JP2001320096A - Thermoelectric element and method of its manufacture - Google Patents

Thermoelectric element and method of its manufacture

Info

Publication number
JP2001320096A
JP2001320096A JP2000135372A JP2000135372A JP2001320096A JP 2001320096 A JP2001320096 A JP 2001320096A JP 2000135372 A JP2000135372 A JP 2000135372A JP 2000135372 A JP2000135372 A JP 2000135372A JP 2001320096 A JP2001320096 A JP 2001320096A
Authority
JP
Japan
Prior art keywords
thermoelectric
conductive material
thermoelectric element
thermoelectric semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000135372A
Other languages
Japanese (ja)
Inventor
Tetsuhiro Nakamura
中村  哲浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2000135372A priority Critical patent/JP2001320096A/en
Publication of JP2001320096A publication Critical patent/JP2001320096A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the structural problem of a conventional thermoelectric element where wiring formed on a substrate is linked electrically through solder or conductive adhesive with a thermoelectric semiconductor having a conductive material on the surface that disconnection takes place between the conductive material and the thermoelectric semiconductor due to difference in the coefficient of thermal expansion between the substrate and the thermoelectric element. SOLUTION: Thermoelectric semiconductors of p-type and n-type are arranged alternately through epoxy resin and one or more recess is made at the end part of the thermoelectric semiconductor. Each thermoelectric semiconductor provided with a conductive material at the end part is linked electrically through solder or conductive adhesive with wiring formed of copper or gold on a substrate. According to the structure, a highly reliable thermoelectric element strong against thermal stress can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱電素子の構造およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thermoelectric element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】以下、図面を用いて従来技術の一例を説
明する。図9は従来例の熱電素子の構造を示す断面図で
ある。図9に記載するようにp型とn型の棒状の熱電半
導体1を交互に配置し、熱電半導体の端部に導電材3を
設けたそれぞれの熱電半導体1と、基板6上に形成した
銅や金などからなる配線5とを、ハンダや導電接着剤な
どの接続材料4により電気的に連結している。p型とn
型の熱電半導体1の間にはエポキシ樹脂2を設けてあ
り、熱電半導体1間の絶縁を保っている。
2. Description of the Related Art An example of the prior art will be described below with reference to the drawings. FIG. 9 is a sectional view showing the structure of a conventional thermoelectric element. As shown in FIG. 9, p-type and n-type rod-shaped thermoelectric semiconductors 1 are alternately arranged, each thermoelectric semiconductor 1 having a conductive material 3 provided at an end of the thermoelectric semiconductor, and copper formed on a substrate 6. The wiring 5 made of metal or gold is electrically connected by a connection material 4 such as solder or conductive adhesive. p-type and n
An epoxy resin 2 is provided between the thermoelectric semiconductors 1 of the mold, and insulation between the thermoelectric semiconductors 1 is maintained.

【0003】熱電半導体としては、一般的に用いられる
ビスマス−テルル系、アンチモン−テルル系、ビスマス
−テルル−アンチモン系、ビスマス−テルル−セレン系
の他に、鉛−ゲルマニウム系、シリコン−ゲルマニウム
系など材料が用いられる。
As thermoelectric semiconductors, besides commonly used bismuth-tellurium, antimony-tellurium, bismuth-tellurium-antimony, bismuth-tellurium-selenium, lead-germanium, silicon-germanium, etc. Materials are used.

【0004】基板6としてはシリコン、アルミナなどの
熱伝導の良い金属を用い、メッキ法、スパッタリング
法、真空蒸着法などにより形成された配線5をエッチン
グなどによりパターン化している。
As the substrate 6, a metal having good heat conductivity such as silicon or alumina is used, and the wiring 5 formed by a plating method, a sputtering method, a vacuum deposition method or the like is patterned by etching or the like.

【0005】熱電半導体1と配線6を導通させる接続材
料4としてハンダを用いた場合、ハンダ中のスズ成分が
熱電半導体1内に拡散して性能を劣化させるのを防止す
る目的と、ハンダの濡れ性を確保する目的で配線5と接
続する熱電半導体1の面には導電材3を形成する必要が
ある。また、導電接着剤を用いて熱電半導体1と配線5
を導通させる場合にも、熱電半導体1と導電接着剤の接
触抵抗が大きいため、導電接着剤との接触抵抗が低い導
電材3を形成しておく必要がある。
When solder is used as the connection material 4 for conducting the thermoelectric semiconductor 1 and the wiring 6, the purpose is to prevent the tin component in the solder from diffusing into the thermoelectric semiconductor 1 and deteriorating the performance. It is necessary to form the conductive material 3 on the surface of the thermoelectric semiconductor 1 connected to the wiring 5 for the purpose of ensuring the performance. Further, the thermoelectric semiconductor 1 and the wiring 5 are formed using a conductive adhesive.
Also, when conducting, the conductive material 3 having a low contact resistance with the conductive adhesive needs to be formed because the contact resistance between the thermoelectric semiconductor 1 and the conductive adhesive is large.

