JP2001343657A - Method for manufacturing liquid crystal display device - Google Patents

Method for manufacturing liquid crystal display device

Info

Publication number
JP2001343657A
JP2001343657A JP2000164723A JP2000164723A JP2001343657A JP 2001343657 A JP2001343657 A JP 2001343657A JP 2000164723 A JP2000164723 A JP 2000164723A JP 2000164723 A JP2000164723 A JP 2000164723A JP 2001343657 A JP2001343657 A JP 2001343657A
Authority
JP
Japan
Prior art keywords
liquid crystal
vacuum
display device
sealant
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000164723A
Other languages
Japanese (ja)
Inventor
Kotaro Araya
康太郎 荒谷
Kishiro Iwasaki
紀四郎 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000164723A priority Critical patent/JP2001343657A/en
Publication of JP2001343657A publication Critical patent/JP2001343657A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To overcome the conventional problem such that, in a method for manufacturing a liquid crystal display device by a dropping method using a vacuum vessel, productivity is not enhanced since a stage for vacuum treatment needs long time and when a volatile liquid crystal material is used, the change in composition of the material is generated, since it is exposed to a high vacuum state, and as a result display characteristics is degraded. SOLUTION: In the dropping method, when the thickness of a liquid crystal layer of the liquid crystal display device, the height of a sealing agent applied on a glass substrate, the solubility coefficient of residual gas in the vacuum vessel to a liquid crystal and the atmospheric pressure are defined as L1, L2, B and P0, respectively, the degree of vacuum P in the vacuum vessel in a stage for sticking two sheets of glass substrates to each other is vacuum controlled by using the expression 1 to inject the liquid crystal into a liquid crystal cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置の製
造方法に関するものである。更に詳しくは液晶表示装置
の液晶注入方法の改良に関する。
The present invention relates to a method for manufacturing a liquid crystal display device. More specifically, the present invention relates to an improvement in a liquid crystal injection method for a liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示装置は二枚のガラス基板の間隙
に液晶層を設け、電気光学効果により文字、数字、図、
絵などを表示する装置として既に知られている。現在、
TN(Twisted Nematic)、STN(Supertwisted Nemati
c)、FLC(Ferroelectric Liquidcrystal)、IPS(In−
Plane switching)等の駆動モードが知られている。こ
のような液晶表示装置の液晶注入方法には下記に示すい
くつかの方法が知られている。
2. Description of the Related Art In a liquid crystal display device, a liquid crystal layer is provided in a gap between two glass substrates, and letters, numerals, figures,
It is already known as a device for displaying pictures and the like. Current,
TN (Twisted Nematic), STN (Supertwisted Nemati)
c), FLC (Ferroelectric Liquidcrystal), IPS (In-
Driving modes such as Plane switching) are known. Several methods described below are known as a liquid crystal injection method for such a liquid crystal display device.

【0003】(1)二枚のガラス基板をシール剤で貼り
合わせ、そのシール剤の一部を解放して液晶注入口を設
けた液晶セルと液晶を入れた液晶皿を真空可能な容器に
入れ、この容器を真空にした後、液晶注入口を液晶に浸
したあと、容器を大気圧に戻して液晶セル内外の圧力差
を利用して液晶を注入する製造方法である。
(1) Two glass substrates are bonded with a sealant, a part of the sealant is released, and a liquid crystal cell provided with a liquid crystal inlet and a liquid crystal dish containing liquid crystal are placed in a vacuum-capable container. After the container is evacuated, the liquid crystal injection port is immersed in the liquid crystal, the container is returned to atmospheric pressure, and the liquid crystal is injected using the pressure difference between the inside and outside of the liquid crystal cell.

【0004】(2)二枚のガラス基板をシール剤で貼り
合わせ、そのシール剤の2ヶ所以上を解放して1ヶ所の
液晶注入口と1ヶ所以上の排気口を設け、注入口に液晶
注入コネクタを接続して液晶を注入する製造方法である
(特開平7−281200号公報)。
(2) Two glass substrates are bonded together with a sealant, two or more of the sealants are released, and one liquid crystal inlet and one or more outlets are provided, and liquid crystal is injected into the inlet. This is a manufacturing method in which a connector is connected and liquid crystal is injected (Japanese Patent Laid-Open No. 7-281200).

【0005】(3)一方のガラス基板上に形成されたシ
ール剤の内側に液晶を滴下し、真空容器中でもう一枚の
ガラス基板を貼り合わせる製造方法である(特開昭63
−179323号公報)。この液晶注入方法を滴下法と
いう。
(3) This is a manufacturing method in which liquid crystal is dropped inside a sealant formed on one glass substrate and another glass substrate is bonded in a vacuum vessel (Japanese Patent Application Laid-Open No. Sho 63).
-179323). This liquid crystal injection method is called a dropping method.

【0006】これら液晶表示装置の液晶注入方法のう
ち、(1)と(2)の液晶注入方法では、液晶注入に要
する時間が画面サイズに依存するため、大型サイズの液
晶セルになると量産性に欠ける問題点を有している。ま
た、液晶注入口が存在するため、液晶注入後に注入口部
分を紫外線硬化樹脂などによって封止処理する工程が必
要であり、また、封止部分からの気泡混入や封止材によ
る液晶の汚染が問題となっている。これに対して、
(3)の滴下法では、液晶注入に要する時間が(1)や
(2)の方法と比べて短く、また、画面サイズにほとん
ど依存しないため、今後需要の拡大が予想される大型サ
イズの液晶表示装置の製造方法として有望であると考え
られている。また、注入口がないため、封止処理が不要
である。
In the liquid crystal injection methods (1) and (2) among the liquid crystal injection methods of these liquid crystal display devices, the time required for liquid crystal injection depends on the screen size. It has a lacking problem. In addition, since there is a liquid crystal injection port, it is necessary to perform a step of sealing the injection port portion with an ultraviolet curable resin or the like after the liquid crystal is injected. It is a problem. On the contrary,
In the dropping method of (3), the time required for liquid crystal injection is shorter than in the methods of (1) and (2), and it hardly depends on the screen size. It is considered promising as a method for manufacturing a display device. Further, since there is no injection port, a sealing process is not required.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、(3)
の滴下法による液晶表示装置の製造方法には、以下のよ
うな欠点がある。滴下法では、二枚のガラス基板を貼り
合わせる工程で、液晶セル内に残留したガスが気泡発生
の原因となるため、真空容器中の真空度を高くする必要
がある。したがって、この減圧処理工程の時間が長くな
るため生産性が向上しない欠点があった。また、液晶材
料が高真空に曝されるため、揮発性の液晶材料を使用す
ると組成変化を生じ、表示特性が劣化する欠点もあっ
た。
However, (3)
The method for manufacturing a liquid crystal display device by the dropping method has the following disadvantages. In the dropping method, a gas remaining in the liquid crystal cell causes bubbles in a step of bonding two glass substrates, and thus the degree of vacuum in the vacuum container needs to be increased. Therefore, there is a disadvantage that the productivity is not improved because the time of the decompression treatment step becomes long. In addition, since the liquid crystal material is exposed to a high vacuum, the use of a volatile liquid crystal material causes a change in composition, and has a disadvantage of deteriorating display characteristics.

