JP2001335803A - Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same - Google Patents

Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same

Info

Publication number
JP2001335803A
JP2001335803A JP2000156036A JP2000156036A JP2001335803A JP 2001335803 A JP2001335803 A JP 2001335803A JP 2000156036 A JP2000156036 A JP 2000156036A JP 2000156036 A JP2000156036 A JP 2000156036A JP 2001335803 A JP2001335803 A JP 2001335803A
Authority
JP
Japan
Prior art keywords
alloy powder
rare earth
magnet
oxidation resistance
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000156036A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishizaka
和俊 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000156036A priority Critical patent/JP2001335803A/en
Publication of JP2001335803A publication Critical patent/JP2001335803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Abstract

PROBLEM TO BE SOLVED: To provide rare earth magnet alloy powder having high magnetic properties and excellent oxidation resistance and to provide a bonded magnet. SOLUTION: In R2T17Nx series magnet alloy powder (wherein; R is at least one or more of rare earth elements essentially including Sm; T is at least one or more of metallic elements essentially including Fe; and N is nitrogen), a proper amount of rosin ester or maleic resin is present at least on part of the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性に優れた
希土類磁石合金粉末およびそれを用いたボンド磁石に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet alloy powder having excellent oxidation resistance and a bonded magnet using the same.

【0002】[0002]

【従来の技術】従来の希土類気磁石合金粉末にバインダ
ーを用いて成形したボンド磁石は、モーター、スピーカ
ー、マイクロホン、小型発電機などの磁石応用機器に数
多く使用されている。また近年の電気、電子機器の小型
化、高効率化に対応し、より高い磁気特性を示す磁石合
金粉末の開発がなされており、R17Nx系磁石合
金粉末、特にSmFe17Nx系合金粉末がその優れ
た磁気特性から注目を集めている。
2. Description of the Related Art Conventionally, bonded magnets formed by using a binder on rare earth magnet alloy powder with a binder are widely used in magnet-applied devices such as motors, speakers, microphones, and small generators. In recent years, magnet alloy powders exhibiting higher magnetic properties have been developed in response to miniaturization and higher efficiency of electric and electronic devices, and R 2 T 17 Nx-based magnet alloy powders, particularly Sm 2 Fe 17 Nx, have been developed. System alloy powders have attracted attention due to their excellent magnetic properties.

【0003】前記SmFe17Nx系合金粉末は、鋳
造法、急冷法や還元拡散法などによって得られたTh
Ζn17型の結晶相を主とするSm−Fe系合金を窒化
したSmFe17Nx系合金を主原料とし、その粒径
が数μmレベルであるものである。これはSmFe
17Nx系磁石がニュークリエーションタイプの保磁力
機構であり、単磁区粒子径程度の粒径で十分な磁気特性
を発現するためである。このようにして製造されたSm
Fe17Nx系合金粉末は、有機樹脂をバインダーと
したボンド磁石として用いられている。
[0003] The Sm 2 Fe 17 Nx-based alloy powder is obtained from Th 2 obtained by a casting method, a quenching method, a reduction diffusion method or the like.
An Sm 2 Fe 17 Nx-based alloy obtained by nitriding an Sm-Fe-based alloy mainly containing a Ζn 17 type crystal phase is used as a main raw material, and has a particle size of several μm. This is Sm 2 Fe
This is because the 17 Nx-based magnet is a nucleation type coercive force mechanism, and a sufficient magnetic characteristic is exhibited with a particle diameter of about a single magnetic domain particle diameter. Sm produced in this way
2 Fe 17 Nx-based alloy powder is used as a bonded magnet using an organic resin as a binder.

