JP2001337004A - Gas leak inspection system - Google Patents

Gas leak inspection system

Info

Publication number
JP2001337004A
JP2001337004A JP2000153998A JP2000153998A JP2001337004A JP 2001337004 A JP2001337004 A JP 2001337004A JP 2000153998 A JP2000153998 A JP 2000153998A JP 2000153998 A JP2000153998 A JP 2000153998A JP 2001337004 A JP2001337004 A JP 2001337004A
Authority
JP
Japan
Prior art keywords
gas
flow rate
leak
signal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000153998A
Other languages
Japanese (ja)
Inventor
Koichi Ueki
浩一 植木
Norio Niimura
紀夫 新村
Kazutaka Asano
一高 浅野
Jiro Mizukoshi
二郎 水越
Noboru Isono
昇 磯野
Fujio Hori
富士雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Gas Meter Co Ltd
Panasonic Holdings Corp
Original Assignee
Toyo Gas Meter Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Gas Meter Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toyo Gas Meter Co Ltd
Priority to JP2000153998A priority Critical patent/JP2001337004A/en
Publication of JP2001337004A publication Critical patent/JP2001337004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas leak inspection system capable of judging immediately and in a short time the gas leak occurring in supply side or use side in a gas concentration supply system and realizing with an easy work exactly monitoring whether or not the gas use state is safe. SOLUTION: A gas leak inspection device 17 is constituted of a leak inspection transmission/reception means 23 transmitting leak inspection demand signal to a master radio transmission/receiver 18 and receiving a flow velocity signal from a slave radio transmission/receiver 19, a flow velocity integration means 24 for obtaining instantaneous flow with the total of the received velocity signals, a velocity detection means 21 for measuring signal transmission time in gas flow path and detecting the flow velocity, a flow operation means 22 for obtaining instantaneous flow with the detected velocity signals, a leak judging means 25 for comparing the flow rate in supply side and total flow rate in use side and judging gas leak or not and an informing means 16 for informing the leakage when judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いて配
管内を流れる各種媒体、例えばLPガス等の流速を検出
しそのガス流速を利用して、ガスを1カ所の供給元から
使用先である集合住宅等の各ガス需要家先に分岐して供
給するガス集中供給システムにおいて、ガス配管の供給
元から各ガス需要家迄の一定範囲で、ガス漏洩を検査す
るガス漏洩検査システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the flow rate of various media, for example, LP gas, flowing in a pipe using ultrasonic waves, and utilizing the gas flow rate to supply gas from one supply source to a destination. The present invention relates to a gas leakage inspection system for inspecting gas leakage in a certain range from a gas pipe supply source to each gas consumer in a centralized gas supply system for branch supply to each gas consumer such as an apartment house.

【0002】[0002]

【従来の技術】従来のこの種のガス漏洩検査システム
は、例えば特開平9−184745号公報に示すような
ものが知られている。図3はこのガス漏洩検査装置の構
成原理を示すブロック図であり、図4はこのガス漏洩検
査装置を含むガス集中供給システム全体を示す説明図で
ある。
2. Description of the Related Art A conventional gas leakage inspection system of this type is known, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-184745. FIG. 3 is a block diagram showing a configuration principle of the gas leakage inspection device, and FIG. 4 is an explanatory diagram showing an entire gas centralized supply system including the gas leakage inspection device.

【0003】図3において、マンション1のボンベ置き
場2には複数本のLPガスボンベ3が配置され、ボンベ
置き場2からマンション1の各世帯4(マンションのよ
うな集合住宅の形態、個別の住宅でガスを一カ所より分
岐して供給される形態もある)へガス配管5がなされ、
マンション1全体にLPガスを供給するガス供給システ
ムが構成されている。
[0003] In FIG. 3, a plurality of LP gas cylinders 3 are arranged in a cylinder storage 2 of an apartment 1, and each household 4 of the apartment 1 (in the form of an apartment house such as an apartment) Is also branched and supplied from one place).
A gas supply system for supplying LP gas to the entire apartment 1 is configured.

【0004】LPガスボンベ3から供給されるガスは圧
力調整器6で一定のガス圧力に調整された後、ガスメー
タ7からガス配管5を経由して各世帯に送られる。ガス
メータ7は供給元であるLPガスボンベ3から供給され
るガス流量を検出する親メータである。又マンション1
の各世帯4には、その世帯でのガス使用流量を検出する
ガスメータ8が子メータとして設けてある。ガスメータ
7、8は例えば膜式タイプのものであり、ガスの流れに
応じて膜が駆動しその膜の動きに連動して磁石が回転
し、その回転する磁石がリードスイッチに近づいたり遠
ざかったりすることでリードスイッチがオンオフする。
即ち膜が1往復して磁石が1回転する度にリードスイッ
チがオンオフして1パルスの流量信号を発信し、その流
量信号をカウントしてガスの流量を検出(検針)してい
る。
The gas supplied from the LP gas cylinder 3 is adjusted to a constant gas pressure by a pressure regulator 6 and then sent from a gas meter 7 to each household via a gas pipe 5. The gas meter 7 is a parent meter that detects the flow rate of gas supplied from the LP gas cylinder 3 that is the supply source. Apartment 1
Each of the households 4 is provided with a gas meter 8 for detecting a gas usage flow rate in the household as a submeter. The gas meters 7, 8 are, for example, of a membrane type, in which the membrane is driven in accordance with the flow of gas, and the magnet rotates in conjunction with the movement of the membrane, and the rotating magnet approaches or moves away from the reed switch. This turns the reed switch on and off.
That is, each time the membrane makes one reciprocation and the magnet makes one rotation, the reed switch is turned on and off to transmit a one-pulse flow signal, and the flow signal is counted to detect the gas flow (meter reading).

