工体に加熱を施しながら行われる。そして、
高性能ないし高信頼性を有する半導体を歩留まりよく、
しかも量産的に得るために、加熱処理が一つの重要なフ
ァクターとなる。
In the manufacture of semiconductors, for example, processing such as plasma CVD, plasma etching, and optical etching is performed on a semiconductor wafer. In general, these processings are performed while a workpiece is placed on a planar heater and the workpiece is heated. And
High yield of semiconductors with high performance or high reliability,
In addition, heat treatment is one important factor for mass production.

【0003】ここで、面状ヒーターは、たとえば緻密で
ガスタイトなセラミックス焼結体の内部に、タングステ
ン線やモリブデン線などの抵抗発熱体を、たとえばスパ
イラル状に埋設したものである。そして、抵抗発熱体の
電極部(リード端子)をセラミックス焼結体外に導出さ
せた構造を採っている。なお、セラミックスは、たとえ
ばアルミナ系やシリカ系、窒化アルミニウム系、窒化ケ
イ素系、あるいはサイアロンなどが挙げられる。
Here, the planar heater is, for example, a dense and gas-tight ceramic sintered body in which a resistance heating element such as a tungsten wire or a molybdenum wire is embedded in a spiral shape, for example. The electrode portion (lead terminal) of the resistance heating element is led out of the ceramic sintered body. The ceramics include, for example, alumina, silica, aluminum nitride, silicon nitride, and sialon.

【0004】ところで、半導体の高集積度化に伴い半導
体ウェハーの加工が微細化し、また、量産性やコスト面
への配慮から半導体ウェハーの大口径化が図られてい
る。したがって、半導体の製造工程における加熱処理に
おいては、熱源として使用される面状ヒーターの大口径
化が要求される。また、均一的な加熱による歩留まりの
確保などの点から、面状ヒーターの面内温度分布の一様
性が要求されるとともに、低コスト化も望まれている。
Meanwhile, as the degree of integration of semiconductors increases, the processing of semiconductor wafers becomes finer, and the diameter of semiconductor wafers is increased in consideration of mass productivity and cost. Therefore, in the heat treatment in the semiconductor manufacturing process, it is required to increase the diameter of the planar heater used as a heat source. In addition, from the viewpoint of ensuring a yield by uniform heating, uniformity of the in-plane temperature distribution of the planar heater is required, and cost reduction is also desired.

【0005】上記、面状ヒーターの面内温度分布の一様
性は、抵抗発熱体の幅を小さくし、かつ抵抗発熱体の間
隔を狭くすることで可能となる。すなわち、抵抗発熱体
を全体的に可能な限り細かく分布させることにより、面
内温度分布が一様な面状ヒーターとなるので、前記要望
に対応できることになる。
[0005] The uniformity of the in-plane temperature distribution of the planar heater can be achieved by reducing the width of the resistance heating elements and the interval between the resistance heating elements. In other words, by distributing the resistance heating elements as finely as possible as a whole, a planar heater having a uniform in-plane temperature distribution can be obtained, which can meet the above demand.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記緻
密でガスタイトなセラミックス焼結体の内部に、幅を小
さくした抵抗発熱体が間隔を狭めて埋設された構成の場
合は、次のような不都合がある。すなわち、抵抗発熱体
の幅を小さく、かつ間隔を狭くすると、結果的に、抵抗
発熱体が長尺化することになる。したがって、総抵抗が
増大しトランス容量が大きくなり、この種の面状ヒータ
ーを付設した加工装置が大型化する一方、コストアップ
ともなって半導体製造装置の製造コストに大きく影響す
る。
However, in the case of a configuration in which a resistance heating element having a reduced width is buried at a reduced interval inside the dense and gas-tight ceramic sintered body, the following inconveniences arise. is there. That is, when the width and the interval of the resistance heating element are reduced, the resistance heating element becomes longer as a result. Accordingly, the total resistance increases, the transformer capacity increases, and a processing apparatus provided with such a planar heater increases in size. On the other hand, the cost increases, which greatly affects the manufacturing cost of the semiconductor manufacturing apparatus.