【0006】[0006]

【発明が解決しようとする課題】前述した熱電素子には
以下に記載するような問題点がある。
The above-described thermoelectric element has the following problems.

【0007】従来の熱電素子の構造では、基板上に形成
した配線と表面に導電材を設けた熱電半導体とをハンダ
や導電接着剤を用いて、電気的に連結しているため、基
板と熱電素子の熱膨張係数差により、導電材と熱電半導
体の間で剥離が発生する。電気的連結の断線は温度サイ
クル試験で顕著に現れ、信頼性の面でも十分な性能を得
られていない。
In the structure of the conventional thermoelectric element, the wiring formed on the substrate and the thermoelectric semiconductor provided with a conductive material on the surface are electrically connected to each other using solder or a conductive adhesive. Separation occurs between the conductive material and the thermoelectric semiconductor due to a difference in thermal expansion coefficient of the element. Disconnection of the electrical connection is remarkable in a temperature cycle test, and sufficient performance has not been obtained in terms of reliability.

【0008】本発明の目的は、上記課題を解決して、断
線の生じない配線を形成し、信頼性の高い熱電素子およ
びその製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a highly reliable thermoelectric element capable of forming a wiring free from disconnection and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明における熱電素子の構造およびその製造方
法は、下記記載の構成と製造方法を採用する。
Means for Solving the Problems In order to achieve the above object, the structure and manufacturing method of the thermoelectric element according to the present invention employ the following constitution and manufacturing method.

【0010】本発明の熱電素子は複数の棒状の熱電半導
体が絶縁樹脂を介して配列し、それぞれの熱電半導体の
端部には導電材が設置されており、熱電半導体の導電材
が設置されるところの端部の面には、最低1ヶ所に窪ん
だ部分が設けられていることを特徴としている。
In the thermoelectric element of the present invention, a plurality of rod-shaped thermoelectric semiconductors are arranged via an insulating resin, and a conductive material is provided at an end of each thermoelectric semiconductor, and the conductive material of the thermoelectric semiconductor is provided. However, the end face is characterized in that at least one recessed portion is provided.

【0011】また、それぞれの熱電半導体は配線によっ
て電気的に連結されていることを特徴としている。
[0011] Each thermoelectric semiconductor is characterized by being electrically connected by wiring.

【0012】本発明の熱電素子に用いる複数の熱電半導
体がp型とn型の熱電半導体であることを特徴としてい
る。
A plurality of thermoelectric semiconductors used in the thermoelectric element of the present invention are p-type and n-type thermoelectric semiconductors.

【0013】本発明の熱電素子の製造方法は、絶縁樹脂
を介して配列している、複数の棒状の熱電半導体を用意
する工程と、熱電半導体の端部の面には、最低1ヶ所に
窪んだ部分を設ける行程と、熱電半導体の端部に導電材
を設置する行程と、導電材と導電材とを接続する配線を
形成する行程とを有することを特徴としている。
According to the method for manufacturing a thermoelectric element of the present invention, a plurality of rod-shaped thermoelectric semiconductors arranged via an insulating resin are provided, and at least one recess is formed on an end surface of the thermoelectric semiconductor. The method is characterized in that the method includes a step of providing a bent portion, a step of installing a conductive material at an end of the thermoelectric semiconductor, and a step of forming a wiring connecting the conductive material and the conductive material.

【0014】[0014]

【発明の実施の形態】図1に本発明の熱電素子の断面図
を示す。図1に記載するように棒状のp型とn型の熱電
半導体1を絶縁樹脂であるエポキシ樹脂2を介して交互
に配置し、熱電半導体1の端部の面には、少なくとも1
ヶ所が窪んでいる。熱電半導体1端部には導電材3を設
け、基板6上に形成した銅や金などからなる配線5と
を、ハンダや導電接着剤などの接続材料4により電気的
に連結している。
FIG. 1 is a sectional view of a thermoelectric element according to the present invention. As shown in FIG. 1, rod-shaped p-type and n-type thermoelectric semiconductors 1 are alternately arranged via an epoxy resin 2 which is an insulating resin.
There are depressions. A conductive material 3 is provided at an end of the thermoelectric semiconductor 1, and is electrically connected to a wiring 5 made of copper, gold, or the like formed on a substrate 6 by a connection material 4 such as solder or a conductive adhesive.