【0004】しかしこのボンド磁石では、時間の経過と
ともに磁気特性が劣化するという問題が生じており、そ
の解決が大きな課題となっている。このような経時変化
の原因は、SmFe17Nx系合金粉末が酸化し易い
希土類を有すること、加えて微粉末であることによる比
表面積の大きさにあり、ボンド磁石内に存在あるいは侵
入してくる酸素、水分が徐々に合金粉末を酸化すること
によると考えられている。このため磁気特性の劣化抑制
のためには、SmFe17Nx系合金粉末に耐酸化性
を付与することが重要となる。
[0004] However, in this bonded magnet, there is a problem that the magnetic properties are degraded with the passage of time, and the solution is a major problem. The cause of such a time-dependent change is that the Sm 2 Fe 17 Nx-based alloy powder has a rare earth which is easily oxidized, and in addition, has a large specific surface area due to being a fine powder, and exists or enters the bonded magnet. It is considered that the coming oxygen and moisture gradually oxidize the alloy powder. Therefore, it is important to impart oxidation resistance to the Sm 2 Fe 17 Nx-based alloy powder in order to suppress the deterioration of the magnetic properties.

【0005】従来、希土類合金粉末に耐酸化性を付与す
るために、Sm−Co系やNd−FeB系磁石合金粉末
では様々な提案がなされている。例えば、粉末表面にリ
ン酸塩処理、クロム酸塩処理などの化成処理を施す方法
(特開平1−14902号公報参照)、亜鉛やアルミニ
ウムを蒸着する方法(特開昭64−15301号公報参
照)、高分子皮膜を形成する方法(特開平4−2572
02号公報参照)、金属めっきを施す方法(特開平7−
142246号公報参照)、Zn、Sn、Cu、In、
Pbなど、またそれらを含む合金または化合物を粒子表
面に形成させる方法(特開平5−190311号公報参
照)、無電解メッキなどの方法で粒子の表面に、前記金
属の被膜を形成させたりする方法(特開平5−2305
01号公報、特開平8−143913号公報など参照)
などが提案されている。
Conventionally, various proposals have been made for Sm-Co-based and Nd-FeB-based magnet alloy powders in order to impart oxidation resistance to rare earth alloy powders. For example, a method of subjecting a powder surface to a chemical conversion treatment such as a phosphate treatment or a chromate treatment (see Japanese Patent Application Laid-Open No. 1-14902) and a method of depositing zinc or aluminum (see Japanese Patent Application Laid-Open No. 64-15301) For forming a polymer film (Japanese Patent Laid-Open No. Hei 4-2572)
No. 02), a method of applying metal plating (Japanese Unexamined Patent Publication No.
142246), Zn, Sn, Cu, In,
A method of forming an alloy or a compound containing Pb or the like on the particle surface (see Japanese Patent Application Laid-Open No. 5-190311), a method of forming the metal coating on the particle surface by a method such as electroless plating, or the like. (Japanese Patent Laid-Open No. 5-2305
No. 01, JP-A-8-143913, etc.)
And so on.

【0006】[0006]

【発明が解決しようとする課題】しかし前記した方法で
は、耐酸化性を向上させる一方で粉末表面性状が荒れて
磁気特性が劣化したり、また被膜として十分な耐酸化性
効果を得るために数μm程度の膜厚にする必要があるこ
とから、ボンド磁石内での磁石合金粉末の体積分率を低
下させてしまい、結果として磁気特性低下につながると
いう問題があった。またこれらの処理時に微粉末同士の
凝集も多く起こることから、異方性磁石としての高い磁
気特性が実現できず、製造工程を複雑にさせ、それに見
合うような諸特性の改善がはかられないというのが実状
である。
However, in the above-mentioned method, while improving the oxidation resistance, the surface properties of the powder are roughened and the magnetic characteristics are deteriorated. Since the film thickness needs to be about μm, there is a problem that the volume fraction of the magnet alloy powder in the bonded magnet is reduced, resulting in a reduction in magnetic properties. In addition, since agglomeration of fine powders often occurs during these treatments, high magnetic properties as an anisotropic magnet cannot be realized, which complicates the manufacturing process and does not improve various properties corresponding thereto. That is the actual situation.

【0007】本発明は、R17Nx系合金粉末の粉
末表面を安定化させることにより前記した問題点を解決
し、高磁気特性を有する耐酸化性に優れた希土類磁石合
金粉末およびそれを用いたボンド磁石の提供しようとす
るものである。
The present invention solves the above-mentioned problems by stabilizing the surface of the R 2 T 17 Nx-based alloy powder, and provides a rare-earth magnet alloy powder having high magnetic properties and excellent oxidation resistance, and It is intended to provide the used bonded magnet.

