JP2001342068A - Vitreous carbon material - Google Patents

Vitreous carbon material

Info

Publication number
JP2001342068A
JP2001342068A JP2000158418A JP2000158418A JP2001342068A JP 2001342068 A JP2001342068 A JP 2001342068A JP 2000158418 A JP2000158418 A JP 2000158418A JP 2000158418 A JP2000158418 A JP 2000158418A JP 2001342068 A JP2001342068 A JP 2001342068A
Authority
JP
Japan
Prior art keywords
glassy carbon
blasting
resin
carbon material
vitreous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000158418A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Mitsuji Kamata
充志 鎌田
Katsuaki Yagioka
克明 八木岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000158418A priority Critical patent/JP2001342068A/en
Publication of JP2001342068A publication Critical patent/JP2001342068A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vitreous carbon material of which the dusting property is lowered by the improvement of the surface roughness keeping the effect of CVD film peeling protection and the like. SOLUTION: The surface of the vitreous carbon material is roughened by the blasting with fine particles after coarse particles. The surface roughness is 2 μm or more as the mathematical mean roughness (Ra) specified in JIS B 0601.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置部
材に適したガラス状炭素部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glassy carbon member suitable for a member of a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】ガラス状炭素とは、熱硬化性樹脂を炭化
焼成して得られる炭素材料であり、ガラス状の非常に均
質、緻密な構造を有する。このような炭素材料は、一般
の炭素材料の特徴である導電性、化学的安定性、耐熱
性、高純度等の性質に加え、構成粒子の脱落がないとい
う優れた特長を有する。このような優れた特長から、近
年ガラス状炭素は広範な産業分野で使用されており、特
に半導体製造装置部材として極めて有用である。
2. Description of the Related Art Glassy carbon is a carbon material obtained by carbonizing a thermosetting resin and has a very homogeneous and dense glassy structure. Such a carbon material has not only properties such as conductivity, chemical stability, heat resistance, and high purity, which are the characteristics of general carbon materials, but also excellent characteristics such that constituent particles do not fall off. Due to these excellent features, glassy carbon has been used in a wide range of industrial fields in recent years, and is particularly useful as a member for semiconductor manufacturing equipment.

【0003】ガラス状炭素部材は、その用途により表面
を粗化させることが要求される場合がある。例えば、半
導体デバイス製造のCVD膜を形成する工程では、装置
の反応容器内側にある部材はCVD膜で覆われ、付着し
たCVD膜の膜厚が一定以上になると、剥離するという
現象が生じ易い。この剥離した膜が製造する半導体デバ
イスの上に落下すると、製品歩留まりの低下を引き起こ
すことにより、剥離低減が大きな課題となっている。
[0003] The glassy carbon member may be required to have a roughened surface depending on its use. For example, in the process of forming a CVD film in the manufacture of semiconductor devices, a member inside the reaction vessel of the apparatus is covered with the CVD film, and when the thickness of the deposited CVD film exceeds a certain value, the phenomenon of peeling is apt to occur. When the peeled film falls on a semiconductor device to be manufactured, the yield of the product is reduced, and thus reduction of the peeling is a major issue.

【0004】この剥離低減の改善策として、部材の表面
を粗化することが広く行われている。これは表面粗化に
よるアンカー効果で付着したCVD膜の密着性を上げる
もので、剥離防止には大きな効果がある。
As a measure to reduce the peeling, the surface of the member is generally roughened. This enhances the adhesion of the CVD film adhered by the anchor effect due to surface roughening, and has a great effect in preventing peeling.

