JP2001341018A - Drill - Google Patents

Drill

Info

Publication number
JP2001341018A
JP2001341018A JP2000166185A JP2000166185A JP2001341018A JP 2001341018 A JP2001341018 A JP 2001341018A JP 2000166185 A JP2000166185 A JP 2000166185A JP 2000166185 A JP2000166185 A JP 2000166185A JP 2001341018 A JP2001341018 A JP 2001341018A
Authority
JP
Japan
Prior art keywords
drill
diameter
region
blade
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000166185A
Other languages
Japanese (ja)
Inventor
Tadashi Sugiyama
忠 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000166185A priority Critical patent/JP2001341018A/en
Publication of JP2001341018A publication Critical patent/JP2001341018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drill without a burr formed at a peripheral edge part of a hole when completing drilling of a work. SOLUTION: An outer peripheral helical tooth 26 is helically extended on an outer peripheral surface 25 of a drill main body. In a part of the outer peripheral helical tooth 26, a diameter changing area B in which an outside diameter of the helical tooth 26 is gradually increased from the tip part side of the drill toward the shank side is set. The helical tooth part of the diameter changing area B functions as an oblique edge having an inclined angle θ3 relative to a radial direction of the drill.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワーク(被削物)
に孔あけ加工を施すためのドリルに関する。
[0001] The present invention relates to a work (workpiece).
The present invention relates to a drill for drilling holes.

【0002】[0002]

【従来の技術】穴あけ工具としてのドリルが一般に知ら
れている。典型的なドリルは、回転駆動機構にドリル本
体を装着するためのシャンク(基端部)と、所定の先端
角を有する先端部と、当該先端部とシャンクとの間にお
いて螺旋状に形成された複数条の外周ネジレ刃及び切削
屑排出溝を備えている。このようなドリルを用いてワー
ク(例えば金属板)に孔をあけた場合に、ドリルの先端
部がワークを貫通して抜け出た進行方向出側(即ち金属
板の裏側)において孔の周縁部にバリを生ずることがあ
る。バリの形態としては例えば図7に示すような衝立形
や盛り上がり山形がある。しかし、ドリル加工本来の目
的はワークに孔を形成することであって、副次的産物た
るバリの形成を意図しているわけではない。又、バリは
製品の価値を一般に落としめるものであり、例えば部品
相互の組立て結合時において、バリは部品間の密着を阻
害し不要な隙間の発生原因となる。製品に不要な隙間が
存在すると、そこへ雨水や汚染物質が進入し部品の腐食
を早めたりする。それ故、製品の品質や信頼性を確保す
るために、多くの場合、バリ取りのための後加工を必要
としている。
2. Description of the Related Art A drill as a drilling tool is generally known. A typical drill has a shank (base end) for mounting the drill body on a rotary drive mechanism, a tip having a predetermined tip angle, and a spiral formed between the tip and the shank. A plurality of outer peripheral twisting blades and a chip discharge groove are provided. When a hole is made in a work (for example, a metal plate) using such a drill, the tip of the drill penetrates through the work and exits in the traveling direction (that is, the back side of the metal plate). Burrs may occur. As the form of the burr, for example, there are a screen shape and a raised mountain shape as shown in FIG. However, the original purpose of drilling is to form a hole in a work, and is not intended to form a burr as a by-product. In addition, burrs generally lower the value of a product. For example, when assembling and connecting parts, the burrs hinder close contact between the parts and cause unnecessary gaps. If there are unnecessary gaps in the product, rainwater and contaminants may enter into them, accelerating the corrosion of parts. Therefore, in many cases, post-processing for deburring is required to ensure product quality and reliability.

【0003】[0003]

【発明が解決しようとする課題】ドリルを用いた孔あけ
加工において常にバリが発生するわけではなく、ワーク
の材質によってバリの出難いものと出易いものとがあ
る。バリの出易い材料としては、比較的軟質だが強靱な
金属材料、例えば航空機分野で多く使われているアルミ
合金、鋼、ステンレス鋼及びチタン合金等の強靱な難削
材料があげられる。これらの難削材料にドリル加工を施
した場合、材料の一部がその強靱性ゆえにワークの裏面
からドリル進行方向出側に盛り上がり、その部分が切削
時の摩擦熱の影響で変質又は硬化し孔の周囲にバリとし
て残存してしまう。かかる難削材料でバリが出易いの
は、主にドリルの切削能力に原因がある。というのも、
ドリル先端部の先端角や外周ネジレ刃の切削能力(特に
高速回転域での切削能力)の違いによって、副次的に形
成されるバリの大きさや形状に違いが生ずることが経験
的に知られており、この事実からも明らかである。
Burrs are not always generated during drilling using a drill, and some burrs are hard to come out and others are easy to come out depending on the material of the work. Examples of the material that easily generates burrs include relatively soft but tough metal materials, for example, tough hard-to-cut materials such as aluminum alloy, steel, stainless steel, and titanium alloy that are often used in the aviation field. When drilling is performed on these difficult-to-cut materials, part of the material swells from the back surface of the work in the direction in which the drill travels because of its toughness. Around the area as burrs. The reason that burrs are easily generated with such difficult-to-cut materials is mainly due to the cutting ability of the drill. Because
It is empirically known that the size and shape of secondary burrs may vary depending on the difference in the tip angle of the drill tip and the cutting ability of the outer peripheral twisting blade (particularly in the high-speed rotation range). It is clear from this fact.

【0004】本発明の目的は、従来からバリが出易いと
されてきた難削材料(ワーク)の孔あけ加工に用いた場
合でも、切削完了時には、ドリル進行方向出側にバリを
生じさせない、又は仮にバリが生じたとしても極めて小
さいものしか残さないドリルを提供することにある。
[0004] An object of the present invention is to prevent the occurrence of burrs on the exit side in the drill advancing direction when cutting is completed, even when the method is used for boring a difficult-to-cut material (work), which has conventionally been considered easy to produce burrs. Another object of the present invention is to provide a drill that leaves only extremely small burrs even if burrs occur.

