JP2001325978A - Fuel cell and its running method - Google Patents

Fuel cell and its running method

Info

Publication number
JP2001325978A
JP2001325978A JP2000143504A JP2000143504A JP2001325978A JP 2001325978 A JP2001325978 A JP 2001325978A JP 2000143504 A JP2000143504 A JP 2000143504A JP 2000143504 A JP2000143504 A JP 2000143504A JP 2001325978 A JP2001325978 A JP 2001325978A
Authority
JP
Japan
Prior art keywords
fuel cell
water
fuel
temperature
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000143504A
Other languages
Japanese (ja)
Inventor
Ryuji Hatayama
龍次 畑山
Yasunori Yoshimoto
保則 吉本
Akira Hamada
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000143504A priority Critical patent/JP2001325978A/en
Publication of JP2001325978A publication Critical patent/JP2001325978A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a stabilized steady running of a fuel cell at and after the start-up, by preventing a blockade of a gas pass by a condensation water in the fuel cell. SOLUTION: At the start-up of a fuel cell, a warmed-up water is supplied in a fuel-gas passage by running a pump of a water supply means. The pump is suspended temporarily at P point where the cell temperature reaches a predetermined temperature. At the same time, the fuel gas and an oxidizer gas are supplied. After running the pump after fixed time t1 to supply the cooling water, a load input is carried out at Q point. The fuel call starts power generation and the temperature of the fuel cell rises according to the power generation reaction (R point). With a signal of a temperature detection means, the water supply means is changed to the cooling water supply, and the temperature of the fuel cell is set to be the steady operating temperature. After that, supply of the cooling water is continued and steady run is started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝縮水によるガス
流路の閉塞を防止して安定した運転ができるようにし
た、燃料電池及びその運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell and a method of operating the fuel cell, which can prevent a gas flow path from being blocked by condensed water and can perform a stable operation.

【0002】[0002]

【従来の技術】燃料電池は、使用する電解質の種類や運
転温度等により分類されるが、これら燃料電池の中で例
えば固体高分子型燃料電池等の酸性電解質型燃料電池で
は、その電解質の性質から二酸化炭素を含んだ燃料ガス
を使用することができる。そこで、通常これらの燃料電
池では、空気を酸化剤ガスとして用い、メタノールや天
然ガス等の炭化水素系の原燃料を改質して生成した水素
含有ガスを燃料ガスとして用いている。
2. Description of the Related Art Fuel cells are classified according to the type of electrolyte used, the operating temperature, and the like. Among these fuel cells, for example, in an acidic electrolyte fuel cell such as a polymer electrolyte fuel cell, the properties of the electrolyte are used. Fuel gas containing carbon dioxide can be used. Therefore, these fuel cells usually use air as an oxidizing gas and use a hydrogen-containing gas generated by reforming a hydrocarbon-based raw fuel such as methanol or natural gas as a fuel gas.

【0003】又、固体高分子型燃料電池で用いられる電
解質膜は湿潤状態でイオン導電性を有するために、燃料
ガスと共に水を燃料ガス流路に流通させることで電解質
膜を湿潤させる構造の燃料電池が知られている。この水
は、運転時には燃料電池の冷却用としての役割も有して
いる。
Further, since the electrolyte membrane used in the polymer electrolyte fuel cell has ionic conductivity in a wet state, a fuel having a structure in which water is circulated together with a fuel gas through a fuel gas flow path to wet the electrolyte membrane. Batteries are known. This water also has a role for cooling the fuel cell during operation.

【0004】ところで、このような燃料電池の起動時に
は、改質された燃料ガス中に微量に含まれる一酸化炭素
の影響(白金触媒の被毒)を避けるため、燃料電池を所
定の温度まで昇温してから燃料ガスを供給し、運転を開
始する必要がある。そこで、従来運転中は冷却用に用い
られている水を加熱し、温水として燃料ガス流路に流通
させることで燃料電池を所定温度まで昇温した後に、燃
料ガスを供給することが行われている。そして、通常運
転時には水の加熱を止め、冷却用及び電解質膜の加湿用
の水として用いる。
By the way, when starting such a fuel cell, the fuel cell is heated to a predetermined temperature in order to avoid the influence of a trace amount of carbon monoxide in the reformed fuel gas (poisoning of the platinum catalyst). It is necessary to supply fuel gas after warming and start operation. Therefore, during the conventional operation, the water used for cooling is heated, and the fuel gas is supplied to the fuel cell after the fuel cell is heated to a predetermined temperature by flowing the water as hot water through the fuel gas passage. I have. During normal operation, the heating of the water is stopped, and the water is used as water for cooling and for humidifying the electrolyte membrane.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、起動時
における燃料電池の昇温過程においては、燃料電池温度
が低いために燃料ガス流路で温水が冷却され、粘度が高
まるために流路内で水が滞留し易くなる。このため燃料
ガスを供給し発電を開始しても、燃料ガス流路内に均等
に燃料ガスが流れないために、出力特性の低下や電極の
腐食を発生させるという課題が生じていた。
However, in the process of raising the temperature of the fuel cell at the time of startup, hot water is cooled in the fuel gas flow channel due to the low fuel cell temperature, and the water increases in the flow channel due to the increase in viscosity. Is more likely to stay. For this reason, even if the fuel gas is supplied and power generation is started, the fuel gas does not flow evenly in the fuel gas flow path, so that there has been a problem that the output characteristics are deteriorated and the electrode is corroded.