【0008】本発明の目的は、滴下法による液晶表示装
置の製造方法において、気泡発生を起こさずに且つ減圧
処理工程時間を短縮し、揮発性の液晶材料も使用できる
液晶表示装置の製造方法を提供する。
An object of the present invention is to provide a method of manufacturing a liquid crystal display device by a dropping method, which does not generate air bubbles, shortens the time of the pressure reduction step, and can use a volatile liquid crystal material. provide.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、一方のガラス基板上の周辺部分に塗布さ
れたシール剤の内側に液晶を滴下し、真空容器内におい
てもう一方のガラス基板を貼り合わせて液晶セル内に液
晶を注入する液晶表示装置の製造方法において、液晶表
示装置の液晶層の厚みをL1、ガラス基板に塗布された
上記シール剤の高さをL2、真空容器内に残留している
ガスの液晶に対する溶解度係数をB、大気圧をP0とし
たときに、ガラス基板を貼り合わせる時の真空容器内の
真空度Pを式1に基づき真空制御して液晶セル内に液晶
を注入することを特徴とする。
In order to achieve the above object, according to the present invention, a liquid crystal is dropped inside a sealant applied to a peripheral portion on one glass substrate, and the other liquid crystal is placed in a vacuum vessel. In a method of manufacturing a liquid crystal display device in which a glass substrate is bonded and liquid crystal is injected into a liquid crystal cell, the thickness of the liquid crystal layer of the liquid crystal display device is L 1 , the height of the sealing agent applied to the glass substrate is L 2 , When the solubility coefficient of the gas remaining in the vacuum container with respect to the liquid crystal is B and the atmospheric pressure is P 0 , the degree of vacuum P in the vacuum container at the time of bonding the glass substrates is vacuum-controlled based on Equation 1. Liquid crystal is injected into the liquid crystal cell.

【0010】[0010]

【数2】 (Equation 2)

【0011】[0011]

【発明の実施の形態】以下、本発明に係る滴下法を使用
した液晶表示装置の製造方法について、実施例ならびに
図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a liquid crystal display device using a dropping method according to the present invention will be described in detail with reference to examples and drawings.

【0012】はじめに、液晶セル内に残留したガスと気
泡発生の関係について述べる。図1には液晶セルの断面
図を示してある。図1(a)は下基板1の周辺部分に形
成された液晶ガード枠5の内側に液晶4を滴下し、上基
板2が下基板1の周辺部分に塗布されたシール剤3に接
触した直後の液晶セルの断面図である。図1(b)は上
基板2を加圧し、さらにシール剤3を硬化させ、最終的
に得られた液晶セルの断面図である。図1(a)におい
て下基板1に塗布されたシール剤3の高さをL2、シー
ル剤3の内側の面積をSとする。図1(b)において、最
終的に得られた液晶表示装置の液晶層の厚みをL1とす
る。図1(a)において液晶セル内の真空度をP(Pa単
位)、液晶セル内に残留しているガスの液晶に対する溶
解度係数をBとすると、液晶4に溶解しているガスの溶
解体積V1(大気圧換算の気体体積、cm3単位)は式2で
表される。
First, the relationship between the gas remaining in the liquid crystal cell and the generation of bubbles will be described. FIG. 1 is a sectional view of a liquid crystal cell. FIG. 1A shows a state in which the liquid crystal 4 is dropped inside a liquid crystal guard frame 5 formed on the peripheral portion of the lower substrate 1 and immediately after the upper substrate 2 comes into contact with the sealant 3 applied on the peripheral portion of the lower substrate 1. 3 is a cross-sectional view of the liquid crystal cell of FIG. FIG. 1B is a cross-sectional view of a liquid crystal cell finally obtained by pressing the upper substrate 2 and further curing the sealant 3. In FIG. 1A, the height of the sealant 3 applied to the lower substrate 1 is L 2 , and the area inside the sealant 3 is S. In FIG. 1 (b), the thickness of the liquid crystal layer of the liquid crystal display device finally obtained as L 1. In FIG. 1A, assuming that the degree of vacuum in the liquid crystal cell is P (in Pa) and the solubility coefficient of the gas remaining in the liquid crystal cell with respect to the liquid crystal is B, the dissolved volume of the gas dissolved in the liquid crystal 4 is V 1 (atmospheric pressure converted gas volume, cm 3 unit) is expressed by Equation 2.

【0013】[0013]

【数3】 (Equation 3)

【0014】溶解度係数BはOstwald溶解度係数であ
り、気体の分圧が1.01325×105Pa(大気圧)であると
き、室温の液晶1cm3に溶解する気体の体積(cm3単位)
を大気圧で測定した値である。また、図1(a)におい
て液晶セル内の空隙に存在しているガスの体積V2(大気
圧換算の気体体積、cm3単位)は式3で表される。
The solubility coefficient B is the Ostwald solubility coefficient. When the gas partial pressure is 1.01325 × 10 5 Pa (atmospheric pressure), the volume (cm 3 unit) of the gas dissolved in 1 cm 3 of liquid crystal at room temperature.
Is measured at atmospheric pressure. In FIG. 1A, the volume V 2 (gas volume in terms of atmospheric pressure, in cm 3 ) of the gas existing in the gap in the liquid crystal cell is expressed by Equation 3.