【0008】[0008]

【課題を解決するための手段】本発明に係る耐酸化性に
優れた希土類磁石合金粉末は、R17Nx系磁石合
金粉末(ただし、RはSmを必須とする少なくとも1種
以上の希土類元素、TはFeを必須とする少なくとも1
種以上の金属元素、Nは窒素)において、少なくともそ
の表面の一部にロジンエステルが0.1〜1.5重量%
存在することを特徴とし、また前記R17Nx系磁
石合金粉末において、少なくともその表面の一部にマレ
イン酸レジンが0.1〜1.5重量%存在することを特
徴とし、さらにロジンエステルまたはマレイン酸レジン
が沸点100℃以下の有機溶媒に可溶であること、また
還元拡散法により製造されたR17系合金を窒化処
理して製造されたものであることを特徴とする。本発明
に係るボンド磁石は、これらの磁石合金粉末からなるこ
とを特徴とするものである。
The rare-earth magnet alloy powder having excellent oxidation resistance according to the present invention is a R 2 T 17 Nx-based magnet alloy powder (where R is at least one or more rare-earth elements whose Sm is essential). The element, T, must be at least
At least a part of the surface of the rosin ester is 0.1 to 1.5% by weight
The R 2 T 17 Nx-based magnet alloy powder, wherein at least a part of the surface thereof contains 0.1 to 1.5% by weight of a maleic acid resin; Alternatively, the resin is characterized in that the maleic resin is soluble in an organic solvent having a boiling point of 100 ° C. or lower, and that the resin is produced by nitriding an R 2 T 17- based alloy produced by a reduction diffusion method. The bonded magnet according to the present invention is characterized by comprising these magnet alloy powders.

【0009】本発明のR17Nx系磁石合金粉末に
おいて、その表面の一部にロジンエステルまたはマレイ
ン酸レジンを0.1〜1.5重量%存在させることとし
たのは、0.1重量%未満では、充分な耐酸化性が発現
しないためである。他方、1.5重量%を超えると、耐
酸化性は向上するが粉末どうしの凝集が避けられず、磁
気特性の顕著な低下が生じてしまうためである。
In the R 2 T 17 Nx-based magnet alloy powder of the present invention, 0.1 to 1.5% by weight of a rosin ester or a maleic resin is present on a part of the surface thereof. If the amount is less than the weight percentage, sufficient oxidation resistance is not exhibited. On the other hand, if it exceeds 1.5% by weight, the oxidation resistance is improved, but the agglomeration of the powders is inevitable, and the magnetic properties are remarkably reduced.

【0010】[0010]

【発明の実施の形態】本発明では主相となるR17
Nx相は、RとしてSmを、TとしてFeを必須成分と
する。この主相は主としてSmFe17Nxを対象と
するが、種々の添加元素を加えて組成を変えたものも対
象とする。またSmの一部をY、La、Ce、Pr、N
d、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luの少なくとも1種以上の元素で置換してもよ
い。ただし、磁気特性の低下を避けるためその置換量は
50原子%以下であることが好ましい。またFeの一部
をCo、Ti、V、Cr、Mn、Ni、Cu、Zn、Z
r、Hf、Nb、Ta、Mo、W、Ga、Alの少なく
とも1種以上の元素で置換してもよい。ただし、磁気特
性の低下を避けるため、その置換量は50原子%以下で
あることが好ましい。またNの含有量はx=2.8〜
3.2とすることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, R 2 T 17 which is a main phase is used.
The Nx phase has Sm as R and Fe as T as essential components. The main phase is mainly Sm 2 Fe 17 Nx, but also the one whose composition is changed by adding various additional elements. Also, a part of Sm is Y, La, Ce, Pr, N
d, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
It may be replaced by at least one element of b and Lu. However, in order to avoid a decrease in magnetic properties, the substitution amount is preferably 50 atomic% or less. In addition, part of Fe is Co, Ti, V, Cr, Mn, Ni, Cu, Zn, Z
It may be replaced with at least one element of r, Hf, Nb, Ta, Mo, W, Ga, and Al. However, in order to avoid a decrease in magnetic properties, the substitution amount is preferably 50 atomic% or less. Further, the content of N is x = 2.8-
Preferably, it is 3.2.

