JP2001316744A - Hydrogen storage alloy and alkali secondary battery - Google Patents

Hydrogen storage alloy and alkali secondary battery

Info

Publication number
JP2001316744A
JP2001316744A JP2000137202A JP2000137202A JP2001316744A JP 2001316744 A JP2001316744 A JP 2001316744A JP 2000137202 A JP2000137202 A JP 2000137202A JP 2000137202 A JP2000137202 A JP 2000137202A JP 2001316744 A JP2001316744 A JP 2001316744A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
secondary battery
negative electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137202A
Other languages
Japanese (ja)
Inventor
Shuichiro Irie
周一郎 入江
Hideji Suzuki
秀治 鈴木
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2000137202A priority Critical patent/JP2001316744A/en
Publication of JP2001316744A publication Critical patent/JP2001316744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy excellent in oxidation resistance, having a high hydrogen storing characteristic at low and high temperatures, keeping a sufficient hydrogen storage characteristic even after the repetition of storage and release, and further having high hydrogen storing velocity. SOLUTION: The alloy has a composition represented by general formula Ln1-xMgx(Ni1-yTy)z (wherein, Ln is at least one element selected from lanthanoide-series element, Ca, Sr, Sc, Y, Ti, Zr and Hf and the amount of La comprises 10-50 atomic % of the Ln; T is at least one element selected from Li, V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B; and x, y and z satisfy 0.05<=x<0.20, 0<=y<=0.5 and 2.8<=z<=3.9, respectively).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を電気化学的
に吸蔵・放出する水素吸蔵合金およびこの水素吸蔵合金
を含む負極を改良したアルカリ二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy for electrochemically storing and releasing hydrogen and an alkaline secondary battery having an improved negative electrode containing the hydrogen storage alloy.

【0002】[0002]

【従来の技術】高容量二次電池としては、ニッケル・カ
ドミウム二次電池やニッケル水素二次電池が知られてい
る。このうち、水素を吸蔵・放出する水素吸蔵合金を含
む負極を備えたニッケル水素二次電池は環境適合性に優
れた小型密閉二次電池としてポータブル電子機器等に広
く用いられている。
2. Description of the Related Art Nickel-cadmium secondary batteries and nickel-metal hydride secondary batteries are known as high-capacity secondary batteries. Among them, nickel-metal hydride secondary batteries provided with a negative electrode containing a hydrogen storage alloy that stores and releases hydrogen are widely used in portable electronic devices and the like as small sealed secondary batteries having excellent environmental compatibility.

【0003】前記ニッケル水素二次電池において、正極
活物質として水酸化ニッケルに少量の水酸化コバルト又
は酸化コバルトを混合したものが用いられている。ま
た、負極活物質として重要な役割を果たす水素吸蔵合金
としては主にMmNi5 系(Mm;ミッシュメタル)や
TiMn2系の合金が用いられている。
In the nickel-metal hydride secondary battery, a mixture of nickel hydroxide and a small amount of cobalt hydroxide or cobalt oxide is used as a positive electrode active material. Further, as a hydrogen storage alloy that plays an important role as a negative electrode active material, an MmNi 5 -based (Mm: misch metal) or TiMn 2 -based alloy is mainly used.

【0004】ところで、ニッケル・水素二次電池におい
ては、この二次電池を組み込むポータブル機器の性能向
上の点からより一層の高容量化、長寿命化が求められて
いる。このような高容量化の要求に対して、正極の理論
容量に対する実際の放電容量(利用率)を向上させるこ
とや、正極活物質量を多くするなどの方法が従来より採
用されてきた。しかしながら、利用率を向上させる方法
において現状、ほぼ理論容量に達しているため、更なる
高容量化は困難である。また、正極活物質量を多くする
場合、正極および負極間にセパレータを介在して例えば
渦巻き状に捲回下電極群を一定の体積の電池容器内に収
めるためには、相対的に負極活物質の占める体積を小さ
くする必要があり、より大きな放電容量を持つ水素吸蔵
合金が望まれている。
[0004] In the nickel-hydrogen secondary battery, further higher capacity and longer life are required from the viewpoint of improving the performance of portable equipment incorporating the secondary battery. In response to such a demand for higher capacity, methods such as improving the actual discharge capacity (utilization rate) with respect to the theoretical capacity of the positive electrode and increasing the amount of the positive electrode active material have conventionally been adopted. However, the method of improving the utilization rate has almost reached the theoretical capacity at present, and it is difficult to further increase the capacity. In addition, when the amount of the positive electrode active material is increased, in order to place the lower electrode group in a fixed volume in a battery container with a separator interposed between the positive electrode and the negative electrode, for example, the negative electrode active material is relatively increased. It is necessary to reduce the volume occupied by the alloy, and a hydrogen storage alloy having a larger discharge capacity is desired.