【0007】また、面状ヒーターのセラミックス焼結体
が、たとえば窒化アルミニウムなど熱伝導性のよいセラ
ミックス系の場合は、セラミックス焼結体自体の製造方
法にもよるが、通常、その熱伝導率が約100W/K・
mを超えるため、半導体ウェハーに対して直接的に加熱
・放熱に寄与する面以外(裏面側)からの熱損失も無視
できず、低効率であるなどの問題がある。
In the case where the ceramic sintered body of the sheet heater is a ceramic material having good thermal conductivity, such as aluminum nitride, the thermal conductivity usually depends on the method of manufacturing the ceramic sintered body itself. About 100W / K ・
m, heat loss from a surface (rear surface side) other than the surface directly contributing to heating and heat radiation to the semiconductor wafer cannot be ignored, and there are problems such as low efficiency.

【0008】本発明は、上記事情に鑑みてなされたもの
で、低コストで得られ、かつ加熱効率が高く、半導体の
加熱・加工処理に適する半導体熱処理用セラミックヒー
ターの提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ceramic heater for semiconductor heat treatment which can be obtained at low cost, has high heating efficiency, and is suitable for semiconductor heating and processing.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、放熱
・加熱面をなす窒化アルミニウム系焼結体層と、前記窒
化アルミニウム系焼結体層の放熱・加熱面の裏面に一体
化された熱伝導率の低いセラミックス系焼結体層と、前
記窒化アルミニウム系焼結体層もしくは前記セラミック
ス系焼結体層に埋め込み型に配置された抵抗発熱素子と
を有することを特徴とする半導体熱処理用セラミックヒ
ーターである。
According to a first aspect of the present invention, there is provided an aluminum nitride-based sintered body layer serving as a heat radiating / heating surface, and the aluminum nitride based sintered body layer being integrated with a back surface of the heat radiating / heating surface. Characterized by comprising a ceramic-based sintered body layer having a low thermal conductivity and a resistance heating element embedded in the aluminum nitride-based sintered body layer or the ceramics-based sintered layer. For ceramic heaters.

【0010】請求項2の発明は、請求項1記載の半導体
熱処理用セラミックヒーターにおいて、セラミックス系
焼結体層と窒化アルミニウム系焼結体層との熱伝導率比
が、1:1.5以上であることを特徴とする。
According to a second aspect of the present invention, in the ceramic heater for semiconductor heat treatment according to the first aspect, the thermal conductivity ratio between the ceramic-based sintered body layer and the aluminum nitride-based sintered body layer is 1: 1.5 or more. It is characterized by being.

【0011】請求項3の発明は、請求項1もしくは請求
項2記載の半導体熱処理用セラミックヒーターにおい
て、セラミックス系焼結体層の気孔率が少なくとも5%
であることを特徴とする。
According to a third aspect of the present invention, in the ceramic heater for semiconductor heat treatment according to the first or second aspect, the porosity of the ceramic-based sintered body layer is at least 5%.
It is characterized by being.

【0012】すなわち、請求項1〜3の発明は、抵抗発
熱素子(抵抗発熱体)を埋め込み・内蔵するセラミック
ス基材が、比較的熱伝導率の大きいセラミックス焼結体
層と比較的熱伝導率の小さいセラミックス焼結体層との
複層に構成されていることで特徴付けられる。つまり、
抵抗発熱素子を埋め込み・内蔵し、かつ被加熱体に対す
る加熱・放熱面となる領域を窒化アルミニウム系層で形
成する一方、他の領域面を熱伝導率の低いセラミックス
系層で形成したことを骨子とする。
That is, the invention according to claims 1 to 3 is characterized in that the ceramic base material in which the resistance heating element (resistance heating element) is embedded / built is composed of a ceramic sintered body layer having a relatively high thermal conductivity and a relatively high thermal conductivity. It is characterized by having a multilayer structure with a ceramic sintered body layer having a small size. That is,
It is important to note that while the resistance heating element is embedded and built-in, the area that becomes the heating and radiating surface for the object to be heated is formed of an aluminum nitride-based layer, while the other area is formed of a ceramic-based layer with low thermal conductivity. And