【0005】上記のガス供給システムには、ガス配管5
でのガス漏洩を検査するため、マンション1の所定箇所
にガス漏洩検出装置9が設置されている。ガスメータ7
による検針値信号、各ガスメータ8による検針値信号が
CPUを中心とするコンピュータに入力されると、CP
Uは所定のガス漏洩判定処理プログラムにより、それら
の検針信号を用いてガス配管5(ガスメータ7からガス
メータ8迄の経路)におけるガス漏洩について判別す
る。ガス漏洩検出装置9はその判別結果を一般公衆回線
10を経由して、管理センタとしてのLPガス店11に
転送する。そして、LPガス店11に設けられている表
示部12が、前記ガス漏洩検出装置9からの判別結果の
情報を表示する。
The above gas supply system includes a gas pipe 5
A gas leak detection device 9 is installed at a predetermined location of the apartment 1 in order to inspect a gas leak in the apartment. Gas meter 7
When the meter reading signal from the gas meter 8 and the meter reading signal from each gas meter 8 are input to a computer centered on the CPU, the CP
U determines a gas leak in the gas pipe 5 (the path from the gas meter 7 to the gas meter 8) by using the meter reading signals according to a predetermined gas leak determination processing program. The gas leak detection device 9 transfers the determination result to the LP gas store 11 as a management center via the general public line 10. Then, the display unit 12 provided in the LP gas store 11 displays information of the determination result from the gas leak detection device 9.

【0006】図4において、ガス供給量検出手段13
は、各ガス使用先に向けて枝別れするガス配管の供給側
のガス供給量を検出し、ガス使用量検出手段14は、各
ガス使用先でのガス使用量を検出する。そして漏洩判別
手段15は各ガス使用先でのガス使用量の総和としての
全ガス使用量を求め、その全ガス使用量とガス供給量と
の比較から、ガス配管の供給側から各ガス使用先迄の間
にガスの漏洩があったか否かを判別する。漏洩判定する
と報知手段16で警告表示をする。つまり、漏洩判定の
検針時に全ガスメータ7、8で計測を開始してから所定
時間かけて検針量を求め、次に子側のガスメータ8のガ
スの総通過体積と親側のガスメータ7の通過体積との差
を求め、その差が所定値より大きい場合、ガスが漏れて
いると判断している。
In FIG. 4, gas supply amount detecting means 13
Detects the gas supply amount on the supply side of a gas pipe branched to each gas usage destination, and the gas usage detection means 14 detects the gas usage amount at each gas usage destination. Then, the leak determination means 15 obtains the total gas usage as the sum of the gas usage at each gas usage destination, and compares the total gas usage with the gas supply volume to determine the gas usage from the gas pipe supply side. It is determined whether or not the gas has leaked before this. When the leakage is determined, a warning is displayed by the notification means 16. In other words, the metering amount is calculated for a predetermined time after the measurement is started with all the gas meters 7 and 8 at the time of the meter reading of the leak determination, and then the total gas volume of the child gas meter 8 and the gas volume of the parent gas meter 7 are calculated. And if the difference is greater than a predetermined value, it is determined that gas is leaking.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、膜式メータによりガス流量を計測した場
合、ガス需要家が使用するガス器具は大小さまざまであ
るので、膜の計量部にガスがたまるまで時間を要し、長
い時間をかけて計測しないと誤差が大きくなるため、漏
洩判定に長時間かかるという問題があった。また、ある
需要家がガス器具の未使用時に他の需要家のガス器具使
用によって圧力変動が生じたときにガスが逆流しても、
逆流かどうか分からずにマイナス流量を総流量にカウン
トされて漏れがあるのに検出できないという問題もあっ
た。
However, in the above-mentioned conventional configuration, when the gas flow rate is measured by the membrane meter, gas appliances used by gas consumers vary in size, and the gas accumulates in the membrane measuring section. It takes a long time, and if the measurement is not performed over a long period of time, the error increases, and there is a problem that it takes a long time to determine the leakage. Also, even if the gas flows backward when a certain customer is not using the gas appliance and the pressure fluctuation occurs due to the use of the gas appliance of another customer,
There is also a problem that the negative flow rate is counted as the total flow rate without knowing whether the flow is backflow, and it cannot be detected even though there is a leak.

【0008】更にガス集団供給のため、全ガス需要家の
ガスメータ8から情報収集するために膨大なデータライ
ンの配線が必要になると共に、ガスメータの設置場所も
さまざまになるため工事性に難があるという問題もあっ
た。
Further, in order to supply the gas collectively, a huge amount of data lines are required to collect information from the gas meters 8 of all gas consumers, and the installation places of the gas meters are various, so that the workability is difficult. There was also a problem.

【0009】そこで本発明は上記のような問題点を解消
し、ガス集中供給システムにおいて、供給側または使用
側で生ずるガス漏れを素早く短時間で判定でき、ガス使
用状態が安全か否かを正確に監視できるガス漏洩検査を
容易な工事で実現できるガス漏洩検査システムを提供す
ることを目的とするものである。
Therefore, the present invention solves the above-mentioned problems, and in a centralized gas supply system, a gas leak occurring on a supply side or a use side can be determined quickly and in a short time, and it is possible to accurately determine whether a gas use state is safe. It is an object of the present invention to provide a gas leakage inspection system capable of realizing a gas leakage inspection that can be easily monitored by easy construction.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、供給側のガス流速を検出すると共に漏洩検
査要求信号を出力するガス漏洩検査装置と、このガス漏
洩検査装置に接続する親無線送受信機と、この親無線送
受信機を介した通信により、前記漏洩検査要求信号を受
信する複数の子無線送受信機とこの子無線送受信機に接
続され、使用側のガス流速を検出してその検出信号を前
記親無線送受信機に送信するガス遮断装置とを備えたガ
ス漏洩検査システムであって、ガス漏洩検査装置を、前
記親無線送受信機に漏洩検査要求信号を送信すると共
に、前記子無線送受信機からの流速信号を受信する漏洩
検査送受信手段と、この漏洩検査送受信手段で受信した
前記流速信号の総和より瞬時流量を求める流速総和演算
手段と、ガス流路内の信号伝搬時間を計測して流速を検
出する流速検出手段と、この流速検出手段で検出した流
速信号より瞬時流量を求める流量演算手段と、この流量
演算手段で求めた供給側の流量と、前記流速総和演算手
段で求めた使用側である各ガス需要家の総流量とを比較
し、ガス漏れかどうかを判定する漏洩判定手段と、この
漏洩判定手段で漏洩と判定すると漏洩通知をする報知手
段とから構成したことを特徴とする。
In order to achieve the above object, the present invention provides a gas leakage inspection device for detecting a gas flow velocity on a supply side and outputting a leakage inspection request signal, and is connected to the gas leakage inspection device. The master wireless transceiver and the communication via the master wireless transceiver are connected to the plurality of slave wireless transceivers and the slave wireless transceiver that receive the leak inspection request signal, and detect the gas flow rate on the use side by detecting A gas leakage inspection system comprising: a gas shut-off device that transmits the detection signal to the parent wireless transceiver. The gas leakage inspection device transmits a leak inspection request signal to the parent wireless transceiver, A leak test transmitting / receiving means for receiving a flow rate signal from the wireless transceiver; a flow rate sum calculating means for obtaining an instantaneous flow rate from a sum of the flow rate signals received by the leak test transmitting / receiving means; A flow rate detecting means for measuring a signal propagation time to detect a flow rate; a flow rate calculating means for obtaining an instantaneous flow rate from a flow rate signal detected by the flow rate detecting means; a supply-side flow rate determined by the flow rate calculating means; A leak determination unit that compares the total flow rate of each gas consumer on the usage side obtained by the sum calculation unit to determine whether there is a gas leak, and a notification unit that notifies a leak when the leak determination unit determines that there is a leak. It is characterized by comprising.