【0005】[0005]

【課題を解決するための手段】本発明は、シャンクと、
所定の先端角が付与された先端部と、前記シャンク及び
先端部間に位置するドリル本体の外周面上に螺旋状に延
設された少なくとも1条の外周ネジレ刃とを備えたドリ
ルにおいて、前記外周ネジレ刃の一部分には、該ネジレ
刃の外径がドリルの先端部側からシャンク側に向かって
次第に大きくなる径変領域(B)が設定されると共に、
当該径変領域におけるネジレ刃部分の外径は、該ネジレ
刃の延設方向に沿って非直線的に又は滑らかな曲線を描
くように変化しており、その径変領域のネジレ刃部分が
ドリル径方向に対して傾斜角を持った斜め刃として機能
することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention comprises a shank,
A drill provided with a tip end provided with a predetermined tip angle, and at least one outer peripheral twisting blade spirally extended on an outer peripheral surface of the drill body located between the shank and the distal end; A diameter change region (B) in which the outer diameter of the torsion blade gradually increases from the tip end side of the drill toward the shank side is set in a part of the outer peripheral torsion blade,
The outer diameter of the torsion blade portion in the radius changing region changes so as to draw a non-linear or smooth curve along the extending direction of the torsion blade, and the torsion blade portion in the radius changing region has a drill. It functions as an oblique blade having an inclination angle with respect to the radial direction.

【0006】好ましくは、前記外周ネジレ刃は、前記径
変領域よりも先端部側に位置する小径領域(A)と、前
記径変領域(B)と、この径変領域よりもシャンク側に
位置する大径領域(C)とを備えており、前記大径領域
におけるネジレ刃の外径は、ワークに形成する孔の所望
径に設定され、前記小径領域におけるネジレ刃の外径
は、当該小径領域がワークを貫通した際にドリルの進行
方向出側に形成されるバリの大きさを補償し得るように
前記大径領域の外径よりも小さな径に設定されているこ
とを特徴とするものである。
Preferably, the outer peripheral torsion blade is located at a small diameter region (A) located on the distal end side of the diameter changing region, the diameter changing region (B), and at a shank side of the diameter changing region. The outer diameter of the torsion blade in the large diameter region is set to a desired diameter of a hole formed in the work, and the outer diameter of the torsion blade in the small diameter region is set to the small diameter. The diameter is set to be smaller than the outer diameter of the large-diameter area so as to compensate for the size of burrs formed on the exit side in the traveling direction of the drill when the area penetrates the workpiece. It is.

【0007】更に好ましくは、ドリルの回転時において
前記径変領域のネジレ刃部分は、略円錐台又はくびれ円
錐台の周面に相当する軌跡を描くことを特徴とする。な
お、本発明のドリルにおいて、各々が前記径変領域を有
する複数条の外周ネジレ刃と、これらの外周ネジレ刃間
に設けられた複数条の切削屑排出溝とを備えてなること
は最も好ましい。
[0007] More preferably, when the drill is rotated, the torsion blade portion of the diameter changing region draws a locus corresponding to the peripheral surface of a substantially truncated cone or a truncated cone. In the drill of the present invention, it is most preferable that the drill includes a plurality of outer peripheral twisting blades each having the diameter changing region, and a plurality of cutting waste discharge grooves provided between these outer peripheral twisting blades. .

【0008】(作用の説明)外周ネジレ刃の一部分に設
定された径変領域(B)では、ネジレ刃の外径がドリル
の先端部側からシャンク側に向かって次第に大きくなっ
ているため、そのネジレ刃部分がドリル径方向に対して
傾斜角(図4のθ3参照)を持った斜め刃となる。ここ
でいう傾斜角とは、外周ネジレ刃についてのネジレ角
(図1のθ2参照)とは異なるものである。径変領域の
ネジレ刃部分が通常のネジレ角以外に前述のような傾斜
角を持つことで、ドリル回転時における当該ネジレ刃部
分の切削能力が高まり、ドリルがワークを貫通したとき
のバリの発生が抑制され得る。加えて、前記径変領域に
おけるネジレ刃部分の外径を、当該ネジレ刃の延設方向
に沿って非直線的に又は滑らかな曲線を描くように変化
させることで、径変領域におけるネジレ刃部分の外径変
化が直線的な場合に比べ、切削能力が飛躍的に高まり、
バリの発生がより一層抑制される。
(Explanation of Operation) In the radius changing area (B) set in a part of the outer peripheral twisting blade, the outer diameter of the twisting blade gradually increases from the tip end side of the drill toward the shank side. The torsion blade portion is an oblique blade having an inclination angle (see θ3 in FIG. 4) with respect to the drill radial direction. The inclination angle here is different from the twist angle of the outer peripheral twist blade (see θ2 in FIG. 1). Since the torsion blade portion in the diameter change area has the above-mentioned inclination angle in addition to the normal torsion angle, the cutting ability of the torsion blade portion during drill rotation is increased, and burrs are generated when the drill penetrates the work Can be suppressed. In addition, by changing the outer diameter of the torsion blade portion in the radius change region to draw a non-linear or smooth curve along the extending direction of the torsion blade, the torsion blade portion in the radius change region The cutting ability is dramatically increased compared to the case where the outside diameter change is linear,
Burrs are further suppressed.

【0009】径変領域よりも先端部側に小径領域(A)
を設定したドリルでは、その小径領域がワークを貫通し
た際にドリルの進行方向出側にバリが形成され得るが、
小径領域よりも更に切削能力の高い径変領域(B)のネ
ジレ刃部分が、小径領域によってあけられた孔の内側を
削りつつ貫通方向に進行する。このため、径変領域がワ
ークを貫通するまでに前述のバリは効果的に除去され、
ワークにはバリのない状態で所望径の孔が形成される。
このように小径領域が形成するバリを、小径領域と大径
領域とをつなぐ径変領域のネジレ刃の作用で完全に除去
し得る程度に、小径領域と大径領域との間で外径差が存
在するということが、前記「バリの大きさを補償し得
る」の意味である。
A small-diameter region (A) closer to the tip end than the diameter-varying region
In the drill set with, when the small diameter area penetrates the work, burrs may be formed on the exit side of the drill in the traveling direction,
The torsion blade portion of the diameter change region (B) having a higher cutting ability than the small diameter region advances in the penetrating direction while shaving the inside of the hole formed by the small diameter region. For this reason, the above-mentioned burrs are effectively removed until the diameter change region penetrates the work,
A hole having a desired diameter is formed in the work without burrs.
The outer diameter difference between the small-diameter region and the large-diameter region is such that the burr formed by the small-diameter region can be completely removed by the action of the torsion blade in the variable-diameter region that connects the small-diameter region and the large-diameter region. Is the meaning of “can compensate for the size of burrs”.