【0013】請求項1〜3の発明において、抵抗発熱素
子を埋め込み・内蔵する窒化アルミニウム系焼結体層
は、たとえば平均粒径0.05〜5μm程度の窒化アル
ミニウム粉末に、焼結助剤およびバインダーを添加・混
合して得られるスラリーから造粒粉を作製し、所要の厚
さ形状寸法の板状成形体に成形し、1800℃以上の高
温で焼結することにより形成される。ここで、焼結助剤
としては、たとえば酸化イットリウムなどが例示され、
また、バインダーとしては、たとえばポリビニルブチラ
ールなどが例示される。
[0013] In the first to third aspects of the present invention, the aluminum nitride-based sintered body layer in which the resistance heating element is embedded / built is, for example, aluminum nitride powder having an average particle size of about 0.05 to 5 µm, A granulated powder is prepared from a slurry obtained by adding and mixing a binder, formed into a plate-shaped compact having a required thickness and shape, and sintered at a high temperature of 1800 ° C. or higher. Here, examples of the sintering aid include, for example, yttrium oxide,
Examples of the binder include polyvinyl butyral.

【0014】なお、高温焼結に先立って、板状成形体の
一主面に、抵抗発熱素子の配置・埋め込み用の溝などを
予め設けておくことが望ましい。また、この窒化アルミ
ニウム系焼結体層は、いわゆるグリーンシート化し、こ
のグリーンシートの複数枚を積層して、一体的に高圧・
高温焼結することによっても形成でき、抵抗発熱素子の
配置・埋め込み操作も容易になる。
Prior to the high-temperature sintering, it is desirable to provide grooves for disposing and embedding the resistance heating elements on one main surface of the plate-like molded body. The aluminum nitride-based sintered body layer is formed into a so-called green sheet, and a plurality of the green sheets are laminated to form a high-pressure green sheet.
It can also be formed by sintering at a high temperature, and the operation of arranging and embedding the resistance heating elements becomes easy.

【0015】請求項1〜3の発明において、焼結体層に
埋め込み・内蔵される抵抗発熱素子は、たとえばタング
ステン線、モリブデン線などをコイル状ないしスパイラ
ル状に捲回したもの、あるいはジグザグ状に折り曲げた
ものである。そして、その抵抗発熱素子を形成するタン
グステン線などの径や全長は、セラミックヒーターの形
状・大きさ、加熱源としての熱容量などに応じて設定さ
れる。
According to the first to third aspects of the present invention, the resistance heating element embedded and built in the sintered body layer is, for example, a tungsten wire, a molybdenum wire or the like wound in a coil shape or a spiral shape, or a zigzag shape. It is bent. The diameter and total length of the tungsten wire or the like forming the resistance heating element are set according to the shape and size of the ceramic heater, the heat capacity as a heating source, and the like.

【0016】請求項1〜3の発明において、窒化アルミ
ニウム系焼結体層の加熱・放熱面に対して他主面側(裏
面側)に一体化される熱伝導率の低いセラミックス系焼
結体層は、たとえば平均粒径0.05〜5μm程度の窒
化アルミニウム粉末に、焼結助剤、バインダーおよび炭
化ケイ素粉末を添加・混合して得られるスラリーから造
粒粉を作製し、所要の厚さ形状寸法の板状成形体に成形
し、1800℃以上の高温で焼結することにより形成さ
れる。この場合、焼結助剤の添加量を変えることによっ
て熱伝導率を変えることができる。そして、窒化アルミ
ニウム系焼結体層への一体化は、接合剤の介挿などで行
われるが、接合剤を省略し、ホットプレスなどで一体化
する方法を採ることもできる。
In the invention according to any one of claims 1 to 3, the ceramic-based sintered body having a low thermal conductivity is integrated with the other main surface (back side) with respect to the heating / radiating surface of the aluminum nitride-based sintered body layer. The layer is formed, for example, by forming granulated powder from a slurry obtained by adding and mixing a sintering aid, a binder, and silicon carbide powder to aluminum nitride powder having an average particle size of about 0.05 to 5 μm, and It is formed by molding into a plate-shaped molded body having the shape and dimensions and sintering at a high temperature of 1800 ° C. or higher. In this case, the thermal conductivity can be changed by changing the amount of the sintering aid added. Then, the integration into the aluminum nitride-based sintered body layer is performed by inserting a bonding agent or the like, but a method of omitting the bonding agent and integrating by a hot press or the like can also be adopted.