【0011】本発明によれば、供給側の漏洩検査送受信
手段より漏洩検査要求信号を使用側の子無線送受信機に
送信すると、一斉にガス漏洩検査装置で供給側の流速を
計測すると同時に、子無線送受信機に接続されたガス遮
断装置で各需要家で使用しているガス流速を検出し、そ
の流速信号を親無線送受信機に送信し、流速総和演算手
段で使用側の全流速を求め、漏洩判定手段で供給側の流
速から求めた瞬時流量と需要家側の全流速より求めた瞬
時流量とを比較し、ガス漏洩の有無を判定する。したが
って、流量計測のために長時間を要することなくガス漏
洩の判定を精度よく正確にできると共に、ガス事業者や
ガス需要家に警告を促すことができ、またガス配管の経
時変化を監視できるので、安全性、信頼性が向上する。
その上、使用側の全需要家と供給側のガス漏洩検査装置
を無線送受信機で情報交換するため配線工事がなく、工
事性を向上させることができる。
According to the present invention, when the leakage inspection request signal is transmitted from the leakage inspection transmission / reception means on the supply side to the child wireless transceiver on the use side, the gas leakage inspection device simultaneously measures the flow velocity on the supply side and simultaneously transmits the child inspection signal. The gas flow rate used by each customer is detected by the gas shutoff device connected to the wireless transceiver, the flow rate signal is transmitted to the parent wireless transceiver, and the total flow rate on the use side is obtained by the flow rate sum calculating means, The leak determining means compares the instantaneous flow rate determined from the flow rate on the supply side with the instantaneous flow rate determined from the total flow rate on the customer side, and determines the presence or absence of gas leakage. Therefore, it is possible to accurately and accurately determine a gas leak without requiring a long time for the flow rate measurement, to warn a gas company or a gas consumer, and to monitor a gas pipe over time. , Safety and reliability are improved.
In addition, since all the consumers on the use side and the gas leak inspection device on the supply side exchange information with the wireless transceiver, there is no wiring work, and the workability can be improved.

【0012】また上記発明において、ガス流速を検出す
る流速検出手段を、超音波信号の送信方向を切り替える
切替手段と、超音波信号を出力する送信手段と、この送
信手段からの超音波信号を受信する受信手段と、送信手
段と受信手段との間で超音波信号の送受信を所定回数繰
り返す繰返手段と、送信手段から出力された超音波信号
の流路内の伝搬時間を計測する伝搬時間計測手段とから
構成すると好適である。
Further, in the above invention, the flow rate detecting means for detecting the gas flow rate includes switching means for switching the transmitting direction of the ultrasonic signal, transmitting means for outputting the ultrasonic signal, and receiving the ultrasonic signal from the transmitting means. Receiving means, a repeating means for repeating transmission and reception of an ultrasonic signal between the transmitting means and the receiving means a predetermined number of times, and a propagation time measurement for measuring a propagation time of the ultrasonic signal output from the transmitting means in the flow path It is preferable that the apparatus be constituted by means.

【0013】この構成によれば、流路内の送信手段より
出力された超音波信号は、流路を伝播して対向する受信
手段で受信され、伝搬時間計測手段で伝搬時間を求め、
その伝搬時間により流速を検出し、その流速に基づいて
ガス流量を求めることができる。前記伝搬時間は流量に
比例すると共に計測時点の瞬時流量を示すので、即座に
漏れ流量を検出でき、ガス漏洩警告を素早くガス事業者
等に通知できる。
According to this configuration, the ultrasonic signal output from the transmitting means in the flow path propagates through the flow path and is received by the opposite receiving means, and the propagation time is calculated by the propagation time measuring means.
The flow velocity is detected based on the propagation time, and the gas flow rate can be obtained based on the flow velocity. Since the propagation time is proportional to the flow rate and indicates the instantaneous flow rate at the time of measurement, the leak flow rate can be detected immediately, and a gas leak warning can be promptly notified to a gas company or the like.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施形態を図1
と図2を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG.