【0006】そこで、本発明は、発電を開始する際に燃
料ガス流路内に生じた水詰まりを解消し、燃料ガス流路
内に均等に燃料ガスを供給することのできる燃料電池及
びその運転方法を提供することを目的とする。
Accordingly, the present invention is directed to a fuel cell capable of eliminating water clogging generated in a fuel gas passage when power generation is started, and supplying a fuel gas evenly in the fuel gas passage, and an operation thereof. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の具体的手段として、本発明は、アノード側の燃料ガス
流路に水を流通させて電解質を加湿すると共に、起動時
には昇温した水を前記燃料ガス流路に流通させて昇温を
行う燃料電池において、この燃料電池温度或は燃料電池
電圧の少なくとも一方を検出し、その検出信号に基づい
て前記燃料ガス流路に水を流通させる水供給手段を制御
するようにした燃料電池を要旨とする。又、この燃料電
池において、前記燃料電池温度が所定の温度に到達して
発電を開始する際に、一定時間燃料ガス流路への水供給
を停止し、燃料ガス流路に燃料ガスを供給した後に水を
再供給し、負荷接続する燃料電池の運転方法、前記燃料
電池温度が所定の温度に到達して発電を開始する際に、
一旦燃料ガス流路への水供給を停止し、燃料ガス流路に
燃料ガスを供給した後、一定時間保持してから負荷接続
を行った後に水の再供給を行う燃料電池の運転方法、上
記燃料電池の運転方法により負荷接続した後、出力電圧
が規定値以下となった場合、再度一定時間水の供給を停
止する燃料電池の運転方法、を要旨とするものである。
As a specific means for achieving this object, the present invention circulates water through a fuel gas flow path on the anode side to humidify the electrolyte, and increases the temperature of the water at startup. In the fuel gas flow path to raise the temperature, at least one of the fuel cell temperature and the fuel cell voltage is detected, and water is passed through the fuel gas flow path based on the detection signal. A gist of the present invention is a fuel cell that controls water supply means. Further, in this fuel cell, when the fuel cell temperature reaches a predetermined temperature and power generation is started, water supply to the fuel gas flow path is stopped for a certain time, and fuel gas is supplied to the fuel gas flow path. After re-supplying water, the operation method of the fuel cell connected to the load, when the fuel cell temperature reaches a predetermined temperature and starts power generation,
The method of operating the fuel cell, in which the supply of water to the fuel gas flow path is temporarily stopped, the fuel gas is supplied to the fuel gas flow path, and after a predetermined time is maintained, and then the load is connected and the water is resupplied, The gist of the invention is a fuel cell operation method in which when the output voltage becomes equal to or lower than a specified value after the load is connected by the fuel cell operation method, the supply of water is stopped again for a certain period of time.

【0008】本発明に係る燃料電池は、燃料電池温度或
は燃料電池電圧の少なくとも一方を検出し、その検出信
号によって燃料ガス流路に水を流通させる水供給手段を
制御することで、燃料ガス流路中に生じていた水詰まり
を解消し、負荷接続後に安定して高い出力を供給するこ
とが可能となる。
[0008] The fuel cell according to the present invention detects at least one of the fuel cell temperature and the fuel cell voltage, and controls the water supply means for flowing water through the fuel gas flow path in accordance with the detection signal, thereby providing the fuel gas. Water clogging that has occurred in the flow path can be eliminated, and a high output can be supplied stably after the load is connected.

【0009】[0009]

【発明の実施の形態】次に、本発明の燃料電池及びその
運転方法について、実施形態を示す添付図面に基づいて
説明する。図1は、第1実施例であって燃料電池発電シ
ステムの全体構成を示すもので、この場合は燃料電池1
として固体高分子型燃料電池が用いられる。固体高分子
型燃料電池は、図2のように白金電極からなるアノード
AとカソードBとの間に電解質である固体高分子膜Cが
挟まれ、アノードAにはアノード側流路基板Dが添設さ
れて燃料ガス流路D1が形成される一方、カソードBに
はカソード側流路基板Eが添設されて酸化剤ガス流路E
1が形成され、これらを単位セルFとしてセパレータG
を介して横に複数個積層し合体することで構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a fuel cell according to the present invention and a method of operating the same will be described with reference to the accompanying drawings showing an embodiment. FIG. 1 shows a first embodiment, which shows the overall configuration of a fuel cell power generation system.
A polymer electrolyte fuel cell is used as the fuel cell. In the polymer electrolyte fuel cell, as shown in FIG. 2, a polymer electrolyte membrane C serving as an electrolyte is interposed between an anode A composed of a platinum electrode and a cathode B, and an anode-side flow path substrate D is attached to the anode A. And a fuel gas flow path D1 is formed, while a cathode-side flow path substrate E is attached to the cathode B to form an oxidant gas flow path E1.
1 are formed, and these are used as a unit cell F and the separator G
And a plurality of layers are stacked side by side and combined.