【0017】その他、たとえば平均粒径0.01〜5μ
m程度の酸化物、たとえばアルミナ(酸化アルミニウ
ム)粉末に、バインダーを添加・混合して得られるスラ
リーから造粒粉を作製し、所要の厚さ形状寸法の板状成
形体に成形し、1300℃以上の高温で焼結することに
より形成される。ここで、酸化物としては、酸素元素の
含有量が多いものであり、複合型酸化物などでもよい。
In addition, for example, an average particle size of 0.01 to 5 μm
A granulated powder is prepared from a slurry obtained by adding and mixing a binder to an oxide of about m, for example, alumina (aluminum oxide) powder, and is formed into a plate-shaped formed body having a required thickness and shape. It is formed by sintering at the above high temperature. Here, the oxide has a high oxygen element content, and may be a composite oxide or the like.

【0018】また、これら熱伝導率の低いセラミックス
系焼結体層は、異種材質の複層系でもよいし、窒化アル
ミニウム系焼結体層に対する一体化をグリーンシート方
式で行ってもよい。
The ceramic-based sintered body layer having a low thermal conductivity may be a multi-layered body composed of different materials, or may be integrated with the aluminum nitride-based sintered body layer by a green sheet method.

【0019】請求項1〜3の発明において、加熱・放熱
面を形成する窒化アルミニウム系焼結体層の外経寸法、
厚さなどは、面状ヒーターとして使用する形態に応じて
適宜、選択・設定される。そして、この窒化アルミニウ
ム系焼結体層の他主面側(裏面側)に一体化される熱伝
導率の低いセラミックス焼結体層は、いわば、断熱的な
作用を期待するものであるから、少なくとも窒化アルミ
ニウム系焼結体層の裏面側に配置されるが、窒化アルミ
ニウム系焼結体層を嵌合一体化し、外周端面も被覆する
形態を採ることもできる。
According to the first to third aspects of the present invention, the outer dimensions of the aluminum nitride-based sintered body layer forming the heating / radiating surface,
The thickness and the like are appropriately selected and set according to the form used as the planar heater. The ceramic sintered body layer having a low thermal conductivity integrated with the other main surface side (back surface side) of the aluminum nitride based sintered body layer is expected to have a so-called adiabatic function. Although it is arranged at least on the back side of the aluminum nitride-based sintered body layer, it is also possible to adopt a form in which the aluminum nitride-based sintered body layer is fitted and integrated to cover the outer peripheral end face.

【0020】なお、窒化アルミニウム系焼結体層の熱伝
導率とセラミックス系焼結体層の熱伝導率とは、相対的
な高低の問題であるが、一般的に、セラミックス系焼結
体層の熱伝導率:窒化アルミニウム系焼結体層の熱伝導
率比を1:1.5以上に設定することが好ましい。ま
た、このような関係は、セラミックス系焼結体層の気孔
率を少なくとも5%程度とすることによって達成でき
る。
The thermal conductivity of the aluminum nitride-based sintered body layer and the thermal conductivity of the ceramic-based sintered body layer are relatively high and low. It is preferable to set the thermal conductivity of the aluminum nitride-based sintered body layer to 1: 1.5 or more. Such a relationship can be achieved by setting the porosity of the ceramic sintered body layer to at least about 5%.

【0021】請求項1〜3の発明では、抵抗発熱素子を
内蔵し、かつ加熱・放熱面側を比較的熱伝導率の高い窒
化アルミニウム系焼結体層で構成し、その裏面側を比較
的熱伝導率の低いセラミックス系焼結体層で構成してい
る。つまり、加熱・放熱面側は、抵抗発熱が高い熱伝導
性によって容易に、かつ効率よく加熱・放熱に寄与す
る。一方、裏面側は、熱伝導性が低いことにより、裏面
側からの放熱が容易に抑制されるので、加熱・放熱面側
からの放熱が助長され、より効率よく抵抗発熱が利用さ
れる。
According to the first to third aspects of the present invention, the resistance heating element is built-in, and the heating / radiating surface side is made of an aluminum nitride-based sintered body layer having a relatively high thermal conductivity, and the back surface side is made relatively. It is composed of a ceramic sintered body layer having low thermal conductivity. In other words, the heating / radiating surface side easily and efficiently contributes to the heating / radiating due to the thermal conductivity with high resistance heat generation. On the other hand, since the heat conduction from the back surface side is easily suppressed due to the low thermal conductivity on the back surface side, heat radiation from the heating / radiation surface side is promoted, and the resistance heat generation is used more efficiently.