【0015】図1は本実施形態のガス漏洩検査システム
の構成を示すブロック図であり、17はガス漏洩検査装
置で、ガス集中供給システム中に設置され供給ガス流量
を検針すると共に、後述するようにガス漏洩を検査す
る。18は親無線送受信機で、ガス漏洩検査装置17に
接続され、子無線送受信機19と通信を行う。20はガ
ス遮断装置で、各需要家宅に設置され、各需要家宅で使
用されるガス使用量を計測し、かつガス器具の異常な使
用がないか監視し、ホースはずれ等の異常な大流量を検
出した時にはガスを遮断する。21流速検出手段で、L
Pガスや都市ガスなどのガス集中供給システムにおける
供給ガスの流速を検出している。22は流量演算手段
で、流速検出手段21で求めた流速を瞬時流量に換算す
る。23は漏洩検査送受信手段で、LPガス等の集中供
給システムでガス配管やガス供給設備からのガス漏れを
確認するため漏洩検査要求信号を親無線送受信機18に
出力する。ガス遮断装置20は、前記漏洩検査要求を受
信した子無線送受信機19からの信号に基づいて、使用
ガスの瞬時流速を検出し、その流速信号を親無線送受信
機18に送信する。すると流速総和演算手段24は、ガ
スを集中供給している各需要家側のガス流速信号の総和
を求め、総瞬時流量に換算する。25は漏洩判定手段
で、流速演算手段22で求めたガス供給側の総瞬時流量
と流速総和演算手段24で求めた全ガス需要家の瞬時流
量の総和とが一致しているか、或いは所定範囲内の流量
差かどうかを判定する。その結果不一致あるいは流量差
が所定範囲以上の場合、漏洩有りと判定する。漏洩有り
の場合、報知手段16で、ガス漏洩状態を警告する表示
を、例えばLCDやLED素子等で表示したり、ガスセ
ンタに対し、ガス供給設備やガス供給配管で漏れが発生
したことを通報する。
FIG. 1 is a block diagram showing the configuration of a gas leakage inspection system according to the present embodiment. Reference numeral 17 denotes a gas leakage inspection device which is installed in a centralized gas supply system to measure the flow rate of supplied gas and to be described later. Inspect for gas leaks. Reference numeral 18 denotes a master wireless transceiver, which is connected to the gas leakage inspection device 17 and communicates with a slave wireless transceiver 19. Reference numeral 20 denotes a gas shut-off device, which is installed at each customer's house, measures the amount of gas used at each customer's house, monitors whether there is any abnormal use of gas appliances, and detects abnormal large flow such as hose disconnection. When detected, the gas is shut off. 21 flow rate detecting means,
The flow rate of a supply gas in a centralized gas supply system such as P gas or city gas is detected. Reference numeral 22 denotes a flow rate calculating means, which converts the flow rate obtained by the flow rate detecting means 21 into an instantaneous flow rate. Reference numeral 23 denotes a leak inspection transmitting / receiving means, which is a centralized supply system for LP gas or the like, and outputs a leak inspection request signal to the parent wireless transceiver 18 in order to confirm gas leakage from a gas pipe or gas supply equipment. The gas cutoff device 20 detects the instantaneous flow velocity of the used gas based on the signal from the slave wireless transceiver 19 that has received the leak inspection request, and transmits the flow rate signal to the master wireless transceiver 18. Then, the flow velocity sum calculating means 24 obtains the sum of the gas flow velocity signals of the customers who collectively supply the gas, and converts the sum into the total instantaneous flow rate. Reference numeral 25 denotes a leak judging means which determines whether the total instantaneous flow rate on the gas supply side obtained by the flow velocity calculating means 22 and the total sum of the instantaneous flow rates of all gas consumers obtained by the total flow velocity calculating means 24 are equal or within a predetermined range. The flow rate difference is determined. As a result, if the values do not match or the flow rate difference is equal to or larger than a predetermined range, it is determined that there is leakage. If there is a leak, the notification means 16 displays a warning indicating a gas leak state on, for example, an LCD or an LED element, or notifies a gas center that a leak has occurred in a gas supply facility or a gas supply pipe. .

【0016】図2は流速検出手段21の一例を示すブロ
ック図である。LPG等のガス媒体の流路5に対向設置
された上流側振動子26、下流側振動子27との間で超
音波信号を一方から他方に発信し、その伝搬時間より使
用ガスの流速を検出する。流速検出手段21の一例とし
て次のような構成のものがある。即ち流速検出手段21
は、切替手段28と、送信手段29と、受信手段30
と、繰返手段31と、伝搬時間計測手段32とからな
る。送信手段29と受信手段30とは切替手段28に接
続され、切替手段28はまず送信手段29を上流側振動
子26に、受信手段30を下流側振動子27にそれぞれ
接続し、次は送信手段29を下流側振動子27に、受信
手段30を上流側振動子26にそれぞれ接続するという
ように交互に送信手段29と受信手段30の接続先を切
り替える。繰返手段31は切替手段28により上流側振
動子26に受信手段30を、下流側振動子27に送信手
段29をそれぞれ接続した時、送信手段29から発信さ
れた超音波信号を下流側振動子27より流路5を経て上
流側振動子26から受信手段30で受信する送信受信を
繰り返し行い、伝搬時間計測手段32でその間の超音波
信号の伝搬時間を計測する動作を繰り返し行う。伝搬時
間計測手段32は超音波信号の送信から受信までの時間
を計測し累積する。次に切替手段28により下流側振動
子27に受信手段30を、上流側振動子26に送信手段
29をそれぞれ接続し、前述の動作を繰り返し行う。伝
搬時間計測手段32は最初に計測した伝搬時間と、次に
切替手段28により切り替えた後に計測した伝搬時間と
から伝搬時間差を求める。求めた伝搬時間差より流量演
算で瞬時流量に換算する。
FIG. 2 is a block diagram showing an example of the flow velocity detecting means 21. An ultrasonic signal is transmitted from one side to the other side between the upstream vibrator 26 and the downstream vibrator 27 which are installed facing the flow path 5 of a gas medium such as LPG, and the flow velocity of the used gas is detected from the propagation time. I do. One example of the flow velocity detecting means 21 is as follows. That is, the flow velocity detecting means 21
Are switching means 28, transmitting means 29, and receiving means 30
, A repetition means 31 and a propagation time measuring means 32. The transmitting means 29 and the receiving means 30 are connected to a switching means 28. The switching means 28 first connects the transmitting means 29 to the upstream oscillator 26, the receiving means 30 to the downstream oscillator 27, and then the transmitting means. The connection destinations of the transmitting means 29 and the receiving means 30 are alternately switched such that 29 is connected to the downstream vibrator 27 and the receiving means 30 is connected to the upstream vibrator 26. When the receiving means 30 is connected to the upstream vibrator 26 and the transmitting means 29 is connected to the downstream vibrator 27 by the switching means 28, the repetitive means 31 transmits the ultrasonic signal transmitted from the transmitting means 29 to the downstream vibrator. The transmission / reception received by the receiving means 30 from the upstream-side vibrator 26 through the flow path 5 through the flow path 27 is repeated, and the operation of measuring the propagation time of the ultrasonic signal between them by the propagation time measuring means 32 is repeated. The propagation time measuring means 32 measures and accumulates the time from transmission to reception of the ultrasonic signal. Next, the receiving means 30 is connected to the downstream vibrator 27 and the transmitting means 29 is connected to the upstream vibrator 26 by the switching means 28, and the above operation is repeated. The propagation time measuring means 32 obtains a propagation time difference from the propagation time measured first and the propagation time measured after switching by the switching means 28 next. From the obtained propagation time difference, it is converted into an instantaneous flow rate by flow rate calculation.