【0005】しかしながら、前述したMmNi5 系(M
m;ミッシュメタル)やTiMn2系の水素吸蔵合金を
含む負極を備えたニッケル水素二次電池では前記水素吸
蔵合金の持つ水素吸蔵能力に限界があり、より一層の高
容量化が困難であった。
However, the aforementioned MmNi 5 series (M
m; misch metal) or a nickel hydride secondary battery provided with a negative electrode containing a TiMn 2 -based hydrogen storage alloy, the hydrogen storage alloy has a limited hydrogen storage capacity, and it is difficult to further increase the capacity. .

【0006】このようなことから、V−Ti系、TiF
e系、Ti2Ni系の水素吸蔵合金が開発されている。
しかしながら、これらの水素吸蔵合金は高温下での水素
ガスとの直接反応性が優れているものの、常温常圧下で
の水素との反応性が乏しく、初期活性化が困難であると
いう問題があった。
For these reasons, V-Ti, TiF
e-based and Ti 2 Ni-based hydrogen storage alloys have been developed.
However, although these hydrogen storage alloys have excellent direct reactivity with hydrogen gas at high temperatures, they have poor reactivity with hydrogen at normal temperature and normal pressure, and have a problem that initial activation is difficult. .

【0007】これに対し、マグネシウム、ニッケルおよ
び希土類元素を主構成元素として含む水素吸蔵合金は、
広く実用化されているMmNi5 系合金に比べて体積当
たりの容量密度および質量当たりの容量密度の両方が高
く、TiMn2系合金よりも活性化が速く、かつ高率充
放電特性に優れているという特徴を有する。このため、
前記水素吸蔵合金を含む負極を用いることによって、M
mNi5 系合金を含む負極を用いた場合に比べて高容量
でTiMn2系合金を含む負極を用いた場合に比べて高
率充放電特性に優れた二次電池を実現することが可能に
なる。
On the other hand, hydrogen storage alloys containing magnesium, nickel and rare earth elements as main constituent elements are:
Both the capacity density per volume and the capacity density per mass are higher than those of widely used MmNi 5 -based alloys, activation is faster than TiMn 2 -based alloys, and excellent in high-rate charge / discharge characteristics. It has the feature of. For this reason,
By using the negative electrode containing the hydrogen storage alloy, M
It is possible to realize a secondary battery having a higher capacity and a higher rate of charge / discharge characteristics than using a negative electrode containing a TiMn 2 -based alloy as compared with a case using a negative electrode containing an mNi 5 -based alloy. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、マグネ
シウム、ニッケルおよび希土類元素を主構成元素として
含む水素吸蔵合金を含有する負極を備えたアルカリ二次
電池は、前記水素吸蔵合金が酸化してサイクル寿命が低
下するという問題があった。
However, in an alkaline secondary battery provided with a negative electrode containing a hydrogen storage alloy containing magnesium, nickel and a rare earth element as main constituent elements, the hydrogen storage alloy is oxidized and the cycle life is increased. There was a problem of lowering.

【0009】本発明は、優れた耐酸化性を有し、低温お
よび高温で高い水素吸蔵性を有し、かつ吸蔵・放出の繰
り返しにおいて十分な水素吸蔵量を維持し、さらに高い
水素吸蔵速度を有する水素吸蔵合金を提供しようとする
ものである。
The present invention has excellent oxidation resistance, has high hydrogen storage properties at low and high temperatures, maintains a sufficient amount of hydrogen storage during repeated storage and release, and has a higher hydrogen storage rate. It is intended to provide a hydrogen storage alloy having the same.

【0010】本発明は、前記優れた特性を有する水素吸
蔵合金を含む負極を備え、高容量化を実現しつつ、充放
電サイクル寿命の長いアルカリ二次電池を提供しようと
するものである。
An object of the present invention is to provide an alkaline secondary battery having a negative electrode containing a hydrogen storage alloy having the above-mentioned excellent characteristics, realizing a high capacity, and having a long charge-discharge cycle life.