【0022】[0022]

【発明の実施態様】以下、図1を参照して実施例を説明
する。
An embodiment will be described below with reference to FIG.

【0023】図1は、実施例に係る半導体熱処理用セラ
ミックヒーターの要部構成を示す断面図である。図1に
おいて、1は放熱・加熱面をなす窒化アルミニウム系焼
結体層、2は前記窒化アルミニウム系焼結体層1に埋め
込み型に配置された抵抗発熱素子、3は前記窒化アルミ
ニウム系焼結体層1の放熱・加熱面の裏面に一体化され
た熱伝導率の低いセラミックス系焼結体層である。
FIG. 1 is a sectional view showing the structure of a main part of a ceramic heater for semiconductor heat treatment according to an embodiment. In FIG. 1, reference numeral 1 denotes an aluminum nitride-based sintered body layer serving as a heat dissipation / heating surface, 2 denotes a resistance heating element embedded in the aluminum nitride-based sintered body layer 1, and 3 denotes the aluminum nitride-based sintered body. It is a ceramic-based sintered body layer having a low thermal conductivity integrated with the back surface of the heat radiation / heating surface of the body layer 1.

【0024】ここで、窒化アルミニウム系焼結体層1
は、たとえば焼結助剤として酸化イットリウムを含有す
る厚さ5mm、直径250mm程度の円板状窒化アルミ
ニウム焼結体層であり、熱伝導率約120W/K・m程
度、気孔率0.5%である。また、抵抗発熱素子2は、
全長5mのタングステン線、入力電力100〜1200
W程度である。そして、この抵抗発熱素子2は、前記窒
化アルミニウム系焼結体層1に蛇行型に設けられた溝に
装着・配置され、入力端子が導出されている。
Here, the aluminum nitride based sintered body layer 1
Is a disk-shaped aluminum nitride sintered layer having a thickness of 5 mm and a diameter of about 250 mm containing yttrium oxide as a sintering aid, having a thermal conductivity of about 120 W / K · m and a porosity of 0.5%. It is. Also, the resistance heating element 2
5m long tungsten wire, input power 100 ~ 1200
It is about W. The resistance heating element 2 is mounted and arranged in a meandering groove in the aluminum nitride-based sintered body layer 1, and an input terminal is led out.

【0025】さらに、セラミックス系焼結体層3は、た
とえば焼結助剤としての酸化イットリウムの他に、炭化
ケイ素を含有する厚さ5mm、直径250mm程度の円
板状窒化アルミニウム焼結体層であり、熱伝導率約60
W/K・m程度、気孔率7%である。そして、このセラ
ミックス系焼結体層3は、前記窒化アルミニウム系焼結
体層1の抵抗発熱素子2装着・配置面に一体化された構
成と成っている。
The ceramic-based sintered layer 3 is a disk-shaped aluminum nitride sintered layer having a thickness of about 5 mm and a diameter of about 250 mm containing silicon carbide in addition to yttrium oxide as a sintering aid. Yes, thermal conductivity about 60
It is about W / K · m and has a porosity of 7%. The ceramic-based sintered layer 3 is integrated with the surface of the aluminum nitride-based sintered layer 1 on which the resistance heating element 2 is mounted and arranged.

【0026】次に、上記構成のセラミックヒーターの製
造例を説明する。
Next, an example of manufacturing the ceramic heater having the above-described configuration will be described.

【0027】平均粒径1μm未満の窒化アルミニウム粉
末に、焼結助剤(酸化イットリウム)、およびバインダ
ー(ポリビニルブチラール樹脂)を添加・混合し、この
混合物から作製した造粒粉を所要の厚さ形状寸法の板状
成形体に成形する。ここで、板状成形体の一主面には、
蛇行型の溝が設けられている。その後、大気雰囲気中に
おいて600℃の温度で加熱・脱脂してから、窒素雰囲
気中において、1850℃で焼結することにより、熱伝
導率約120W/K・m程度、気孔率0.5%の焼結体
1を作製する。
A sintering aid (yttrium oxide) and a binder (polyvinyl butyral resin) are added to and mixed with aluminum nitride powder having an average particle size of less than 1 μm, and a granulated powder produced from this mixture is formed into a desired thickness and shape. It is molded into a plate-like molded body of the dimensions. Here, on one main surface of the plate-like molded body,
A meandering groove is provided. Then, after heating and degreasing at a temperature of 600 ° C. in an air atmosphere, and sintering at 1850 ° C. in a nitrogen atmosphere, a thermal conductivity of about 120 W / K · m and a porosity of 0.5% are obtained. A sintered body 1 is manufactured.