【0015】[0015]

【数4】 (Equation 4)

【0016】他方、図1(b)において液晶セルは大気
圧下にあるので、液晶セルにある液晶4が溶解できるガ
スの飽和溶解体積V3は、大気圧をP0としたとき式4で
表される。
On the other hand, in FIG. 1B, since the liquid crystal cell is under the atmospheric pressure, the saturated dissolved volume V 3 of the gas in which the liquid crystal 4 in the liquid crystal cell can be dissolved is expressed by the following equation (4) when the atmospheric pressure is P 0. expressed.

【0017】[0017]

【数5】 (Equation 5)

【0018】したがって、図1(a)の液晶セル構造か
ら図1(b)の液晶セル構造になったときに、液晶4中
のガスが飽和状態以下にあり、気泡が発生しないための
条件は式5で表される。この式5の条件から、図1
(a)における液晶セル内の真空度Pは式1に基づき真
空制御してしなくてはならない。
Therefore, when the liquid crystal cell structure shown in FIG. 1A is changed to the liquid crystal cell structure shown in FIG. 1B, the conditions in which the gas in the liquid crystal 4 is less than the saturation state and no bubbles are generated are as follows. It is expressed by Equation 5. From the condition of Equation 5, FIG.
In (a), the degree of vacuum P in the liquid crystal cell must be vacuum-controlled based on equation (1).

【0019】[0019]

【数6】 (Equation 6)

【0020】つぎに、いろいろなガス種の液晶に対する
溶解度係数Bについて述べる。大気圧P0のもとで液晶
中に溶解するガスのモル分率Xは熱力学的条件から式6
で見積もることができる。
Next, the solubility coefficient B of various gas types for liquid crystal will be described. The molar fraction X of the gas dissolved in the liquid crystal under the atmospheric pressure P 0 is given by the following equation (6) from the thermodynamic condition.
Can be estimated.

【0021】[0021]

【数7】 (Equation 7)

【0022】PG 0はガスの飽和蒸気圧、VGはガスの分子
容、Rは気体定数、Tは温度(絶対温度)である。σG
σLはそれぞれ対象となるガスと液晶の溶解度パラメー
タである。ガスの溶解度パラメータσGは通常8(cal/cm
3)0 . 5以下である。液晶の溶解度パラメータσLは通常9
から10(cal/cm3)0 . 5である。したがって、式6から液
晶の溶解度パラメータσLが10(cal/cm3)0 . 5のとき
が、最も溶解度が小さくなることになる。液晶の溶解度
パラメータσLを10(cal/cm3)0 . 5に固定すれば、すべ
ての液晶材料に対応できる。液晶の平均分子量は高々3
00であるので、この値を用い各種ガスのモル分率を求
めて、溶解度係数Bに換算すると、窒素、アルゴン、二
酸化炭素、エチレンの溶解度係数Bとして、それぞれ
0.016、0.037、0.331、0.570が得
られる。二酸化炭素、エチレンの液晶への溶解度がかな
り大きいことがわかる。
[0022] P G 0 is saturation vapor pressure, V G of the gas molar volume of the gas, R is a gas constant, T is the temperature (absolute temperature). σ G and σ L are the solubility parameters of the gas of interest and the liquid crystal, respectively. The gas solubility parameter σ G is usually 8 (cal / cm
3) 0. 5 or less. The solubility parameter σ L of the liquid crystal is usually 9
From 10 (cal / cm 3) it is 0.5. Therefore, Equation 6 from the liquid crystal solubility parameter sigma L is 10 (cal / cm 3) 0 . When the 5, so that the highest solubility decreases. If fixing the solubility parameter sigma L of the liquid crystal to 10 (cal / cm 3) 0 . 5, it can accommodate all of the liquid crystal material. The average molecular weight of the liquid crystal is at most 3
Therefore, when this value is used to determine the molar fraction of various gases and converted into the solubility coefficient B, the solubility coefficients B of nitrogen, argon, carbon dioxide, and ethylene are 0.016, 0.037, and 0, respectively. .331, 0.570 are obtained. It can be seen that the solubility of carbon dioxide and ethylene in the liquid crystal is considerably large.

【0023】つぎに、本発明である液晶表示装置の製造
方法の実施形態について説明する。
Next, an embodiment of a method for manufacturing a liquid crystal display device according to the present invention will be described.

【0024】(実施形態1)図2に示すように、液晶セ
ルの作製には、270mm(長片側)×200mm(短片
側)で、厚みが1.1mmで表面を研磨した透明なガラス
基板を用いた。
(Embodiment 1) As shown in FIG. 2, a transparent glass substrate 270 mm (long side) × 200 mm (short side), having a thickness of 1.1 mm and having a polished surface is used for manufacturing a liquid crystal cell. Using.