【0015】このような熱電半導体1の端部の面に、1
ヶ所または2ヶ所、あるいは3ヶ所以上の窪んだ部分を
設けることによって、その窪んだ部分に導電材3が入り
込み、導電材3と熱電半導体1の接触面積が大きくな
る。熱電半導体上にのみ導電材を形成した従来の技術と
比べ、絶縁樹脂が導電材との密着力を補強することがで
きる。よって、基板6上に形成した配線5と端部に導電
材3を設けた熱電半導体1とを、ハンダや導電接着剤な
どの接続材料4を用いて電気的に連結した場合に、熱電
素子の熱膨張係数差による応力が原因で発生する、導電
材3と熱電半導体1の間で発生する剥離を防止すること
ができる。
The surface of the end of the thermoelectric semiconductor 1 has 1
By providing one, two, or three or more recessed portions, the conductive material 3 enters the recessed portions, and the contact area between the conductive material 3 and the thermoelectric semiconductor 1 increases. The insulating resin can reinforce the adhesion to the conductive material as compared with the conventional technology in which the conductive material is formed only on the thermoelectric semiconductor. Therefore, when the wiring 5 formed on the substrate 6 and the thermoelectric semiconductor 1 provided with the conductive material 3 at the ends are electrically connected using the connecting material 4 such as solder or conductive adhesive, the thermoelectric element becomes It is possible to prevent separation between the conductive material 3 and the thermoelectric semiconductor 1, which is caused by the stress due to the difference in thermal expansion coefficient.

【0016】[0016]

【実施例】次に実施例における熱電素子の製造方法を説
明する。図1から図8は、実施例の熱電素子の製造工程
を示す断面図である。
Next, a method of manufacturing a thermoelectric element according to an embodiment will be described. 1 to 8 are cross-sectional views illustrating the steps of manufacturing the thermoelectric element of the embodiment.

【0017】棒状のp型、n型の熱電半導体1を図2に
示すように櫛歯状に加工したものを図3に示すように組
み合わせ、p型、n型の熱電半導体1の隙間に、絶縁樹
脂としてエポキシ樹脂2を流し込み、熱処理によりエポ
キシ樹脂2を硬化させる。その後、不要な部分を研削に
より除去し、図4に示すような構造の熱電素子を得た。
この時の熱電半導体1の太さは約100μm程度であっ
た。
As shown in FIG. 3, rod-shaped p-type and n-type thermoelectric semiconductors 1 processed into a comb-like shape are combined as shown in FIG. The epoxy resin 2 is poured as an insulating resin, and the epoxy resin 2 is cured by heat treatment. Thereafter, unnecessary portions were removed by grinding to obtain a thermoelectric element having a structure as shown in FIG.
At this time, the thickness of the thermoelectric semiconductor 1 was about 100 μm.

【0018】熱電半導体としては、一般的に用いられる
ビスマス−テルル系、アンチモン−テルル系、ビスマス
−テルル−アンチモン系、ビスマス−テルル−セレン系
などを用いることができるが、鉛−ゲルマニウム系、シ
リコン−ゲルマニウム系などの熱電半導体を用いても良
く、特に制限されるものではない。
As the thermoelectric semiconductor, generally used bismuth-tellurium, antimony-tellurium, bismuth-tellurium-antimony, bismuth-tellurium-selenium and the like can be used. -A thermoelectric semiconductor such as a germanium-based semiconductor may be used and is not particularly limited.

【0019】その後、図5に示すように熱電半導体1に
ダイシングソーにより溝を形成し、窪んだ部分を設け
た。この窪んだ部分の深さは約10μmとし、窪みの幅
は約30〜40μmとなるように窪んだ部分を設けた。
図で示した窪んだ部分は深さに対して、窪みの幅を小さ
く表しているが、実際は窪みの深さより、窪みの幅の方
を大きくした。このときダイシングソーにより設ける溝
は、各熱電半導体1の導電材3を設ける端部に対し、1
ヶ所以上形成しておく。
Thereafter, as shown in FIG. 5, a groove was formed in the thermoelectric semiconductor 1 by a dicing saw, and a recessed portion was provided. The depth of the recessed portion was about 10 μm, and the recessed portion was provided so that the width of the recess was about 30 to 40 μm.
Although the width of the depression is smaller than the depth, the width of the depression is actually larger than the depth of the depression. At this time, the groove provided by the dicing saw is set at 1
More than two places are formed.