【0028】一方、平均粒径1μm未満の窒化アルミニ
ウム粉末に、焼結助剤(酸化イットリウム)、バインダ
ー(ポリビニルブチラール樹脂)および炭化ケイ素粉末
を添加・混合し、この混合物から作製した造粒粉を所要
の厚さ形状寸法の板状成形体に成形する。その後、大気
雰囲気中において600℃の温度で加熱・脱脂してか
ら、窒素雰囲気中において、1850℃で焼結すること
により、熱伝導率約60W/K・m程度、気孔率7%の
焼結体3を作製する。
On the other hand, a sintering aid (yttrium oxide), a binder (polyvinyl butyral resin) and silicon carbide powder are added to and mixed with aluminum nitride powder having an average particle diameter of less than 1 μm, and the granulated powder produced from this mixture is mixed. It is formed into a plate-shaped formed body having a required thickness and shape. Then, after heating and degreasing at a temperature of 600 ° C. in an air atmosphere, and sintering at a temperature of 1850 ° C. in a nitrogen atmosphere, a sintered body having a thermal conductivity of about 60 W / K · m and a porosity of 7% is obtained. The body 3 is produced.

【0029】次に、予め用意しておいたタングステン線
を素材とした抵抗発熱素子2を、前記焼結体1の蛇行型
溝に装着・配置する一方、この抵抗発熱素子2を装着・
配置した面に、接合剤層を介して前記焼結体3を積層配
置する。その後、それらを一体化することにより、セラ
ミックスヒーターが得られる。
Next, a resistance heating element 2 made of a tungsten wire prepared in advance is mounted and arranged in the meandering groove of the sintered body 1, while the resistance heating element 2 is mounted and mounted.
On the arranged surface, the sintered body 3 is stacked and arranged via a bonding agent layer. Then, by integrating them, a ceramic heater is obtained.

【0030】比較評価のため、上記セラミックヒーター
の構成において、焼結体3を積層配置する代わりに、焼
結体1と同一の条件で作成した熱伝導率約120W/K
・m程度、気孔率0.5%の焼結体を一体化したセラミ
ックヒーター(比較例1)、焼結体1の代わりに焼結体
3と同一の条件で作成した熱伝導率約60W/K・m程
度、気孔率7%の焼結体に、焼結体3を一体化したセラ
ミックヒーター(比較例2)をそれぞれ用意した。
For comparative evaluation, in the configuration of the above ceramic heater, a thermal conductivity of about 120 W / K was prepared under the same conditions as for the sintered body 1 instead of arranging the sintered bodies 3 in a stacked manner.
A ceramic heater (comparative example 1) in which a sintered body having a porosity of about 0.5 m and a porosity of 0.5% are integrated, and a thermal conductivity of about 60 W / Ceramic heaters (Comparative Example 2) in which the sintered body 3 was integrated with a sintered body having a porosity of about 7% and a porosity of 7% were prepared.

【0031】これら各セラミックヒーターを、それぞれ
プラズマエッチング用装置に装着し、セラミックヒータ
ー面が所定温度600℃に昇温するまでの時間、その昇
温に要した電力量をそれぞれ試験評価した結果を表に示
す。なお、試験評価の数値は、比較例1を基準として、
この基準値に対する相対値である。
Each of these ceramic heaters was mounted on a plasma etching apparatus, and the time required for the ceramic heater surface to rise to a predetermined temperature of 600 ° C. and the amount of electric power required for the temperature rise were tested and evaluated. Shown in In addition, the numerical value of the test evaluation is based on Comparative Example 1.
It is a relative value to this reference value.