【0010】前記アノード側の燃料ガス流路D1には、
改質装置2により改質された水素ガスを含む燃料ガス及
び水が供給され、カソード側の酸化剤ガス流路E1には
空気等の酸素ガスを含む酸化剤ガスが、酸化剤加湿器3
により加湿されて供給される。そして、アノード側で
は、燃料ガス中の水素ガスがH→2H+2eの反
応によってプロトンと電子が生成され、プロトンは固体
高分子膜Cを通ってカソードに向かい、電子は外部回路
(負荷)に流れる。カソード側では、酸化剤ガス中の酸
素と、固体高分子膜Cを通って移動したプロトン及び外
部回路を通って流入した電子が、1/2O+2H
2e→HOの反応により、水を生じると共に起電力
を発生する。
In the fuel gas flow path D1 on the anode side,
Fuel gas and water containing hydrogen gas reformed by the reformer 2 are supplied, and an oxidizing gas containing oxygen gas such as air is supplied to the oxidizing gas humidifier 3 in the oxidizing gas flow path E1 on the cathode side.
Humidified and supplied. Then, on the anode side, the hydrogen gas in the fuel gas generates protons and electrons by the reaction of H 2 → 2H + + 2e , the protons pass through the solid polymer membrane C to the cathode, and the electrons pass through an external circuit (load). ). On the cathode side, oxygen in the oxidant gas, protons that have moved through the solid polymer membrane C, and electrons that have flowed in through the external circuit are 、 O 2 + 2H + +
The reaction of 2e → H 2 O generates water and generates an electromotive force.

【0011】燃料電池の最適な作動温度は、種類によっ
て異なるが固体高分子型燃料電池の場合は約60℃〜8
0℃であり、上記反応は発熱を伴う反応であるため、燃
料電池1には冷却水が導入される。この冷却水としては
燃料ガス流路D1に供給される水が用いられる。又、固
体高分子膜Cは乾燥している状態では抵抗が大きく、燃
料電池1を作動させるには適切でないため、前記冷却水
の一部を燃料ガスの加湿に利用し、加湿された燃料ガス
により固体高分子膜Cを湿潤させて導電性を向上させ
る。
The optimum operating temperature of a fuel cell differs depending on the type, but in the case of a polymer electrolyte fuel cell, it is about 60 ° C. to 8 ° C.
Since the temperature is 0 ° C. and the above reaction is a reaction involving heat generation, cooling water is introduced into the fuel cell 1. As the cooling water, water supplied to the fuel gas passage D1 is used. Further, since the solid polymer membrane C has a large resistance in a dry state and is not suitable for operating the fuel cell 1, a part of the cooling water is used for humidifying the fuel gas, and the humidified fuel gas is used. To moisten the solid polymer film C to improve conductivity.

【0012】このため、図1に示す第1実施例では水タ
ンク4に接続された水供給手段5から前記燃料ガス流路
D1に冷却水が供給され、この冷却水は燃料ガス流路D
1を通過した後に第1熱交換器6に導かれ、前記改質装
置2から第1熱交換器6に送り込まれた燃料ガスと熱交
換し、生じた凝縮水と共に前記水タンク4に戻される。
For this reason, in the first embodiment shown in FIG. 1, cooling water is supplied to the fuel gas passage D1 from the water supply means 5 connected to the water tank 4, and the cooling water is supplied to the fuel gas passage D1.
After passing through the first heat exchanger 6, it is guided to the first heat exchanger 6, exchanges heat with the fuel gas sent from the reformer 2 to the first heat exchanger 6, and is returned to the water tank 4 together with the condensed water generated. .

【0013】燃料電池1の起動時においては、改質され
た燃料ガス中に微量に含まれる一酸化炭素の影響(白金
電極の被毒)を避けるため、燃料電池1を所定の温度
(約60℃〜80℃)まで昇温してから燃料ガスを供給
し、運転を開始する必要がある。このため、前記水供給
手段5から燃料ガス流路D1に供給する冷却水を、加熱
手段(図示せず)により加熱し、この温水を燃料ガス流
路D1に供給することで燃料電池1の昇温を行なう。
When the fuel cell 1 is started, the fuel cell 1 is kept at a predetermined temperature (about 60 ° C.) in order to avoid the influence of a trace amount of carbon monoxide (poisoning of the platinum electrode) in the reformed fuel gas. (80 ° C. to 80 ° C.), the fuel gas is supplied, and the operation needs to be started. For this reason, the cooling water supplied from the water supply means 5 to the fuel gas flow path D1 is heated by a heating means (not shown), and this hot water is supplied to the fuel gas flow path D1 to raise the fuel cell 1. Perform warming.