【0020】熱電半導体1端部にはハンダの濡れ性向
上、導電接着剤による接続抵抗の低減などが目的で、金
属からなる導電材3を形成しておく必要がある。例えば
金などが導電材として適当であるが、金を直接熱電半導
体上に形成すると、熱電半導体1中へ金が拡散してしま
い、熱電素子の特性が変わってしまうために、金属の拡
散防止効果の高いニッケルを形成しておくのが望まし
い。本実施例ではニッケルを形成した。
A conductive material 3 made of metal must be formed at the end of the thermoelectric semiconductor 1 for the purpose of improving solder wettability and reducing connection resistance by a conductive adhesive. For example, gold or the like is suitable as the conductive material. However, if gold is formed directly on the thermoelectric semiconductor, the gold diffuses into the thermoelectric semiconductor 1 and changes the characteristics of the thermoelectric element. It is desirable to form nickel having a high density. In this embodiment, nickel was formed.

【0021】導電材3の形成方法は、まず熱電半導体1
とエポキシ樹脂2に段差を設けた熱電素子表面に、無電
解メッキが可能となる触媒金属をセンシタイザー・アク
チベータ法、またはキャタリスト法により吸着させてお
く。その後、無電解メッキ液に浸漬することで図6に示
すように熱電素子全面に導電材3を形成することができ
る。その後、不要な導電材3を研削により除去すること
で、図7に示すように熱電半導体1の窪んだ部分にだけ
導電材3を残すことができる。この時、熱電半導体1端
部に設けた窪んだ部分を導電材3ですべて埋めてしまう
必要はなく、導電材3を薄く形成しておいてもかまわな
い。
The method of forming the conductive material 3 is as follows.
Then, a catalyst metal capable of electroless plating is adsorbed on the surface of the thermoelectric element having a step on the epoxy resin 2 by a sensitizer activator method or a catalyst method. After that, the conductive material 3 can be formed on the entire surface of the thermoelectric element as shown in FIG. 6 by immersion in an electroless plating solution. Thereafter, unnecessary conductive material 3 is removed by grinding, so that conductive material 3 can be left only in the recessed portion of thermoelectric semiconductor 1 as shown in FIG. At this time, it is not necessary to completely fill the recessed portion provided at the end of the thermoelectric semiconductor 1 with the conductive material 3, and the conductive material 3 may be formed thin.

【0022】再度無電解メッキ液に浸漬することで、導
電材3上でメッキ反応が起こると同時に導電材3に接触
している熱電半導体1上でもメッキ反応が起こり、図8
に示すように熱電半導体1の端部に導電材3を設けるこ
とができる。無電解メッキを行う前後でアルカリ脱脂や
流水洗浄などの洗浄工程を行うとより効果的である。
By immersing again in the electroless plating solution, a plating reaction occurs on the conductive material 3 and a plating reaction also occurs on the thermoelectric semiconductor 1 in contact with the conductive material 3.
The conductive material 3 can be provided at the end of the thermoelectric semiconductor 1 as shown in FIG. It is more effective to perform a cleaning step such as alkali degreasing or running water cleaning before and after performing the electroless plating.

【0023】その後、図1に示すように熱電半導体1端
部に設置した導電材3と基板6上に形成した配線5と
を、ハンダや導電接着剤などの接続材料4により接続
し、それぞれの熱電半導体1を電気的に連結させる。
Thereafter, as shown in FIG. 1, the conductive material 3 provided at the end of the thermoelectric semiconductor 1 and the wiring 5 formed on the substrate 6 are connected by a connecting material 4 such as solder or conductive adhesive. The thermoelectric semiconductor 1 is electrically connected.

【0024】基板6としてはシリコン、アルミナなどの
熱伝導の良い金属を用い、メッキ法、スパッタリング
法、真空蒸着法などにより形成された配線5をエッチン
グなどによりパターン化している。
As the substrate 6, a metal having good heat conductivity such as silicon or alumina is used, and the wiring 5 formed by a plating method, a sputtering method, a vacuum deposition method or the like is patterned by etching or the like.