【0010】なお、本件ドリルの上記構造的特徴に基づ
けば、ドリルの回転時において径変領域のネジレ刃部分
は、略円錐台又はくびれ円錐台の周面に相当する軌跡を
描くことになる。
[0010] Based on the above-mentioned structural characteristics of the present drill, when the drill is rotated, the torsion blade portion of the diameter changing region draws a locus corresponding to the peripheral surface of a substantially truncated cone or a truncated cone.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態たるソ
リッドドリルについて説明する。図1及び図2に示すよ
うに、ドリルは、回転駆動機構(図示略)に本ドリルを
装着するための基端部としてのシャンク11(一部のみ
図示)と、先端部12と、両者間に位置するドリル本体
20とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid drill according to one embodiment of the present invention will be described below. As shown in FIGS. 1 and 2, the drill includes a shank 11 (only part of which is shown) as a base end for mounting the drill on a rotary drive mechanism (not shown), and a distal end 12. And a drill body 20 located at

【0012】ドリル本体20には、ドリルの中心軸線L
の周りを螺旋状に延びる2条のネジレ溝21,22が形
成され、その結果として二つのネジレ溝間には、同じく
中心軸線Lの周りを螺旋状に延びる2条のネジレ肉部
(又はランド)23,24が設けられている。2条のネ
ジレ溝21,22は中心軸線Lに対して180度の位相
関係にあり且つ各溝の溝幅は等しい。同様に、2条のネ
ジレ肉部23,24も中心軸線Lに対して180度の位
相関係にあり且つ各肉部の幅(ランド幅)は等しい。つ
まり、2条のネジレ溝21,22も、2条のネジレ肉部
23,24もお互いに等価な存在である。
The drill body 20 has a central axis L of the drill.
Are formed, and as a result, between the two torsion grooves, there are two torsion portions (or lands) that also spirally extend around the central axis L. ) 23 and 24 are provided. The two spiral grooves 21 and 22 have a phase relationship of 180 degrees with respect to the center axis L, and the width of each groove is equal. Similarly, the two torsion portions 23 and 24 also have a phase relationship of 180 degrees with respect to the central axis L, and the width (land width) of each portion is equal. That is, the two torsion grooves 21 and 22 and the two torsion portions 23 and 24 are equivalent to each other.

【0013】先端部12には、二つの先端面12a,1
2bが傾斜形成され、これら先端面12a,12bによ
って所定の先端角θ1が付与されている。先端角θ1の
好ましい範囲は90度〜135度である。第1の先端面
12aの後方周縁は第1のネジレ肉部23の先端縁に連
続し、第2の先端面12bの後方周縁は第2のネジレ肉
部24の先端縁に連続する。なお、図2では、先端部1
2のシンニング形状がS形シンニングとなっているが、
X形シンニングとしてもよい。
The distal end portion 12 has two distal end surfaces 12a, 1a.
2b is inclined, and a predetermined tip angle θ1 is given by the tip surfaces 12a and 12b. A preferred range of the tip angle θ1 is 90 degrees to 135 degrees. The rear peripheral edge of the first distal end surface 12a is continuous with the distal end edge of the first twisted wall portion 23, and the rear peripheral edge of the second distal end surface 12b is continuous with the distal end edge of the second twisted wall portion 24. In addition, in FIG.
Although the thinning shape of No. 2 is S-shaped thinning,
X-type thinning may be used.

【0014】図1,図2及び図4に示すように、二つの
ネジレ肉部23,24の各々には、外周面25と、当該
外周面25よりも半径方向外側に突出したマージンを構
成する突条部26とが形成されている。各突条部26
は、外周面25の一側縁に位置すると共にネジレ肉部の
延設方向全体にわたって延びている。そして、各突条部
26のドリル回転方向前側のエッジ27がドリルの外周
切れ刃となる。つまり各ネジレ肉部23,24に沿って
形成された突条部26は、ドリルの回転時に外周ネジレ
刃として機能する。図1に示すように、外周ネジレ刃2
6は、その延設方向とドリルの中心軸線Lとの間で所定
のネジレ角θ2をなす。尚、前記ネジレ溝21,22
は、外周ネジレ刃26の切削作用によって生じた切削屑
を外部に排出するための切削屑排出溝として機能する。
As shown in FIGS. 1, 2 and 4, each of the two torsion portions 23, 24 has an outer peripheral surface 25 and a margin projecting radially outward from the outer peripheral surface 25. A ridge 26 is formed. Each ridge 26
Is located at one side edge of the outer peripheral surface 25 and extends over the entire extending direction of the torsion portion. Then, the edge 27 on the front side in the drill rotation direction of each ridge portion 26 becomes the outer peripheral cutting edge of the drill. That is, the ridges 26 formed along the twisted portions 23 and 24 function as outer peripheral twisting blades when the drill rotates. As shown in FIG.
6 forms a predetermined torsion angle θ2 between the extending direction and the center axis L of the drill. The torsion grooves 21 and 22
Functions as a chip discharge groove for discharging chips generated by the cutting action of the outer peripheral twisting blade 26 to the outside.

【0015】各突条部の上面は外周ネジレ刃26の外周
面に相当し、又、中心軸線Lから突条部上面までの距離
(より詳しくは中心軸線Lから放射方向に測定した場合
の切れ刃27までの距離)が、外周ネジレ刃26の半径
Rに相当する。ここで、中心軸線Lからネジレ肉部の外
周面25までの放射方向の距離をrとし、その外周面2
5からの突条部26の突出量をhとすると、R=r+h
の関係が成立する。
The upper surface of each protruding portion corresponds to the outer peripheral surface of the outer peripheral torsion blade 26, and the distance from the central axis L to the upper surface of the protruding portion (more specifically, the cut when measured in the radial direction from the central axis L). (The distance to the blade 27) corresponds to the radius R of the outer peripheral torsion blade 26. Here, the radial distance from the central axis L to the outer peripheral surface 25 of the torsion portion is defined as r, and the outer peripheral surface 2
Assuming that the amount of protrusion of the ridge portion 26 from No. 5 is h, R = r + h
Is established.