【0025】下基板1となるガラス基板の上に信号電
極、画素電極などを形成し、液晶4がシール剤3と接触
するのを防止する液晶ガード枠5を光硬化性樹脂で形成
した。この液晶ガード枠5の高さは5.9μmである。さ
らにその最表面に配向膜を形成した。本実施形態では配
向膜としてポリイミドを採用し、印刷機で塗布し焼成後
の膜厚を0.1μm程度とした。その後、配向膜表面を液
晶配向のための配向処理を施した。配向処理はラビング
機を使用し、ラビングロールにレーヨン製バフ布を用い
た。つぎに外径6μmのスペーサビーズが適量混入され
たシール剤3(紫外線硬化型樹脂)を、シールマスクを
用いてガラス基板上に印刷した。このシール剤3の高さ
は60μmである。この液晶セルの表示部は対角で約1
0インチサイズ(200mm×150mm)であり、この領
域より僅かに大きい形状でのシール剤が塗布されてい
る。このシール剤3の内側にある液晶ガード枠5内に液
晶4を、その高さが6.0μmとなる量を滴下した。本実
施形態では、液晶滴下方法としてインクジェット方式を
用いたが、ディスペンサ等を使用しても良い。本実施形
態の液晶は真空度10Paで揮発することがないことが
確認されている液晶である。
A signal electrode, a pixel electrode, and the like were formed on a glass substrate serving as the lower substrate 1, and a liquid crystal guard frame 5 for preventing the liquid crystal 4 from coming into contact with the sealant 3 was formed of a photocurable resin. The height of the liquid crystal guard frame 5 is 5.9 μm. Further, an alignment film was formed on the outermost surface. In the present embodiment, polyimide is adopted as the alignment film, and is applied by a printing machine and has a thickness of about 0.1 μm after firing. After that, the alignment film surface was subjected to alignment treatment for liquid crystal alignment. A rubbing machine was used for the orientation treatment, and a rayon buff cloth was used for the rubbing roll. Next, a sealant 3 (ultraviolet curable resin) mixed with an appropriate amount of spacer beads having an outer diameter of 6 μm was printed on a glass substrate using a seal mask. The height of the sealant 3 is 60 μm. The display of this liquid crystal cell is about 1 diagonally.
The sealant has a size of 0 inches (200 mm × 150 mm) and is slightly larger than this area. The liquid crystal 4 was dropped into the liquid crystal guard frame 5 inside the sealant 3 in such an amount that the height thereof became 6.0 μm. In the present embodiment, an inkjet method is used as a liquid crystal dropping method, but a dispenser or the like may be used. The liquid crystal of the present embodiment is a liquid crystal that has been confirmed to not volatilize at a degree of vacuum of 10 Pa.

【0026】上基板2となるもう一方のガラス基板には
共通電極を形成し、ストライプ状の赤、青、緑の3色の
カラーフィルタとブラックマトリックスを設けた。カラ
ーフィルタの上には、ガラス基板間のギャップを保持す
るための突起スペーサを光硬化性樹脂で形成した。さら
に、下基板1と同様の配向膜を塗布し、同条件でラビン
グ処理を行なった。この上基板2に対しては、液晶セル
作製後の発ガスを防止するために、予め高温アニール処
理を実施した。
On the other glass substrate serving as the upper substrate 2, a common electrode was formed, and three color filters of red, blue and green in stripes and a black matrix were provided. On the color filter, a projection spacer for maintaining a gap between the glass substrates was formed of a photocurable resin. Further, the same alignment film as that of the lower substrate 1 was applied, and a rubbing treatment was performed under the same conditions. The upper substrate 2 was previously subjected to a high-temperature annealing treatment in order to prevent outgassing after the production of the liquid crystal cell.

【0027】図1(a)に示すように、液晶4の滴下さ
れた下基板1を真空容器8内の基板固定盤6に設置し
た。また、上基板2を基板固定装置7に設置した。真空
容器8には窒素ガスを容器内にリークするためのオリフ
ィスを有する配管が付設されている。本実施形態では液
晶セル内に残留するガスは窒素である。図3には窒素の
場合、液晶セル内に気泡が発生しない条件となる真空度
を、式1に従いシール剤と液晶層の高さの比の関数とし
て図示した。本実施形態ではシール剤と液晶層の高さの
比は10なので、真空容器8内の真空度は100Pa程
度であれば気泡発生しないことが理解される。本実施形
態では、上基板2からの発ガスが予め解消されているの
で、最終到達真空度が100Paになるように、窒素ガ
スのオリフィスを調整して、真空引きを行った。5分程
度で真空容器8内の真空度は100Paに達した。この
あと、上部基板2を下基板1に平行に貼り合わせた。さ
らに、2枚の基板を加圧しつつ、紫外線を照射してシー
ル剤を硬化した。液晶セル内はスペーサで狭持され、液
晶封入状態でギャップは6.0μmであった。
As shown in FIG. 1A, the lower substrate 1 on which the liquid crystal 4 was dropped was placed on a substrate fixing plate 6 in a vacuum vessel 8. Further, the upper substrate 2 was set on the substrate fixing device 7. The vacuum vessel 8 is provided with a pipe having an orifice for leaking nitrogen gas into the vessel. In the present embodiment, the gas remaining in the liquid crystal cell is nitrogen. FIG. 3 illustrates the degree of vacuum that is a condition that does not generate bubbles in the liquid crystal cell in the case of nitrogen as a function of the ratio of the height of the sealant to the liquid crystal layer according to Equation 1. In this embodiment, since the height ratio between the sealant and the liquid crystal layer is 10, it is understood that bubbles are not generated if the degree of vacuum in the vacuum container 8 is about 100 Pa. In the present embodiment, since the gas emission from the upper substrate 2 has been eliminated in advance, the orifice of the nitrogen gas was adjusted so that the ultimate vacuum degree became 100 Pa, and the vacuum was drawn. In about 5 minutes, the degree of vacuum in the vacuum container 8 reached 100 Pa. Thereafter, the upper substrate 2 was bonded to the lower substrate 1 in parallel. Further, while pressing the two substrates, ultraviolet rays were irradiated to cure the sealant. The inside of the liquid crystal cell was sandwiched by spacers, and the gap was 6.0 μm when the liquid crystal was sealed.

【0028】この液晶表示装置の製造方法においては、
真空容器内に要求される真空度は余り高くないことか
ら、減圧時間を大幅に短縮することができ、かつ気泡の
発生は観測されなかった。また、真空度は余り高くない
条件が選択可能なことから液晶の揮発もなく、組成変化
による表示特性の劣化も観測されなかった。本実施例に
おいて、窒素の替わりにアルゴンを用いれば、さらに減
圧時間を短縮できる。
In this method of manufacturing a liquid crystal display device,
Since the degree of vacuum required in the vacuum vessel was not so high, the decompression time could be greatly reduced, and no generation of bubbles was observed. In addition, since a condition in which the degree of vacuum was not too high was selectable, no liquid crystal was volatilized, and no deterioration in display characteristics due to a change in composition was observed. In this embodiment, if argon is used instead of nitrogen, the pressure reduction time can be further reduced.