【0005】一般に部材の表面を簡便に粗化する方法と
して、ブラスト処理がある。しかしながら、部材がガラ
ス状炭素である場合、材質が脆性材料のため、ブラスト
処理により形成された微細な凹凸は、欠陥を多く有す
る。このため、ハンドリングなどの接触によりブラスト
処理面の微細な凸部は大きな応力を受け、これが破壊さ
れて脱落することで発塵が生じる。また、プラズマCV
D、プラズマエッチング等の装置においては、プラズマ
に接触する部材は消耗するが、ブラスト処理したガラス
状炭素部材では、ブラスト処理による欠陥部分が、プラ
ズマによる消耗で選択的に破壊され脱落して発塵が生じ
易い。
[0005] Generally, there is a blast treatment as a method for easily roughening the surface of a member. However, when the member is glassy carbon, since the material is a brittle material, fine irregularities formed by blasting have many defects. For this reason, fine projections on the blasted surface receive a large stress due to contact such as handling, and are broken and fall off to generate dust. In addition, plasma CV
In devices such as D and plasma etching, the members that come into contact with the plasma are consumed. However, in the blasted glassy carbon member, the defective portion due to the blasting is selectively destroyed by the consumption by the plasma and falls off to generate dust. Tends to occur.

【0006】ガラス状炭素はこのように表面をブラスト
処理することで発塵し易くなり、本来の低発塵性という
特長が失われてしまう。また、ガラス状炭素は、化学的
・熱的に非常に安定であるため、薬液の腐食効果による
ブラスト処理面の欠陥除去や、再熱処理(アニーリン
グ)による欠陥修復といった方法での発塵性の低減は期
待できない。
[0006] Glass-like carbon is liable to generate dust by blasting the surface in this way, and loses its inherent characteristic of low dust generation. In addition, since glassy carbon is extremely stable chemically and thermally, it reduces dust generation by methods such as removing defects on the blasted surface by the corrosive effect of chemicals and repairing defects by reheating (annealing). Can not expect.

【0007】[0007]

【発明が解決しようとする課題】請求項1及び2記載の
本発明は、表面の粗化を改善することによりCVD膜の
剥離防止などの効果を保ちながら、発塵性を低減するガ
ラス状炭素部材を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, there is provided a glassy carbon material which reduces dusting while maintaining the effect of preventing peeling of a CVD film by improving surface roughening. A member is provided.

【0008】[0008]

【課題を解決するための手段】本発明は、粗い粒子によ
るブラスト処理後、細かい粒子によるブラスト処理を行
って表面を粗化してなるガラス状炭素部材に関する。ま
た、本発明は、面粗さが、JIS B 0601に規定
される算術平均粗さで(Ra)が2μm以上であるガラ
ス状炭素部材に関する。
SUMMARY OF THE INVENTION The present invention relates to a glassy carbon member obtained by blasting with coarse particles and then blasting with fine particles to roughen the surface. The present invention also relates to a glassy carbon member having an arithmetic average roughness (Ra) of 2 μm or more as defined by JIS B 0601.

【0009】[0009]

【発明の実施の形態】本発明において、ガラス状炭素原
料の熱硬化性樹脂としては特に制限はないが、フェノー
ル樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラ
ン樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂
等を挙げることができ、またこれら熱硬化性樹脂の混合
物を用いることもできる。好ましくは、フラン樹脂、フ
ェノール樹脂又はこれらの混合樹脂である。これらの熱
硬化性樹脂を成形、硬化、焼成(炭化)、さらに必要に
応じ高温熱処理してガラス状炭素とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the thermosetting resin as a glassy carbon raw material is not particularly limited, but a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, a xylene resin. And the like, and a mixture of these thermosetting resins can also be used. Preferably, it is a furan resin, a phenol resin, or a mixed resin thereof. These thermosetting resins can be molded, cured, fired (carbonized) and, if necessary, heat-treated at high temperature to obtain glassy carbon.

【0010】上記熱硬化性樹脂の成形方法については特
に制限はなく、(1)所要形状の型枠を用いて注型によ
り成形する方法、(2)熱圧成形により所要形状に成形
する方法、(3)遠心成形法により円筒形状に成形する
方法等、一般的に公知の方法を用いることができる。ま
た必要に応じてこれらの方法を組み合わせてもよい。
There is no particular limitation on the method of molding the thermosetting resin, (1) a method of molding by casting using a mold having a required shape, (2) a method of molding into a required shape by hot pressing, (3) A generally known method such as a method of forming into a cylindrical shape by a centrifugal molding method can be used. Moreover, you may combine these methods as needed.