【0011】母合金は鋳造法、急冷法、還元拡散法、メ
カニカルアロイング法、HDDR法などによって製造さ
れる。また得られた母合金の主相を成長させる目的で、
真空中あるいは不活性ガス中で熱処理を施す場合もあ
る。効率的に窒化処理を行うためには母合金を粉体にす
ることが好ましい。そしてこの粉体の粒径範囲は150
μm以下、より望ましくは20〜63μmに調整するこ
とが好ましい。母合金の粉砕には粉砕機の形式や方法は
問われないが、母合金粉の酸化を防ぐために不活性雰囲
気で粉砕できるものが求められる。
The master alloy is manufactured by a casting method, a quenching method, a reduction diffusion method, a mechanical alloying method, an HDDR method, or the like. In order to grow the main phase of the obtained master alloy,
Heat treatment may be performed in a vacuum or in an inert gas. In order to perform the nitriding treatment efficiently, it is preferable to make the mother alloy into a powder. The particle size range of this powder is 150
It is preferable to adjust the thickness to not more than μm, more preferably 20 to 63 μm. The type and method of the pulverizer are not limited for the pulverization of the mother alloy, but those capable of being pulverized in an inert atmosphere are required to prevent oxidation of the mother alloy powder.

【0012】窒化では母合金粉にアンモニアガス、窒素
ガスなどで窒素を導入し、窒化効率向上のために、前記
ガスに水素ガスを併用する場合がある。その際300〜
500℃の範囲で加熱するのが効果的である。
In nitriding, nitrogen may be introduced into the mother alloy powder with ammonia gas, nitrogen gas, or the like, and hydrogen gas may be used in combination with the gas to improve nitriding efficiency. 300 ~
Heating in the range of 500 ° C. is effective.

【0013】また窒化では、それに付随して合金粒子表
面の吸着ガスの除去、水素ガス処理による粉砕、窒素を
希土類合金粉内部に均質に拡散させるための熱処理を併
用する場合がある。窒化後の母合金粉を微粉化する場合
には、有機溶媒を用いた湿式粉砕あるいは微量酸素雰囲
気下での乾式粉砕を行う。乾式粉砕機としては様々なも
のが存在するが、粉砕形式には特に制限されない。湿式
粉砕を行う場合は、その後に溶媒の除去を目的とした乾
燥、大気中でハンドリングを可能にするための徐酸化処
理を行うことがある。
In addition, nitriding may be accompanied by a combination of removal of adsorbed gas on the surface of the alloy particles, grinding by hydrogen gas treatment, and heat treatment for uniformly diffusing nitrogen into the rare earth alloy powder. When pulverizing the mother alloy powder after nitriding, wet pulverization using an organic solvent or dry pulverization in a trace oxygen atmosphere is performed. There are various types of dry pulverizers, but the type of pulverization is not particularly limited. In the case of performing wet pulverization, a drying treatment for removing the solvent and a slow oxidation treatment for enabling handling in the air may be performed thereafter.