【0014】この場合、燃料ガス流路D1に温水を長時
間流し続けると、その温水中の水蒸気が凝縮水となって
燃料ガス流路D1を部分的に閉塞する現象が発生する。
特に、燃料電池1の温度が低い場合には、温水の温度が
下がって粘性が高まり閉塞現象が起こり易い。このよう
な閉塞状態のままで燃料ガスを燃料ガス流路D1に供給
すると、部分的に燃料ガスの流れが悪化し、その結果負
荷接続時には燃料電池1が燃料不足の状態で運転される
ことになり、電池の起電力が低下してしまう。
In this case, if hot water continues to flow through the fuel gas flow channel D1 for a long time, a phenomenon occurs in which steam in the hot water becomes condensed water and partially blocks the fuel gas flow channel D1.
In particular, when the temperature of the fuel cell 1 is low, the temperature of the hot water drops, the viscosity increases, and the clogging phenomenon easily occurs. If the fuel gas is supplied to the fuel gas flow path D1 in such a closed state, the flow of the fuel gas partially deteriorates. As a result, when the load is connected, the fuel cell 1 is operated in a state of insufficient fuel. As a result, the electromotive force of the battery decreases.

【0015】燃料ガス流路D1の開口径(通常開口形状
は矩形)は1mm程度であり、前記のように低温の水を
長時間流し続けると燃料ガス流路D1の一部が凝縮水に
より閉塞してしまう可能性が非常に高い。一方、水の粘
度は水温の上昇により低下するため、燃料ガス流路D1
に同じ流量の水を流しても電池温度が高まると水による
閉塞の確率は大幅に低減する。一旦燃料ガス流路D1に
閉塞が生じても、燃料ガス流路D1への水供給を一定時
間停止することにより、閉塞を解消することが可能にな
る。このようなことから、本発明では燃料電池1に温度
センサ等の温度検出手段7を取り付け、この温度検出手
段7により燃料電池1の温度を検出すると共に、その検
出信号に基づいて前記水供給手段5を制御する。
The opening diameter of the fuel gas flow path D1 (normally, the opening shape is rectangular) is about 1 mm. As described above, when the low-temperature water is continuously supplied for a long time, a part of the fuel gas flow path D1 is blocked by condensed water. Very likely to do so. On the other hand, since the viscosity of water decreases as the water temperature rises, the fuel gas flow path D1
Even if the same flow rate of water is supplied, when the battery temperature rises, the probability of blockage by water is greatly reduced. Even if the blockage of the fuel gas passage D1 occurs once, the blockage can be resolved by stopping the water supply to the fuel gas passage D1 for a certain period of time. For this reason, in the present invention, the temperature detecting means 7 such as a temperature sensor is attached to the fuel cell 1, the temperature detecting means 7 detects the temperature of the fuel cell 1, and based on the detection signal, the water supply means 5 is controlled.

【0016】図3は、水供給手段5の制御フローを示す
もので、先ず燃料電池1の起動に先立ち水供給手段5の
ポンプを動作させて燃料電池1に昇温用水を送り込み、
燃料電池1の温度を徐々に上昇させる。次いで、温度検
出手段7が燃料電池温度を検出して所定温度(約60
℃)になった時点(P点)で、温度検出手段7の信号に
よりポンプが停止し、昇温用水の供給が一時的に停止さ
れると同時に、燃料電池1には燃料ガス及び酸化剤ガス
が投入される。この後、一定時間t1経過後にポンプを
作動して昇温用温水を再供給し、燃料電池1を適温に保
持した時点(Q点)で負荷接続することで発電を開始さ
せる。
FIG. 3 shows a control flow of the water supply means 5. First, prior to the activation of the fuel cell 1, the pump of the water supply means 5 is operated to supply the heating water to the fuel cell 1.
The temperature of the fuel cell 1 is gradually increased. Next, the temperature detecting means 7 detects the temperature of the fuel cell and determines a predetermined temperature (about 60 ° C.).
° C) (point P), the pump is stopped by the signal of the temperature detecting means 7, the supply of the heating water is temporarily stopped, and the fuel gas and the oxidizing gas are supplied to the fuel cell 1 at the same time. Is input. Thereafter, after a lapse of a predetermined time t1, the pump is operated to re-supply the warming-up hot water, and when the fuel cell 1 is maintained at an appropriate temperature (point Q), the load is connected to start power generation.

【0017】燃料電池1の発電に伴い、発熱反応によっ
て燃料電池1の温度は70〜80℃まで昇温(R点)す
る。その後、温度検出手段7の信号によって水供給手段
5が、図示しない加熱手段を停止させることにより冷却
水供給に切り替えられ、燃料電池1の温度は定常運転温
度(約80℃)とされる。その後は、冷却水の供給が続
けられて燃料電池1は定常運転に入る。
With the power generation of the fuel cell 1, the temperature of the fuel cell 1 rises to 70 to 80 ° C. (point R) due to an exothermic reaction. After that, the water supply means 5 is switched to the cooling water supply by stopping the heating means (not shown) according to the signal of the temperature detection means 7, and the temperature of the fuel cell 1 is set to the steady operation temperature (about 80 ° C.). Thereafter, the supply of the cooling water is continued, and the fuel cell 1 enters a steady operation.