【0011】熱硬化性樹脂の硬化は、成形温度以上の温
度で行い、必要に応じて段階的に昇温させながら処理す
る。最終的には、最高温度130〜200℃の熱処理を
行い、十分に硬化を進める必要がある。熱硬化性樹脂の
硬化が不十分であると、焼成の際、組織に欠陥が生じた
り、著しい場合には発泡、割れが発生し、良好な特性の
ガラス状炭素部材を得ることができない場合がある。な
お、この熱硬化性樹脂の硬化段階で、熱処理時の収縮を
見込んで寸法加工を実施してもよい。
The curing of the thermosetting resin is carried out at a temperature higher than the molding temperature, and the treatment is carried out while increasing the temperature stepwise as required. Finally, it is necessary to perform heat treatment at a maximum temperature of 130 to 200 ° C. to sufficiently promote curing. If the curing of the thermosetting resin is insufficient, defects may occur in the structure during firing, or foaming or cracking may occur if the curing is severe, and a glassy carbon member with good characteristics may not be obtained. is there. In the curing step of the thermosetting resin, dimensional processing may be performed in consideration of shrinkage during heat treatment.

【0012】次いで、不活性雰囲気中(通常、ヘリウ
ム、アルゴン等の不活性ガスや窒素、水素、ハロゲンガ
ス等、非酸化性ガスの少なくとも一種の気体からなる酸
素を含まない雰囲気、減圧若しくは真空下又は黒鉛粉、
炭素粉等に埋没させて大気を遮断した雰囲気)において
通常約900℃以上の温度、好ましくは1000〜12
00℃の温度で焼成炭化する。その後、好ましくは13
00〜3000℃で高温熱処理を行いガラス状炭素とす
ることができる。前記方法でガラス状炭素部材を得た
後、必要に応じて、ダイヤモンドドリル加工、超音波加
工等の公知の加工方法で、寸法仕上げ加工を実施する。
また、板状部材の場合、必要に応じ、ダイヤモンド、S
iC等の砥粒を使用する表面研磨により肉厚の加工を実
施する。
Next, in an inert atmosphere (usually an oxygen-free atmosphere consisting of an inert gas such as helium or argon or at least one kind of non-oxidizing gas such as nitrogen, hydrogen, halogen gas, etc., under reduced pressure or vacuum) Or graphite powder,
An atmosphere in which the atmosphere is blocked by being buried in carbon powder or the like), usually at a temperature of about 900 ° C. or higher, preferably 1000 to 12 ° C.
It is calcined at a temperature of 00 ° C. Thereafter, preferably 13
High-temperature heat treatment can be performed at 00 to 3000 ° C. to obtain glassy carbon. After the glassy carbon member is obtained by the above-described method, dimension finishing is performed, if necessary, by a known processing method such as diamond drilling or ultrasonic processing.
In the case of a plate-like member, if necessary, diamond, S
Thickness processing is performed by surface polishing using abrasive grains such as iC.

【0013】上記の表面研磨加工が完了した後、仕上げ
のブラスト処理を実施する。ブラスト処理方法に特に制
限はなく、例えば鋳鉄グリット、スティールグリット、
SiC素等の公知の研削材を使用し、エアーブラスト法
により保護部材表面を粗化する。研削材の粒径、エアー
圧力及び処理時間を調節することにより適宜希望の面粗
さとなるブラスト処理を行うことができる。
After the above-mentioned surface polishing is completed, a finishing blasting process is performed. There is no particular limitation on the blasting method, for example, cast iron grit, steel grit,
Using a known abrasive such as SiC element, the surface of the protective member is roughened by an air blast method. By adjusting the particle size of the abrasive, the air pressure, and the processing time, it is possible to carry out blast processing to obtain a desired surface roughness as appropriate.