【0016】本実施形態のドリルの主たる特徴は、外周
ネジレ刃26の形状及び寸法の設定にある。この点を説
明すると図1に示すように、外周ネジレ刃26は、先端
部側から基端部側に向かって三つの領域A,B及びCに
区分される。小径領域としての領域Aの軸方向長さは5
mm〜15mm程度、径変領域としての領域Bの軸方向
長さも5mm〜15mm程度、大径領域としての領域C
の軸方向長さは外周ネジレ刃の全軸方向長さから領域A
及びBの軸方向長さを差し引いた長さであり、一般には
領域A又はB単独の長さよりも長く設定される。
The main feature of the drill according to the present embodiment lies in the setting of the shape and dimensions of the outer peripheral twisting blade 26. To explain this point, as shown in FIG. 1, the outer peripheral twisting blade 26 is divided into three regions A, B, and C from the distal end side to the proximal end side. The axial length of the area A as the small diameter area is 5
mm to 15 mm, the axial length of the area B as the diameter changing area is also about 5 mm to 15 mm, and the area C as the large diameter area.
Is the area A from the total axial length of the outer peripheral twisting blade.
And B is the length obtained by subtracting the length in the axial direction, and is generally set to be longer than the length of the region A or B alone.

【0017】図3のグラフは、1条のネジレ肉部及び外
周ネジレ刃26の径(又は高さ)をその延設方向に沿っ
て測定したときの径変化の様子を概念的に示す。この図
3に示すように、領域Aでは、中心軸線Lから外周面2
5までの距離r1は一定で且つ突条部26の突出量h1
も一定である。その結果、領域Aにおけるネジレ刃部の
半径R1(R1=r1+h1)は一定となる。他方、領
域Cでは、中心軸線Lから外周面25までの距離r3は
一定で且つ突条部26の突出量h3も一定である。その
結果、領域Cにおけるネジレ刃部の半径R3(R3=r
3+h3)は一定となっている。但し、r1<r3,h
1<h3に設定されており、結果的にR1<R3となっ
ている。つまり、領域Aは領域Bよりも先端部側に位置
して相対的に小径な小径領域を構成し、領域Cは領域B
よりもシャンク側に位置して相対的に大径な大径領域を
構成している。なお、領域Cの半径R3と領域Aの半径
R1との差(R3−R1)は、0.1mm〜1.0mm
程度とすることが好ましい(本実施形態では、(R3−
R1)差を約0.4mmに設定)。
FIG. 3 is a graph conceptually showing a change in the diameter when the diameter (or height) of the single twisted portion and the outer peripheral twisted blade 26 is measured along the extending direction. As shown in FIG. 3, in the region A, the outer peripheral surface 2
5 is constant and the protrusion amount h1 of the ridge 26
Is also constant. As a result, the radius R1 (R1 = r1 + h1) of the torsion blade portion in the region A becomes constant. On the other hand, in the region C, the distance r3 from the center axis L to the outer peripheral surface 25 is constant, and the protrusion amount h3 of the ridge 26 is also constant. As a result, the radius R3 of the torsion blade portion in the region C (R3 = r3
3 + h3) is constant. However, r1 <r3, h
1 <h3, and as a result, R1 <R3. That is, the area A is located on the tip side with respect to the area B and forms a relatively small diameter area, and the area C is the area B
A relatively large diameter region is located on the shank side. The difference (R3-R1) between the radius R3 of the region C and the radius R1 of the region A is 0.1 mm to 1.0 mm.
(In this embodiment, (R3-
R1) Set the difference to about 0.4 mm).

【0018】領域Aと領域Cとの間に位置する領域B
は、両者の橋渡しをする径変領域である。図3に示すよ
うに領域Bにおいては、中心軸線Lから外周面25まで
の距離r2は一定ではなく変化している。具体的には距
離r2は、シャンク側に向かうにつれてr1からr3へ
と直線的に増大している(r1<r2<r3)。又、突
条部26の突出量h2も一定ではなく変化している。具
体的には突出量h2は、シャンク側に向かうにつれてh
1からh3へと滑らかに略S字状のカーブ(曲線)を描
きながら増大している(h1<h2<h3)。その結
果、R2=r2+h2で表される領域Bにおけるネジレ
刃部の半径R2も、R1からR3へと滑らかに略S字状
のカーブを描きながら増大する(R1<R2<R3)。
領域Bでのかかる状況を描いたのが図4の部分斜視図で
ある。この図4では、領域Bにおける外周ネジレ刃26
の形状がイメージしやすいように誇張されており、各部
の実際の形状や寸法は図4のように極端ではない。
A region B located between the region A and the region C
Is a diameter change region bridging the two. As shown in FIG. 3, in the region B, the distance r2 from the central axis L to the outer peripheral surface 25 is not constant but changes. Specifically, the distance r2 linearly increases from r1 to r3 toward the shank side (r1 <r2 <r3). Also, the protrusion amount h2 of the ridge portion 26 is not constant but changes. Specifically, the amount of protrusion h2 becomes h as it goes to the shank side.
It increases while drawing a substantially S-shaped curve (curve) from 1 to h3 (h1 <h2 <h3). As a result, the radius R2 of the torsion blade portion in the region B represented by R2 = r2 + h2 also increases while smoothly drawing a substantially S-shaped curve from R1 to R3 (R1 <R2 <R3).
FIG. 4 is a partial perspective view illustrating such a situation in the area B. In FIG. 4, the outer peripheral twisting blade 26 in the region B is shown.
Are exaggerated to make it easier to imagine, and the actual shapes and dimensions of each part are not extreme as shown in FIG.