【0018】図4は、水供給手段5の他の制御フローを
示すもので、図3に示す制御フローと基本的には同じで
あるが、昇温用水の供給により燃料電池1が所定温度
(約60℃)に到達したP点で、ポンプを止めて昇温用
水の供給を一時的に停止し、このP点で燃料ガス及び酸
化剤ガスを投入し、一定時間t2経過した後Q点で負荷
接続を行う。燃料電池1が発電を開始して発熱によりそ
の温度が70〜80℃に昇温したR点で、ポンプを再作
動して冷却水を供給する点で、図3の場合とは多少相違
している。この場合も、冷却水の供給によって燃料電池
1の温度は定常運転温度とされ、その後は燃料電池1の
定常運転が行われる。
FIG. 4 shows another control flow of the water supply means 5, which is basically the same as the control flow shown in FIG. 3, except that the fuel cell 1 is supplied with a predetermined temperature ( At point P when the temperature reaches about 60 ° C.), the pump is stopped to temporarily stop the supply of the heating water, and at this point P, the fuel gas and the oxidizing gas are introduced. Make the load connection. The fuel cell 1 is slightly different from the case of FIG. 3 in that the pump is restarted to supply the cooling water at the point R where the temperature is increased to 70 to 80 ° C. by the heat generation due to the heat generation. I have. Also in this case, the temperature of the fuel cell 1 is set to the steady operation temperature by supplying the cooling water, and thereafter the steady operation of the fuel cell 1 is performed.

【0019】尚、酸化剤ガスは、図1のように前記酸化
剤加湿器3により加湿された後第2熱交換器8により外
部から取り込んだ空気との間で熱交換され、流量調整弁
9を介して適量の酸化剤ガスが前記酸化剤ガス流路E1
に供給される。10は流量調整弁9を制御するための制
御装置である。又、第2熱交換器8で生じた凝縮水は前
記水タンク4内に収容される。
The oxidizing gas is humidified by the oxidizing humidifier 3 as shown in FIG. 1 and then heat-exchanged with air taken in from outside by the second heat exchanger 8. A suitable amount of oxidizing gas flows through the oxidizing gas flow path E1
Supplied to Reference numeral 10 denotes a control device for controlling the flow control valve 9. Condensed water generated in the second heat exchanger 8 is stored in the water tank 4.

【0020】図5は、本発明に係る第2実施例を示すも
ので、この場合は第1実施例の構成を発展させたもの
で、アノード側に関連させて熱交換器を増設(第4熱交
換器6’)すると共に流量調整弁9’を設け、カソード
側に関連させて熱交換器を増設(第3熱交換器8’)
し、更に制御装置11はアノード側の流量調整弁9’及
びカソード側の流量調整弁9の両方を制御するように構
成したものである。
FIG. 5 shows a second embodiment according to the present invention. In this case, the structure of the first embodiment is developed, and a heat exchanger is added in connection with the anode side (fourth embodiment). In addition to the heat exchanger 6 '), a flow regulating valve 9' is provided, and a heat exchanger is added in association with the cathode side (third heat exchanger 8 ').
Further, the control device 11 is configured to control both the anode side flow control valve 9 ′ and the cathode side flow control valve 9.

【0021】これにより、燃料ガスは改質装置2により
改質された後、第1、第2熱交換器6、6’を経て流量
調整弁9’により適量がアノードに供給され、酸化剤ガ
スは酸化剤加湿器3で加湿された後、第1、第2熱交換
器8,8’を経て流量調整弁9によりカソードに供給さ
れる。この第2実施例での燃料電池1の運転方法は、前
記第1実施例の場合と同じであるからその説明を省略す
る。
Thus, after the fuel gas is reformed by the reformer 2, an appropriate amount of fuel gas is supplied to the anode through the first and second heat exchangers 6 and 6 'by the flow control valve 9'. Is humidified by the oxidizing agent humidifier 3 and then supplied to the cathode via the first and second heat exchangers 8 and 8 'by the flow control valve 9. The operation method of the fuel cell 1 according to the second embodiment is the same as that of the first embodiment, and the description thereof is omitted.

【0022】ところで、前記実施例では、いずれも燃料
電池1の起動時に燃料電池温度を検出して水供給手段5
を制御するものであったが、燃料電池1の負荷接続後は
燃料電池1の出力電圧を検出して水供給手段5を制御す
ることができる。即ち、燃料電池1に電圧計(図略)を
接続し、負荷接続後の定常運転中に燃料電池1の電池電
圧を検出し、電圧低下が生じた場合には冷却水による燃
料ガス流路D1又は酸化剤ガス流路E1の閉塞が原因で
あるため、その時の検出信号により水供給手段5のポン
プを停止して冷却水の供給を一定時間停止する。
By the way, in each of the above embodiments, when the fuel cell 1 is started, the temperature of the fuel cell is detected and the water supply means 5 is detected.
However, after the load of the fuel cell 1 is connected, the water supply means 5 can be controlled by detecting the output voltage of the fuel cell 1. That is, a voltmeter (not shown) is connected to the fuel cell 1, the battery voltage of the fuel cell 1 is detected during the steady operation after the load is connected, and if a voltage drop occurs, the fuel gas flow path D1 of the cooling water is used. Alternatively, since the oxidant gas flow path E1 is blocked, the pump of the water supply means 5 is stopped by the detection signal at that time, and the supply of the cooling water is stopped for a certain time.