【0029】(実施形態2)図2に示すように、液晶セ
ルの作製には、270mm(長片側)×200mm(短片
側)で、厚みが1.1mmで表面を研磨した透明なガラス
基板を用いた。
(Embodiment 2) As shown in FIG. 2, a transparent glass substrate 270 mm (long side) × 200 mm (short side), having a thickness of 1.1 mm and having a polished surface is used for manufacturing a liquid crystal cell. Using.

【0030】下基板1となるガラス基板の上に信号電
極、画素電極などを形成し、液晶4がシール剤3と接触
するのを防止する液晶ガード枠5を光硬化性樹脂で形成
した。この液晶ガード枠5の高さは5.9μmである。さ
らにその最表面に配向膜を形成した。本実施形態では配
向膜としてポリイミドを採用し、印刷機で塗布し焼成後
の膜厚を0.1μm程度とした。その後、配向膜表面を液
晶配向のための配向処理を施した。配向処理はラビング
機を使用し、ラビングロールにレーヨン製バフ布を用い
た。つぎに外径6μmのスペーサビーズが適量混入され
たシール剤3(紫外線硬化型樹脂)を、シールマスクを
用いてガラス基板上に印刷した。このシール剤3の高さ
は60μmである。この液晶セルの表示部は対角で約1
0インチサイズ(200mm×150mm)であり、この領
域より僅かに大きい形状でのシール剤が塗布されてい
る。このシール剤3の内側にある液晶ガード枠5内に液
晶4を、その高さが6.0μmとなる量を滴下した。本実
施形態では、液晶滴下方法としてインクジェット方式を
用いたが、ディスペンサ等を使用しても良い。本実施形
態の液晶は真空度10Paで揮発することがないことが
確認されている液晶である。
A signal electrode, a pixel electrode, and the like were formed on a glass substrate serving as the lower substrate 1, and a liquid crystal guard frame 5 for preventing the liquid crystal 4 from contacting the sealant 3 was formed of a photocurable resin. The height of the liquid crystal guard frame 5 is 5.9 μm. Further, an alignment film was formed on the outermost surface. In the present embodiment, polyimide is adopted as the alignment film, and is applied by a printing machine and has a thickness of about 0.1 μm after firing. After that, the alignment film surface was subjected to alignment treatment for liquid crystal alignment. A rubbing machine was used for the orientation treatment, and a rayon buff cloth was used for the rubbing roll. Next, a sealant 3 (ultraviolet curable resin) mixed with an appropriate amount of spacer beads having an outer diameter of 6 μm was printed on a glass substrate using a seal mask. The height of the sealant 3 is 60 μm. The display of this liquid crystal cell is about 1 diagonally.
The sealant has a size of 0 inches (200 mm × 150 mm) and is slightly larger than this area. The liquid crystal 4 was dropped into the liquid crystal guard frame 5 inside the sealant 3 in such an amount that the height thereof became 6.0 μm. In the present embodiment, an inkjet method is used as a liquid crystal dropping method, but a dispenser or the like may be used. The liquid crystal of the present embodiment is a liquid crystal that has been confirmed to not volatilize at a degree of vacuum of 10 Pa.

【0031】上基板2となるもう一方のガラス基板には
共通電極を形成し、ストライプ状の赤、青、緑の3色の
カラーフィルタとブラックマトリックスを設けた。下基
板1と同様の配向膜を塗布し、同条件でラビング処理を
行なった。さらに、この上基板2上には、ガラス基板間
のギャップを保持するための球状スペーサを散布したあ
とに固着した。この上基板2に対しては、液晶セル作製
後の発ガスを防止するための高温アニール処理はとくに
実施しなかった。
On the other glass substrate serving as the upper substrate 2, a common electrode was formed, and stripe color filters of red, blue and green and a black matrix were provided. The same orientation film as that of the lower substrate 1 was applied, and a rubbing treatment was performed under the same conditions. Further, spherical spacers for maintaining the gap between the glass substrates were sprayed on the upper substrate 2 and then fixed. The upper substrate 2 was not particularly subjected to a high-temperature annealing treatment for preventing outgassing after the production of the liquid crystal cell.

【0032】図1(a)に示すように、液晶4の滴下さ
れた下基板1を真空容器8内の基板固定盤6に設置し
た。また、上基板2を基板固定装置7に設置した。真空
容器8には液晶への溶解度の大きい二酸化炭素ガスを容
器内にリークするためのオリフィスを有する配管が付設
されている。本実施形態では液晶セル内に残留するガス
は二酸化炭素である。図4には二酸化炭素の場合、液晶
セル内に気泡が発生しない条件となる真空度を、式1に
従いシール剤と液晶層の高さの比の関数として図示し
た。本実施形態ではシール剤と液晶層の高さの比は10
なので、真空容器8内の真空度は3000Pa程度であ
れば気泡発生しないことが理解される。本実施形態で
は、上基板2からの発ガス防止の高温アニールが予め実
施されていないことを考慮し、気泡が発生しない真空度
の10分の1である300Paが最終到達真空度になる
ように、二酸化炭素ガスのオリフィスを調整して、真空
引きを行った。約3分程度で真空容器8内の真空度は3
00Paに達した。このあと、上部基板2を下基板1に
平行に貼り合わせた。さらに、2枚の基板を加圧しつ
つ、紫外線を照射してシール剤を硬化した。液晶セル内
はスペーサで狭持され、液晶封入状態でギャップは6.
0μmであった。
As shown in FIG. 1A, the lower substrate 1 on which the liquid crystal 4 was dropped was placed on a substrate fixing plate 6 in a vacuum vessel 8. Further, the upper substrate 2 was set on the substrate fixing device 7. The vacuum vessel 8 is provided with a pipe having an orifice for leaking carbon dioxide gas having high solubility in the liquid crystal into the vessel. In the present embodiment, the gas remaining in the liquid crystal cell is carbon dioxide. FIG. 4 illustrates the degree of vacuum that is a condition that does not generate air bubbles in the liquid crystal cell in the case of carbon dioxide, as a function of the ratio of the height of the sealant to the liquid crystal layer according to Equation 1. In the present embodiment, the height ratio between the sealant and the liquid crystal layer is 10
Therefore, it is understood that bubbles are not generated if the degree of vacuum in the vacuum container 8 is about 3000 Pa. In the present embodiment, considering that high-temperature annealing for preventing gas emission from the upper substrate 2 has not been performed in advance, 300 Pa, which is one-tenth of the degree of vacuum in which no bubbles are generated, is set to be the ultimate vacuum degree. The orifice of the carbon dioxide gas was adjusted, and a vacuum was drawn. In about 3 minutes, the degree of vacuum in the vacuum vessel 8 becomes 3
00Pa was reached. Thereafter, the upper substrate 2 was bonded to the lower substrate 1 in parallel. Furthermore, while pressing the two substrates, ultraviolet rays were irradiated to cure the sealant. The inside of the liquid crystal cell is sandwiched by spacers, and the gap is 6.
It was 0 μm.

【0033】この液晶表示装置の製造方法においては、
上基板の発ガスを防止するための高温アニール処理がな
くても、液晶への溶解度の大きいガスを使用しているた
め、真空容器内に要求される真空度は余り高くないこと
から、減圧時間を大幅に短縮することができ、かつ気泡
の発生は観測されなかった。また、真空度は余り高くな
い条件が選択可能なことから液晶の揮発もなく、組成変
化による表示特性の劣化も観測されなかった。本実施例
において、二酸化炭素の替わりにエチレンを用いれば、
さらに減圧時間を短縮できる。
In this method of manufacturing a liquid crystal display device,
Even if there is no high-temperature annealing treatment to prevent outgassing of the upper substrate, since a gas with high solubility in liquid crystal is used, the degree of vacuum required in the vacuum vessel is not so high, Was significantly reduced, and generation of bubbles was not observed. In addition, since a condition in which the degree of vacuum was not too high was selectable, no liquid crystal was volatilized, and no deterioration in display characteristics due to a change in composition was observed. In this embodiment, if ethylene is used instead of carbon dioxide,
Further, the decompression time can be reduced.

【0034】(実施形態3)図2に示すように、液晶セ
ルの作製には、270mm(長片側)×200mm(短片
側)で、厚みが1.1mmで表面を研磨した透明なガラス
基板を用いた。
(Embodiment 3) As shown in FIG. 2, a transparent glass substrate 270 mm (long side) × 200 mm (short side), having a thickness of 1.1 mm and having a polished surface is used for manufacturing a liquid crystal cell. Using.

【0035】下基板1となるガラス基板の上に信号電
極、画素電極などを形成し、液晶4がシール剤3と接触
するのを防止する液晶ガード枠5を光硬化性樹脂で形成
した。この液晶ガード枠5の高さは5.9μmである。さ
らにその最表面に配向膜を形成した。本実施形態では配
向膜としてポリイミドを採用し、印刷機で塗布し焼成後
の膜厚を0.1μm程度とした。その後、配向膜表面を液
晶配向のための配向処理を施した。配向処理はラビング
機を使用し、ラビングロールにレーヨン製バフ布を用い
た。つぎに外径6μmのスペーサビーズが適量混入され
たシール剤3(紫外線硬化型樹脂)を、シールマスクを
用いてガラス基板上に印刷した。このシール剤3の高さ
は30μmである。この液晶セルの表示部は対角で約1
0インチサイズ(200mm×150mm)であり、この領
域より僅かに大きい形状でのシール剤が塗布されてい
る。このシール剤3の内側にある液晶ガード枠5内に液
晶4を、その高さが6.0μmとなる量を滴下した。本実
施形態では、液晶滴下方法としてインクジェット方式を
用いたが、ディスペンサ等を使用しても良い。本実施形
態の液晶は真空度300Paでは揮発するが、真空度4
00Paでは揮発することがないことが確認されている
液晶である。
A signal electrode, a pixel electrode and the like were formed on a glass substrate serving as the lower substrate 1, and a liquid crystal guard frame 5 for preventing the liquid crystal 4 from coming into contact with the sealant 3 was formed of a photocurable resin. The height of the liquid crystal guard frame 5 is 5.9 μm. Further, an alignment film was formed on the outermost surface. In the present embodiment, polyimide is adopted as the alignment film, and is applied by a printing machine and has a thickness of about 0.1 μm after firing. After that, the alignment film surface was subjected to alignment treatment for liquid crystal alignment. A rubbing machine was used for the orientation treatment, and a rayon buff cloth was used for the rubbing roll. Next, a sealant 3 (ultraviolet curable resin) mixed with an appropriate amount of spacer beads having an outer diameter of 6 μm was printed on a glass substrate using a seal mask. The height of the sealant 3 is 30 μm. The display of this liquid crystal cell is about 1 diagonally.
The sealant has a size of 0 inches (200 mm × 150 mm) and is slightly larger than this area. The liquid crystal 4 was dropped into the liquid crystal guard frame 5 inside the sealant 3 in such an amount that the height thereof became 6.0 μm. In the present embodiment, an inkjet method is used as a liquid crystal dropping method, but a dispenser or the like may be used. The liquid crystal of the present embodiment volatilizes at a vacuum degree of 300 Pa,
The liquid crystal has been confirmed not to volatilize at 00 Pa.