【0014】本発明においては、初め粗い粒子によるブ
ラスト処理を行い、次いで細かい粒子によるブラスト処
理を行う、所謂2段階のブラスト処理によって表面を粗
化することを特徴としている。粗化する面の面粗さは2
段階ブラスト処理の効果を顕著にするためには、面粗さ
がJIS B 0601に規定される算術平均粗さ(以
下Raと称する)で2μm以上であることが必要とされ
る。
The present invention is characterized in that the surface is roughened by a so-called two-stage blasting in which blasting is first performed with coarse particles and then blasting with fine particles. The surface to be roughened has a surface roughness of 2
In order to make the effect of the step blasting remarkable, the surface roughness needs to be 2 μm or more in arithmetic average roughness (hereinafter referred to as Ra) specified in JIS B0601.

【0015】(Ra)が2μm以上であれば、表面の微
細な凹凸が大きくなり、1段階目のブラスト処理で欠陥
(クラック)が入り易く、2段階目の細かい粒子でのブ
ラスト処理により粗い粒子の衝撃で欠陥の入った表面、
即ち発塵の原因となる部分を削り取り、効果が顕著とな
る。(Ra)が2μm未満であると、1段階目のブラス
ト処理で欠陥が入り難いため、2段階目のブラスト処理
の効果が小さくなる。
If (Ra) is 2 μm or more, fine irregularities on the surface become large, defects (cracks) are likely to occur in the first-stage blasting, and coarse particles are formed by the second-stage fine blasting. Surface with defects due to the impact of
That is, a portion that causes dust is scraped off, and the effect is remarkable. If (Ra) is less than 2 μm, it is difficult for defects to be formed in the first-stage blasting, and the effect of the second-stage blasting is reduced.

【0016】なお、前記の(Ra)は、JIS B 0
601に規定されている方法で求められ、また(Ra)
の範囲に対応するカットオフ値及び評価長さの標準値に
ついては、JIS B 0601の表1に示されるよう
に、(Ra)が2μmを超え10μm以下の場合は、カ
ットオフ値2.5mm及び評価長さ12.5mmの標準値を
用い、また(Ra)が2μm以下の場合は、カットオフ
値0.8mm及び評価長さ4mmの標準値を用いて測定され
る。
The above (Ra) is based on JIS B 0
601 and determined by the method specified in (601)
As shown in Table 1 of JIS B 0601, when the cut-off value (Ra) is more than 2 μm and 10 μm or less, the cut-off value is 2.5 mm and the cut-off value is 2.5 mm. The standard value of the evaluation length of 12.5 mm is used, and when (Ra) is 2 μm or less, the measurement is performed using the cutoff value of 0.8 mm and the standard value of the evaluation length of 4 mm.

【0017】本発明における(Ra)の測定は、(株)東
京精密製の表面粗さ形状測定機、サーフコム500Bを
用い、また先端がR5μmの触針を用い、速度0.3mm
/秒で行った。
The measurement of (Ra) in the present invention is performed by using a surface roughness measuring device, Surfcom 500B manufactured by Tokyo Seimitsu Co., Ltd., using a stylus having a tip of R5 μm, and a speed of 0.3 mm.
/ Sec.

【0018】なお、1段階目のブラスト処理で大きく荒
れた面の表面粗さは、2段階目の細かい粒子でのブラス
ト処理によってもほとんど変わらず、2段階目の細かい
粒子でのブラスト処理の効果は、前記のように欠陥の入
った表面を削り取り、発塵性を低減することにある。
The surface roughness of the surface largely roughened by the first-stage blasting process is almost unchanged by the second-stage fine-particle blasting, and the effect of the second-stage fine-particle blasting is almost the same. The object of the present invention is to reduce the dust generation by scraping off the surface having the defect as described above.

【0019】本発明のブラスト処理に用いられる研削材
において、1段階目のブラスト処理に用いられる粗い粒
子の粒度は、#30〜#300の範囲が好ましく、#6
0〜#250の範囲であることがさらに好ましい。一
方、2段階目のブラスト処理に用いられる細かい粒子の
粒度は、#200〜#1000の範囲が好ましく、#2
50〜#500の範囲であることがさらに好ましい。
In the abrasive used in the blasting process of the present invention, the particle size of the coarse particles used in the first stage blasting process is preferably in the range of # 30 to # 300, and is preferably in the range of # 6.
More preferably, it is in the range of 0 to # 250. On the other hand, the particle size of the fine particles used in the second-stage blasting treatment is preferably in the range of # 200 to # 1000, and
More preferably, it is in the range of 50 to # 500.