【0023】冷却水の供給停止により、燃料電池1の温
度は上昇してガス流路の水閉塞が解消されると、電池電
圧は上昇して定常運転時に復帰するから、その時の検出
信号によりポンプを再作動させて水供給手段5からの冷
却水の供給を再開する。このようにして、燃料電池1の
電池電圧を検出することで水供給手段5を制御し、定常
運転中の水閉塞を速やかに解消して安定した運転を保持
することができる。
When the supply of cooling water is stopped and the temperature of the fuel cell 1 rises and the water flow in the gas flow path is eliminated, the battery voltage rises and returns to the normal operation. Is restarted to restart the supply of the cooling water from the water supply means 5. In this way, the water supply means 5 is controlled by detecting the cell voltage of the fuel cell 1, and the water blockage during the steady operation can be quickly eliminated to maintain a stable operation.

【0024】この電池電圧による水供給手段5の制御
は、定常運転中のみならず燃料電池1の起動時にも適用
することが可能である。図6はその一例を示すもので、
水供給手段5のポンプを作動して燃料電池1に昇温用水
を一定時間供給し、その供給を一時的に停止(S点)す
ると同時に、燃料電池1に燃料ガス及び酸化剤ガスを供
給して燃料電池1の運転を開始する。
The control of the water supply means 5 by the battery voltage can be applied not only during the steady operation but also when the fuel cell 1 is started. FIG. 6 shows an example thereof.
The pump of the water supply means 5 is operated to supply the heating water to the fuel cell 1 for a certain time, and the supply is temporarily stopped (point S), and at the same time, the fuel gas and the oxidizing gas are supplied to the fuel cell 1. To start operation of the fuel cell 1.

【0025】燃料電池1の運転に伴って電池電圧が上昇
し、所定の電圧に達した時点(T点)でポンプを再作動
させて冷却水を供給した後に負荷接続する。これによ
り、電池電圧が下がってきた時(U点)には再びポンプ
を停止して冷却水の供給を停止する。この後、電池電圧
は再び上昇を始め、所定の電圧値になった時点(V点)
でポンプを作動させて水供給手段5から冷却水の供給を
開始する。その後は、電池電圧は規定値を保持して安定
し、燃料電池1は定常運転に入る。定常運転中も、前記
のように燃料電池1の電池電圧を検出することで水供給
手段5を制御する。
When the battery voltage rises with the operation of the fuel cell 1 and reaches a predetermined voltage (point T), the pump is restarted to supply cooling water, and then the load is connected. Thus, when the battery voltage drops (point U), the pump is stopped again to stop the supply of the cooling water. Thereafter, the battery voltage starts to rise again and reaches a predetermined voltage value (point V).
To start the cooling water supply from the water supply means 5. Thereafter, the battery voltage is stabilized while maintaining the specified value, and the fuel cell 1 enters a steady operation. Even during the steady operation, the water supply means 5 is controlled by detecting the cell voltage of the fuel cell 1 as described above.

【0026】図7は、本発明の実施例(第1実施例〜第
2実施例)と比較例との実験結果を示すもので、本実施
例によると燃料電池は起動後にそのセル電圧がほぼ一定
値を保持するのに対し、比較例の場合は起動後のセル電
圧が不安定であり、これは凝縮水に起因するガス流路の
閉塞により引き起こされたものと考えられる。従って、
本実施例によれば、燃料電池のガス流路を閉塞すること
なく、安定した運転が得られることが判明した。
FIG. 7 shows the experimental results of the embodiment (first embodiment and second embodiment) of the present invention and the comparative example. According to this embodiment, the cell voltage of the fuel cell after starting is almost equal. While the constant value was maintained, in the case of the comparative example, the cell voltage after startup was unstable, which is considered to be caused by the blockage of the gas flow path caused by the condensed water. Therefore,
According to the present embodiment, it has been found that stable operation can be obtained without blocking the gas flow path of the fuel cell.

【0027】尚、本発明においては、燃料電池温度或は
燃料電池電圧の少なくとも一方を検出して水供給手段を
制御するものであるが、これら両方を検出して併用実施
することも勿論可能である。
In the present invention, the water supply means is controlled by detecting at least one of the fuel cell temperature and the fuel cell voltage, but it is of course possible to detect both of them and use them together. is there.