【0036】上基板2となるもう一方のガラス基板には
共通電極を形成し、ストライプ状の赤、青、緑の3色の
カラーフィルタとブラックマトリックスを設けた。カラ
ーフィルタの上には、ガラス基板間のギャップを保持す
るための突起スペーサを光硬化性樹脂で形成した。さら
に、下基板1と同様の配向膜を塗布し、同条件でラビン
グ処理を行なった。この上基板2に対しては、液晶セル
作製後の発ガスを防止するための高温アニール処理はと
くに実施しなかった。
A common electrode was formed on the other glass substrate serving as the upper substrate 2, and stripe color filters of red, blue and green and a black matrix were provided. On the color filter, a projection spacer for maintaining a gap between the glass substrates was formed of a photocurable resin. Further, the same alignment film as that of the lower substrate 1 was applied, and a rubbing treatment was performed under the same conditions. The upper substrate 2 was not particularly subjected to a high-temperature annealing treatment for preventing outgassing after the production of the liquid crystal cell.

【0037】図1(a)に示すように、液晶4の滴下さ
れた下基板1を真空容器8内の基板固定盤6に設置し
た。また、上基板2を基板固定装置7に設置した。真空
容器8には二酸化炭素ガスを容器内にリークするための
オリフィスを有する配管が付設されている。本実施形態
では液晶セル内に残留するガスは窒素である。図3には
二酸化炭素の場合、液晶セル内に気泡が発生しない条件
となる真空度を、式1に従いシール剤と液晶層の高さの
比の関数として図示した。本実施形態ではシール剤と液
晶層の高さの比は5なので、真空容器8内の真空度は7
000Pa程度であれば気泡発生しないことが理解され
る。本実施形態では、上基板2からの発ガス防止のため
の高温アニールが予め実施されていないことを考慮し、
気泡が発生しない真空度の10分の1である700Pa
が最終到達真空度になるように、二酸化炭素ガスのオリ
フィスを調整して、真空引きを行った。約2分程度で真
空容器8内の真空度は700Paに達した。このあと、
上部基板2を下基板1に平行に貼り合わせた。さらに、
2枚の基板を加圧しつつ、紫外線を照射してシール剤を
硬化した。液晶セル内はスペーサで狭持され、液晶封入
状態でギャップは6.0μmであった。
As shown in FIG. 1A, the lower substrate 1 on which the liquid crystal 4 was dropped was placed on a substrate fixing plate 6 in a vacuum vessel 8. Further, the upper substrate 2 was set on the substrate fixing device 7. The vacuum vessel 8 is provided with a pipe having an orifice for leaking carbon dioxide gas into the vessel. In the present embodiment, the gas remaining in the liquid crystal cell is nitrogen. FIG. 3 illustrates the degree of vacuum that is a condition that does not generate bubbles in the liquid crystal cell in the case of carbon dioxide as a function of the ratio of the height of the sealant to the liquid crystal layer according to Equation 1. In the present embodiment, the ratio of the height of the sealant to the liquid crystal layer is 5, so the degree of vacuum in the vacuum container 8 is 7
It is understood that bubbles are not generated if the pressure is about 000 Pa. In the present embodiment, considering that high-temperature annealing for preventing gas emission from the upper substrate 2 is not performed in advance,
700Pa which is 1/10 of the degree of vacuum in which no bubbles are generated
The orifice of the carbon dioxide gas was adjusted and vacuum was drawn so that the final vacuum degree was reached. The degree of vacuum in the vacuum vessel 8 reached 700 Pa in about 2 minutes. after this,
The upper substrate 2 was bonded to the lower substrate 1 in parallel. further,
The sealant was cured by irradiating ultraviolet rays while pressing the two substrates. The inside of the liquid crystal cell was sandwiched by spacers, and the gap was 6.0 μm when the liquid crystal was sealed.

【0038】この液晶表示装置の製造方法においては、
上基板の発ガスを防止するための高温アニール処理がな
くても、液晶への溶解度の大きいガスを使用しているこ
と及びシール剤の高さを調整しているため、真空容器内
に要求される真空度は余り高くないことから、減圧時間
を大幅に短縮することができ、かつ気泡の発生は観測さ
れなかった。また、真空度は余り高くない条件が選択可
能なことから液晶の揮発もなく、組成変化による表示特
性の劣化も観測されなかった。本実施例において、二酸
化炭素の替わりにエチレンを用いれば、さらに減圧時間
を短縮できる。
In this method of manufacturing a liquid crystal display device,
Even if there is no high-temperature annealing treatment to prevent outgassing of the upper substrate, the use of a gas with high solubility in liquid crystal and the adjustment of the height of the sealant are required in the vacuum vessel. Since the degree of vacuum was not so high, the pressure reduction time could be greatly reduced and no generation of bubbles was observed. In addition, since a condition in which the degree of vacuum was not too high was selectable, no liquid crystal was volatilized, and no deterioration in display characteristics due to a change in composition was observed. In this embodiment, if ethylene is used instead of carbon dioxide, the pressure reduction time can be further reduced.

【0039】[0039]

【発明の効果】本発明の滴下法による液晶表示装置の製
造方法によれば、液晶表示装置の液晶層の厚みをL1
ガラス基板に塗布された上記シール剤の高さをL2、真
空容器内に残留しているガスの液晶に対する溶解度係数
をB、大気圧をP0としたときに、二枚のガラス基板を
貼り合わせる工程における真空容器内の真空度Pを式1
に基づき真空制御して液晶セル内に液晶を注入すること
により、真空容器の減圧処理時間を大幅に短縮でき、ま
た、液晶の揮発もなく、表示特性の劣化を解消すること
もできる。
According to the method of manufacturing a liquid crystal display device by the dropping method of the present invention, the thickness of the liquid crystal layer of the liquid crystal display device is set to L 1 ,
When the height of the sealant applied to the glass substrate is L 2 , the solubility coefficient of the gas remaining in the vacuum container with respect to the liquid crystal is B, and the atmospheric pressure is P 0 , two glass substrates are attached. The degree of vacuum P in the vacuum vessel in the joining step is expressed by the following equation (1).
By injecting the liquid crystal into the liquid crystal cell under vacuum control based on the above, the pressure reduction processing time of the vacuum container can be greatly reduced, and the liquid crystal does not volatilize, and the deterioration of the display characteristics can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液晶表示装置の気泡発生原因を説
明するための概略図である。
FIG. 1 is a schematic diagram for explaining a cause of bubble generation in a liquid crystal display device according to the present invention.