【0020】[0020]

【実施例】以下、本発明を実施例により詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.

【0021】実施例1〜5及び比較例1〜5 フェノール樹脂(日立化成工業(株)製、商品名 VP−
11N)を容器に注型し、70℃で2日間保持して硬化
させ、直径が350mmで厚さが4mmの樹脂成形体10枚
を得た。この樹脂成形体を、90℃で3日間保持して硬
化させた後、さらに150℃で3日間保持して樹脂硬化
体を得た。次いでこの樹脂硬化体を電気炉に入れ、窒素
気流中で2℃/時間の昇温速度で昇温し、800℃の温
度で焼成炭化した。
Examples 1 to 5 and Comparative Examples 1 to 5 Phenol resin (trade name VP-, manufactured by Hitachi Chemical Co., Ltd.)
11N) was poured into a container, cured at 70 ° C. for 2 days, and cured to obtain 10 resin molded bodies having a diameter of 350 mm and a thickness of 4 mm. This resin molded body was kept at 90 ° C. for 3 days to cure, and then further kept at 150 ° C. for 3 days to obtain a cured resin body. Next, the cured resin was placed in an electric furnace, heated at a rate of 2 ° C./hour in a nitrogen stream, and calcined at a temperature of 800 ° C.

【0022】次に、得られた焼成体を、さらに窒素雰囲
気下で、2600℃の温度で熱処理してガラス状炭素平
板を得た。このガラス状炭素平板を、ダイヤモンド工具
を用いて、内径が205mmで外径が260mmのリング形
状に加工し、さらにSiC砥粒を用いたラップ機で厚さ
が3.5mmに加工した。
Next, the obtained fired body was further heat-treated at a temperature of 2600 ° C. in a nitrogen atmosphere to obtain a glassy carbon flat plate. This glassy carbon flat plate was processed into a ring shape having an inner diameter of 205 mm and an outer diameter of 260 mm using a diamond tool, and further processed to a thickness of 3.5 mm using a lapping machine using SiC abrasive grains.

【0023】この後、得られたガラス状炭素リングの表
面を各々1枚ずつ表1に示す(Ra)になる条件でブラ
スト処理した。1段階目のブラスト処理には粒度が#1
00のSiC研削材を使用した。面粗さにはある程度の
バラツキがあるため、1段階目のブラスト処理について
は、実施例1〜3と比較例1の4枚を同一条件で処理し
た後、その平均の面粗さを表示した(実施例4〜5と比
較例2及び比較例3〜4についても同一条件で処理し
た)。
Thereafter, the surfaces of the obtained glassy carbon rings were blasted one by one under the conditions of (Ra) shown in Table 1. Grain size is # 1 for first-stage blasting
A 00 SiC abrasive was used. Since there is some variation in the surface roughness, for the first-stage blast processing, the average surface roughness was displayed after processing four sheets of Examples 1 to 3 and Comparative Example 1 under the same conditions. (Examples 4-5, Comparative Example 2 and Comparative Examples 3-4 were also processed under the same conditions).

【0024】また、2段階目のブラスト処理について
は、ダミーのガラス状炭素平板をブラスト処理し、これ
と全く同じ条件で実際の各ガラス状炭素リングを処理し
た。そのときのダミー平板の面粗さを、面内の5ケ所に
ついて測定した平均値を、2段階目のブラスト処理条件
として示した。なお2段階目のブラスト処理には粒度が
#320のSiC研削材を使用した。以上のブラスト処
理終了後、ガラス状炭素リングをアセトンで超音波洗浄
した後、クリーンルーム内で再度純水洗浄してから15
0℃で乾燥させて完成させた。
In the second-stage blast treatment, a dummy glassy carbon flat plate was blasted, and the actual glassy carbon rings were processed under exactly the same conditions. The average value of the surface roughness of the dummy plate measured at five locations in the plane at that time was shown as the second-stage blasting condition. Note that a SiC abrasive having a grain size of # 320 was used for the second-stage blasting. After the above blast treatment, the glassy carbon ring is subjected to ultrasonic cleaning with acetone, and then cleaned again with pure water in a clean room.
Finished by drying at 0 ° C.

【0025】次に、得られたガラス状炭素リングの発塵
性の評価を行った。これは、クリーンルームで使用する
不織布を、リング表面に擦り付けて汚れの状況を比較す
る方法であり、(1)直径が10mmの金属製円柱端面に
不織布を両面テープで貼り付ける、(2)200gの荷
重を掛ける、(3)上記円柱を、50mm/秒の一定速度
で50mm移動させる、という条件下で評価を行った。擦
り付けた後の不織布の汚れ状況を、比較例の汚れが一番
ひどいものを4、未使用の汚れの全くない状態のものを
0とした相対的な5段階評価で表現した。その結果を合
わせて表1に示す。
Next, the dusting properties of the obtained glassy carbon ring were evaluated. This is a method in which a nonwoven fabric used in a clean room is rubbed against the surface of a ring to compare the state of dirt. (1) A nonwoven fabric is attached to a metal cylindrical end surface having a diameter of 10 mm with a double-sided tape. Evaluation was performed under the conditions that a load was applied and (3) the cylinder was moved 50 mm at a constant speed of 50 mm / sec. The stain condition of the nonwoven fabric after the rubbing was expressed by a relative five-point evaluation, with 4 being the worst stain of the comparative example, and 0 being the one having no unused stain. The results are shown in Table 1.

【0026】また、各製造条件で得られたガラス状炭素
リングを、半導体ウエハプラズマCVD装置のウエハ処
理台の周囲をカバーする部材として装置内に配置した。
この装置で、Siウエハ上にシリコン酸化膜を成膜させ
た。なお条件は、処理ガスとして、TEOS(テトラエ
チルオルソシリケート)、酸素ガス及びArガスを流
し、真空度0.04Torrの条件下でプラズマCVDによ
りシリコン酸化膜を成膜させた。
Further, the glassy carbon ring obtained under each of the manufacturing conditions was arranged in the semiconductor wafer plasma CVD apparatus as a member covering the periphery of a wafer processing table.
With this apparatus, a silicon oxide film was formed on a Si wafer. The conditions were as follows: TEOS (tetraethyl orthosilicate), oxygen gas, and Ar gas were flowed as processing gases, and a silicon oxide film was formed by plasma CVD under a condition of a vacuum degree of 0.04 Torr.

【0027】各製造条件で得られたガラス状炭素リング
について、シリコン酸化膜を成膜させた後のSiウエハ
上の、0.3μm以上のパーティクル数を測定した。ま
た処理を繰り返してガラス状炭素リング上のシリコン酸
化膜が厚くなり剥離が発生(ウエハ上のパーティクル数
が急増する)するまでの、処理サイクル数を評価した。
それぞれの結果を合わせて表1に示す。
With respect to the glassy carbon ring obtained under each of the manufacturing conditions, the number of particles of 0.3 μm or more on the Si wafer after the formation of the silicon oxide film was measured. Further, the number of processing cycles until the silicon oxide film on the vitreous carbon ring became thick and peeled off (the number of particles on the wafer rapidly increased) was evaluated by repeating the processing.
Table 1 shows the results together.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示されるように、本発明になるガラ
ス状炭素部材を用いたガラス状炭素リングは、不織布の
汚染、ウエハ上のパーティクル数及びシリコン酸化膜剥
離までのサイクル数が良好であるのに対し、比較例1の
ガラス状炭素部材を用いたガラス状炭素リングは、不織
布の汚染がひどく、ウエハ上のパーティクル数が多い、
比較例2のガラス状炭素部材を用いたガラス状炭素リン
グは、同一条件で1段階目のブラスト処理を行った実施
例4及び5のガラス状炭素リングに比較してウエハ上の
パーティクル数が多い、さらに比較例3、4及び5のガ
ラス状炭素部材を用いたガラス状炭素リングは、シリコ
ン酸化膜剥離までのサイクル数が少ないことがわかる。
As shown in Table 1, the vitreous carbon ring using the vitreous carbon member according to the present invention has good contamination of the nonwoven fabric, the number of particles on the wafer, and the number of cycles until the silicon oxide film is peeled off. On the other hand, the vitreous carbon ring using the vitreous carbon member of Comparative Example 1 has severe contamination of the nonwoven fabric and a large number of particles on the wafer.
The glassy carbon ring using the glassy carbon member of Comparative Example 2 has a larger number of particles on the wafer than the glassy carbon rings of Examples 4 and 5 in which the first-stage blast treatment was performed under the same conditions. It can be seen that the glassy carbon rings using the glassy carbon members of Comparative Examples 3, 4 and 5 have a small number of cycles until the silicon oxide film is peeled off.

【0030】[0030]

【発明の効果】請求項1及び2におけるガラス状炭素部
材は、表面の粗化によりCVD膜の剥離防止などの効果
を保ちながら、発塵性を大きく低減することができる。
According to the glassy carbon member of the first and second aspects, the dust generation can be greatly reduced while the effect of preventing the separation of the CVD film is maintained by roughening the surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粗い粒子によるブラスト処理後、細かい
粒子によるブラスト処理を行って表面を粗化してなるガ
ラス状炭素部材。
1. A glassy carbon member having a surface roughened by blasting with fine particles after blasting with coarse particles.
【請求項2】 面粗さが、JIS B 0601に規定
される算術平均粗さで(Ra)が2μm以上であるガラ
ス状炭素部材。
2. A glassy carbon member having an arithmetic average roughness (Ra) of 2 μm or more as defined by JIS B0601.
JP2000158418A 2000-05-29 2000-05-29 Vitreous carbon material Pending JP2001342068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158418A JP2001342068A (en) 2000-05-29 2000-05-29 Vitreous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158418A JP2001342068A (en) 2000-05-29 2000-05-29 Vitreous carbon material

Publications (1)

Publication Number Publication Date
JP2001342068A true JP2001342068A (en) 2001-12-11

Family

ID=18662893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158418A Pending JP2001342068A (en) 2000-05-29 2000-05-29 Vitreous carbon material

Country Status (1)

Country Link
JP (1) JP2001342068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485239B2 (en) 2002-08-06 2009-02-03 Kobe Steel, Ltd Component of glass-like carbon for CVD apparatus and process for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485239B2 (en) 2002-08-06 2009-02-03 Kobe Steel, Ltd Component of glass-like carbon for CVD apparatus and process for production thereof

Similar Documents

Publication Publication Date Title
US11667577B2 (en) Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
JP4213790B2 (en) Plasma-resistant member and plasma processing apparatus using the same
WO2013065666A1 (en) Gas nozzle, plasma device using same, and method for manufacturing gas nozzle
JP2003146751A (en) Plasma-resistant member and method of producing the same
US6258440B1 (en) Ceramic parts and a producing process thereof
JP4006535B2 (en) Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof
JPH1012692A (en) Dummy wafer
JPH08316283A (en) Dummy wafer
JP2001342068A (en) Vitreous carbon material
JP2000243742A (en) Plasma generator, inner wall protective member of chamber thereof, manufacture thereof, protection of inner wall of chamber and plasma treatment
JP2002043397A (en) Susceptor
JP2008007350A (en) Yttria ceramic sintered compact
JP5199599B2 (en) Yttria sintered body and member for plasma process equipment
JP3769416B2 (en) Components for plasma processing equipment
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4421251B2 (en) DLC film and vacuum chuck provided with the same
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP7420600B2 (en) Corrosion resistant parts
JP4379776B2 (en) Silicon impregnated silicon carbide member
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP4651145B2 (en) Corrosion resistant ceramics
JP2001176846A (en) Electrode plate for plasma etching and method of production