【0032】 [0032]

【0033】上記試験評価の結果からも分かるように、
この発明に係る半導体熱処理用セラミックヒーターは、
良好な面内温度分布を呈するので、ムラのない一様な加
熱ができるだけでなく、少ない電力量の投入で所要の温
度に高速昇温する。つまり、歩留まりのよい半導体の処
理加工などに適し、高品質・高性能の半導体の製造に大
きく寄与する。また、その抵抗発熱に要する電力量の低
減も図られので、省資源・低コスト化の点でも多くの利
点をもたらす。
As can be seen from the results of the above test evaluation,
The ceramic heater for semiconductor heat treatment according to the present invention,
Since a good in-plane temperature distribution is exhibited, not only uniform heating without unevenness can be achieved, but also the required temperature can be quickly increased to a required temperature with a small amount of power input. That is, it is suitable for processing semiconductors with a high yield, and greatly contributes to the manufacture of high-quality and high-performance semiconductors. Further, since the amount of electric power required for the resistance heat generation is reduced, many advantages are brought about in terms of resource saving and cost reduction.

【0034】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲でいろいろの変形を
採ることができる。たとえば、熱伝導率の小さいセラミ
ックス焼結体層は、アルミナ:系焼結体層であってもよ
いし、セラミックヒーターの寸法・形状、抵抗発熱素子
の入力電力など用途に応じて選択・設定できる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the ceramic sintered body layer having a small thermal conductivity may be an alumina: based sintered body layer, or may be selected and set according to the application such as the size and shape of the ceramic heater, the input power of the resistance heating element, and the like. .

【0035】[0035]

【発明の効果】請求項1〜3の発明によれば、加熱・放
熱面側は、抵抗発熱は、高い熱伝導性によって容易、か
つ効率よく加熱・放熱に寄与する。一方、裏面側は、熱
伝導性が低いことに伴って、裏面側からの放熱が容易に
抑制され、結果的に、加熱・放熱面側からの発熱・放熱
が助長される。
According to the first to third aspects of the present invention, on the heating / radiating surface side, the resistance heat generation easily and efficiently contributes to the heating / radiating by the high thermal conductivity. On the other hand, the heat conduction from the back side is easily suppressed due to the low thermal conductivity on the back side, and as a result, the heat generation and heat dissipation from the heating / radiation side are promoted.

【0036】すなわち、少ない電力量の投入で所要の温
度に高速昇温する一方、裏面側からの放熱が確実に抑制
・低減されるので、良好な面内温度分布を呈し易く、ま
た、加熱・放熱面側からの放熱が助長され、より効率よ
く抵抗発熱が利用される。したがって、省資源・低コス
ト型で、かつ高品質の半導体の加工・製造に適するセラ
ミックヒーターといえる。
That is, while a small amount of electric power is applied to quickly raise the temperature to a required temperature, heat radiation from the rear surface side is reliably suppressed or reduced, so that a good in-plane temperature distribution is easily exhibited. The heat radiation from the heat radiation surface side is promoted, and the resistance heat generation is used more efficiently. Therefore, it can be said that the ceramic heater is a resource-saving and low-cost type and is suitable for processing and manufacturing a high-quality semiconductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る半導体熱処理用セラミックヒータ
ーの要部構成を示す断面図。
FIG. 1 is a cross-sectional view showing a configuration of a main part of a ceramic heater for semiconductor heat treatment according to an embodiment.

【符号の説明】[Explanation of symbols]