【0025】上記記載の方法により熱電素子を形成する
ことで、熱電半導体1端部に最低1ヶ所の窪んだ部分を
設けることができ、その窪んだ部分に導電材3が形成さ
れる。導電材3が熱電半導体1にくさび状に形成されて
いるため、熱電半導体1と導電材3との密着力を補強
し、熱電素子の熱膨張係数差による応力が原因で、導電
材3と熱電半導体1の間で発生する剥離を防止すること
ができ、信頼性の高い熱電素子が得られた。
By forming the thermoelectric element by the method described above, at least one recessed portion can be provided at the end of the thermoelectric semiconductor 1, and the conductive material 3 is formed in the recessed portion. Since the conductive material 3 is formed in a wedge shape on the thermoelectric semiconductor 1, the adhesion between the thermoelectric semiconductor 1 and the conductive material 3 is reinforced, and the conductive material 3 and the thermoelectric element 3 are caused by stress due to a difference in thermal expansion coefficient of the thermoelectric element. Separation occurring between the semiconductors 1 was prevented, and a highly reliable thermoelectric element was obtained.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明で
は、p型とn型の熱電半導体がエポキシ樹脂を介して交
互に配置し、熱電半導体端部に1ヶ所以上の窪んだ部分
を設けており、熱電半導体端部に導電材を設けたそれぞ
れの熱電半導体と、基板上に形成した銅や金などからな
る配線とを、ハンダや導電接着剤などの接続材料により
電気的に連結している構造となっており、熱応力に強
く、信頼性の高い熱電素子を得ることができる。
As is apparent from the above description, in the present invention, p-type and n-type thermoelectric semiconductors are alternately arranged via an epoxy resin, and one or more recessed portions are formed at the end of the thermoelectric semiconductor. Each thermoelectric semiconductor with a conductive material provided at the end of the thermoelectric semiconductor and a wiring made of copper, gold or the like formed on the substrate are electrically connected by a connection material such as solder or a conductive adhesive. Therefore, it is possible to obtain a highly reliable thermoelectric element that is resistant to thermal stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における熱電素子を示す断面図
である。
FIG. 1 is a sectional view showing a thermoelectric element according to an embodiment of the present invention.

【図2】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図3】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 3 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図4】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図5】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 5 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図6】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 6 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図7】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 7 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図8】本発明の実施例における熱電素子の製造方法を
示す断面図である。
FIG. 8 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図9】従来例における熱電素子の構造を示す断面図で
ある。
FIG. 9 is a cross-sectional view showing a structure of a thermoelectric element in a conventional example.

【符号の説明】[Explanation of symbols]

1 熱電半導体 2 エポキシ樹脂 3 導電材 4 接続材料 5 配線 6 基板 DESCRIPTION OF SYMBOLS 1 Thermoelectric semiconductor 2 Epoxy resin 3 Conductive material 4 Connection material 5 Wiring 6 Substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の棒状の熱電半導体が絶縁樹脂を介
して配列し、それぞれの熱電半導体の端部には導電材を
設置した熱電素子において、導電材が設置される熱電半
導体の端部の面では、少なくとも1ヶ所が窪んでいるこ
とを特徴とする熱電素子。
1. A thermoelectric element in which a plurality of rod-shaped thermoelectric semiconductors are arranged via an insulating resin, and a conductive material is provided at an end of each thermoelectric semiconductor. A thermoelectric element characterized in that at least one portion is depressed on the surface.
【請求項2】 それぞれの熱電半導体は配線によって電
気的に連結されていることを特徴とする請求項1に記載
の熱電素子。
2. The thermoelectric element according to claim 1, wherein each thermoelectric semiconductor is electrically connected by a wiring.
【請求項3】 複数の熱電半導体がp型とn型の熱電半
導体であることを特徴とする請求項1または請求項2に
記載の熱電素子。
3. The thermoelectric element according to claim 1, wherein the plurality of thermoelectric semiconductors are p-type and n-type thermoelectric semiconductors.
【請求項4】 絶縁樹脂を介して配列している、複数の
棒状の熱電半導体を用意する工程と、熱電半導体の端部
の面では、少なくとも1ヶ所に窪んだ部分を設ける行程
と、熱電半導体の端部に導電材を設置する行程と、導電
材と導電材とを接続する配線を形成する行程とを有する
ことを特徴とする熱電素子の製造方法。
4. A step of preparing a plurality of rod-shaped thermoelectric semiconductors arranged via an insulating resin, a step of providing at least one concave portion on an end surface of the thermoelectric semiconductor, A step of providing a conductive material at an end of the thermoelectric element, and a step of forming a wiring connecting the conductive material to the conductive material.
JP2000135372A 2000-05-09 2000-05-09 Thermoelectric element and method of its manufacture Pending JP2001320096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135372A JP2001320096A (en) 2000-05-09 2000-05-09 Thermoelectric element and method of its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135372A JP2001320096A (en) 2000-05-09 2000-05-09 Thermoelectric element and method of its manufacture