【0028】[0028]

【発明の効果】以上説明したように、本発明は、燃料電
池温度或は燃料電池電圧の少なくとも一方を検出し、そ
の検出信号により燃料ガス流路或は酸化剤ガス流路に水
を流通させる水供給手段を制御することで、これらのガ
ス流路が凝縮水により閉塞し易い状態にあるか否かの判
断が可能になる。閉塞し難い電池温度(固体高分子型燃
料電池では60℃程度)まで到達したことを検出した場
合は、その検出信号に基づき一定時間温水の供給を停止
する。この操作により、昇温期間中に生じたガス流路中
の水閉塞を解消することが可能となる。この後、水供給
を再開しても燃料電池温度が水閉塞の起こり難い状態と
なるため、ガス流路の水閉塞は起こらない。更に、水供
給を停止している間に燃料ガスの供給を開始すること
で、水閉塞は一層起こり難くなる。又、負荷を接続する
瞬間には、燃料電池の発電反応により燃料ガスが消費さ
れるため、燃料ガス圧が低下する。この際、燃料ガス流
路に水が流通していると、再度水閉塞が発生する可能性
が招来するため、水供給停止時に負荷接続を行うと更に
水閉塞の確率が低下し、安定な燃料電池出力を確保する
ことが可能になる。そして、負荷接続後、燃料電池の出
力電圧が規定値以下となった場合には、ガス流路の水閉
塞は一定時間水供給を停止することで解消することがで
き、このような水供給停止を電池電圧の検出信号により
行うことで、燃料電池の良好な定常運転を続行すること
ができる。
As described above, according to the present invention, at least one of the fuel cell temperature and the fuel cell voltage is detected, and water is circulated through the fuel gas flow path or the oxidizing gas flow path based on the detection signal. By controlling the water supply means, it is possible to determine whether or not these gas flow paths are in a state that is easily blocked by condensed water. When it is detected that the temperature has reached the cell temperature that is not easily blocked (about 60 ° C. in the case of the polymer electrolyte fuel cell), the supply of hot water is stopped for a certain period of time based on the detection signal. With this operation, it is possible to eliminate water clogging in the gas flow path that occurred during the temperature rising period. Thereafter, even if the water supply is restarted, the fuel cell temperature is in a state in which water blockage is unlikely to occur, so that water blockage in the gas flow path does not occur. Further, by starting the supply of the fuel gas while the water supply is stopped, the water clogging is less likely to occur. At the moment when the load is connected, the fuel gas is consumed by the power generation reaction of the fuel cell, so that the fuel gas pressure decreases. At this time, if water is circulating in the fuel gas flow path, there is a possibility that water clogging will occur again.Therefore, if a load is connected when the water supply is stopped, the probability of water clogging is further reduced, and stable fuel Battery output can be secured. Then, when the output voltage of the fuel cell becomes equal to or lower than the specified value after the load is connected, the water blockage in the gas flow path can be resolved by stopping the water supply for a certain period of time. Is performed based on the detection signal of the battery voltage, so that the fuel cell can continue good steady operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施例の燃料電池発電システ
ムを示す全体構成図
FIG. 1 is an overall configuration diagram showing a fuel cell power generation system according to a first embodiment of the present invention.

【図2】本実施例に用いる固体高分子型燃料電池の単位
セルを示す概略斜視図
FIG. 2 is a schematic perspective view showing a unit cell of a polymer electrolyte fuel cell used in the present embodiment.

【図3】燃料電池の起動時の運転方法を示すフロー図FIG. 3 is a flowchart showing an operation method when the fuel cell is started.

【図4】燃料電池の起動時の他の運転方法を示すフロー
FIG. 4 is a flowchart showing another operation method at the time of starting the fuel cell.

【図5】本発明に係る第2実施例の燃料電池発電システ
ムを示す全体構成図
FIG. 5 is an overall configuration diagram showing a fuel cell power generation system according to a second embodiment of the present invention.

【図6】燃料電池の起動時の更に他の運転方法を示すフ
ロー図
FIG. 6 is a flowchart showing still another operation method at the time of starting the fuel cell.

【図7】本実施例と比較例での燃料電池のセル電圧実験
結果を示すグラフ図
FIG. 7 is a graph showing experimental results of cell voltages of fuel cells in the present example and a comparative example.

【符号の説明】[Explanation of symbols]

1…燃料電池 2…改質装置 3…酸化剤加湿器 4…水タンク 5…水供給手段 6…第1熱交換器 7…温度検出手段 8…第2熱交換器 9…流量調整弁 10、11…制御装置 D1…燃料ガス流路 E1…酸化剤ガス流路 DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Reformer 3 ... Oxidizer humidifier 4 ... Water tank 5 ... Water supply means 6 ... 1st heat exchanger 7 ... Temperature detection means 8 ... 2nd heat exchanger 9 ... Flow control valve 10, 11: control device D1: fuel gas flow path E1: oxidizing gas flow path