【0011】[0011]

【課題を解決するための手段】本発明に係る水素吸蔵合
金は、一般式 Ln1-xMgx(Ni1-yyz(ただ
し、式中のLnはランタノイド元素,Ca,Sr,S
c,Y,Ti,ZrおよびHfから選ばれる少なくとも
1つの元素で、かつLnに占めるLa量が10〜50原
子%であり、TはLi,V,Nb,Ta,Cr,Mo,
Mn,Fe,Co,Al,Ga,Zn,Sn,In,C
u,Si,PおよびBから選ばれる少なくとも1つの元
素、x,y,zはそれぞれ0.05≦x<0.20,0
≦y≦0.5,2.8≦z≦3.9を示す)にて表わさ
れる。
The hydrogen storage alloy according to the present invention has a general formula Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is a lanthanoid element, Ca, Sr, S
at least one element selected from c, Y, Ti, Zr and Hf, wherein the La content in Ln is 10 to 50 atomic%, and T is Li, V, Nb, Ta, Cr, Mo,
Mn, Fe, Co, Al, Ga, Zn, Sn, In, C
at least one element selected from u, Si, P, and B, x, y, and z are respectively 0.05 ≦ x <0.20, 0
≤ y ≤ 0.5, 2.8 ≤ z ≤ 3.9).

【0012】本発明に係るアルカリ二次電池は、前述し
た水素吸蔵合金を含む負極を備えたことを特徴とするも
のである。
An alkaline secondary battery according to the present invention includes a negative electrode containing the above-mentioned hydrogen storage alloy.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る水素吸蔵合金
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hydrogen storage alloy according to the present invention will be described.

【0014】この水素吸蔵合金は、一般式 Ln1-x
x(Ni1-yyz(ただし、式中のLnはランタノイ
ド元素,Ca,Sr,Sc,Y,Ti,ZrおよびHf
から選ばれる少なくとも1つの元素で、かつLnに占め
るLa量が10〜50原子%であり、TはLi,V,N
b,Ta,Cr,Mo,Mn,Fe,Co,Al,G
a,Zn,Sn,In,Cu,Si,PおよびBから選
ばれる少なくとも1つの元素、x,y,zはそれぞれ
0.05≦x<0.20,0≦y≦0.5,2.8≦z
≦3.9を示す)にて表わされる。
This hydrogen storage alloy has the general formula Ln 1-x M
g x (Ni 1 -y T y ) z (where Ln is a lanthanoid element, Ca, Sr, Sc, Y, Ti, Zr and Hf
And the amount of La in Ln is 10 to 50 atomic%, and T is Li, V, N
b, Ta, Cr, Mo, Mn, Fe, Co, Al, G
At least one element selected from a, Zn, Sn, In, Cu, Si, P and B, x, y, and z are respectively 0.05 ≦ x <0.20, 0 ≦ y ≦ 0.5, and 2. 8 ≦ z
≤ 3.9).

【0015】前記一般式のLnの中では、特にランタノ
イド元素が好ましい。
Among Ln in the above general formula, a lanthanoid element is particularly preferred.

【0016】前記Ln中に占めるLa量を規定したの
は、La量を10原子%未満にすると高温での水素吸蔵
量が著しく低下する虞がある。一方、La量が50原子
%を超えると均質な組織が得られ難くなり、水素吸蔵合
金の水素吸蔵速度が著しく低下する虞がある。より好ま
しいLn中のLa量は20〜40原子%である。
The reason why the La content in Ln is specified is that if the La content is less than 10 atomic%, the hydrogen storage capacity at high temperatures may be significantly reduced. On the other hand, if the La content exceeds 50 atomic%, it is difficult to obtain a homogeneous structure, and the hydrogen storage rate of the hydrogen storage alloy may be significantly reduced. More preferably, the La content in Ln is 20 to 40 atomic%.

【0017】前記一般式のxを規定したのは、xを0.
05未満にすると目的とする合金相と異なる合金相が析
出し易くなって水素吸蔵量が著しく低下する虞がある。
一方、xが0.2以上になると,酸化され易い元素であ
るマグネシウムの含有量が増大して水素吸蔵合金の耐酸
化性が著しく低下する虞がある。より好ましいxは0.
10≦x<0.15である。
The reason for defining x in the above general formula is that x is set to 0.
If it is less than 05, an alloy phase different from the target alloy phase is likely to precipitate, and the hydrogen storage amount may be significantly reduced.
On the other hand, when x is 0.2 or more, the content of magnesium, which is an easily oxidizable element, increases, and the oxidation resistance of the hydrogen storage alloy may be significantly reduced. More preferably, x is 0.
10 ≦ x <0.15.

【0018】前記一般式中のyを規定したのは、yが
0.5を超えると高温での水素吸蔵量が著しく低下する
虞がある。より好ましいyは、0≦y≦0.2である。
The reason for defining y in the above general formula is that if y exceeds 0.5, there is a possibility that the hydrogen storage amount at high temperatures may be significantly reduced. More preferable y is 0 ≦ y ≦ 0.2.

【0019】前記一般式中のzを規定したのは、zを
2.8未満にすると目的とする合金相と異なる合金相が
増大して水素吸蔵の繰り返しに伴なう残留水素が増加し
て水素吸蔵量が著しく低下する虞がある。一方、zが
3.9を超えると高温での水素吸蔵量が著しく低下する
虞がある。より好ましいzは、3.0≦z≦3.6であ
る。
The reason for defining z in the above general formula is that, when z is less than 2.8, the alloy phase different from the target alloy phase increases, and the residual hydrogen accompanying the repetition of hydrogen storage increases. There is a possibility that the hydrogen storage amount may be significantly reduced. On the other hand, if z exceeds 3.9, the amount of hydrogen occlusion at high temperatures may be significantly reduced. More preferred z is 3.0 ≦ z ≦ 3.6.

【0020】以上説明した本発明に係る水素吸蔵合金
は、一般式Ln1-xMgx(Ni1-yyzで表わされ、
Ln中のLa量を10〜50原子%に規定することによ
り均質な合金組成が得られ、かつ高い水素吸蔵速度を発
揮できる。また、前記一般式のxを、0.05≦x<
0.20に規定することにより耐酸化性の向上および水
素吸蔵速度の増大を図ることができる。前記一般式中の
yを0≦y≦0.5に規定することによって、低温での
水素吸蔵性を高めることができる。さらに、前記一般式
中のzを2.8≦z≦3.9に規定することによって、
高温での水素吸蔵性を高めることができる共に、水素の
吸蔵・放出の繰り返しにおいて十分な水素吸蔵量を維持
できる。
The hydrogen storage alloy according to the present invention described above is represented by the general formula Ln 1-x Mg x (Ni 1-y T y ) z ,
By regulating the La content in Ln to 10 to 50 atomic%, a homogeneous alloy composition can be obtained, and a high hydrogen storage rate can be exhibited. Further, x in the above general formula is expressed as 0.05 ≦ x <
By setting the ratio to 0.20, it is possible to improve the oxidation resistance and increase the hydrogen storage rate. By defining y in the general formula as 0 ≦ y ≦ 0.5, the hydrogen storage ability at low temperatures can be increased. Further, by defining z in the general formula as 2.8 ≦ z ≦ 3.9,
Hydrogen storage at high temperatures can be enhanced, and a sufficient amount of hydrogen storage can be maintained during repeated storage and release of hydrogen.

【0021】したがって、優れた耐酸化性を有し、低温
および高温で高い水素吸蔵性を有し、かつ吸蔵・放出の
繰り返しにおいて十分な水素吸蔵量を維持し、さらに高
い水素吸蔵速度を有する水素吸蔵合金を得ることができ
る。
Therefore, hydrogen which has excellent oxidation resistance, has high hydrogen storage properties at low and high temperatures, maintains a sufficient amount of hydrogen storage in repeated storage and release, and has a higher hydrogen storage rate An occlusion alloy can be obtained.

【0022】次に、本発明に係わるアルカリ二次電池
(例えば円筒形アルカリ二次電池)を図1を参照して説
明する。
Next, an alkaline secondary battery (for example, a cylindrical alkaline secondary battery) according to the present invention will be described with reference to FIG.

【0023】有底円筒状の容器1内には、正極2とセパ
レータ3と負極4とを積層してスパイラル状に捲回する
ことにより作製された電極群5が収納されている。前記
負極4は、前記電極群5の最外周に配置されて前記容器
1と電気的に接触している。アルカリ電解液は、前記容
器1内に収容されている。
An electrode group 5 formed by laminating the positive electrode 2, the separator 3, and the negative electrode 4 and winding them in a spiral shape is accommodated in the bottomed cylindrical container 1. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1.