Publications (1)

Publication Number Publication Date
JP2001320096A true JP2001320096A (en) 2001-11-16

Family

ID=18643460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135372A Pending JP2001320096A (en) 2000-05-09 2000-05-09 Thermoelectric element and method of its manufacture

Country Status (1)

Country Link
JP (1) JP2001320096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
WO2008054015A1 (en) * 2006-11-02 2008-05-08 Toyota Jidosha Kabushiki Kaisha Thermoelectric element and thermoelectric module
WO2010101049A1 (en) * 2009-03-03 2010-09-10 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module
WO2014205378A1 (en) * 2013-06-20 2014-12-24 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
JP2016006827A (en) * 2014-06-20 2016-01-14 パナソニックIpマネジメント株式会社 Thermoelectric transducer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244B (en) * 2004-07-07 2008-08-13 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
DE112007002615B4 (en) * 2006-11-02 2020-02-06 Toyota Jidosha Kabushiki Kaisha Thermoelectric device and thermoelectric module
WO2008054015A1 (en) * 2006-11-02 2008-05-08 Toyota Jidosha Kabushiki Kaisha Thermoelectric element and thermoelectric module
JPWO2008054015A1 (en) * 2006-11-02 2010-02-25 トヨタ自動車株式会社 Thermoelectric element and thermoelectric module
US8895832B2 (en) 2006-11-02 2014-11-25 Toyota Jidosha Kabushiki Kaisha Thermoelectric element and thermoelectric module
WO2010101049A1 (en) * 2009-03-03 2010-09-10 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
JP2010205883A (en) * 2009-03-03 2010-09-16 Tokyo Univ Of Science Thermoelectric conversion element and thermoelectric conversion module
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module
WO2014205378A1 (en) * 2013-06-20 2014-12-24 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
CN106062978A (en) * 2013-06-20 2016-10-26 休斯敦大学体系 Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
US9722164B2 (en) 2013-06-20 2017-08-01 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
CN106062978B (en) * 2013-06-20 2018-11-06 休斯敦大学体系 The manufacture of stabilized electrodes/diffusion impervious layer of thermoelectricity filled skutterudite device
US9209378B2 (en) 2013-06-20 2015-12-08 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
US10818832B2 (en) 2013-06-20 2020-10-27 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
JP2016006827A (en) * 2014-06-20 2016-01-14 パナソニックIpマネジメント株式会社 Thermoelectric transducer

Similar Documents

Publication Publication Date Title
CA1201537A (en) Semiconductor structures and manufacturing methods
KR950034644A (en) Cubic integrated circuit device manufacturing method
US3387191A (en) Strain relieving transition member for contacting semiconductor devices
JP2001320096A (en) Thermoelectric element and method of its manufacture
EP1227173B1 (en) Electroless plating method
US4595603A (en) Method of making diamond heatsink assemblies
JP4344560B2 (en) Semiconductor chip and semiconductor device using the same
US4698901A (en) Mesa semiconductor device
JP4199513B2 (en) Method for manufacturing thermoelectric element
JPH09275165A (en) Circuit board and semiconductor device using the same
JP2005183568A (en) Power semiconductor device
JP2001257383A (en) Thermoelectric element and manufacturing method therefor
JP2002076449A (en) Thermoelectric element and its manufacturing method
JP2002026069A (en) Mounting method for semiconductor element
JPH03101234A (en) Manufacture of semiconductor device
JP2001237465A (en) Thermoelectric element and its manufacturing method
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JPH03195083A (en) Hybrid integrated circuit and its manufacture
JP2007035913A (en) Semiconductor device
JPH02117157A (en) Semiconductor device
JPH03278539A (en) Semiconductor device
JP2003051623A (en) Semiconductor device and manufacturing method thereof
JPS62222656A (en) Semiconductor device
KR100650762B1 (en) Manufacture method of pad redistribution package
JP2001358373A (en) Thermoelectric generation device and its manufacturing method