【図2】本発明に係る液晶表示装置の製造方法を説明す
るための概略図でである。
FIG. 2 is a schematic view for explaining a method for manufacturing a liquid crystal display device according to the present invention.

【図3】本発明に係る液晶に対するガス溶解度を説明す
るための解析図である。
FIG. 3 is an analysis diagram for explaining gas solubility in a liquid crystal according to the present invention.

【図4】本発明に係る液晶に対するガス溶解度を説明す
るための解析図である。
FIG. 4 is an analysis diagram for explaining gas solubility in a liquid crystal according to the present invention.

【符号の説明】[Explanation of symbols]

1……下基板、2……上基板、3……シール剤、4……
液晶、5……液晶ガード枠、6……基板固定盤、7……
基板固定装置、8……真空容器。
1 ... lower substrate, 2 ... upper substrate, 3 ... sealant, 4 ...
Liquid crystal, 5 ... LCD guard frame, 6 ... Fixed board, 7 ...
Substrate fixing device, 8: vacuum container.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方のガラス基板上の周辺部分に塗布さ
れたシール剤の内側に液晶を滴下し、真空容器内におい
てもう一方のガラス基板を貼り合わせて液晶セル内に液
晶を注入する液晶表示装置の製造方法において、液晶表
示装置の液晶層の厚みをL1、ガラス基板に塗布された
上記シール剤の高さをL2、真空容器内に残留している
ガスの液晶に対する溶解度係数をB、大気圧をP0とし
たときに、二枚のガラス基板を貼り合わせる工程におけ
る真空容器内の真空度Pを式1に基づき真空制御して液
晶セル内に液晶を注入することを特徴とする液晶表示装
置の製造方法。 【数1】
1. A liquid crystal display in which liquid crystal is dropped inside a sealant applied to a peripheral portion on one glass substrate, the other glass substrate is bonded in a vacuum vessel, and the liquid crystal is injected into a liquid crystal cell. In the method of manufacturing the device, the thickness of the liquid crystal layer of the liquid crystal display device is L 1 , the height of the sealant applied to the glass substrate is L 2 , and the solubility coefficient of the gas remaining in the vacuum vessel with respect to the liquid crystal is B. When the atmospheric pressure is set to P 0 , the liquid crystal is injected into the liquid crystal cell by vacuum-controlling the degree of vacuum P in the vacuum container in the step of bonding the two glass substrates based on Equation 1. A method for manufacturing a liquid crystal display device. (Equation 1)
JP2000164723A 2000-05-30 2000-05-30 Method for manufacturing liquid crystal display device Pending JP2001343657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164723A JP2001343657A (en) 2000-05-30 2000-05-30 Method for manufacturing liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164723A JP2001343657A (en) 2000-05-30 2000-05-30 Method for manufacturing liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2001343657A true JP2001343657A (en) 2001-12-14

Family

ID=18668305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164723A Pending JP2001343657A (en) 2000-05-30 2000-05-30 Method for manufacturing liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2001343657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258074A (en) * 2004-03-11 2005-09-22 Fujitsu Display Technologies Corp Manufacturing method of liquid crystal display
KR100662500B1 (en) 2005-06-28 2007-01-02 엘지.필립스 엘시디 주식회사 Method for manufacturing liquid crystal display device
CN100334494C (en) * 2003-03-11 2007-08-29 精工爱普生株式会社 Producing device for electro-optical device, electro-optic device, and electronic instruments
US8721380B2 (en) 2009-08-12 2014-05-13 Konica Minolta Holdings, Inc. Method for manufacturing display panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334494C (en) * 2003-03-11 2007-08-29 精工爱普生株式会社 Producing device for electro-optical device, electro-optic device, and electronic instruments
US7518702B2 (en) 2003-03-11 2009-04-14 Seiko Epson Corporation Electrooptical manufacturing apparatus, electrooptical apparatus, and electronic device
JP2005258074A (en) * 2004-03-11 2005-09-22 Fujitsu Display Technologies Corp Manufacturing method of liquid crystal display
KR100662500B1 (en) 2005-06-28 2007-01-02 엘지.필립스 엘시디 주식회사 Method for manufacturing liquid crystal display device
US8721380B2 (en) 2009-08-12 2014-05-13 Konica Minolta Holdings, Inc. Method for manufacturing display panel

Similar Documents

Publication Publication Date Title
US5499127A (en) Liquid crystal display device having a larger gap between the substrates in the display area than in the sealant area
KR19980025831A (en) Manufacturing method of liquid crystal display device
JPH10239694A (en) Production of liquid crystal display device
JP3804360B2 (en) Liquid crystal display device and manufacturing method thereof
JP3505022B2 (en) Manufacturing method of liquid crystal display device
US20020069961A1 (en) Adjusting apparatus of gap width and method thereof
JP2001343657A (en) Method for manufacturing liquid crystal display device
JP3208645B2 (en) Manufacturing method of liquid crystal display
KR100731041B1 (en) Liquid crystal deaeration apparatus and method using it
JP3544124B2 (en) Liquid crystal panel manufacturing method
JPH10301122A (en) Method of manufacturing liquid crystal display element
JP2003156753A (en) Liquid crystal injection device
JPH1020315A (en) Method for injecting liquid crystal to liquid crystal display device
JP3599604B2 (en) Liquid crystal panel manufacturing method
JPH0618905A (en) Production of liquid crystal display device
JP2000187225A (en) Manufacture of liquid crystal display device
JP2903136B2 (en) Manufacturing method of liquid crystal electro-optical device
JPH01289915A (en) Liquid crystal display device
JPH05265014A (en) Liquid crystal display device
JPH10115831A (en) Manufacture of liquid crystal display device
KR100875185B1 (en) Liquid crystal degassing apparatus and degassing method
JP3976566B2 (en) Liquid crystal display element cell, manufacturing apparatus and manufacturing method thereof
JP2002131765A (en) Liquid crystal injection device
JP2000047232A (en) Production of liquid crystal display device
JPH06317805A (en) Liquid crystal panel body and its liquid crystal injecting method