【0017】次に上記構成の動作を説明する。従来例の
図3に示したようなLPガスや都市ガス等のガス集中供
給システムにおいて、例えばLPガス容器よりガス漏洩
検査装置17を介してガス配管5を分岐させて各ガス需
要家にLPガスを供給する場合、ガス配管5、特に埋設
配管の場合に腐食などによりガス配管5との接続部等よ
り微少ガス漏れが生じたり、ガス需要家宅でガス器具の
交換等に伴うトラブルでガスが漏れ始めたりすることが
ある。このようなガス漏洩を検査するため、ガス漏洩検
査装置17の漏洩検査送受信手段23は、例えば定期的
(24時間毎)に漏洩検査要求を親無線送受信機18を
介して、ガスを供給している全ガス需要家の子無線送受
信機19に送信する。子無線送受信機19は漏洩検査信
号を受信すると、接続されているガス遮断装置20に流
速検査信号を出力し、ガス遮断装置20に使用ガス流速
を検出させる。ガス遮断装置20は流速信号を検出する
と、子無線送受信機19に転送し、子無線送受信機19
は前記流速信号を親無線送受信機18に送信する。
Next, the operation of the above configuration will be described. In a conventional gas centralized supply system for LP gas or city gas as shown in FIG. 3, for example, a gas pipe 5 is branched from an LP gas container via a gas leak inspection device 17 to provide LP gas to each gas consumer. When supplying gas, gas leaks from gas pipes 5, especially in the case of buried pipes, due to corrosion, etc., resulting in gas leaks from the connection with gas pipes 5, etc. Sometimes start. In order to inspect for such a gas leak, the leak inspection transmitting and receiving means 23 of the gas leak inspecting device 17 supplies a gas via the parent wireless transceiver 18 periodically, for example, (every 24 hours) to supply a gas. Is transmitted to the child wireless transceivers 19 of all the gas consumers. When receiving the leakage inspection signal, the slave radio transceiver 19 outputs a flow velocity inspection signal to the connected gas shutoff device 20 to make the gas shutoff device 20 detect the used gas flow velocity. When the gas cutoff device 20 detects the flow rate signal, it transfers the signal to the slave radio transceiver 19 and the slave radio transceiver 19.
Transmits the flow velocity signal to the parent wireless transceiver 18.

【0018】一方、ガス漏洩検査装置17も、流路5内
のガス流速信号を流速検出手段21により検出する。こ
こで流速検出手段21の一例の動作を説明する。
On the other hand, the gas leakage inspection device 17 also detects the gas flow velocity signal in the flow path 5 by the flow velocity detection means 21. Here, the operation of an example of the flow velocity detecting means 21 will be described.

【0019】流路( ガス配管) 5内で、斜向設置された
上流側振動子26と下流側振動子27との間で超音波信
号を送受信する。切替手段28により上流側振動子26
に送信手段29が受信手段30に下流側振動子27がそ
れぞれ接続され、送信手段29から発信された信号を上
流側振動子26から下流側振動子27を介し受信する。
この動作を繰返手段31で設定された回数だけ行う。い
わゆるシングアラウンド系を構成する。送信手段29よ
り発射された超音波信号を受信手段30が受信する迄の
伝搬時間を累積し、その時間を伝搬時間計測手段32で
求める。
In the flow path (gas pipe) 5, an ultrasonic signal is transmitted and received between the upstream vibrator 26 and the downstream vibrator 27 installed obliquely. The upstream oscillator 26 is switched by the switching means 28.
The transmitting means 29 is connected to the receiving means 30 and the downstream vibrator 27, respectively, and receives the signal transmitted from the transmitting means 29 from the upstream vibrator 26 via the downstream vibrator 27.
This operation is performed the number of times set by the repetition means 31. A so-called sing-around system is configured. The propagation time until the receiving means 30 receives the ultrasonic signal emitted from the transmitting means 29 is accumulated, and the time is obtained by the propagation time measuring means 32.

【0020】次に、切替手段28は下流側振動子27に
送信手段29を、上流側振動子26に受信手段30をそ
れぞれ接続する。送信手段29より超音波信号を出力す
ると、下流側振動子27を介し流路5を経て上流側振動
子26に接続された受信手段30で信号を受信する。前
述同様に繰返手段31で設定された回数だけ行う。送信
手段29より発射された超音波信号を受信手段30が受
信する迄の伝搬時間を伝搬時間計測手段32で累積し求
め、更に上流から下流へ超音波信号を発射した時の伝搬
時間と、下流から上流へ発射した時の伝搬時間とから伝
搬時間差を求める。流量演算手段22は伝搬時間計測手
段32で求めた伝搬時間を流速値Vに換算し、次に流速
値Vを流量値Qに換算する。図2でAはガス媒体の流れ
る方向を示す。
Next, the switching means 28 connects the transmitting means 29 to the downstream vibrator 27 and the receiving means 30 to the upstream vibrator 26, respectively. When an ultrasonic signal is output from the transmitting means 29, the signal is received by the receiving means 30 connected to the upstream transducer 26 via the flow path 5 via the downstream transducer 27. In the same manner as described above, the processing is performed the number of times set by the repeating means 31. The propagation time until the receiving means 30 receives the ultrasonic signal emitted from the transmitting means 29 is accumulated by the propagation time measuring means 32, and the propagation time when the ultrasonic signal is emitted from upstream to downstream is further determined. A propagation time difference is obtained from the propagation time when the vehicle is fired upstream from. The flow rate calculating means 22 converts the propagation time obtained by the propagation time measuring means 32 into a flow velocity value V, and then converts the flow velocity value V into a flow rate value Q. In FIG. 2, A indicates the direction in which the gas medium flows.