【0014】本発明では粉末表面にロジンエステルある
いはマレイン酸レジンを定着させるために、それらの溶
液を調製し、その溶液を粉末と混合・撹拌し、その後乾
燥させることを行う。またこれらの処理で磁石特性を損
なうことなく、かつ効率よく行うために、本発明ではイ
ソプロパノール、シクロヘキサンなどの沸点が100℃
以下の有機溶媒を用いる。粉末の混合・撹拌機は特に限
定するものではない。またロジンエステルあるいはマレ
イン酸レジンには様々なものが存在するが、ボンド磁石
の用途を考慮すれば軟化点として80℃以上のものが望
ましい。このロジンエステルあるいはマレイン酸レジン
の添加量は多いほど耐酸化性が向上するが、粉末どうし
の凝集も多くなる傾向があることから、前記したごとく
粉末に対し0.1〜1.5重量%とした。
In the present invention, in order to fix the rosin ester or the maleic resin on the surface of the powder, a solution thereof is prepared, and the solution is mixed with the powder, stirred, and then dried. In addition, in order to efficiently perform magnet treatment without impairing magnet properties in these treatments, in the present invention, the boiling point of isopropanol, cyclohexane, etc. is set to 100 ° C.
The following organic solvents are used. The powder mixing / stirring machine is not particularly limited. There are various types of rosin ester or maleic resin, but those having a softening point of 80 ° C. or higher are desirable in consideration of the use of the bonded magnet. As the amount of the rosin ester or the maleic resin added increases, the oxidation resistance improves, but the aggregation of the powders tends to increase. did.

【0015】本発明のボンド磁石に用いる樹脂バインダ
ーは特に限定されることはなく、各種熱可塑性樹脂単体
またはそれら複合物、あるいは各種熱硬化性樹脂単体あ
るいはそれら複合物であり、それぞれの物性、性状など
も所望の特性が得られる範囲で特に限定されることはな
い。
The resin binder used for the bonded magnet of the present invention is not particularly limited, and may be various thermoplastic resins or composites thereof, or various thermosetting resins or composites thereof. There is no particular limitation on the range within which desired characteristics can be obtained.

【0016】また、ボンド磁石組成物の加熱流動性など
を向上させるために、各種カップリング剤や滑剤や安定
剤を添加剤として用いる場合がある。磁石合金粉末と樹
脂バインダーなどの混合、混練には各種ミキサーやニー
ダーあるいは押出機を用いることができ、射出成形法、
押出成形法、熱間圧縮成形法などで本発明のボンド磁石
を製造することか可能である。また成形時に磁場を印可
することで異方性のボンド磁石を製造することができ
る。
In order to improve the heat fluidity of the bonded magnet composition, various coupling agents, lubricants and stabilizers are sometimes used as additives. Various mixers, kneaders or extruders can be used for mixing and kneading the magnet alloy powder and the resin binder, and the injection molding method,
It is possible to manufacture the bonded magnet of the present invention by an extrusion method, a hot compression molding method, or the like. By applying a magnetic field during molding, an anisotropic bonded magnet can be manufactured.

【0017】[0017]

【実施例】実施例1 還元拡散法により作製したSm−Fe(25重量%S
m)母合金粉を、35vol%アンモニアガス−水素ガ
ス雰囲気で480℃、6時間の熱処理を行った。その
後、炉内をアルゴンガス雰囲気に置換して480℃、2
時間の熱処理を行った。このように熱処理して得られた
Sm−Fe−N合金粗粉を2−プロパノールを溶媒とし
て用いた媒体撹拌ミルで粉砕した。その後に乾燥、徐酸
化を行い、大気中でハンドリング可能な、粒径5μm以
下の粒子が全体積の96.2%を占める微粉末を作製し
た。この微粉末に対し1.5重量%に相当するエステル
ガムAAL(ロジンエステル;荒川化学工業株式会社
製)を同重量のキシレンにて溶解し、その溶液と微粉末
を混合し5分間撹拌した。その後、減圧乾燥し微粉末を
得た。
EXAMPLES Example 1 Sm-Fe (25% by weight S
m) The mother alloy powder was subjected to a heat treatment at 480 ° C. for 6 hours in a 35 vol% ammonia gas-hydrogen gas atmosphere. Then, the inside of the furnace was replaced with an argon gas atmosphere, and
Time heat treatment was performed. The Sm-Fe-N alloy coarse powder obtained by the heat treatment was pulverized by a medium stirring mill using 2-propanol as a solvent. Thereafter, drying and gradual oxidation were carried out to produce a fine powder occupying 96.2% of the total volume of particles having a particle size of 5 μm or less, which can be handled in the atmosphere. Ester gum AAL (rosin ester; Arakawa Chemical Industry Co., Ltd.) equivalent to 1.5% by weight was dissolved with respect to this fine powder with xylene of the same weight, and the solution and the fine powder were mixed and stirred for 5 minutes. Then, it was dried under reduced pressure to obtain a fine powder.