【0019】領域Bにおける外周ネジレ刃26の形状及
び寸法の傾向性がおよそ図4に示すようなものであるた
め、外周ネジレ刃26の上面及び切れ刃27は、外周ネ
ジレ刃の延設方向に沿って連続的且つ滑らかに変化する
勾配又は傾斜角を持つにいたる。ここで言う「勾配又は
傾斜角」とは、図4に示すように、外周ネジレ刃26の
上面(又は切れ刃27)上の一点において、外周ネジレ
刃の延設方向に沿った接線がドリル径方向の仮想線とな
す角度θ3を指す。領域Bにおける傾斜角θ3は非直角
(但し、0度<θ3<90度)であるのに対し、領域A
及びCにおける角度θ3は直角(90度)となってい
る。このように、領域Bの外周ネジレ刃上面は、領域A
の外周ネジレ刃上面と領域Cの外周ネジレ刃上面とを連
続的且つ滑らかにつなぐ湾曲面を提供する。そして、そ
のような湾曲面の一側縁に位置するエッジとしての切れ
刃27も、領域Aの切れ刃と領域Cの切れ刃とを連続的
且つ滑らかにつなぐ。
Since the tendency of the shape and size of the outer peripheral torsion blade 26 in the region B is as shown in FIG. 4, the upper surface of the outer peripheral torsion blade 26 and the cutting edge 27 extend in the extending direction of the outer peripheral torsion blade. Along with a continuously or smoothly varying gradient or angle of inclination. As used herein, the term “gradient or angle of inclination” refers to, as shown in FIG. 4, that at a point on the upper surface (or the cutting edge 27) of the outer peripheral torsion blade 26, the tangent along the extending direction of the outer peripheral torsion blade is the drill diameter Indicates an angle θ3 formed with the virtual line of the direction. The tilt angle θ3 in the area B is a non-perpendicular angle (0 ° <θ3 <90 °), while the tilt angle θ3 in the area A
And C, the angle θ3 is a right angle (90 degrees). As described above, the upper surface of the outer peripheral twisting blade in the area B is in the area A
And a curved surface that continuously and smoothly connects the upper surface of the outer peripheral torsion blade of FIG. The cutting edge 27 as an edge located on one side edge of such a curved surface also continuously and smoothly connects the cutting edge in the region A and the cutting edge in the region C.

【0020】このような形状的特徴を持つドリルを中心
軸線Lの周りで回転させた場合に、前記領域A,B及び
Cの切れ刃27が描く回転軌跡を概念的に(且つ誇張し
て)示したのが図5である。図5からわかるように、領
域Aにある切れ刃の回転軌跡は半径R1の円筒面状とな
り、領域Cにある切れ刃の回転軌跡も半径R3の円筒面
状となる。これに対し、領域Bの半径R2は図3のグラ
フに示すような変化傾向を持つことから、領域Bの切れ
刃の回転軌跡はくびれた円錐台の湾曲周面状となる。つ
まり、領域Bの外周ネジレ刃26は、ドリル径方向に対
してある種の傾斜角又は勾配を持った斜め刃として機能
する。そして、このことがドリルの切削能力を飛躍的に
高め、バリのない(又はバリの極めて少ない)孔あけ加
工を可能とする。
When the drill having such a shape characteristic is rotated around the central axis L, the rotation trajectories drawn by the cutting edges 27 in the regions A, B and C are conceptually (and exaggerated). FIG. 5 shows this. As can be seen from FIG. 5, the rotation trajectory of the cutting edge in the region A has a cylindrical surface with a radius R1, and the rotation trajectory of the cutting edge in the region C has a cylindrical surface with a radius R3. On the other hand, since the radius R2 of the region B has a changing tendency as shown in the graph of FIG. 3, the rotation trajectory of the cutting edge in the region B is a curved peripheral surface of a narrowed truncated cone. That is, the outer peripheral twisting blade 26 in the region B functions as an oblique blade having a certain inclination angle or inclination with respect to the drill radial direction. This greatly increases the cutting ability of the drill, and enables drilling without burrs (or extremely few burrs).

【0021】図6は、本実施形態のドリルを用いてワー
クWに孔あけ加工を施す場合の手順を示す。孔あけに際
して、ドリルはその中心軸線LがワークWの表面に対し
て垂直となるように配置され、その先端部がワークWの
被切削箇所に当てられる。ドリルを回転させながらワー
クWに向かって進行させると、図6(A)に示すよう
に、まずドリルの小径領域AがワークWを貫通し、ワー
クWに内直径D1(D1=2・R1)の仮孔31があけ
られる。このとき、ワークWの下面側で仮孔31の周縁
部にバリ32を生じることがある。なお、ドリルの小径
領域Aでまず仮孔31をあけるのは、切削開始初期にお
けるドリルの駆動トルクを小さくしつつワークWに対す
る食い付きを確保するためであり、その副作用として一
時的にバリ32が生ずることはやむを得ない。
FIG. 6 shows a procedure for drilling a workpiece W using the drill of the present embodiment. When drilling, the drill is arranged so that its central axis L is perpendicular to the surface of the work W, and the tip of the drill is applied to the cut portion of the work W. When the drill is advanced toward the work W while rotating, the small diameter region A of the drill first penetrates the work W as shown in FIG. 6A, and the work W has an inner diameter D1 (D1 = 2 · R1). Is formed. At this time, burrs 32 may be formed on the periphery of the temporary hole 31 on the lower surface side of the work W. The reason why the temporary hole 31 is first drilled in the small diameter region A of the drill is to secure the bite to the work W while reducing the driving torque of the drill at the beginning of cutting, and as a side effect thereof, the burr 32 is temporarily formed. It is unavoidable to happen.

【0022】その後更にドリルを進行させると、その進
行と共に径変領域Bの外周ネジレ刃26が前記仮孔31
の内側を径方向に削っていきその内径を次第に拡大させ
る。その過程で、前記バリ32も併せて削り取られる。
ドリルの大径領域CがワークWを貫通する頃には図6
(B)に示すように、バリ32も完全に除去され、ワー
クWには所望直径D2(D2=2・R3)の孔33だけ
が形成される。尚、図6から明らかなように、大径領域
Cの半径R3と小径領域Aの半径R1との差(R3−R
1)は、小径領域Aの貫通によってワークWにできるバ
リ32の大きさを補償し得るように設定することが必要
である。つまり、小径領域Aの切削作用で作られるバリ
32がどの程度の大きさになるかは、ワークWの材質に
よる影響が大きいため、ワークWの構成材料の特性に応
じて、前記径差(R3−R1)を設定することになる。
Thereafter, when the drill is further advanced, the outer peripheral torsion blade 26 of the diameter change region B is simultaneously moved with the advancement of the temporary hole 31.
Is cut in the radial direction to gradually increase the inner diameter. In the process, the burr 32 is also scraped off.
When the large-diameter region C of the drill penetrates the workpiece W, FIG.
As shown in (B), the burr 32 is completely removed, and only the hole 33 having the desired diameter D2 (D2 = 2 · R3) is formed in the work W. As is apparent from FIG. 6, the difference (R3-R) between the radius R3 of the large diameter region C and the radius R1 of the small diameter region A is obtained.
1) needs to be set so that the size of the burr 32 formed on the work W by the penetration of the small diameter region A can be compensated. That is, since the size of the burr 32 formed by the cutting action in the small diameter region A is greatly affected by the material of the work W, the diameter difference (R3) is determined according to the characteristics of the constituent material of the work W. −R1).

【0023】(効果)本実施形態によれば以下のような
効果を得ることができる。ワークWに対し、ドリルの小
径領域Aの外周ネジレ刃26で仮孔31をあけることに
続いて、前述のように構成された径変領域Bの外周ネジ
レ刃26の切削作用で仮孔31の内径拡大を図りながら
併せてバリ32を除去することができる。このため、ド
リルの進行方向出側において、孔33の周縁部にバリが
ほとんどできず、孔あけ加工完了当初から、孔33の周
縁部をワークWの表面と面一できれいな仕上がりとする
ことができる。従って、本件ドリルを用いれば、従来例
で述べたような、部品の組立て結合時に部品間の密着を
阻害したり、不要な隙間を作り出すといった不都合を生
じない。
(Effects) According to the present embodiment, the following effects can be obtained. Subsequent to making a temporary hole 31 in the workpiece W with the outer peripheral torsion blade 26 in the small diameter region A of the drill, the temporary outer hole 31 is cut by the cutting action of the outer peripheral torsion blade 26 in the diameter change region B configured as described above. The burr 32 can also be removed while increasing the inner diameter. For this reason, almost no burrs are formed on the periphery of the hole 33 on the exit side in the traveling direction of the drill, and from the beginning of the drilling process, it is possible to make the periphery of the hole 33 flush with the surface of the workpiece W and a clean finish. it can. Therefore, the use of the present drill does not cause such inconveniences as hindering close contact between parts and creating unnecessary gaps at the time of assembling and connecting parts as described in the conventional example.

【0024】特に、ドリルの径変領域Bにおける外周ネ
ジレ刃26の半径R2を、図3に示すごとく滑らかな
(S字状)曲線を描くように設定したので、径変領域B
における外周ネジレ刃26は、通常のネジレ角θ2以外
に前記傾斜角θ3を持つ。それ故、ドリルの回転時にお
いて径変領域Bの外周ネジレ刃26は、斜め刃としての
切削能力が飛躍的に向上し、領域BがワークWを貫通す
る過程で貫通孔の周縁部に新たなバリを発生させない。
なお、領域Bにおける半径R2の変化のさせ方として
(S字)曲線状ではなく直線状とすることも可能である
が、その場合には傾斜角θ3が領域Bの全体にわたって
同一角度となり、領域Aとのつなぎ部分および領域Cと
のつなぎ部分において、傾斜角θ3の変化がぎこちなく
不連続又は段階的となってしまう。この点、本実施形態
では、領域Bにおける半径R2の設定を図3に示すごと
く滑らかな(S字)曲線状としたので、領域A又は領域
Cとのつなぎ部分における傾斜角θ3の変化が無理なく
スムーズであり、そのために、半径R2の変化を直線状
とした場合に比較して切削能力が本質的に高まり、バリ
のより出難いドリルとなる。
In particular, since the radius R2 of the outer peripheral torsion blade 26 in the diameter change region B of the drill is set so as to draw a smooth (S-shaped) curve as shown in FIG.
Has an inclination angle θ3 in addition to the normal twist angle θ2. Therefore, at the time of rotation of the drill, the cutting ability of the outer peripheral twisting blade 26 of the diameter changing region B as a diagonal blade is remarkably improved, and a new edge is formed on the periphery of the through hole in the process of the region B penetrating the workpiece W. Does not generate burrs.
Note that the radius R2 in the region B may be changed from a (S-shaped) curve to a straight line instead of a curved line. In this case, the inclination angle θ3 becomes the same angle over the entire region B, At the portion connected to A and the portion connected to the region C, the change of the inclination angle θ3 is discontinuously or stepwise. In this regard, in the present embodiment, since the setting of the radius R2 in the region B is set to a smooth (S-shaped) curve as shown in FIG. 3, it is impossible to change the inclination angle θ3 at the portion connected to the region A or the region C. Therefore, the drill has a substantially higher cutting ability as compared with a case where the change in the radius R2 is linear, resulting in a drill with less burrs.

【0025】本実施形態のドリルは、特に航空機用部品
の孔あけ加工に最適である。航空機の場合、1機あたり
数十万箇所にも及ぶ結合部位(例えば、ネジ・ボルト締
結部、リベット打鋲結合部)があり、そのためのドリル
孔加工を必要とする。これら非常に多数の結合部位の一
部であっても、前述の如きバリが除去されないまま残存
していると、そこが機械的な脆弱点となり航空機の安全
上の重大な欠陥となる虞がある。しかし、ドリルによる
孔加工の必要箇所が数十万箇所ともなれば、その全てに
対して別途バリ取り加工を施し万全を期すことは実際上
困難である。とすれば、そもそもバリの出ないドリルを
用いることこそが、根本的な安全対策であると言える。
こうした実状に照らせば、本件ドリルの有用性は極めて
高い。
The drill according to the present embodiment is particularly suitable for drilling a part for an aircraft. In the case of an aircraft, there are hundreds of thousands of connection parts (for example, screw / bolt connection parts, rivet driving connection parts) per aircraft, and drilling for them is required. Even if a part of these very large number of binding sites remains without removing the burrs as described above, there is a possibility that the burrs become mechanical vulnerabilities and become serious defects in aircraft safety. . However, if the number of required holes for drilling reaches several hundred thousand, it is practically difficult to perform deburring on all of them to ensure completeness. Therefore, it can be said that the use of a drill that does not produce burrs is the fundamental safety measure.
In view of these circumstances, the usefulness of the drill is extremely high.