【0021】ガス漏洩検査装置17及びガス遮断装置2
0は前述のようにして、供給側と使用側のガス流速をそ
れぞれ検出する。ガス漏洩検査装置17は、流速検出手
段21で総供給ガスの流速を検出すると、流量演算手段
22で瞬時流量に換算する。ガス遮断装置20は、子無
線送受信機19からの流速検査信号を受信すると、ガス
需要家の使用ガス流速を検出し、検出信号を子無線送受
信機19に転送する。親無線送受信機18は受信した流
速信号を流速総和演算手段24に転送する。
Gas leak inspection device 17 and gas shutoff device 2
0 detects the gas flow rates on the supply side and the use side, respectively, as described above. When the flow rate detecting means 21 detects the flow rate of the total supply gas, the gas leak inspection device 17 converts the flow rate into the instantaneous flow rate by the flow rate calculating means 22. When the gas cutoff device 20 receives the flow rate inspection signal from the slave radio transceiver 19, it detects the gas flow rate used by the gas consumer and transfers the detection signal to the slave radio transceiver 19. The parent wireless transceiver 18 transfers the received flow velocity signal to the flow velocity sum calculation means 24.

【0022】流速総和演算手段24はガスが供給される
全ガス需要家宅からの流速信号全てより総和を求め、瞬
時流量に換算する。漏洩判定手段25は、求めた全ガス
需要家の瞬時流量と、ガス漏洩検査装置17の流量演算
手段22で求めた供給側の瞬時流量とを比較し、ガス漏
れ判定を行う。通常ガス漏れがない場合、供給側の瞬時
流量と使用側の全瞬時流量とは等しいか、その差が所定
範囲内の流速量である。又、供給側と使用側の瞬時流量
とが等しくないか、その差が所定流量以上の場合、ガス
供給配管5、ガス供給設備、ガス器具のいずれかでガス
漏れが発生していると判定し、報知手段16でガス漏れ
警告を表示したり、公衆回線を利用してLPガスの供給
事業者に警告通知をする。つまりLCDやLED素子等
の表示手段で器具使用注意の警告表示を出力すると共
に、通信手段を介してLPガスの保安センタ等にガス漏
れ異常の報知を行い、設備改善勧告を行う。
The flow velocity sum calculating means 24 calculates the total sum from all the flow velocity signals from all gas consumer houses to which the gas is supplied, and converts the sum into the instantaneous flow rate. The leak determination means 25 compares the determined instantaneous flow rate of all gas consumers with the instantaneous flow rate on the supply side determined by the flow rate calculation means 22 of the gas leakage inspection device 17 to perform gas leak determination. Normally, when there is no gas leakage, the instantaneous flow rate on the supply side is equal to the total instantaneous flow rate on the use side, or the difference is the flow rate amount within a predetermined range. If the instantaneous flow rates on the supply side and the use side are not equal or the difference is equal to or more than a predetermined flow rate, it is determined that gas leakage has occurred in any of the gas supply pipe 5, the gas supply facility, and the gas appliance. The warning means 16 displays a gas leak warning or notifies the LP gas supply company of the warning using a public line. In other words, a warning display for caution of use of the appliance is output on display means such as an LCD or an LED element, and a gas leakage abnormality is notified to the LP gas security center or the like via the communication means, and equipment improvement recommendations are made.

【0023】本実施形態では、ガス遮断装置20の流速
検出手段での伝搬時間計測に基づいて流速計測を行うの
で、あるガス需要家がガス器具の未使用時に、隣家のガ
ス器具使用による圧力変動によって生じたマイナス流量
も計測できる。このような場合、マイナス流速信号がガ
ス漏洩検査装置17の流速総和演算手段24に送信され
てもマイナス流速は演算しない。従って、正確にガス需
要家側の総瞬時流量を求めることができる。従来の膜式
の場合には逆流されても逆流かどうかわからないため、
マイナス流量であっても需要家側の総流量にカウントさ
れるので、漏れがあるのに検出できない問題があった。
しかし本実施形態では、伝搬時間による流速信号に基づ
いて漏れ判定を行うので、ガスが逆流した場合に伝搬時
間がマイナス値で出るのでこれをカウントしないように
することができ、これにより漏れ判定を正確に行うこと
ができる。
In the present embodiment, the flow velocity is measured based on the propagation time measurement by the flow velocity detecting means of the gas shut-off device 20. Therefore, when a gas consumer does not use a gas appliance, the pressure fluctuation due to the use of a gas appliance of a neighbor is not performed. The negative flow rate caused by this can also be measured. In such a case, the minus flow rate is not calculated even if the minus flow rate signal is transmitted to the total flow rate calculating means 24 of the gas leakage inspection device 17. Therefore, the total instantaneous flow rate on the gas customer side can be accurately obtained. In the case of the conventional membrane type, it is not known whether it is backflow even if it is backflowed,
Even if the flow rate is negative, it is counted as the total flow rate on the customer side, so there is a problem that it cannot be detected because there is a leak.
However, in the present embodiment, since the leak determination is performed based on the flow velocity signal based on the propagation time, when the gas flows backward, the propagation time comes out as a negative value, so that this can be prevented from being counted. Can be done accurately.

【0024】本実施形態では上記のようにして、親無線
送受信機18を介して一斉に漏洩検査要求信号を子無線
送受信機19に送信して、使用側の流速信号を求めるの
で、長時間を要することなく漏洩判定できる。したがっ
て、ガス配管5などが腐食により漏れ始めたのを即座に
検出し、ガス事業者に設備異常の注意を促したり、又保
安センタを通じて設備改善の警告を出したりすることが
可能になり、正確にガスの使用状態を監視し安全性、使
い勝手が向上する。
In this embodiment, as described above, the leak inspection request signal is transmitted to the slave wireless transceiver 19 at once through the master wireless transceiver 18 to obtain the flow rate signal on the user side. Leak determination can be performed without necessity. Therefore, it is possible to immediately detect that the gas pipes 5 and the like have started to leak due to corrosion, prompt a gas operator to pay attention to equipment abnormality, and issue a warning of equipment improvement through a security center, which enables accurate detection. The use of gas is monitored at the same time to improve safety and usability.

【0025】[0025]

【発明の効果】以上説明したように請求項1記載の発明
によれば、流量計測のために長時間を要することなくガ
ス漏洩の判定を精度よく正確にできると共に、ガス事業
者やガス需要家に警告を促すことができ、またガス配管
の経時変化を監視できるので、安全性、信頼性が向上す
る。その上、使用側の全需要家と供給側のガス漏洩検査
装置を無線送受信機で情報交換するため配線工事がな
く、工事性も大幅に向上する。
As described above, according to the first aspect of the present invention, it is possible to accurately and accurately determine a gas leak without taking a long time for measuring a flow rate, and to realize a gas business or a gas consumer. A warning can be given to the user, and a change with time of the gas pipe can be monitored, thereby improving safety and reliability. In addition, since all the consumers on the use side and the gas leak inspection device on the supply side exchange information with a wireless transceiver, there is no wiring work, and the workability is greatly improved.

【0026】また請求項2記載の発明では超音波信号を
用いた流速検出手段により流速を計測し、この流速から
求めた流量でガス漏洩判定をするので瞬時に流量計測が
でき、その結果、即座に漏れ流量を検出でき、ガス漏洩
警告を素早くガス事業者等に通知できる。
According to the second aspect of the present invention, the flow velocity is measured by the flow velocity detecting means using the ultrasonic signal, and the gas leakage is determined based on the flow rate obtained from the flow velocity, so that the flow rate can be measured instantaneously. The gas leakage warning can be quickly notified to a gas company or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態のガス漏洩検査システムを
示す制御ブロック図。
FIG. 1 is a control block diagram showing a gas leakage inspection system according to an embodiment of the present invention.

【図2】同実施形態における流速検出手段を示す制御ブ
ロック図。
FIG. 2 is a control block diagram showing a flow velocity detecting means in the embodiment.

【図3】従来のガス漏洩検査装置を用いたガス集中供給
システム全体を示す説明図。
FIG. 3 is an explanatory diagram showing an entire gas centralized supply system using a conventional gas leakage inspection device.

【図4】従来のガス漏洩検査装置を示す制御ブロック
図。
FIG. 4 is a control block diagram showing a conventional gas leakage inspection device.

【符号の説明】[Explanation of symbols]

16 報知手段 17 ガス漏洩検査装置 18 親無線送受信機 19 子無線送受信機 20 ガス遮断装置 21 流速検出手段 22 流量演算手段 23 漏洩検査送受信手段 24 流速総和演算手段 25 漏洩判定手段 16 Notifying means 17 Gas leak inspection device 18 Parent wireless transceiver 19 Child wireless transceiver 20 Gas shutoff device 21 Flow rate detecting means 22 Flow rate calculating means 23 Leakage inspection transmitting / receiving means 24 Flow velocity sum calculating means 25 Leakage determining means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新村 紀夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅野 一高 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 水越 二郎 富山県新湊市本江2795番地 東洋ガスメー ター株式会社内 (72)発明者 磯野 昇 富山県新湊市本江2795番地 東洋ガスメー ター株式会社内 (72)発明者 堀 富士雄 富山県新湊市本江2795番地 東洋ガスメー ター株式会社内 Fターム(参考) 2G067 AA14 BB40 CC04 DD04 EE09 EE12 EE13  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Norio Niimura 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Kazutaka Asano 1006 Kadoma Kadoma, Kadoma City Osaka Pref. (72) Inventor Jiro Mizukoshi 2975 Motoe, Shinminato City, Toyama Prefecture Toyo Gas Meter Co., Ltd. (72) Inventor Noboru 2975 Motoe, Shinminato City, Toyama Prefecture Toyo Gas Meter Co., Ltd. 29750 Motoe, Shinminato, Toyo Gas Meter Co., Ltd. F-term (reference) 2G067 AA14 BB40 CC04 DD04 EE09 EE12 EE13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 供給側のガス流速を検出すると共に漏洩
検査要求信号を出力するガス漏洩検査装置と、このガス
漏洩検査装置に接続する親無線送受信機と、この親無線
送受信機を介した通信により、前記漏洩検査要求信号を
受信する複数の子無線送受信機とこの子無線送受信機に
接続され、使用側のガス流速を検出してその検出信号を
前記親無線送受信機に送信するガス遮断装置とを備えた
ガス漏洩検査システムであって、 ガス漏洩検査装置を、前記親無線送受信機に漏洩検査要
求信号を送信すると共に、前記子無線送受信機からの流
速信号を受信する漏洩検査送受信手段と、この漏洩検査
送受信手段で受信した前記流速信号の総和より瞬時流量
を求める流速総和演算手段と、ガス流路内の信号伝搬時
間を計測して流速を検出する流速検出手段と、この流速
検出手段で検出した流速信号より瞬時流量を求める流量
演算手段と、この流量演算手段で求めた供給側の流量
と、前記流速総和演算手段で求めた使用側である各ガス
需要家の総流量とを比較し、ガス漏れかどうかを判定す
る漏洩判定手段と、この漏洩判定手段で漏洩と判定する
と漏洩通知をする報知手段とから構成したことを特徴と
するガス漏洩検査システム。
1. A gas leak inspection device that detects a gas flow rate on a supply side and outputs a leak inspection request signal, a master wireless transceiver connected to the gas leak inspection device, and communication via the master wireless transceiver. Accordingly, a plurality of slave radio transceivers for receiving the leak inspection request signal and a gas shut-off device connected to the slave radio transceiver for detecting a gas flow rate on a use side and transmitting the detection signal to the master radio transceiver A gas leakage inspection system comprising: a gas leakage inspection device, a leakage inspection transmission / reception unit that transmits a leakage inspection request signal to the master wireless transceiver and receives a flow velocity signal from the slave wireless transceiver. A flow rate sum calculating means for obtaining an instantaneous flow rate from a sum of the flow rate signals received by the leak test transmitting / receiving means; and a flow rate detecting means for measuring a signal propagation time in a gas flow path to detect a flow rate. And a flow rate calculating means for obtaining an instantaneous flow rate from the flow rate signal detected by the flow rate detecting means; a flow rate on the supply side obtained by the flow rate calculating means; A gas leak inspection system comprising: a leak determining means for comparing the total flow rate with the total flow rate to determine whether or not there is a gas leak; and a notifying means for notifying a leak when the leak determining means determines that there is a leak.
【請求項2】 ガス流速を検出する流速検出手段は、超
音波信号の送信方向を切り替える切替手段と、超音波信
号を出力する送信手段と、この送信手段からの超音波信
号を受信する受信手段と、送信手段と受信手段との間で
超音波信号の送受信を所定回数繰り返す繰返手段と、送
信手段から出力された超音波信号の流路内の伝搬時間を
計測する伝搬時間計測手段とから構成される請求項1記
載のガス漏洩検査システム。
2. A flow velocity detecting means for detecting a gas flow velocity, a switching means for switching a transmission direction of an ultrasonic signal, a transmitting means for outputting an ultrasonic signal, and a receiving means for receiving an ultrasonic signal from the transmitting means. And a repeating unit that repeats transmission and reception of the ultrasonic signal between the transmitting unit and the receiving unit a predetermined number of times, and a propagation time measuring unit that measures a propagation time of the ultrasonic signal output from the transmitting unit in the flow path. The gas leak inspection system according to claim 1, wherein the gas leakage inspection system is configured.
JP2000153998A 2000-05-25 2000-05-25 Gas leak inspection system Pending JP2001337004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153998A JP2001337004A (en) 2000-05-25 2000-05-25 Gas leak inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153998A JP2001337004A (en) 2000-05-25 2000-05-25 Gas leak inspection system

Publications (1)

Publication Number Publication Date
JP2001337004A true JP2001337004A (en) 2001-12-07

Family

ID=18659160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153998A Pending JP2001337004A (en) 2000-05-25 2000-05-25 Gas leak inspection system

Country Status (1)

Country Link
JP (1) JP2001337004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292436A (en) * 2007-05-28 2008-12-04 Panasonic Corp Flow rate measuring device and its program, flow rate measuring method, and fluid supply system
JP2012527059A (en) * 2009-05-15 2012-11-01 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Method for improved detection and placement of wireless field devices
US8766794B2 (en) 2010-07-28 2014-07-01 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with improved locational awareness functionality
US9684296B2 (en) 2009-05-15 2017-06-20 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with improved functionality

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292436A (en) * 2007-05-28 2008-12-04 Panasonic Corp Flow rate measuring device and its program, flow rate measuring method, and fluid supply system
JP2012527059A (en) * 2009-05-15 2012-11-01 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Method for improved detection and placement of wireless field devices
US9210581B2 (en) 2009-05-15 2015-12-08 Fisher-Rosemount Systems, Inc. Maintenance of wireless field devices
US9503906B2 (en) 2009-05-15 2016-11-22 Fisher-Rosemount System, Inc. Detection and location of wireless field devices
US9532232B2 (en) 2009-05-15 2016-12-27 Fisher-Rosemount Systems, Inc. Detection and location of wireless field devices
US9684296B2 (en) 2009-05-15 2017-06-20 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with improved functionality
US8766794B2 (en) 2010-07-28 2014-07-01 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with improved locational awareness functionality
US9201414B2 (en) 2010-07-28 2015-12-01 Fisher-Rosemount Systems, Inc. Intrinsically-safe handheld field maintenance tool with image and/or sound capture
US9703279B2 (en) 2010-07-28 2017-07-11 Fisher-Rosemount Systems, Inc. Handheld field maintenance device with improved user interface
US9709973B2 (en) 2010-07-28 2017-07-18 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with improved diagnostics
US9864357B2 (en) 2010-07-28 2018-01-09 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with integration to external software application
US10268180B2 (en) 2010-07-28 2019-04-23 Fisher-Rosemount Systems, Inc. Handheld field maintenance tool with simulation of field device for instruction or qualification

Similar Documents

Publication Publication Date Title
JP5094374B2 (en) Flow measurement device and gas supply system
JP3579976B2 (en) Piping leak monitoring device
US20090007968A1 (en) Pipe network, with a hierarchical structure, for supplying water or gas and/or for removing industrial water, process for detecting a leak in such a pipe network and process for determining, with the aid of a computer, the operating life theoretically remaining for a renewable power source for at least one flowmeter in such a pipe network
JP5213234B2 (en) Gas appliance monitoring device
KR102391995B1 (en) Smart metering-based indoor water leakage detection system and indoor water leakage detection method
KR20040030352A (en) Gas shutoff device
EP2177884A1 (en) Flow rate metering device, flow rate measuring system, and flow rate measuring method
JP3538989B2 (en) Piping leak monitoring device
JP2001337004A (en) Gas leak inspection system
JP3901159B2 (en) Gas pipe leak monitoring device
JP2002131170A (en) System for monitoring leakage of water
JP2001337001A (en) Gas leak inspection system
JP4765984B2 (en) Gas appliance monitoring device
JP2001330493A (en) Gas cutting-off apparatus
JP4013355B2 (en) Gas shut-off device
JP4638574B2 (en) Gas shut-off device
JP2008225844A (en) Gas appliance monitor
JPH0829289A (en) Gas leak monitoring apparatus
JP5269365B2 (en) Flow rate measuring device, communication system, flow rate measuring method, flow rate measuring program, and fluid supply system
JP2002098613A (en) Gas leakage detector
JP2010107208A (en) Flow measuring device
JP2001330494A (en) Gas cutting-off apparatus
JP2001330244A (en) Gas cutoff device
JP4552952B2 (en) Gas shut-off device
JP4862632B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090717

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026