【0018】実施例2 エステルガムAALを0.1重量%として実施例1と同
様な方法で微粉末を作製した。
Example 2 A fine powder was prepared in the same manner as in Example 1 except that the ester gum AAL was 0.1% by weight.

【0019】実施例3 エステルガムAALを0.1重量%として実施例1と同
様な方法で微粉末を作製した。
Example 3 A fine powder was prepared in the same manner as in Example 1 except that the ester gum AAL was 0.1% by weight.

【0020】実施例4 エステルガムHP(ロジンエステル;荒川化学工業株式
会社製)を用い、実施例1と同様な方法で微粉末を作製
した。
Example 4 Fine powder was prepared in the same manner as in Example 1 using ester gum HP (rosin ester; manufactured by Arakawa Chemical Industry Co., Ltd.).

【0021】実施例5 マルキードNo.1(マレイン酸レジン;荒川化学工業
株式会社製)を用い、実施例1と同様な方法で微粉末を
作製した。
Embodiment 5 Using 1 (resin maleate; Arakawa Chemical Industries, Ltd.), a fine powder was prepared in the same manner as in Example 1.

【0022】実施例6 マルキードNo.2(マレイン酸レジン;荒川化学工業
株式会社製)を用い、実施例1と同様な方法で微粉末を
作製した。
Example 6 2 (maleic acid resin; manufactured by Arakawa Chemical Industry Co., Ltd.), and a fine powder was produced in the same manner as in Example 1.

【0023】実施例7 マルキードNo.5(マレイン酸レジン;荒川化学工業
株式会社製)を用い、実施例1と同様な方法で微粉末を
作製した。
Example 7 5 (maleic acid resin; Arakawa Chemical Industry Co., Ltd.) was used to produce a fine powder in the same manner as in Example 1.

【0024】実施例8 マルキードNo.6(マレイン酸レジン;荒川化学工業
株式会社製)を用い、実施例1と同様な方法で微粉末を
作製した。
Example 8 6 (resin maleate; manufactured by Arakawa Chemical Industry Co., Ltd.), and a fine powder was prepared in the same manner as in Example 1.

【0025】実施例9 マルキードNo.8(マレイン酸レジン;荒川化学工業
株式会社製)を用い、実施例1と同様な方法で微粉末を
作製した。
Example 9 Using 8 (resin maleate; Arakawa Chemical Industries, Ltd.), a fine powder was prepared in the same manner as in Example 1.

【0026】比較例1 還元拡散法により作製したSm−Fe(25重量%S
m)母合金粉を、35vol%アンモニアガス−水素ガ
ス雰囲気で480℃、6時間の熱処理を行った。その
後、炉内をアルゴンガス雰囲気に置換して480℃、2
時間の熱処理を行った。このように熱処理して得られた
Sm−Fe−N合金粗粉を2−プロパノールを溶媒とし
て用いた媒体撹拌ミルで粉砕した。その後に乾燥、徐酸
化を行い、大気中でハンドリング可能な微粉末を作製し
た。
Comparative Example 1 Sm-Fe (25% by weight S
m) The mother alloy powder was subjected to a heat treatment at 480 ° C. for 6 hours in a 35 vol% ammonia gas-hydrogen gas atmosphere. Then, the inside of the furnace was replaced with an argon gas atmosphere, and
Time heat treatment was performed. The Sm-Fe-N alloy coarse powder obtained by the heat treatment was pulverized by a medium stirring mill using 2-propanol as a solvent. Thereafter, drying and gradual oxidation were performed to produce a fine powder that could be handled in the atmosphere.

【0027】比較例2 エステルガムAALを2.0重量%として実施例1と同
様な方法で微粉末を作製した。
Comparative Example 2 Fine powder was prepared in the same manner as in Example 1 except that the ester gum AAL was 2.0% by weight.