フロントページの続き (72)発明者 濱田 陽 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H026 AA06 CC03 5H027 AA06 BA01 CC06 KK46 KK54 MM16 Continuation of the front page (72) Inventor Yo Hamada 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H026 AA06 CC03 5H027 AA06 BA01 CC06 KK46 KK54 MM16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アノード側の燃料ガス流路に水を流通させ
て電解質を加湿すると共に、起動時には昇温した水を前
記燃料ガス流路に流通させて昇温を行う燃料電池におい
て、この燃料電池温度或は燃料電池電圧の少なくとも一
方を検出し、その検出信号に基づいて前記燃料ガス流路
に水を流通させる水供給手段を制御するようにした燃料
電池。
1. A fuel cell which circulates water in a fuel gas flow path on the anode side to humidify an electrolyte and, at the time of startup, raises temperature by flowing heated water through the fuel gas flow path. A fuel cell which detects at least one of a battery temperature and a fuel cell voltage, and controls a water supply means for flowing water through the fuel gas flow path based on the detected signal.
【請求項2】請求項1記載の燃料電池において、前記燃
料電池温度が所定の温度に到達して発電を開始する際
に、一定時間燃料ガス流路への水供給を停止し、燃料ガ
ス流路に燃料ガスを供給した後に水を再供給し、負荷接
続する燃料電池の運転方法。
2. The fuel cell according to claim 1, wherein when the fuel cell temperature reaches a predetermined temperature and power generation is started, water supply to the fuel gas flow path is stopped for a predetermined time, and the fuel gas flow is stopped. A method of operating a fuel cell in which water is resupplied after supplying fuel gas to a road and a load is connected.
【請求項3】請求項1記載の燃料電池において、前記燃
料電池温度が所定の温度に到達して発電を開始する際
に、一旦燃料ガス流路への水供給を停止し、燃料ガス流
路に燃料ガスを供給した後、一定時間保持してから負荷
接続を行った後に水の再供給を行う燃料電池の運転方
法。
3. The fuel cell according to claim 1, wherein when the fuel cell temperature reaches a predetermined temperature and power generation is started, the supply of water to the fuel gas flow path is temporarily stopped. A method for operating a fuel cell, comprising: supplying fuel gas to a fuel cell, holding the fuel gas for a certain period of time, connecting the load, and then resupplying water.
【請求項4】請求項2又は3記載の燃料電池の運転方法
により負荷接続した後、出力電圧が規定値以下となった
場合、再度一定時間水の供給を停止する燃料電池の運転
方法。
4. A fuel cell operating method according to claim 2, wherein the water supply is stopped again for a predetermined time when the output voltage becomes equal to or lower than a specified value after connecting a load by the fuel cell operating method according to claim 2.
JP2000143504A 2000-05-16 2000-05-16 Fuel cell and its running method Pending JP2001325978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143504A JP2001325978A (en) 2000-05-16 2000-05-16 Fuel cell and its running method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143504A JP2001325978A (en) 2000-05-16 2000-05-16 Fuel cell and its running method

Publications (1)

Publication Number Publication Date
JP2001325978A true JP2001325978A (en) 2001-11-22

Family

ID=18650315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143504A Pending JP2001325978A (en) 2000-05-16 2000-05-16 Fuel cell and its running method

Country Status (1)

Country Link
JP (1) JP2001325978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098467A1 (en) * 2005-03-15 2006-09-21 Toyota Jidosha Kabushiki Kaisha Heat-retention and heating of reaction gas in fuel cell system
JP2008536288A (en) * 2005-04-14 2008-09-04 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Method for starting coolant circulation to prevent overheating of the MEA during cold start

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098467A1 (en) * 2005-03-15 2006-09-21 Toyota Jidosha Kabushiki Kaisha Heat-retention and heating of reaction gas in fuel cell system
JP2008536288A (en) * 2005-04-14 2008-09-04 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Method for starting coolant circulation to prevent overheating of the MEA during cold start

Similar Documents

Publication Publication Date Title
JP4867094B2 (en) Fuel cell system
US9105891B2 (en) Fuel cell system and control method for fuel cell system
US20030003336A1 (en) Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
JP2001332281A (en) Solid polyelectrolyte fuel cell power generation system and its operation method
WO2009113305A1 (en) Fuel cell system and method of operating the same
JP5367003B2 (en) Method and system for driving fuel cell system
JP3879480B2 (en) Fuel cell system
CN103329324B (en) The method of operation of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
CN101292385A (en) Fuel cell system and its operation method
JP2008041646A (en) Fuel cell system and activation treatment method of fuel cell
JPH11162489A (en) Fuel cell device and operating method for fuel cell device
JP5197581B2 (en) Fuel cell system and operation method thereof
KR100786481B1 (en) Method and Apparatus for Controlling Operation of Direct Methanol Fuel Cell System
JP2001325978A (en) Fuel cell and its running method
KR100671682B1 (en) Apparatus and method for heat exchange of liquid fuel type fuel cell system
JP4879428B2 (en) Fuel cell power generator
JP2002231283A (en) Solid polymer electrolyte fuel cell generating device and its operating method
JP2017037819A (en) Fuel battery cogeneration system, and starting method and operation method for the same
JP4746511B2 (en) Polymer electrolyte fuel cell system
JP2010129454A (en) Fuel cell unit
KR101084078B1 (en) Fuel cell system and driving method the same
JP2002289232A (en) Temperature control device for feed gas fed to fuel cell
JP2004213979A (en) Starting method of fuel cell system, and fuel cell system
JP2000082481A (en) Humidifying and circulating device for fuel cell
JP2001006709A (en) Fuel cell system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219