【0026】また、バリが出ないという本件ドリルの特
徴は、部品の製造コストを大幅に低減する。その理由の
一つとしては、バリが出ないためにバリ取りのための後
加工が不要になるということが当然あげられる。それの
みならず、部品等の加工作業の現時点での自動化レベル
の低さ(中途半端さ)という事情がある。すなわち、各
種産業分野では飛躍的なコスト低減を図るため、作業の
無人化・ロボット化が推進されており、孔あけ加工にお
いても自動穿孔ロボットや数値制御付きドリルマシン等
が積極導入されている。しかしながら、孔あけ加工自体
は自動化が進んでも、バリのように、そもそも発生予測
が困難でしかもそのときどきにおいて形状が一定しない
ような代物に対し、全て自動制御で対応することは技術
的に極めて困難という実状がある。それ故、孔あけ時に
バリが発生するような状況では、人の手によってバリを
除去する作業が必然的に必要となってしまい、無人化・
ロボット化によるコスト低減も結局計画倒れということ
になる。このような実状に照らせば、バリの出ないドリ
ルは、単にバリ取りのための後加工を不要とするという
以上に、部品加工分野での自動化による効率化達成のた
めの必須アイテムとなるものである。
Further, the feature of the drill of the present invention that no burrs are formed greatly reduces the manufacturing cost of parts. One of the reasons is that post-processing for deburring is unnecessary because no burrs are formed. In addition, there is a situation that the level of automation of machining operations for parts and the like is currently low (halfway). That is, in various industrial fields, in order to drastically reduce costs, unmanned operations and robotization are being promoted, and in drilling, automatic drilling robots and drill machines with numerical control are actively introduced. However, even though the drilling process itself is becoming more automated, it is technically extremely difficult to automatically control all types of burrs, such as burrs, whose occurrence is difficult to predict in the first place and whose shape is not constant at that time. There is a fact that. Therefore, in a situation where burrs are generated when drilling holes, the work of removing burrs by hand is inevitably required, and unmanned
Cost reduction due to robotization will eventually result in plan collapse. In light of this situation, drills that do not produce burrs are an essential item for achieving efficiency through automation in the parts processing field, rather than simply eliminating the need for post-processing for deburring. is there.

【0027】(変更例)上記実施形態のドリルにおい
て、外周ネジレ刃を備えたネジレ肉部及びネジレ溝の数
は2条に限定されるものではなく、3条以上の複数条で
あってもよい。
(Modification) In the drill according to the above-described embodiment, the number of the torsion portion and the torsion groove provided with the outer peripheral torsion blade is not limited to two, but may be three or more. .

【0028】また、径変領域Bにおけるネジレ刃の外径
の変化傾向を、図3に示す曲線R2に代えて、図3に破
線で示すような円弧に近い曲線R4に沿った変化傾向と
してもよい。
The change tendency of the outer diameter of the torsion blade in the diameter change area B may be changed along a curve R4 close to an arc as shown by a broken line in FIG. 3 instead of the curve R2 shown in FIG. Good.

【0029】[0029]

【発明の効果】以上詳述したように本発明のドリルによ
れば、外周ネジレ刃の一部分に前述の如き径変領域を設
定したことで、難削材料の孔あけ加工に用いた場合でも
切削完了時には、ドリル進行方向出側にバリを生じさせ
ることがなく、又は仮にバリが生じたとしても極めて小
さなものしか残さないという優れた効果を奏する。
As described above in detail, according to the drill of the present invention, since the above-mentioned diameter changing region is set in a part of the outer peripheral twisting blade, cutting can be performed even when used for drilling difficult-to-cut materials. At the time of completion, there is an excellent effect that no burrs are generated on the exit side in the drill advancing direction, or even if burrs are generated, only extremely small burrs are left.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ドリルのほぼ全体(シャンクの一部は省略)を
示す正面図。
FIG. 1 is a front view showing substantially the entire drill (a part of a shank is omitted).

【図2】ドリルの先端部側から見た側面図。FIG. 2 is a side view of the drill seen from the tip end side.

【図3】ドリルの径およびネジレ刃突出量の変化傾向を
示すグラフ。
FIG. 3 is a graph showing a change tendency of a diameter of a drill and an amount of protrusion of a torsion blade.

【図4】本発明の要部を誇張して示す斜視図。FIG. 4 is a perspective view showing an essential part of the present invention in an exaggerated manner.

【図5】ドリル回転時に外周ネジレ刃が描く軌跡を示す
斜視図。
FIG. 5 is a perspective view showing a locus drawn by the outer peripheral twisting blade when the drill rotates.

【図6】ワークに対する孔あけ手順を説明するための概
略図。
FIG. 6 is a schematic diagram for explaining a procedure for drilling a workpiece.

【図7】バリの主な態様を示す斜視図。FIG. 7 is a perspective view showing main aspects of burrs.

【符号の説明】[Explanation of symbols]

11…シャンク、12…先端部、20…ドリル本体、2
1,22…切削屑排出溝、25…外周面、26…外周ネ
ジレ刃、A…小径領域、B…径変領域、C…大径領域、
R1,R2,R3,R4…外周ネジレ刃の外径、θ1…
先端角、θ2…ネジレ角、θ3…ドリル径方向に対する
傾斜角。
11 ... shank, 12 ... tip, 20 ... drill body, 2
1, 22 ... chip discharge groove, 25 ... outer peripheral surface, 26 ... outer peripheral torsion blade, A ... small diameter area, B ... diameter change area, C ... large diameter area,
R1, R2, R3, R4 ... outer diameter of outer peripheral torsion blade, θ1 ...
Tip angle, θ2: twist angle, θ3: inclination angle with respect to the drill radial direction.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】シャンクと、所定の先端角が付与された先
端部と、前記シャンク及び先端部間に位置するドリル本
体の外周面上に螺旋状に延設された少なくとも1条の外
周ネジレ刃とを備えたドリルにおいて、 前記外周ネジレ刃の一部分には、該ネジレ刃の外径がド
リルの先端部側からシャンク側に向かって次第に大きく
なる径変領域(B)が設定されると共に、当該径変領域
におけるネジレ刃部分の外径は、該ネジレ刃の延設方向
に沿って非直線的に又は滑らかな曲線を描くように変化
しており、その径変領域のネジレ刃部分がドリル径方向
に対して傾斜角を持った斜め刃として機能することを特
徴とするドリル。
1. A shank, a tip portion having a predetermined tip angle, and at least one outer peripheral twisting blade spirally extending on an outer peripheral surface of a drill body located between the shank and the tip portion. In a drill provided with: a diameter change region (B) in which the outer diameter of the twisted blade gradually increases from the tip end side of the drill toward the shank side is set in a part of the outer circumferential twisted blade; The outer diameter of the torsion blade portion in the radius changing region changes so as to draw a non-linear or smooth curve along the extending direction of the torsion blade, and the torsion blade portion in the radius changing region has a drill diameter. A drill characterized by functioning as an oblique blade with an inclination angle to the direction.
【請求項2】前記外周ネジレ刃は、前記径変領域よりも
先端部側に位置する小径領域(A)と、前記径変領域
(B)と、この径変領域よりもシャンク側に位置する大
径領域(C)とを備えており、前記大径領域におけるネ
ジレ刃の外径は、ワークに形成する孔の所望径に設定さ
れ、前記小径領域におけるネジレ刃の外径は、当該小径
領域がワークを貫通した際にドリルの進行方向出側に形
成されるバリの大きさを補償し得るように前記大径領域
の外径よりも小さな径に設定されていることを特徴とす
る請求項1に記載のドリル。
2. The outer peripheral twisting blade is located at a tip end side of the radially variable region (A), at the radially variable region (B), and at a shank side of the radially variable region. A large-diameter region (C), the outer diameter of the torsion blade in the large-diameter region is set to a desired diameter of a hole formed in the work, and the outer diameter of the torsion blade in the small-diameter region is set to the small-diameter region. The diameter is set to be smaller than the outer diameter of the large-diameter area so as to compensate for the size of a burr formed on the exit side in the traveling direction of the drill when the workpiece penetrates the work. The drill according to 1.
【請求項3】ドリルの回転時において前記径変領域のネ
ジレ刃部分は、略円錐台又はくびれ円錐台の周面に相当
する軌跡を描くことを特徴とする請求項1又は2に記載
のドリル。
3. The drill according to claim 1, wherein, during rotation of the drill, the torsion blade portion of the diameter changing region draws a locus corresponding to a peripheral surface of a substantially truncated cone or a truncated cone. .
【請求項4】請求項1〜3に記載のドリルにおいて、各
々が前記径変領域を有する複数条の外周ネジレ刃と、こ
れらの外周ネジレ刃間に設けられた複数条の切削屑排出
溝とを備えてなることを特徴とするドリル。
4. The drill according to claim 1, wherein a plurality of outer peripheral twisting blades each having the diameter changing region, and a plurality of cutting waste discharge grooves provided between these outer peripheral spiral blades. A drill characterized by comprising:
JP2000166185A 2000-06-02 2000-06-02 Drill Pending JP2001341018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166185A JP2001341018A (en) 2000-06-02 2000-06-02 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166185A JP2001341018A (en) 2000-06-02 2000-06-02 Drill

Publications (1)

Publication Number Publication Date
JP2001341018A true JP2001341018A (en) 2001-12-11

Family

ID=18669543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166185A Pending JP2001341018A (en) 2000-06-02 2000-06-02 Drill

Country Status (1)

Country Link
JP (1) JP2001341018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871224B2 (en) * 2007-09-26 2011-01-18 Robert Bosch Gmbh Drill bit and reamer
JP2012000719A (en) * 2010-06-17 2012-01-05 Hitachi Tool Engineering Ltd Boring drill
US20120020751A1 (en) * 2010-07-23 2012-01-26 Suneel Bhaskar Bhat Multi-directionally fluted rotary cutting tool
US20120251253A1 (en) * 2011-03-30 2012-10-04 Makotoloy Co., Ltd. Cutting tool
US20140363249A1 (en) * 2011-12-27 2014-12-11 Sumitomo Electric Industries, Ltd. Drill

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871224B2 (en) * 2007-09-26 2011-01-18 Robert Bosch Gmbh Drill bit and reamer
JP2012000719A (en) * 2010-06-17 2012-01-05 Hitachi Tool Engineering Ltd Boring drill
US20120020751A1 (en) * 2010-07-23 2012-01-26 Suneel Bhaskar Bhat Multi-directionally fluted rotary cutting tool
US20120251253A1 (en) * 2011-03-30 2012-10-04 Makotoloy Co., Ltd. Cutting tool
CN102728870A (en) * 2011-03-30 2012-10-17 富士重工业株式会社 Cutting tool
CN102728870B (en) * 2011-03-30 2016-04-20 富士重工业株式会社 Carbon fibre fortified resin composite cutting tool
US9656328B2 (en) * 2011-03-30 2017-05-23 Fuji Jukogyo Kabushiki Kaisha Cutting tool
US20140363249A1 (en) * 2011-12-27 2014-12-11 Sumitomo Electric Industries, Ltd. Drill
JPWO2013099841A1 (en) * 2011-12-27 2015-05-07 住友電気工業株式会社 drill
US9308589B2 (en) * 2011-12-27 2016-04-12 Sumitomo Electric Industries, Ltd. Drill

Similar Documents

Publication Publication Date Title
JP2656934B2 (en) Drilling and thread cutting tool and its use
EP0953396A1 (en) Tap
JP6556229B2 (en) Drill and cutting method
US7377732B2 (en) Thread mill having flute twisting in direction opposite to rotating direction
JP5374502B2 (en) Drill, cutting insert and method of manufacturing workpiece
JP2008137125A (en) Drill
JPH06210508A (en) Drill bit
JP2010234462A (en) End mill
JP5383149B2 (en) Drill and cutting method
JPS62188616A (en) Rotary cutting tool
JP2572128B2 (en) Burnishing drill reamer for high speed and high feed
JP2008110453A (en) End mill
JP2001341018A (en) Drill
JP2009178787A (en) Drill, cutting insert for drill, and cutting method
JPH0258042B2 (en)
JP2005177891A (en) Drill
JPH11156811A (en) Auger for woodworking
JP4608981B2 (en) Drill
JPH11245119A (en) Drill tap
WO2020240892A1 (en) Cutting tool
JP3835902B2 (en) Drill
JPH10118845A (en) Drill tap
EP4155018A1 (en) Thread milling cutting tool
EP3520938A1 (en) Helical drill
JPH0615511A (en) Boring of tapered bore

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Written amendment

Effective date: 20040916

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20041108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050202

Free format text: JAPANESE INTERMEDIATE CODE: A02