1……窒化アルミニウム系焼結体層 2……抵抗発熱素子 3……セラミックス系焼結体層 DESCRIPTION OF SYMBOLS 1 ... Aluminum nitride type sintered body layer 2 ... Resistance heating element 3 ... Ceramics type sintered body layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青沼 伸一朗 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 村松 滋子 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 Fターム(参考) 3K034 AA02 AA12 AA13 AA21 AA22 AA33 BB06 BB14 BC15 BC16 BC17 BC29 HA01 HA10 3K092 PP20 QA05 QB02 QB20 QB27 QB44 QB45 QB80 RF03 RF11 RF20 RF25 RF26 RF27 VV22 VV40 5F004 AA01 BB18 BB26 BD04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichiro Aonuma 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. In-house F term (reference) 3K034 AA02 AA12 AA13 AA21 AA22 AA33 BB06 BB14 BC15 BC16 BC17 BC29 HA01 HA10 3K092 PP20 QA05 QB02 QB20 QB27 QB44 QB45 QB80 RF03 RF11 RF20 RF25 RF26 RF27 VV22 VV40 BB04004F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 放熱・加熱面をなす窒化アルミニウム系
焼結体層と、前記窒化アルミニウム系焼結体層の放熱・
加熱面の裏面側に一体化された熱伝導率の低いセラミッ
クス系焼結体層と、前記窒化アルミニウム系焼結体層も
しくは前記セラミックス系焼結体層に埋め込み型に配置
された抵抗発熱素子とを有することを特徴とする半導体
熱処理用セラミックヒーター。
1. An aluminum nitride-based sintered body layer serving as a heat-radiating / heating surface, and a heat-radiating /
A ceramic-based sintered body layer having a low thermal conductivity integrated on the back side of the heating surface, and a resistance heating element disposed in the aluminum nitride-based sintered body layer or the ceramic-based sintered body layer in an embedded manner. A ceramic heater for semiconductor heat treatment, comprising:
【請求項2】 セラミックス系焼結体層と窒化アルミニ
ウム系焼結体層との熱伝導率比が、1:1.5以上であ
ることを特徴とする請求項1記載の半導体熱処理用セラ
ミックヒーター。
2. The ceramic heater for semiconductor heat treatment according to claim 1, wherein the thermal conductivity ratio between the ceramic-based sintered body layer and the aluminum nitride-based sintered body layer is 1: 1.5 or more. .
【請求項3】 セラミックス系焼結体層の気孔率が少な
くとも5%であることを特徴とする請求項1もしくは請
求項2記載の半導体熱処理用セラミックヒーター。
3. The ceramic heater according to claim 1, wherein the porosity of the ceramic sintered body layer is at least 5%.
JP2000164076A 2000-06-01 2000-06-01 Ceramic heater for semiconductor heat treatment Expired - Fee Related JP3344650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164076A JP3344650B2 (en) 2000-06-01 2000-06-01 Ceramic heater for semiconductor heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164076A JP3344650B2 (en) 2000-06-01 2000-06-01 Ceramic heater for semiconductor heat treatment

Publications (2)

Publication Number Publication Date
JP2001345309A true JP2001345309A (en) 2001-12-14
JP3344650B2 JP3344650B2 (en) 2002-11-11

Family

ID=18667742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164076A Expired - Fee Related JP3344650B2 (en) 2000-06-01 2000-06-01 Ceramic heater for semiconductor heat treatment

Country Status (1)

Country Link
JP (1) JP3344650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286107A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Heating device
JP2010258276A (en) * 2009-04-27 2010-11-11 Shin-Etsu Chemical Co Ltd Anti-corrosion member
JP2016103560A (en) * 2014-11-28 2016-06-02 京セラ株式会社 Sample holder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286107A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Heating device
JP4686996B2 (en) * 2004-03-30 2011-05-25 住友電気工業株式会社 Heating device
JP2010258276A (en) * 2009-04-27 2010-11-11 Shin-Etsu Chemical Co Ltd Anti-corrosion member
JP2016103560A (en) * 2014-11-28 2016-06-02 京セラ株式会社 Sample holder

Also Published As

Publication number Publication date
JP3344650B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
CN105751540B (en) The heating plate with planar heater zone for semiconductor processes
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
KR100438881B1 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
KR100411215B1 (en) Wafer holder for semiconductor manufacturing apparatus
JP5117146B2 (en) Heating device
JP4495539B2 (en) Manufacturing method of heating element with built-in electrode
JP2002057207A (en) Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
JP2006269826A (en) Electrostatic chuck, and manufacturing method therefor
US7060945B2 (en) Substrate heater and fabrication method for the same
CN1225342C (en) Ceramic base
JP3344650B2 (en) Ceramic heater for semiconductor heat treatment
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP2004146567A (en) Ceramic heater for semiconductor manufacturing device
JP3568194B2 (en) Ceramic heater for semiconductor heat treatment
JP2003249330A (en) Foil-like resistance heater element, its manufacturing method and flat heater
CN1613275A (en) Ceramics heater for semiconductor production system
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP2002313531A (en) Planar ceramic heater and manufacturing method
JP2003017377A (en) Ceramic heater
JP2003100422A (en) Foil-type heat generation resistor and surface-type ceramics heater
JP2002015840A (en) Ceramic heater for heating semiconductor, and its manufacturing method
JP2001319967A (en) Method for manufacturing ceramic substrate
JP2003017223A (en) Ceramic heater and electrostatic chuck with built-in ceramic heater
JP3913640B2 (en) Planar ceramic heater and manufacturing method thereof
JP4522963B2 (en) Heating device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees