JP2001320005A - Double-sided cooling semiconductor device by means of coolant - Google Patents

Double-sided cooling semiconductor device by means of coolant

Info

Publication number
JP2001320005A
JP2001320005A JP2000136934A JP2000136934A JP2001320005A JP 2001320005 A JP2001320005 A JP 2001320005A JP 2000136934 A JP2000136934 A JP 2000136934A JP 2000136934 A JP2000136934 A JP 2000136934A JP 2001320005 A JP2001320005 A JP 2001320005A
Authority
JP
Japan
Prior art keywords
refrigerant
double
semiconductor device
sided
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000136934A
Other languages
Japanese (ja)
Other versions
JP4423746B2 (en
Inventor
Seiji Inoue
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000136934A priority Critical patent/JP4423746B2/en
Priority to EP10006258.7A priority patent/EP2234154B1/en
Priority to EP06022504.2A priority patent/EP1742265B1/en
Priority to EP10006259.5A priority patent/EP2244289B1/en
Priority to EP01109620.3A priority patent/EP1148547B8/en
Priority to US09/837,382 priority patent/US6542365B2/en
Publication of JP2001320005A publication Critical patent/JP2001320005A/en
Priority to US10/314,139 priority patent/US6845012B2/en
Priority to US10/756,340 priority patent/US7027302B2/en
Priority to US10/946,210 priority patent/US7106592B2/en
Priority to US11/325,331 priority patent/US7250674B2/en
Priority to US11/452,328 priority patent/US7248478B2/en
Application granted granted Critical
Publication of JP4423746B2 publication Critical patent/JP4423746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a double-sided cooling semiconductor device by means of coolant that has simple structure and excellent radiation capability. SOLUTION: While a double-sided cooling semiconductor module 1 is provide closely to a coolant tube 2 that has a flat contact heat reception surface and allows cooling fluid to flow inside via an insulating spacer, the double-sided cooling semiconductor module 1 is clamped by clamping members 6, 7, and 10 in the thickness direction of the double-sided cooling semiconductor module 2 by the coolant tube 2, thus achieving the semiconductor device that has the simple structure, excellent cooling effect, and a small amount of fluctuation in the cooling effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒冷却型両面冷
却半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant-cooled double-sided cooling semiconductor device.

【0002】[0002]

【従来の技術】端子を有し半導体チップを内蔵する半導
体モジュ−ルの冷却性を向上するために、半導体モジュ
−ルに水冷式の冷却部材を接触させてそれを冷却するこ
とが提案されている。
2. Description of the Related Art In order to improve the cooling performance of a semiconductor module having a terminal and a built-in semiconductor chip, it has been proposed to contact a semiconductor module with a water-cooled cooling member to cool it. I have.

【0003】また、両面から放熱を行う両面放熱型半導
体モジュ−ルが特開平6ー291223号公報に提案さ
れている。
A double-sided heat dissipation type semiconductor module which dissipates heat from both sides has been proposed in Japanese Patent Laid-Open No. Hei 6-291223.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
従来の水冷式半導体モジュ−ルでは、内部を水(又は冷
媒)が貫流する冷媒内部貫流冷却部材と半導体モジュ−
ルとの熱伝導性に優れた接合を図る必要があり、これに
は、半導体モジュ−ルの主面に露出する電極(兼伝熱)
部材と冷媒内部貫流冷却部材とをはんだなどで接合する
ことが最善であるが、冷媒内部貫流冷却部材は、冷凍サ
イクル装置や冷却水循環装置に接続する必要があり、こ
のためこれら冷凍サイクル装置や冷却水循環装置と同電
位(通常、接地電位)となる冷媒内部貫流冷却部材と半
導体モジュ−ルの上記電極部材との間に電気絶縁性でな
るべく熱伝導性に優れた絶縁スペ−サを介設する必要が
ある。
However, in the above-described conventional water-cooled semiconductor module, the cooling module and the semiconductor module have an internal coolant through which water (or refrigerant) flows.
It is necessary to achieve good thermal conductivity with the module, including electrodes exposed on the main surface of the semiconductor module (also heat transfer).
It is best to join the member and the coolant through-flow cooling member with solder or the like, but the coolant inside flow-through cooling member must be connected to a refrigeration cycle device or a cooling water circulation device. An insulating spacer, which is electrically insulating and has as high a thermal conductivity as possible, is interposed between the cooling member flowing through the refrigerant and having the same potential as the water circulation device (usually the ground potential) and the electrode member of the semiconductor module. There is a need.

【0005】ところが、このような絶縁スペ−サを用い
ると半導体モジュ−ルの電極部材と冷媒内部貫流冷却部
材とを接合することができないので、半導体モジュ−ル
の電極部材と冷媒内部貫流冷却部材との間の熱抵抗の低
減のために、これら半導体モジュ−ルの電極部材や冷媒
内部貫流冷却部材を絶縁スペ−サに強く、かつ、押し付
け面各部で均一な圧力で押し付ける必要がある。
However, if such an insulating spacer is used, the electrode member of the semiconductor module cannot be joined to the cooling member flowing through the coolant inside the semiconductor module. In order to reduce the thermal resistance between them, it is necessary to press the electrode members of the semiconductor module and the cooling member flowing through the inside of the cooling medium against the insulating spacer with a uniform pressure on each pressing surface.

【0006】しかし、このように半導体モジュ−ルや冷
媒内部貫流冷却部材を絶縁スペ−サに強くかつ均一な圧
力で押し付ける構造は全体構造の複雑化を招き、また押
し付け力の適切な設定が容易ではなかった。すなわち、
押し付け力が弱いと半導体モジュ−ルと冷却部材との間
の熱抵抗が増大して冷却能力が低下し、押し付け力が強
過ぎると半導体モジュ−ル内の半導体チップが割れてし
まう。
However, such a structure in which the semiconductor module or the cooling member flowing through the inside of the refrigerant is pressed against the insulating spacer with a strong and uniform pressure causes the whole structure to be complicated, and it is easy to appropriately set the pressing force. Was not. That is,
If the pressing force is weak, the thermal resistance between the semiconductor module and the cooling member increases, and the cooling capacity decreases, and if the pressing force is too strong, the semiconductor chip in the semiconductor module breaks.

【0007】特に、半導体モジュ−ルの電極部材の表面
や冷却部材の表面には製造上避けられない微小凹凸や反
りなどが存在するため、どうしても面方向の一部に局部
的な押し付け力の集中を招いてしまい、この集中部位に
て半導体チップが耐えうる押し付け力を超えて押し付け
を行うことができず、その結果、この集中部位以外での
熱抵抗の増大を招いてしまう。
In particular, since the surface of the electrode member of the semiconductor module and the surface of the cooling member have minute irregularities and warpage which cannot be avoided in manufacturing, a local pressing force is inevitably concentrated on a part of the surface direction. Therefore, it is impossible to perform pressing beyond the pressing force that the semiconductor chip can withstand at the concentrated portion, and as a result, the thermal resistance increases at portions other than the concentrated portion.

【0008】本発明は上記問題点に鑑みなされたもので
あり、簡素な構造で優れた放熱能力を奏しえる冷媒冷却
型両面冷却半導体装置を提供することをその目的として
いる。
The present invention has been made in view of the above problems, and has as its object to provide a refrigerant-cooled double-sided cooling semiconductor device having a simple structure and excellent heat dissipation capability.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する請求
項1記載の冷媒冷却型両面冷却半導体装置は、半導体チ
ップ又は両面冷却型半導体モジュールと、扁平な接触受
熱面を有して冷却流体が内部を流れる冷媒チュ−ブと、
前記半導体チップ又は両面冷却型半導体モジュールの両
主面に前記冷媒チュ−ブの平坦面を絶縁スペ−サを介し
て又は直接に密接させた状態で前記半導体チップ又は両
面冷却型半導体モジュールを前記冷媒チュ−ブにて半導
体チップ又は両面冷却型半導体モジュールの厚さ方向に
挟圧させる挟圧部材とを備えることを特徴としている。
According to a first aspect of the present invention, there is provided a refrigerant-cooled double-sided cooling semiconductor device, comprising a semiconductor chip or a double-sided cooling semiconductor module, a flat contact heat receiving surface, and a cooling fluid. A refrigerant tube flowing inside;
The semiconductor chip or the double-sided cooled semiconductor module is cooled by the coolant while the flat surface of the refrigerant tube is in direct contact with both main surfaces of the semiconductor chip or the double-sided cooled semiconductor module via an insulating spacer or directly. A clamping member for clamping the semiconductor chip or the double-sided cooled semiconductor module in the thickness direction by a tube.

【0010】すなわち、本構成は、両面放熱型半導体モ
ジュ−ル(又は半導体チップ)を絶縁スペ−サを介して
一対の冷媒チュ−ブで挟み、挟圧部材でこれらのセット
を所定圧力で挟圧する構成を採用している。
In other words, in this construction, a double-sided heat dissipating semiconductor module (or semiconductor chip) is sandwiched between a pair of refrigerant tubes via an insulating spacer, and these sets are sandwiched by a clamping member at a predetermined pressure. The structure which presses is adopted.

【0011】このようにすれば、1個の挟圧部材で半導
体モジュ−ル(半導体チップ)両側の2つの扁平な冷媒
チュ−ブを同一圧力(半導体モジュ−ル(半導体チッ
プ)両側の電極部材の面積を等しいとした場合)で半導
体モジュ−ル(半導体チップ)に押し付けることがで
き、簡素な構造で押し付け圧力のばらつきが小さい挟圧
構造を実現することができるとともに、更に半導体モジ
ュ−ル(半導体チップ)の熱を両側の冷媒チュ−ブに放
散することができるので優れた冷却性能を実現すること
ができる。
[0011] In this case, the two flat refrigerant tubes on both sides of the semiconductor module (semiconductor chip) are pressed with the same pressure (electrode members on both sides of the semiconductor module (semiconductor chip)) by one pressing member. Can be pressed against a semiconductor module (semiconductor chip) with a simple structure, and a clamping structure with a small variation in pressing pressure can be realized with a simple structure. Since the heat of the semiconductor chip can be dissipated to the refrigerant tubes on both sides, excellent cooling performance can be realized.

【0012】請求項2記載の構成によれば請求項1記載
の冷媒冷却型両面冷却半導体装置において更に、前記冷
媒チュ−ブは、互いに所定間隔を隔てて流路方向へ延設
される内部隔壁に区画される複数の冷却流体流路を有す
ることを特徴としている。
According to a second aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to the first aspect of the present invention, further, the refrigerant tubes extend in the direction of the flow path at predetermined intervals from each other. And a plurality of cooling fluid flow paths defined in

【0013】本構成によれば、冷媒チュ−ブの接触受熱
面各部の押圧を一定化することができる。
According to this configuration, the pressure of each part of the contact heat receiving surface of the refrigerant tube can be made constant.

【0014】請求項3記載の構成によれば請求項1又は
2記載の冷媒冷却型両面冷却半導体装置において更に、
前記半導体チップ又は両面放熱型半導体モジュ−ルにそ
れぞれ接する各前記冷媒チュ−ブの両端は、共通の入り
口ヘッダ及び出口ヘッダにそれぞれ接続される.本構成
によれば、各冷媒チュ−ブに流入する冷媒又は冷却流体
の温度、流量のばらつきを減らし、各両面放熱型半導体
モジュ−ルの温度ばらつきを低減でき、これら各半導体
モジュ−ルの一部の冷却機能が低下して、それにより回
路全体の最大出力が制限されるという不具合を防止する
ことができる。
According to a third aspect of the present invention, the refrigerant-cooled double-sided cooling semiconductor device according to the first or second aspect further comprises:
Both ends of each of the refrigerant tubes in contact with the semiconductor chip or the double-sided heat dissipation type semiconductor module are connected to a common inlet header and a common outlet header, respectively. The variation in the temperature and flow rate of the refrigerant or the cooling fluid to be cooled can be reduced, and the temperature variation in each of the double-sided heat radiating semiconductor modules can be reduced. Can be prevented from being limited.

【0015】また、冷媒ポンプやコンプレッサからみた
冷媒配管系の冷媒輸送抵抗が小さくなり、それに要する
動力損失を低減することができる。
Further, the refrigerant transport resistance of the refrigerant piping system viewed from the refrigerant pump or the compressor is reduced, and the power loss required for the refrigerant can be reduced.

【0016】請求項4記載の構成によれば請求項1乃至
3のいずれか記載の冷媒冷却型両面冷却半導体装置にお
いて更に、前記冷媒チュ−ブは良熱伝導性の軟質材を介
して前記絶縁スペ−サに接することを特徴としている。
According to a fourth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to third aspects, the refrigerant tube is further provided with a heat-insulating soft material via a soft material. It is characterized by being in contact with the spacer.

【0017】本構成によれば、冷媒チュ−ブは、軟質材
を介して半導体チップ又は半導体モジュールに密着する
ので、もし冷媒チュ−ブに反りや表面凹凸などがあった
としても、冷媒チュ−ブは上記挟圧力によりその各部に
おいて局所的に容易に変形して絶縁スペ−サの表面にな
じむことができ、これら両者間の熱抵抗を低減すること
ができる。
According to this structure, the refrigerant tube is in close contact with the semiconductor chip or the semiconductor module via the soft material, so that even if the refrigerant tube has warpage or surface irregularities, the refrigerant tube can be used. Due to the above-mentioned pinching pressure, the lugs can be easily and locally deformed at their respective parts and can be adapted to the surface of the insulating spacer, and the thermal resistance between them can be reduced.

【0018】更に、半導体モジュ−ル(半導体チップ)
の電極部材表面とそれと軟質の絶縁スペ−サを介して対
面する冷媒チュ−ブの平坦な接触受熱面との間の距離が
面方向各部において変動しても、同様に軟質材の局所的
変形によりこれらの距離差を低減して両者間の熱抵抗を
低減することができ、優れた冷却性能をもつ半導体装置
を実現することができる。なお、この軟質材は、冷媒チ
ュ−ブと別々に作製されてもよく、一体に作製されても
よい。
Further, a semiconductor module (semiconductor chip)
Even if the distance between the surface of the electrode member and the flat contact heat receiving surface of the refrigerant tube facing the electrode member via the soft insulating spacer fluctuates in each of the surface directions, the local deformation of the soft material also occurs. As a result, the difference between these distances can be reduced and the thermal resistance between the two can be reduced, and a semiconductor device having excellent cooling performance can be realized. The soft material may be manufactured separately from the refrigerant tube, or may be manufactured integrally.

【0019】請求項5記載の構成によれば請求項1乃至
4のいずれか記載の冷媒冷却型両面冷却半導体装置にお
いて更に、前記挟圧部材は、板ばね部材を含むことを特
徴としている。
According to a fifth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to fourth aspects, the clamping member further includes a leaf spring member.

【0020】本構成によれば、簡単に一定の挟圧力を得
ることができるとともに、半導体チップ又は両面放熱型
半導体モジュ−ルの脱着が極めて簡単となり、交換など
の作業性が格段に向上する。
According to this configuration, a fixed clamping pressure can be easily obtained, and the attachment and detachment of the semiconductor chip or the double-sided heat radiation type semiconductor module becomes extremely simple, and the workability of replacement and the like is remarkably improved.

【0021】好適な態様において、板ばね部材は、両端
部が前記両押さえ板を弾性付勢するコ字状金属板からな
る。このようにすれば、たとえばばね板などを折り曲げ
るなどして簡素に作製できる上、板ばね部材それ自体で
挟圧力を発生できるため、全体構造が簡素となる。
In a preferred aspect, the leaf spring member is formed of a U-shaped metal plate whose both ends elastically urge the both holding plates. With this configuration, the spring plate can be simply manufactured by, for example, bending a spring plate and the like, and a clamping force can be generated by the plate spring member itself, thereby simplifying the entire structure.

【0022】請求項6記載の構成によれば請求項1乃至
5のいずれか記載の冷媒冷却型両面冷却半導体装置にお
いて更に、前記挟圧部材は、最も外側の一対の前記冷媒
チュ−ブに個別に接する一対の押さえ板と、前記両押さ
え板を貫通するスル−ボルトと、前記スル−ボルトに螺
着されるナットとを有することを特徴としている。
According to a sixth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to fifth aspects, the clamping member is separately provided on a pair of outermost refrigerant tubes. , A pair of pressing plates, a through bolt penetrating the both pressing plates, and a nut screwed to the through bolt.

【0023】本構成によれば、剛体である押さえ板が、
スル−ボルトの付勢により、簡素な挟圧構造で各冷媒チ
ュ−ブを面方向均一に加圧することができ、挟圧力の面
方向のばらつきを低減することができる。
According to this configuration, the holding plate, which is a rigid body,
By the urging of the through bolts, each refrigerant tube can be uniformly pressurized in the surface direction with a simple squeezing structure, so that variations in the squeezing pressure in the surface direction can be reduced.

【0024】請求項7記載の構成によれば請求項5記載
の冷媒冷却型両面冷却半導体装置において更に、前記挟
圧部材は、最も外側の一対の前記冷媒チュ−ブに個別に
接する一対の押さえ板を有し、前記板ばね部材は、コ字
状に形成されて両端部が前記両押さえ板を弾性付勢す
る。
According to a seventh aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to the fifth aspect, the clamping member further comprises a pair of holding members individually contacting the outermost pair of the cooling tubes. The leaf spring member has a U-shape, and both ends elastically urge the holding plates.

【0025】本構成によれば、板ばね部材はそれ自身の
みで挟圧力を発生するとともに、冷媒チュ−ブや両面放
熱型半導体モジュ−ルを支持する支持部材としての機能
ももつので、全体構造が簡素となる。また、板ばね部材
は、両端部が前記両押さえ板を弾性付勢するコ字状金属
板とすれば、ばね板などを折り曲げるなどして簡素に作
製できる。
According to this construction, the leaf spring member generates a clamping force by itself and has a function as a support member for supporting the refrigerant tube and the double-sided heat dissipation type semiconductor module. Becomes simple. In addition, when the leaf spring member is a U-shaped metal plate whose both ends are elastically biasing the pressing plates, the leaf spring member can be simply manufactured by bending a spring plate or the like.

【0026】請求項8記載の構成によれば請求項1乃至
7のいずれか記載の冷媒冷却型両面冷却半導体装置にお
いて更に、多数の前記半導体チップ又は両面冷却型半導
体モジュールと多数の前記冷媒チュ−ブとのセットを前
記挟圧方向に複数配置して前記挟圧部材で挟圧する構造
を有することを特徴としている。
According to an eighth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to seventh aspects, furthermore, a large number of the semiconductor chips or the double-sided cooled semiconductor modules and a large number of the refrigerant tubes. A plurality of sets with the squeezing member are arranged in the squeezing direction and squeezed by the squeezing member.

【0027】本構成によれば、一個の挟圧構造(挟圧部
材)で多数セットの冷媒チュ−ブ/半導体モジュ−ル
(半導体チップ)/冷媒チュ−ブにそれぞれ等しい挟圧
力を付与することができるので、コンパクトで簡素な挟
圧構造で全体として優れた大電流制御半導体装置を実現
することができる。
According to this structure, a single clamping structure (clamping member) applies the same clamping pressure to a large number of sets of refrigerant tubes / semiconductor modules (semiconductor chips) / refrigerant tubes. Therefore, a large current control semiconductor device which is excellent as a whole with a compact and simple clamping structure can be realized.

【0028】請求項9記載の構成によれば請求項1乃至
8のいずれか記載の冷媒冷却型両面冷却半導体装置にお
いて、複数の前記半導体チップ又は両面放熱型半導体モ
ジュ−ルは、三相インバータ回路を構成する。
According to a ninth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to eighth aspects, the plurality of semiconductor chips or the double-sided radiating semiconductor module is a three-phase inverter circuit. Is configured.

【0029】本構成によれば、三相インバータ回路の各
半導体スイッチング素子の放熱抵抗のばらつきを低減し
てそれらの間の温度ばらつきを低減し、各半導体スイッ
チング素子の一つが早期に過熱して装置がダウンするこ
とがない。
According to this configuration, the variation in the heat radiation resistance of each semiconductor switching element of the three-phase inverter circuit is reduced to reduce the temperature variation between them, and one of the semiconductor switching elements is overheated early so that Never goes down.

【0030】請求項10記載の構成によれば請求項1乃
至9のいずれか記載の冷媒冷却型両面冷却半導体装置に
おいて更に、前記冷媒チュ−ブの反半導体チップ側の平
坦面に他の発熱部品の平坦面を密接させ、前記挟圧部材
で、前記半導体チップ又は両面冷却型半導体モジュール
と前記冷媒チュ−ブと前記発熱部品とを挟圧する構造を
有することを特徴としている。
According to a tenth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to any one of the first to ninth aspects, further, another heat generating component is provided on the flat surface of the refrigerant tube on the side opposite to the semiconductor chip. And a structure in which the pressing member presses the semiconductor chip or the double-sided cooling type semiconductor module, the refrigerant tube, and the heat-generating component.

【0031】本構成によれば、挟圧構造を複雑化するこ
となく、更に他の発熱部品も良好に冷却することができ
る。
According to this configuration, it is possible to satisfactorily cool other heat-generating components without complicating the clamping structure.

【0032】また、半導体モジュ−ル(半導体チップ)
の一時的な大発熱に対してこの発熱部品は冷媒チュ−ブ
を通じてヒ−トシンクとしての機能を果たすことがで
き、更に好都合である。
Also, a semiconductor module (semiconductor chip)
This heat-generating component can function as a heat sink through the refrigerant tube for the temporary large heat generation, which is more convenient.

【0033】請求項11記載の構成によれば請求項10
記載の冷媒冷却型両面冷却半導体装置において更に、前
記半導体チップ又は両面冷却型半導体モジュールは三相
インバ−タ回路の一部又は全部をなし、前記発熱部品
は、前記三相インバ−タ回路の正負直流電源端間に接続
される平滑コンデンサからなることを特徴としている。
[0033] According to the eleventh aspect, according to the tenth aspect,
In the above described refrigerant-cooled double-sided cooling semiconductor device, the semiconductor chip or the double-sided cooling semiconductor module constitutes a part or all of a three-phase inverter circuit, and the heat-generating component is positive or negative of the three-phase inverter circuit. It is characterized by comprising a smoothing capacitor connected between DC power supply terminals.

【0034】本構成によれば、コンパクトで平滑コンデ
ンサ及び半導体モジュ−ル(半導体チップ)の冷却性に
優れた三相インバータ回路装置を実現することができ
る。
According to this configuration, a three-phase inverter circuit device which is compact and excellent in cooling the smoothing capacitor and the semiconductor module (semiconductor chip) can be realized.

【0035】請求項12記載の構成によれば請求項3記
載の冷媒冷却型両面冷却半導体装置において、装置は密
閉ケースに収容され、前記入り口ヘッダ及び出口ヘッダ
の各一端は、前記ケ−スから外部に突出しているので、
ケース内部において、冷媒配管系の機械的連結部がな
く、この連結部からの液漏れにより半導体チップや両面
放熱型半導体モジュ−ルの絶縁不良や短絡といった事故
を皆無とすることができる。
According to a twelfth aspect of the present invention, in the refrigerant-cooled double-sided cooling semiconductor device according to the third aspect, the device is housed in a sealed case, and one end of each of the entrance header and the exit header is connected to the case. Since it protrudes outside,
There is no mechanical connection part of the refrigerant piping system inside the case, and accidents such as poor insulation or short circuit of the semiconductor chip or the double-sided heat dissipation type semiconductor module due to liquid leakage from this connection part can be eliminated.

【0036】[0036]

【発明の実施の形態】本発明の冷媒冷却型両面冷却半導
体装置の好適な実施態様を図面を参照して以下説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the semiconductor device of the present invention will be described below with reference to the drawings.

【0037】[0037]

【実施例1】図1はこの冷媒冷却型両面冷却半導体装置
の要部分解厚さ方向断面図を示す。 (半導体モジュ−ルの構成)1は、両面冷却型半導体モ
ジュール、2は冷媒チュ−ブ、3は金属製又は良熱伝導
性のスペ−サである。
Embodiment 1 FIG. 1 is an exploded cross-sectional view in the thickness direction of a main part of a refrigerant-cooled double-sided cooling semiconductor device. (Structure of semiconductor module) 1 is a double-sided cooling type semiconductor module, 2 is a refrigerant tube, and 3 is a metal or good heat conductive spacer.

【0038】両面放熱型半導体モジュ−ル1において、
101aはIGBT素子が形成された半導体チップ、1
01bはフライホイルダイオ−ドが形成された半導体チ
ップ、102はヒ−トシンク及び電極(この実施例では
エミッタ側)を兼ねる金属伝熱板、103はヒ−トシン
ク及び電極(この実施例ではコレクタ側)を兼ねる金属
伝熱板、104ははんだ層、102aは金属伝熱板10
2の半導体チップ側へ突出する突出部、102bは金属
伝熱板102の突出端子部、103bは金属伝熱板10
3の突出端子部、105は制御電極端子、108はボン
ディングワイヤ、8は絶縁板(本発明で言う絶縁スペ−
サ)、9は封止樹脂部である。
In the double-sided heat dissipation type semiconductor module 1,
101a is a semiconductor chip on which an IGBT element is formed, 1
01b is a semiconductor chip on which a flywheel diode is formed, 102 is a metal heat transfer plate which also serves as a heat sink and an electrode (in this embodiment, an emitter side), 103 is a heat sink and an electrode (in this embodiment, a collector side) ), 104 is a solder layer, 102a is a metal heat transfer plate 10
2, a protruding portion protruding toward the semiconductor chip side, 102b a protruding terminal portion of the metal heat transfer plate 102, and 103b a metal heat transfer plate 10
Reference numeral 3 denotes a protruding terminal portion, 105 denotes a control electrode terminal, 108 denotes a bonding wire, and 8 denotes an insulating plate (an insulating space in the present invention).
(C) and 9 are sealing resin parts.

【0039】半導体チップ101a、101bは、金属
伝熱板103の内側の主面上にはんだ層104で接合さ
れ、半導体チップ101a、101bの残余の主面に
は、金属伝熱板102の突出部102aがはんだ層10
4で接合され、これによりIGBTのコレクタ電極面及
びエミッタ電極面にフライホイルダイオ−ドのアノ−ド
電極面及びカソ−ド電極面がいわゆる逆並列に接続され
ている。金属伝熱板102、103にはたとえばMoや
Wが用いられている。はんだ層104を他の接合機能材
料に置換してもよい。
The semiconductor chips 101a and 101b are joined by a solder layer 104 on the inner main surface of the metal heat transfer plate 103, and the remaining main surfaces of the semiconductor chips 101a and 101b are connected to the protrusions of the metal heat transfer plate 102. 102a is the solder layer 10
Thus, the anode and cathode electrode surfaces of the flywheel diode are connected in a so-called anti-parallel manner to the collector and emitter electrode surfaces of the IGBT. For example, Mo or W is used for the metal heat transfer plates 102 and 103. The solder layer 104 may be replaced with another bonding function material.

【0040】二つの突出部102aは、半導体チップ1
01a、101bの厚さの差を吸収する厚さの差をも
ち、これにより金属伝熱板102の外主面は平面となっ
ている。
The two projecting portions 102a are connected to the semiconductor chip 1
The outer main surface of the metal heat transfer plate 102 is flat due to the difference in thickness that absorbs the difference in thickness between 01a and 101b.

【0041】封止樹脂部9はたとえばエポキシ樹脂から
なり、これら金属伝熱板102、103の側面を覆って
モ−ルドされており、これにより半導体チップ101
a、101bは封止樹脂部9でモ−ルドされている。た
だし、金属伝熱板102、103の外主面すなわち接触
受熱面は完全に露出している。
The sealing resin portion 9 is made of, for example, epoxy resin, and is molded so as to cover the side surfaces of the metal heat transfer plates 102 and 103.
a and 101b are molded by the sealing resin portion 9. However, the outer main surfaces of the metal heat transfer plates 102 and 103, that is, the contact heat receiving surfaces are completely exposed.

【0042】突出端子部102b、103bは封止樹脂
部9から図1中、右方に突出し、いわゆるリ−ドフレ−
ム端子である複数の制御電極端子105は、IGBTが
形成された半導体チップ101aのゲ−ト(制御)電極
面と制御電極端子105とを接続している。
The protruding terminal portions 102b and 103b protrude rightward in FIG. 1 from the sealing resin portion 9 to form a so-called lead frame.
The plurality of control electrode terminals 105, which are system terminals, connect the gate (control) electrode surface of the semiconductor chip 101a on which the IGBT is formed and the control electrode terminal 105.

【0043】絶縁スペ−サである絶縁板8は、この実施
例では窒化アルミニウムフィルムで構成されているが、
他の絶縁フィルムでもよい。絶縁板8は金属伝熱板10
2、103を完全に覆って密着しているが、絶縁板8と
金属伝熱板102、103とは、単に接触するだけでも
よいし、シリコングリスなどの良熱伝導材を塗布しても
よいし、それらを種々の方法で接合させてもよい。ま
た、セラミック溶射などで絶縁層を形成してもよく、絶
縁板8を金属伝熱板上に接合してもよく、冷媒チュ−ブ
上に接合又は形成してもよい。
The insulating plate 8 serving as an insulating spacer is made of an aluminum nitride film in this embodiment.
Other insulating films may be used. The insulating plate 8 is a metal heat transfer plate 10
2 and 103 are completely covered and in close contact with each other, but the insulating plate 8 and the metal heat transfer plates 102 and 103 may simply be in contact with each other, or a good heat conductive material such as silicon grease may be applied. Alternatively, they may be joined in various ways. Further, the insulating layer may be formed by ceramic spraying or the like, the insulating plate 8 may be bonded on a metal heat transfer plate, or may be bonded or formed on a refrigerant tube.

【0044】冷媒チュ−ブ2は、アルミニウム合金を引
き抜き成形法あるいは押し出し成形法で成形された板材
を必要な長さに切断して作製されている。冷媒チュ−ブ
2の厚さ方向断面は、図1に示すように、互いに所定間
隔を隔てて流路方向に延在する多数の隔壁21で区画さ
れた流路22を多数有している。
The refrigerant tube 2 is made by cutting a plate material formed by drawing or extruding an aluminum alloy into a required length. As shown in FIG. 1, the cross section in the thickness direction of the refrigerant tube 2 has a large number of flow paths 22 divided by a large number of partition walls 21 extending in the flow direction at predetermined intervals.

【0045】スペ−サ(本発明でいう軟質材)3は、こ
の実施例では、はんだ合金などの軟質の金属板とされて
いるが、金属伝熱板2の接触面に塗布などにより形成し
たフィルム(膜)としてもよい。この軟質のスペ−サ3
の表面は、後述する挟圧により容易に変形して、絶縁材
8の微小凹凸や反り、冷媒チュ−ブ2の微小凹凸や反り
になじんで熱抵抗を低減する。なお、スペ−サ3の表面
などに公知の良熱伝導性グリスなどを塗布してもよく、
スペ−サ3を省略してもよい。 (冷媒冷却型両面冷却半導体装置の構成)上述した両面
放熱型半導体モジュ−ルを用いた冷媒冷却型両面冷却半
導体装置の例を図2、図3を参照して以下に説明する。
図2は、この半導体装置の蓋を外した平面図を示し、図
3はその縦断面図を示す。
The spacer (soft material in the present invention) 3 is a soft metal plate such as a solder alloy in this embodiment, but is formed on the contact surface of the metal heat transfer plate 2 by coating or the like. It may be a film (film). This soft spacer 3
The surface is easily deformed by the pinching pressure described later and conforms to the minute unevenness and warpage of the insulating material 8 and the minute unevenness and warpage of the refrigerant tube 2 to reduce the thermal resistance. In addition, a well-known good thermal conductive grease or the like may be applied to the surface of the spacer 3 or the like,
The spacer 3 may be omitted. (Configuration of Refrigerant-Cooled Double-Side Cooled Semiconductor Device) An example of a refrigerant-cooled double-sided cooled semiconductor device using the above-described double-sided heat dissipation semiconductor module will be described below with reference to FIGS.
FIG. 2 shows a plan view of the semiconductor device with the lid removed, and FIG. 3 shows a longitudinal sectional view thereof.

【0046】1は半導体モジュ−ル、2は冷媒チュ−
ブ、4は一端開口のケ−ス、5は互いに並列接続された
一対の平滑コンデンサ、6は押さえ板、9は板ばね部
材、11は蓋、23は入り口ヘッダ、24は出口ヘッ
ダ、25、26は冷媒配管、27は冷媒配管固定用のナ
ットである。
1 is a semiconductor module and 2 is a refrigerant tube.
Numeral 4 denotes a case having an open end, 5 denotes a pair of smoothing capacitors connected in parallel to each other, 6 denotes a holding plate, 9 denotes a leaf spring member, 11 denotes a lid, 23 denotes an inlet header, 24 denotes an outlet header, and 25, 26 is a refrigerant pipe, and 27 is a nut for fixing the refrigerant pipe.

【0047】ケ−ス4の底部には、ナットにより冷媒配
管25、26が固定されており、冷媒配管25、26の
先端はケ−ス4の底部を貫通して下方に突出している。
Refrigerant pipes 25 and 26 are fixed to the bottom of the case 4 by nuts, and the tips of the refrigerant pipes 25 and 26 penetrate the bottom of the case 4 and protrude downward.

【0048】冷媒配管25、26はケ−ス4内にて、中
空平板状の入り口ヘッダ23、出口ヘッダ24の下端に
一体に連通しており、ヘッダ23、24はケ−ス4内に
てケ−ス4の底面に直角に立設され、所定間隔を隔てて
平行に対面している。両ヘッダ23、24の対向主面間
に6対の冷媒チュ−ブ2は配置されている。
The refrigerant pipes 25 and 26 communicate integrally with the lower ends of the hollow flat plate-like entrance header 23 and exit header 24 in the case 4, and the headers 23 and 24 are connected inside the case 4. It is erected at a right angle on the bottom surface of the case 4 and faces in parallel at a predetermined interval. Six pairs of refrigerant tubes 2 are arranged between the opposing main surfaces of both headers 23, 24.

【0049】各冷媒チュ−ブ2は、それぞれ両ヘッダ2
3、24の主面と直角かつ互いに平行に配置され、それ
らの両端は両ヘッダ23、24に個別に連通、接合され
ている。各冷媒チュ−ブ2は後述するように中空の厚板
形状を有する。
Each refrigerant tube 2 is connected to both headers 2
3 and 24 are arranged at right angles to each other and parallel to each other, and both ends thereof are individually connected to and joined to both headers 23 and 24. Each refrigerant tube 2 has a hollow thick plate shape as described later.

【0050】同一対の冷媒チュ−ブ2、2は両面放熱型
半導体モジュ−ル1を挟持し、三相インバータ回路を構
成する6個のモジュール1は互いに異なる対の冷媒チュ
−ブ2、2で挟持されている。
The same pair of refrigerant tubes 2 and 2 sandwich the double-sided heat radiating semiconductor module 1, and the six modules 1 constituting the three-phase inverter circuit are composed of different pairs of refrigerant tubes 2 and 2 respectively. It is pinched by.

【0051】それぞれモジュール1を挟持する冷媒チュ
−ブ2、2の外側主面にはそれぞれ金属平板からなる押
さえ板6が密着され、これら押さえ板6、冷媒チュ−ブ
2、モジュール1、冷媒チュ−ブ2、押さえ板6のセッ
トは板ばね部材9により挟圧されている。押さえ板6は
ヒートシンクマスを兼ねる。板ばね部材9は、バネ鋼板
をU字状に形成した形状を有し、両端部間に上記セット
を挟んで挟圧する。なお、押さえ板6を省略して板ばね
部材6で一対の冷媒チュ−ブ2、モジュール1、冷媒チ
ュ−ブ2を直接挟圧してもよい。
Pressing plates 6 each made of a metal flat plate are in close contact with the outer main surfaces of the cooling tubes 2 and 2 which hold the module 1, respectively. These pressing plates 6, the cooling tube 2, the module 1 and the cooling tube are provided. The set of the bush 2 and the holding plate 6 is pressed by the leaf spring member 9. The holding plate 6 also serves as a heat sink mass. The leaf spring member 9 has a shape in which a spring steel plate is formed in a U-shape, and presses the set between both ends. The pressing plate 6 may be omitted, and the pair of refrigerant tubes 2, the module 1, and the refrigerant tube 2 may be directly pressed by the leaf spring member 6.

【0052】平滑コンデンサ5は、扁平形状を有し、そ
の平坦外面はヘッダ24の裏主面に密着している。
The smoothing capacitor 5 has a flat shape, and its flat outer surface is in close contact with the back main surface of the header 24.

【0053】各半導体モジュ−ル1は三相インバ−タ回
路の各半導体スイッチング素子を構成しており、各半導
体スイッチング素子は1個のIGBT素子に1個のフラ
イホイルダイオ−ドを逆並列接続して構成されている。
各対の半導体モジュ−ル1、1の一方は単相インバ−タ
回路のハイサイド側の半導体モジュ−ルをなし、他方は
同一相の単相インバ−タ回路のハイサイド側の半導体モ
ジュ−ルをなす。したがって、3対の半導体モジュ−ル
1、1はそれぞれU、V、W相の単相インバ−タ回路を
構成している。平滑コンデンサ5は、上記三相インバ−
タ回路の正負直流電源端間に接続される平滑コンデンサ
であり、電源ラインを通じて直流電源側にスイッチング
ノイズが入力されるのを抑止するためのものである。
Each semiconductor module 1 constitutes each semiconductor switching element of the three-phase inverter circuit, and each semiconductor switching element is connected to one IGBT element by one flywheel diode in anti-parallel. It is configured.
One of the semiconductor modules 1 and 1 of each pair constitutes the high-side semiconductor module of the single-phase inverter circuit, and the other semiconductor module on the high-side of the single-phase inverter circuit of the same phase. Make a leap. Therefore, the three pairs of semiconductor modules 1 and 1 constitute U, V and W phase single-phase inverter circuits, respectively. The smoothing capacitor 5 is connected to the three-phase inverter.
A smoothing capacitor connected between the positive and negative DC power supply terminals of the power supply circuit, for suppressing input of switching noise to the DC power supply side through the power supply line.

【0054】各冷媒チュ−ブ2には、入り口ヘッダ23
を通じて等流量かつ等温の冷媒が供給され、更に、共通
の挟圧部材で挟圧されるため各半導体モジュ−ル1と冷
媒チュ−ブ2との間の単位面積当たりの挟圧力は略等し
く、挟圧面積も等しいので、半導体モジュ−ル1に対す
る冷媒チュ−ブ2の挟圧力が略等しくなる。これらの結
果、各半導体モジュ−ル1の冷却能力はほぼ等しくする
ことができる。
Each refrigerant tube 2 has an entrance header 23
The refrigerant having the same flow rate and the same temperature is supplied through the nip and the nip is pressed by the common nip member so that the nip pressure per unit area between each semiconductor module 1 and the refrigerant tube 2 is substantially equal, Since the clamping areas are also equal, the clamping pressure of the refrigerant tube 2 with respect to the semiconductor module 1 is substantially equal. As a result, the cooling capacity of each semiconductor module 1 can be made substantially equal.

【0055】[0055]

【実施例2】図1に示すモジュール1を用いた他の実施
例の冷媒冷却型両面冷却半導体装置を図4、図5に示
す。 (装置構成)図4は、この半導体装置の蓋を外した平面
図を示し、図5はその縦断面図を示す。
Embodiment 2 FIGS. 4 and 5 show a refrigerant-cooled double-sided cooling semiconductor device of another embodiment using the module 1 shown in FIG. (Device Configuration) FIG. 4 is a plan view of the semiconductor device with the lid removed, and FIG. 5 is a longitudinal sectional view thereof.

【0056】1は半導体モジュ−ル、2は冷媒チュ−
ブ、4は一端開口のケ−ス、5は平滑コンデンサ、6は
押さえ板、7はスル−ボルト、10はナット、11は
蓋、23は入り口ヘッダ、24は出口ヘッダ、25、2
6は冷媒配管、27は冷媒配管固定用のナットである。
1 is a semiconductor module and 2 is a refrigerant tube.
4 is a case with one end open, 5 is a smoothing condenser, 6 is a holding plate, 7 is a through bolt, 10 is a nut, 11 is a lid, 23 is an entrance header, 24 is an exit header, 25 and 2,
6 is a refrigerant pipe, and 27 is a nut for fixing the refrigerant pipe.

【0057】3対の扁平な冷媒チュ−ブ2が、その厚さ
方向に所定間隔を隔てて隔設され、各対の冷媒チュ−ブ
2、2の間に図2中、上下に一対の半導体モジュ−ル
1、1が挟設されている。各半導体モジュ−ル1は三相
インバ−タ回路の各半導体スイッチング素子を構成して
おり、各半導体スイッチング素子は上述のように1個の
IGBT素子に1個のフライホイルダイオ−ドを逆並列
接続して構成されている。
Three pairs of flat refrigerant tubes 2 are arranged at predetermined intervals in the thickness direction, and a pair of upper and lower pairs of refrigerant tubes 2 in FIG. Semiconductor modules 1 and 1 are sandwiched. Each semiconductor module 1 constitutes each semiconductor switching element of the three-phase inverter circuit, and each semiconductor switching element is anti-parallel with one IGBT element and one flywheel diode as described above. Connected and configured.

【0058】平滑コンデンサ5は、上記三相インバ−タ
回路の正負直流電源端間に接続される平滑コンデンサで
あり、電源ラインを通じて直流電源側にスイッチングノ
イズが入力されるのを抑止するためのものである。
The smoothing capacitor 5 is a smoothing capacitor connected between the positive and negative DC power supply terminals of the three-phase inverter circuit, for suppressing the input of switching noise to the DC power supply through the power supply line. It is.

【0059】各一対の半導体モジュ−ル1、1の一方は
単相インバ−タ回路のハイサイド側の半導体モジュ−ル
をなし、他方は同一相の単相インバ−タ回路のハイサイ
ド側の半導体モジュ−ルをなす。したがって、3対の半
導体モジュ−ル1、1はそれぞれU、V、W相の単相イ
ンバ−タ回路を構成している。
One of the pair of semiconductor modules 1 and 1 constitutes a high-side semiconductor module of a single-phase inverter circuit, and the other of the pair of semiconductor modules 1 and 1 forms a high-side semiconductor module of the same-phase single-phase inverter circuit. It forms a semiconductor module. Therefore, the three pairs of semiconductor modules 1 and 1 constitute U, V and W phase single-phase inverter circuits, respectively.

【0060】各相の半導体モジュ−ル1、1はその両面
を図1に説明したように冷媒チュ−ブ2、2にサンドイ
ッチされており、相が異なる冷媒チュ−ブ2、2の間に
それぞれ扁平円筒形状の平滑コンデンサ5がサンドイッ
チされている。更に左右最外側の冷媒チュ−ブ2、2に
は押さえ板6が当接され、両押さえ板6、6の上端部及
び下端部にはそれぞれスル−ボルト7が積層方向に挿通
され、ナット10により締結されている。
The semiconductor modules 1 and 1 of each phase are sandwiched on both sides between the refrigerant tubes 2 and 2 as described with reference to FIG. In each case, a flat cylindrical smoothing capacitor 5 is sandwiched. Further, a pressing plate 6 is in contact with the left and right outermost refrigerant tubes 2, 2, and through bolts 7 are inserted in upper and lower ends of the pressing plates 6, 6 in the laminating direction, respectively, and a nut 10 is provided. Has been concluded.

【0061】ナット10の締結力は冷媒チュ−ブ2、2
による半導体モジュ−ル1の挟圧力が所定値となるよう
に調節されている。すなわち、本実施例によれば、押さ
え板6、スル−ボルト7及びナット10からなる挟圧部
材は、冷媒チュ−ブ2、2による半導体モジュ−ル1の
挟圧力を設定する機能と、三相インバータ回路装置を組
み立てし支持する構造部材としての機能とを有してい
る。
The fastening force of the nut 10 is determined by the refrigerant tubes 2, 2
Is adjusted so that the clamping pressure of the semiconductor module 1 becomes a predetermined value. That is, according to the present embodiment, the pressing member including the pressing plate 6, the through bolt 7 and the nut 10 has the function of setting the pressing force of the semiconductor module 1 by the refrigerant tubes 2 and 3, and And a function as a structural member for assembling and supporting the phase inverter circuit device.

【0062】図3に示すように、各冷媒チュ−ブ2の右
端は入り口ヘッダ23に、左端は出口ヘッダ24に接合
されており、入り口ヘッダ23の一端は冷媒吸入側の冷
媒配管25に、出口ヘッダ24の一端は冷媒吸入側の冷
媒配管26を通じてケ−ス4の底部から下方に突出して
いる。27は冷媒配管25、26をケ−ス4の底部に締
結、固定するナットである。
As shown in FIG. 3, the right end of each refrigerant tube 2 is joined to the inlet header 23, the left end is joined to the outlet header 24, and one end of the inlet header 23 is connected to the refrigerant pipe 25 on the refrigerant suction side. One end of the outlet header 24 protrudes downward from the bottom of the case 4 through the refrigerant pipe 26 on the refrigerant suction side. 27 is a nut for fastening and fixing the refrigerant pipes 25, 26 to the bottom of the case 4.

【0063】各冷媒チュ−ブ2には、入り口ヘッダ23
を通じて等流量かつ等温の冷媒が供給され、更に、共通
の挟圧部材で挟圧されるため各半導体モジュ−ル1と冷
媒チュ−ブ2との間の単位面積当たりの挟圧力は略等し
く、挟圧面積も等しいので、半導体モジュ−ル1に対す
る冷媒チュ−ブ2の挟圧力が略等しくなる。これらの結
果、各半導体モジュ−ル1の冷却能力はほぼ等しくする
ことができる。
Each refrigerant tube 2 has an entrance header 23
The refrigerant having the same flow rate and the same temperature is supplied through the nip and the nip is pressed by the common nip member so that the nip pressure per unit area between each semiconductor module 1 and the refrigerant tube 2 is substantially equal, Since the clamping areas are also equal, the clamping pressure of the refrigerant tube 2 with respect to the semiconductor module 1 is substantially equal. As a result, the cooling capacity of each semiconductor module 1 can be made substantially equal.

【0064】(変形態様)上記実施例の半導体モジュ−
ル1は半導体チップに置換しても同様の作用効果を奏す
ることができる。
(Modification) The semiconductor module of the above embodiment is modified.
The same operation and effect can be obtained even when the semiconductor device 1 is replaced with the semiconductor chip 1.

【0065】[0065]

【実施例3】図1に示すモジュール1を用いた他の実施
例の冷媒冷却型両面冷却半導体装置を図6、図7に示
す。 (装置構成)図6は、この半導体装置の蓋を外した平面
図を示し、図7はその縦断面図を示す。
Embodiment 3 FIGS. 6 and 7 show a refrigerant-cooled double-sided cooling semiconductor device of another embodiment using the module 1 shown in FIG. (Device Configuration) FIG. 6 is a plan view of the semiconductor device with the lid removed, and FIG. 7 is a longitudinal sectional view of the device.

【0066】この実施例の装置は、モジュール1、冷媒
チュ−ブ2、平滑コンデンサ5、押さえ板6のセットを
実施例2と同一配列とし、このセットを実施例1で説明
した板ばね部材9を大型化した大型板ばね部材90で一
挙に挟持させたものである。したがって、大型板ばね部
材90は、ケ−ス4の底部に平行な姿勢で配置される一
個の中央板部90bと、この中央板部90bの両端部か
らそれぞれそれと直角に延設されて互いに対面する一対
の平板状の両端部90a、90aとからなる。91は、
大型板ばね部材90の中央板部90bに凹設された条溝
部である。
In the apparatus of this embodiment, the module 1, the refrigerant tube 2, the smoothing condenser 5, and the holding plate 6 are arranged in the same arrangement as in the second embodiment, and this set is the leaf spring member 9 described in the first embodiment. Are sandwiched at once by a large leaf spring member 90 having a large size. Therefore, the large leaf spring member 90 is provided with one central plate portion 90b arranged in a posture parallel to the bottom of the case 4, and extending from both ends of the central plate portion 90b at right angles to the central plate portion 90b and facing each other. And a pair of flat end portions 90a, 90a. 91 is
This is a groove formed in the central plate portion 90b of the large leaf spring member 90.

【0067】本実施例によれば、一層簡単に各部材を組
み立てることができるとともに、各部材にばらつきが小
さい挟圧力を与えることができる。
According to the present embodiment, each member can be more easily assembled, and a clamping force with a small variation can be applied to each member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の両面冷却型半導体モジュール及び冷媒
チュ−ブの組み立て厚さ方向断面図である。
FIG. 1 is a sectional view in the assembly thickness direction of a double-sided cooling type semiconductor module and a refrigerant tube of the present invention.

【図2】図1に示す半導体モジュ−ルを用いた冷媒間接
冷却型半導体装置の平面図である。
FIG. 2 is a plan view of a refrigerant indirect cooling type semiconductor device using the semiconductor module shown in FIG.

【図3】図2に示す冷媒間接冷却型半導体装置の縦断面
図である。
FIG. 3 is a longitudinal sectional view of the indirect cooling semiconductor device shown in FIG. 2;

【図4】他の実施例の冷媒間接冷却型半導体装置の平面
図である。
FIG. 4 is a plan view of a refrigerant indirect cooling semiconductor device of another embodiment.

【図5】図4に示す冷媒間接冷却型半導体装置の縦断面
図である。
5 is a longitudinal sectional view of the indirect cooling semiconductor device shown in FIG. 4;

【図6】他の実施例の冷媒間接冷却型半導体装置の平面
図である。
FIG. 6 is a plan view of a refrigerant indirect cooling semiconductor device of another embodiment.

【図7】図6に示す冷媒間接冷却型半導体装置の縦断面
図である。
7 is a longitudinal sectional view of the indirect cooling semiconductor device shown in FIG. 6;

【図8】図6に示す冷媒間接冷却型半導体装置の一部横
断面図である。
FIG. 8 is a partial cross-sectional view of the indirect cooling semiconductor device shown in FIG. 6;

【符号の説明】[Explanation of symbols]

1:両面冷却型半導体モジュール 2:冷媒チュ−ブ 6:押さえ板(挟圧部材) 7:スル−ボルト(挟圧部材) 9:板ばね部材(挟圧部材) 10:ナット(挟圧部材) 1: Double-sided cooling type semiconductor module 2: Refrigerant tube 6: Holding plate (pressing member) 7: Through bolt (pressing member) 9: Leaf spring member (pressing member) 10: Nut (pressing member)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体チップ又は両面冷却型半導体モジュ
ールと、 扁平な接触受熱面を有して冷却流体が内部を流れる冷媒
チュ−ブと、 前記半導体チップ又は両面冷却型半導体モジュールの両
主面に前記冷媒チュ−ブの平坦面を絶縁スペ−サを介し
て又は直接に密接させた状態で前記半導体チップ又は両
面冷却型半導体モジュールを前記冷媒チュ−ブにて半導
体チップ又は両面冷却型半導体モジュールの厚さ方向に
挟圧させる挟圧部材と、 を備えることを特徴とする冷媒冷却型両面冷却半導体装
置。
1. A semiconductor chip or a double-sided cooling type semiconductor module, a cooling tube having a flat contact heat receiving surface and through which a cooling fluid flows, and both main surfaces of the semiconductor chip or the double-sided cooling type semiconductor module. The semiconductor chip or the double-sided cooled semiconductor module is cooled by the refrigerant tube while the flat surface of the refrigerant tube is in close contact with an insulating spacer or directly. And a clamping member for clamping in the thickness direction.
【請求項2】請求項1記載の冷媒冷却型両面冷却半導体
装置において、 前記冷媒チュ−ブは、互いに所定間隔を隔てて流路方向
へ延設される内部隔壁に区画される複数の冷却流体流路
を有することを特徴とする冷媒冷却型両面冷却半導体装
置。
2. A refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein said refrigerant tubes are divided into a plurality of cooling fluids defined by internal partitions extending in a flow direction at a predetermined interval from each other. A refrigerant-cooled double-sided cooled semiconductor device having a flow path.
【請求項3】請求項1又は2記載の冷媒冷却型両面冷却
半導体装置において、 前記半導体チップ又は両面放熱型半導体モジュ−ルにそ
れぞれ接する各前記冷媒チュ−ブの両端は、共通の入り
口ヘッダ及び出口ヘッダにそれぞれ接続されることを特
徴とする冷媒冷却型両面冷却半導体装置。
3. The refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein both ends of each of the refrigerant tubes contacting the semiconductor chip or the double-sided heat dissipation semiconductor module, respectively, have a common entrance header and a common entrance header. Refrigerant-cooled double-sided cooling semiconductor devices, each connected to an outlet header.
【請求項4】請求項1乃至3のいずれか記載の冷媒冷却
型両面冷却半導体装置において、 前記冷媒チュ−ブは良熱伝導性の軟質材を介して前記半
導体チップ又は半導体モジュールに接することを特徴と
する冷媒冷却型両面冷却半導体装置。
4. The semiconductor device according to claim 1, wherein the cooling tube is in contact with the semiconductor chip or the semiconductor module via a soft material having good heat conductivity. A refrigerant-cooled double-sided cooling semiconductor device.
【請求項5】請求項1乃至4のいずれか記載の冷媒冷却
型両面冷却半導体装置において、 前記挟圧部材は、板ばね部材を含むことを特徴とする冷
媒冷却型両面冷却半導体装置。
5. The refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein said pressing member includes a leaf spring member.
【請求項6】請求項1乃至4いずれか記載の冷媒冷却型
両面冷却半導体装置において、 前記挟圧部材は、最も外側の一対の前記冷媒チュ−ブに
個別に接する一対の押さえ板と、前記両押さえ板を貫通
するスル−ボルトと、前記スル−ボルトに螺着されるナ
ットとを有することを特徴とする冷媒冷却型両面冷却半
導体装置。
6. A refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein said holding member comprises: a pair of pressing plates individually contacting a pair of outermost refrigerant tubes; A refrigerant-cooled double-sided cooling semiconductor device, comprising: a through bolt penetrating both holding plates; and a nut screwed to the through bolt.
【請求項7】請求項5記載の冷媒冷却型両面冷却半導体
装置において、 前記挟圧部材は、最も外側の一対の前記冷媒チュ−ブに
個別に接する一対の押さえ板を有し、 前記板ばね部材は、コ字状に形成されて両端部が前記両
押さえ板を弾性付勢することを特徴とする冷媒冷却型両
面冷却半導体装置。
7. A refrigerant-cooled double-sided cooling semiconductor device according to claim 5, wherein said clamping member has a pair of pressing plates individually contacting a pair of outermost refrigerant tubes, respectively. A member is formed in a U-shape, and both ends elastically urge both of the holding plates.
【請求項8】請求項1乃至7のいずれか記載の冷媒冷却
型両面冷却半導体装置において、 多数の前記半導体チップ又は両面冷却型半導体モジュー
ルと多数の前記冷媒チュ−ブとのセットを前記挟圧方向
に複数配置して前記挟圧部材で挟圧する構造を有するこ
とを特徴とする冷媒冷却型両面冷却半導体装置。
8. The refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein a set of a large number of said semiconductor chips or a double-sided cooled semiconductor module and a large number of said refrigerant tubes is pressed. A refrigerant-cooled double-sided cooling semiconductor device having a structure in which a plurality of the cooling devices are arranged in a direction and sandwiched by the sandwiching member.
【請求項9】請求項5記載の冷媒冷却型両面冷却半導体
装置において、 複数の前記半導体チップ又は両面放熱型半導体モジュ−
ルは、三相インバータ回路を構成することを特徴とする
冷媒冷却型両面冷却半導体装置。
9. The refrigerant-cooled double-sided cooling semiconductor device according to claim 5, wherein a plurality of said semiconductor chips or a double-sided heat dissipation type semiconductor module are provided.
A refrigerant-cooled double-sided cooling semiconductor device comprising a three-phase inverter circuit.
【請求項10】請求項1乃至9のいずれか記載の冷媒冷
却型両面冷却半導体装置において、 前記冷媒チュ−ブの反半導体チップ側の平坦面に他の発
熱部品の平坦面を密接させ、前記挟圧部材で、前記半導
体チップ又は両面冷却型半導体モジュールと前記冷媒チ
ュ−ブと前記発熱部品とを挟圧する構造を有することを
特徴とする冷媒冷却型両面冷却半導体装置。
10. The refrigerant-cooled double-sided cooling semiconductor device according to claim 1, wherein a flat surface of another heat-generating component is brought into close contact with a flat surface of the refrigerant tube on the side opposite to the semiconductor chip. A refrigerant-cooled double-sided cooling semiconductor device, characterized in that the clamping member has a structure for clamping the semiconductor chip or the double-sided cooling semiconductor module, the refrigerant tube and the heat-generating component.
【請求項11】請求項10記載の冷媒冷却型両面冷却半
導体装置において、 前記半導体チップ又は、両面冷却型半導体モジュールは
三相インバ−タ回路の一部又は全部をなし、 前記発熱部品は、前記三相インバ−タ回路の正負直流電
源端間に接続される平滑コンデンサからなることを特徴
とする冷媒冷却型両面冷却半導体装置。
11. The refrigerant-cooled double-sided cooling semiconductor device according to claim 10, wherein the semiconductor chip or the double-sided cooling semiconductor module forms part or all of a three-phase inverter circuit, and the heat-generating component is A double-sided refrigerant-cooled semiconductor device comprising a smoothing capacitor connected between positive and negative DC power supply terminals of a three-phase inverter circuit.
【請求項12】請求項3記載の冷媒冷却型両面冷却半導
体装置において、 密閉ケースに収容され、前記入り口ヘッダ及び出口ヘッ
ダの各一端は、前記ケ−スから外部に突出していること
を特徴とする冷媒冷却型両面冷却半導体装置。
12. The refrigerant-cooled double-sided cooling semiconductor device according to claim 3, wherein each of the inlet header and the outlet header is housed in a sealed case and protrudes outside from the case. Cooling type double-sided cooling semiconductor device.
JP2000136934A 2000-04-19 2000-05-10 Refrigerant cooling type double-sided cooling semiconductor device Expired - Lifetime JP4423746B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000136934A JP4423746B2 (en) 2000-05-10 2000-05-10 Refrigerant cooling type double-sided cooling semiconductor device
EP10006258.7A EP2234154B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP06022504.2A EP1742265B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP10006259.5A EP2244289B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP01109620.3A EP1148547B8 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
US09/837,382 US6542365B2 (en) 2000-04-19 2001-04-19 Coolant cooled type semiconductor device
US10/314,139 US6845012B2 (en) 2000-04-19 2002-12-09 Coolant cooled type semiconductor device
US10/756,340 US7027302B2 (en) 2000-04-19 2004-01-14 Coolant cooled type semiconductor device
US10/946,210 US7106592B2 (en) 2000-04-19 2004-09-22 Coolant cooled type semiconductor device
US11/325,331 US7250674B2 (en) 2000-04-19 2006-01-05 Coolant cooled type semiconductor device
US11/452,328 US7248478B2 (en) 2000-04-19 2006-06-14 Coolant cooled type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136934A JP4423746B2 (en) 2000-05-10 2000-05-10 Refrigerant cooling type double-sided cooling semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009233387A Division JP5267412B2 (en) 2009-10-07 2009-10-07 Refrigerant cooling type double-sided cooling semiconductor device

Publications (2)

Publication Number Publication Date
JP2001320005A true JP2001320005A (en) 2001-11-16
JP4423746B2 JP4423746B2 (en) 2010-03-03

Family

ID=18644801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136934A Expired - Lifetime JP4423746B2 (en) 2000-04-19 2000-05-10 Refrigerant cooling type double-sided cooling semiconductor device

Country Status (1)

Country Link
JP (1) JP4423746B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020276A3 (en) * 2003-08-21 2005-04-14 Denso Corp Power converter and semiconductor device mounting structure
US7015578B2 (en) 2003-05-26 2006-03-21 Denso Corporation Semiconductor unit with cooling system
JP2006303455A (en) * 2005-03-23 2006-11-02 Toyota Motor Corp Power semiconductor module
US7200007B2 (en) 2004-05-18 2007-04-03 Denso Corporation Power stack
US7231960B2 (en) 2002-12-16 2007-06-19 Denso Corporation Cooler for cooling both sides of semiconductor device
US7242582B2 (en) 2004-04-20 2007-07-10 Denso Corporation Semiconductor module mounting structure, a cardlike semiconductor module, and heat receiving members bonded to the cardlike semiconductor module
JP2007258458A (en) * 2006-03-23 2007-10-04 Toyota Motor Corp Cooler
JP2008161043A (en) * 2006-11-20 2008-07-10 Gm Global Technology Operations Inc Liquid cooling capacitor and power inverter having low inductance bus structure
JP2008253057A (en) * 2007-03-30 2008-10-16 Denso Corp Power module and power conversion device using the same
US7504720B2 (en) 2005-08-19 2009-03-17 Hitachi, Ltd. Semiconductor unit, and power conversion system and on-vehicle electrical system using the same
US7508067B2 (en) 2005-10-13 2009-03-24 Denso Corporation Semiconductor insulation structure
JP2009094257A (en) * 2007-10-08 2009-04-30 Denso Corp Power conversion device
US7571759B2 (en) 2003-12-03 2009-08-11 Denso Corporation Stacked type cooler
USRE41869E1 (en) 2004-01-28 2010-10-26 Renesas Electronics Corp. Semiconductor device
US7965508B2 (en) 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
US8125781B2 (en) 2004-11-11 2012-02-28 Denso Corporation Semiconductor device
US8151868B2 (en) 2003-12-18 2012-04-10 Denso Corporation Easily assembled cooler
JP2013051848A (en) * 2011-08-31 2013-03-14 Toyota Motor Corp Electric power conversion apparatus for electric vehicle and electric vehicle
WO2013094028A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Semiconductor module
JP2013222974A (en) * 2012-04-17 2013-10-28 Semikron Elektronik Gmbh & Co Kg Liquid-cooled arrangement having modular power semiconductor modules and at least one capacitor device, and power semiconductor module therefor
JP2013258334A (en) * 2012-06-13 2013-12-26 Denso Corp Semiconductor device and manufacturing method of the same
JP2015053830A (en) * 2013-09-09 2015-03-19 株式会社デンソー Power conversion device
WO2016031317A1 (en) * 2014-08-27 2016-03-03 株式会社日立製作所 Power semiconductor device and power semiconductor device production method
JP2016129209A (en) * 2015-01-09 2016-07-14 株式会社日本自動車部品総合研究所 Cooler
JP2017054965A (en) * 2015-09-10 2017-03-16 株式会社デンソー Cooler and cooler module
WO2020021880A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Power conversion device
JP2020025430A (en) * 2018-07-25 2020-02-13 株式会社デンソー Electric power conversion system
JP2020137159A (en) * 2019-02-13 2020-08-31 トヨタ自動車株式会社 Power converter
JP2020202254A (en) * 2019-06-07 2020-12-17 トヨタ自動車株式会社 Power conversion device and manufacturing method for the same
CN112470391A (en) * 2018-07-25 2021-03-09 株式会社电装 Rotating electric machine unit
JP2021048255A (en) * 2019-09-18 2021-03-25 日立オートモティブシステムズ株式会社 Electric circuit body, power conversion device, and manufacturing method for electric circuit body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267412B2 (en) * 2009-10-07 2013-08-21 株式会社デンソー Refrigerant cooling type double-sided cooling semiconductor device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231960B2 (en) 2002-12-16 2007-06-19 Denso Corporation Cooler for cooling both sides of semiconductor device
DE10358641B4 (en) 2002-12-16 2018-07-05 Denso Corporation Cooling device for double-sided cooling of a semiconductor device
US7015578B2 (en) 2003-05-26 2006-03-21 Denso Corporation Semiconductor unit with cooling system
DE102004025616B4 (en) * 2003-05-26 2012-10-04 Denso Corporation Semiconductor component with cooling system
US7508668B2 (en) 2003-08-21 2009-03-24 Denso Corporation Electric power converter and mounting structure of semiconductor device
WO2005020276A3 (en) * 2003-08-21 2005-04-14 Denso Corp Power converter and semiconductor device mounting structure
US7826226B2 (en) 2003-08-21 2010-11-02 Denso Corporation Electric power converter and mounting structure of semiconductor device
US8027161B2 (en) 2003-08-21 2011-09-27 Denso Corporation Electronic power converter and mounting structure of semiconductor device
EP1657806A2 (en) * 2003-08-21 2006-05-17 Denso Corporation Power converter and semiconductor device mounting structure
EP1657806A4 (en) * 2003-08-21 2008-10-29 Denso Corp Power converter and semiconductor device mounting structure
EP2216892A3 (en) * 2003-08-21 2010-09-29 Denso Corporation Electric power converter and mounting structure of semiconductor device
US7724523B2 (en) 2003-08-21 2010-05-25 Denso Corporation Electric power converter and mounting structure of semiconductor device
EP2216890A3 (en) * 2003-08-21 2010-09-29 Denso Corporation Electric power converter and mounting structure of semiconductor device
EP2216891A3 (en) * 2003-08-21 2010-09-29 Denso Corporation Electric power converter and mounting structure of semiconductor device
US7571759B2 (en) 2003-12-03 2009-08-11 Denso Corporation Stacked type cooler
US8151868B2 (en) 2003-12-18 2012-04-10 Denso Corporation Easily assembled cooler
USRE41869E1 (en) 2004-01-28 2010-10-26 Renesas Electronics Corp. Semiconductor device
USRE43663E1 (en) 2004-01-28 2012-09-18 Renesas Electronics Corporation Semiconductor device
US7242582B2 (en) 2004-04-20 2007-07-10 Denso Corporation Semiconductor module mounting structure, a cardlike semiconductor module, and heat receiving members bonded to the cardlike semiconductor module
US7200007B2 (en) 2004-05-18 2007-04-03 Denso Corporation Power stack
US8125781B2 (en) 2004-11-11 2012-02-28 Denso Corporation Semiconductor device
US10079226B2 (en) 2004-11-11 2018-09-18 Denso Corporation Semiconductor device
JP4661645B2 (en) * 2005-03-23 2011-03-30 トヨタ自動車株式会社 Power semiconductor module
US8269331B2 (en) 2005-03-23 2012-09-18 Toyota Jidosha Kabushiki Kaisha Power semiconductor module
JP2006303455A (en) * 2005-03-23 2006-11-02 Toyota Motor Corp Power semiconductor module
US7504720B2 (en) 2005-08-19 2009-03-17 Hitachi, Ltd. Semiconductor unit, and power conversion system and on-vehicle electrical system using the same
US7816786B2 (en) 2005-08-19 2010-10-19 Hitachi, Ltd. Semiconductor unit, and power conversion system and on-vehicle electrical system using the same
US7508067B2 (en) 2005-10-13 2009-03-24 Denso Corporation Semiconductor insulation structure
JP4699253B2 (en) * 2006-03-23 2011-06-08 トヨタ自動車株式会社 Cooler
JP2007258458A (en) * 2006-03-23 2007-10-04 Toyota Motor Corp Cooler
JP2008161043A (en) * 2006-11-20 2008-07-10 Gm Global Technology Operations Inc Liquid cooling capacitor and power inverter having low inductance bus structure
US7965508B2 (en) 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
JP4683003B2 (en) * 2007-03-30 2011-05-11 株式会社デンソー Power module and power converter using the same
JP2008253057A (en) * 2007-03-30 2008-10-16 Denso Corp Power module and power conversion device using the same
JP2009094257A (en) * 2007-10-08 2009-04-30 Denso Corp Power conversion device
JP2013051848A (en) * 2011-08-31 2013-03-14 Toyota Motor Corp Electric power conversion apparatus for electric vehicle and electric vehicle
WO2013094028A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Semiconductor module
JP2013222974A (en) * 2012-04-17 2013-10-28 Semikron Elektronik Gmbh & Co Kg Liquid-cooled arrangement having modular power semiconductor modules and at least one capacitor device, and power semiconductor module therefor
JP2013258334A (en) * 2012-06-13 2013-12-26 Denso Corp Semiconductor device and manufacturing method of the same
JP2015053830A (en) * 2013-09-09 2015-03-19 株式会社デンソー Power conversion device
WO2016031317A1 (en) * 2014-08-27 2016-03-03 株式会社日立製作所 Power semiconductor device and power semiconductor device production method
JP2016046497A (en) * 2014-08-27 2016-04-04 株式会社日立製作所 Power semiconductor device and method for manufacturing power semiconductor device
EP3188232A4 (en) * 2014-08-27 2018-03-28 Hitachi, Ltd. Power semiconductor device and power semiconductor device production method
JP2016129209A (en) * 2015-01-09 2016-07-14 株式会社日本自動車部品総合研究所 Cooler
JP2017054965A (en) * 2015-09-10 2017-03-16 株式会社デンソー Cooler and cooler module
WO2020021880A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Power conversion device
JP2020025430A (en) * 2018-07-25 2020-02-13 株式会社デンソー Electric power conversion system
CN112470391A (en) * 2018-07-25 2021-03-09 株式会社电装 Rotating electric machine unit
CN112470391B (en) * 2018-07-25 2023-09-12 株式会社电装 Rotary electric machine unit
JP2020137159A (en) * 2019-02-13 2020-08-31 トヨタ自動車株式会社 Power converter
JP2020202254A (en) * 2019-06-07 2020-12-17 トヨタ自動車株式会社 Power conversion device and manufacturing method for the same
JP7133762B2 (en) 2019-06-07 2022-09-09 株式会社デンソー Power conversion device and its manufacturing method
JP2021048255A (en) * 2019-09-18 2021-03-25 日立オートモティブシステムズ株式会社 Electric circuit body, power conversion device, and manufacturing method for electric circuit body
WO2021054008A1 (en) * 2019-09-18 2021-03-25 日立オートモティブシステムズ株式会社 Electrical circuit body, power conversion device, and electrical circuit body manufacturing method
JP7196047B2 (en) 2019-09-18 2022-12-26 日立Astemo株式会社 ELECTRICAL CIRCUIT, POWER CONVERTER, AND METHOD OF MANUFACTURING ELECTRICAL CIRCUIT

Also Published As

Publication number Publication date
JP4423746B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP2001320005A (en) Double-sided cooling semiconductor device by means of coolant
JP4292686B2 (en) Refrigerant cooling type double-sided cooling semiconductor device
US7248478B2 (en) Coolant cooled type semiconductor device
JP4774581B2 (en) Cooling fluid cooling type semiconductor device
JP5267412B2 (en) Refrigerant cooling type double-sided cooling semiconductor device
US7019395B2 (en) Double-sided cooling type semiconductor module
AU564306B2 (en) Heat pipe cooling module for high power circuit boards
JP2001308245A (en) Refrigerant cooling type both-face cooling semiconductor device
JP3433279B2 (en) Semiconductor device
JPH11121668A (en) Liquid-cooled flat semiconductor device
JP3010080U (en) Electronic component cooler
JP4055042B2 (en) Inverter device
JP2001308266A (en) Semiconductor module device
JP2004158489A (en) Pressure contact semiconductor device
KR102176925B1 (en) Cooling structure for water cooling type invertor module of vehicles
JP5556680B2 (en) Cooling fluid cooling type semiconductor device
JP4158648B2 (en) Semiconductor cooling unit
JP2001307953A (en) Cylindrical electrolytic capacitor and three-phase inverter using the same
JP2003046048A (en) Semiconductor device
JP2004158485A (en) Pressure contact semiconductor device
JPH08125238A (en) Cooling system using thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R151 Written notification of patent or utility model registration

Ref document number: 4423746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term