【0028】実施例1〜9と比較例1、2の微粉末につ
いて、60℃、90%RHの恒温槽で24時間放置し、
放置前後の磁気特性を測定し、その結果を表1に示す。
磁気特性は、微粉末をパラフィンと混合して成形したボ
ンド磁石をVSM(振動試料型磁束計)測定した結果で
あり、また反磁界補正はしていない。表1の結果より明
らかなごとく、本発明の微粉末はいずれも良好な磁気特
性を示した。
The fine powders of Examples 1 to 9 and Comparative Examples 1 and 2 were left in a thermostat at 60 ° C. and 90% RH for 24 hours.
The magnetic properties before and after the standing were measured, and the results are shown in Table 1.
The magnetic properties are the result of VSM (vibrating sample magnetometer) measurement of a bonded magnet formed by mixing fine powder with paraffin, and the demagnetizing field is not corrected. As is clear from the results in Table 1, all of the fine powders of the present invention showed good magnetic properties.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例10 実施例1で作製した微粉末100重量分に対して12−
ポリアミド樹脂8重量部を混合し、ラボプラストミルに
て混練した。混練温度は200〜240℃、混練槽内は
窒素ガスパージし、混練後に取り出した組成物の冷却は
空冷とした。得られた組成物をプラスチック粉砕機で粉
砕して成形用ペレットとし、該ペレットからφ20×1
3mmの円柱状成形体を13mm方向に20kOeの配
向磁界をかけながら射出成形して製造した。本実施例に
おけるシリンダー温度は190〜200℃、金型温度は
100〜110℃、射出成形機の原料ホッパー・シリン
ダー内は窒素ガスパージ、金型キャビティー付近の雰囲
気は大気、取り出した成形品の冷却方法は空冷とした。
Example 10 12-based on 100 parts by weight of the fine powder prepared in Example 1.
8 parts by weight of the polyamide resin were mixed and kneaded with a Labo Plastomill. The kneading temperature was 200 to 240 ° C., the inside of the kneading tank was purged with nitrogen gas, and the composition taken out after kneading was cooled by air. The obtained composition is pulverized with a plastic pulverizer into pellets for molding.
A 3 mm cylindrical molded body was produced by injection molding while applying an orientation magnetic field of 20 kOe in a 13 mm direction. In this embodiment, the cylinder temperature is 190 to 200 ° C., the mold temperature is 100 to 110 ° C., the inside of the material hopper / cylinder of the injection molding machine is purged with nitrogen gas, the atmosphere near the mold cavity is the atmosphere, and the molded product taken out is cooled. The method was air-cooled.

【0031】比較例3 比較例1で製造した微粉末を用いること以外、実施例1
0と同様な製造方法で成形体を作製した。
Comparative Example 3 Example 1 was repeated except that the fine powder produced in Comparative Example 1 was used.
A molded article was produced by the same production method as in Example 1.

【0032】実施例10、比較例3で作製した成形体
を、それぞれ60℃、90%RHの恒温槽内で300時
間放置し、放置前後の磁気特性を測定し、その結果を表
2に示す。磁気特性は、成形体の配向方向に50kOe
で着磁した後、自記磁束計で磁気特性を測定した値であ
る。表2の結果より明らかなごとく、本発明の微粉末を
用いた成形体は60℃、90%RHの恒温槽内で300
時間の長時間放置しても優れた磁気特性を示した。
The molded bodies produced in Example 10 and Comparative Example 3 were left in a thermostat at 60 ° C. and 90% RH for 300 hours, and the magnetic properties before and after the standing were measured. The results are shown in Table 2. . The magnetic properties are 50 kOe in the orientation direction of the molded body.
This is the value obtained by measuring the magnetic properties with the self-recording magnetometer after the magnetization was performed. As is evident from the results in Table 2, the compact using the fine powder of the present invention was placed in a thermostat at 60 ° C. and 90% RH.
Even when left for a long time, excellent magnetic properties were exhibited.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上説明したごとく、本発明に係る希土
類磁石合金粉末は耐酸化性を有する高磁気特性のR
17Nx系磁石合金粉末であり、このような磁石合金粉
末を用いたボンド磁石は、高い磁気特性を有するととも
に、経時変化を抑制した優れた磁石である。
As described above, the rare-earth magnet alloy powder according to the present invention has high magnetic properties of R 2 T having oxidation resistance.
It is a 17 Nx-based magnet alloy powder, and a bonded magnet using such a magnet alloy powder is an excellent magnet having high magnetic properties and suppressing a change with time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R17Nx系磁石合金粉末(ただ
し、RはSmを必須とする少なくとも1種以上の希土類
元素、TはFeを必須とする少なくとも1種以上の金属
元素、Nは窒素)において、少なくともその表面の一部
にロジンエステルが0.1〜1.5重量%存在すること
を特徴とする耐酸化性に優れた希土類磁石合金粉末。
1. An R 2 T 17 Nx-based magnet alloy powder (where R is at least one or more rare earth elements that require Sm, T is at least one or more metal elements that require Fe, N is nitrogen) 5.) A rare earth magnet alloy powder excellent in oxidation resistance, wherein the rosin ester is present in at least a part of the surface in 0.1 to 1.5% by weight.
【請求項2】 R17Nx系磁石合金粉末(ただ
し、RはSmを必須とする少なくとも1種以上の希土類
元素、TはFeを必須とする少なくとも1種以上の金属
元素、Nは窒素)において、少なくともその表面の一部
にマレイン酸レジンが0.1〜1.5重量%存在するこ
とを特徴とする耐酸化性に優れた希土類磁石合金粉末。
2. An R 2 T 17 Nx-based magnet alloy powder (where R is at least one or more rare earth elements that require Sm, T is at least one or more metal elements that require Fe, N is nitrogen) 5.) A rare earth magnet alloy powder having excellent oxidation resistance, wherein the maleic acid resin is present in at least a part of the surface in 0.1 to 1.5% by weight.
【請求項3】 ロジンエステルまたはマレイン酸レジン
が沸点100℃以下の有機溶媒に可溶であることを特徴
とする請求項1または2記載の耐酸化性に優れた希土類
磁石合金粉末。
3. The rare earth magnet alloy powder having excellent oxidation resistance according to claim 1, wherein the rosin ester or the maleic resin is soluble in an organic solvent having a boiling point of 100 ° C. or lower.
【請求項4】 還元拡散法により製造されたR17
系合金を窒化処理して製造された請求項1または2記載
の耐酸化性に優れた希土類磁石合金粉末。
4. R 2 T 17 produced by a reduction diffusion method
The rare-earth magnet alloy powder according to claim 1 or 2, which is produced by nitriding a system alloy.
【請求項5】 前記請求項1〜4のいずれか1項記載の
磁石合金粉末を用いたことを特徴とするボンド磁石。
5. A bonded magnet using the magnetic alloy powder according to any one of claims 1 to 4.
JP2000156036A 2000-05-26 2000-05-26 Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same Pending JP2001335803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156036A JP2001335803A (en) 2000-05-26 2000-05-26 Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156036A JP2001335803A (en) 2000-05-26 2000-05-26 Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same

Publications (1)

Publication Number Publication Date
JP2001335803A true JP2001335803A (en) 2001-12-04

Family

ID=18660881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156036A Pending JP2001335803A (en) 2000-05-26 2000-05-26 Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP2001335803A (en)

Similar Documents

Publication Publication Date Title
JP4525425B2 (en) Fluoride coat film forming treatment liquid, fluoride coat film forming method and magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP2022177699A (en) Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP2002057017A (en) Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP2016066675A (en) Rare earth isotropic bond magnet
JPH11214207A (en) Rare-earth bond magnet and composition thereof
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP2001076925A (en) Permanent magnet having flat plate multipolar anisotropy and actuator
JP2001335802A (en) Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same
JP3229435B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP2001335803A (en) Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP3615177B2 (en) Magnet material and method of manufacturing bonded magnet using the same
JP2708578B2 (en) Bonded magnet
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JP3565513B2 (en) Alloy for bonded magnet, isotropic magnet powder and anisotropic magnet powder, their production method, and bonded magnet