【0024】中央に孔6を有する円形の封口板7は、前
記容器1の上部開口部に配置されている。リング状の絶
縁性ガスケット8は、前記封口板7の周縁と前記容器1
の上部開口部内面の間に配置され、前記上部開口部を内
側に縮径するカシメ加工により前記容器1に前記封口板
7を前記ガスケット8を介して気密に固定している。正
極リード9は、一端が前記正極2に接続、他端が前記封
口板7の下面に接続されている。帽子形状をなす正極端
子10は、前記封口板7上に前記孔6を覆うように取り
付けられている。
A circular sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1. The ring-shaped insulating gasket 8 is provided between the periphery of the sealing plate 7 and the container 1.
The sealing plate 7 is air-tightly fixed to the container 1 via the gasket 8 by caulking to reduce the diameter of the upper opening inward. One end of the positive electrode lead 9 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6.

【0025】ゴム製の安全弁11は、前記封口板7と前
記正極端子10で囲まれた空間内に前記孔6を塞ぐよう
に配置されている。中央に穴を有する絶縁材料からなる
円形の押え板12は、前記正極端子10上に前記正極端
子10の突起部がその押え板12の前記穴から突出され
るように配置されている。外装チューブ13は、前記押
え板12の周縁、前記容器1の側面及び前記容器1の底
部周縁を被覆している。
A rubber safety valve 11 is disposed in a space surrounded by the sealing plate 7 and the positive electrode terminal 10 so as to close the hole 6. A circular holding plate 12 made of an insulating material having a hole in the center is arranged on the positive electrode terminal 10 such that a protrusion of the positive electrode terminal 10 projects from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0026】次に、前記正極2、負極4、セパレータ3
および電解液について説明する。
Next, the positive electrode 2, the negative electrode 4, the separator 3
And the electrolyte will be described.

【0027】1)正極2 この正極2は、活物質であるニッケル化合物を含有す
る。
1) Cathode 2 This cathode 2 contains a nickel compound as an active material.

【0028】前記ニッケル化合物としては、例えば水酸
化ニッケル、亜鉛およびコバルトが共沈された水酸化ニ
ッケルまたはニッケル酸化物等を挙げることができる。
特に、亜鉛およびコバルトが共沈された水酸化ニッケル
が好ましい。
Examples of the nickel compound include nickel hydroxide and nickel oxide in which nickel hydroxide, zinc and cobalt are coprecipitated.
Particularly, nickel hydroxide in which zinc and cobalt are coprecipitated is preferable.

【0029】前記正極(ペースト式正極)は、例えば活
物質であるニッケル化合物と導電材と結着剤を水と共に
混練してペーストを調製し、このペーストを導電性芯体
に充填し、乾燥し、必要に応じて加圧成形を施すことに
より作製される。
For the positive electrode (paste type positive electrode), for example, a paste is prepared by kneading a nickel compound as an active material, a conductive material and a binder together with water, filling the paste into a conductive core, and drying the paste. It is produced by performing pressure molding as required.

【0030】前記導電材料としては、例えばコバルト化
合物および金属コバルトから選ばれる少なくとも1種以
上のものが用いられる。前記コバルト化合物としては、
例えば水酸化コバルト[Co(OH)2 ]、一酸化コバ
ルト(CoO)等を挙げることができる。特に、水酸化
コバルト、一酸化コバルトもしくはこれらの混合物を導
電材料として用いることが好ましい。
As the conductive material, for example, at least one selected from a cobalt compound and metallic cobalt is used. As the cobalt compound,
For example, cobalt hydroxide [Co (OH) 2 ], cobalt monoxide (CoO), and the like can be given. In particular, it is preferable to use cobalt hydroxide, cobalt monoxide, or a mixture thereof as the conductive material.

【0031】前記結着剤としては、例えばポリテトラフ
ルオロエチレン、ポリエチレン、ポリプロピレン等の疎
水性ポリマ;カルボキシメチルセルロース、メチルセル
ロース、ヒドロキシプロピルメチルセルロース等のセル
ロース系材料;ポリアクリル酸ナトリウム等のアクリル
酸エステル;ポリビニルアルコール、ポリエチレンオキ
シド等の親水性ポリマ;ラテックス等のゴム系ポリマを
を挙げることができる。
Examples of the binder include hydrophobic polymers such as polytetrafluoroethylene, polyethylene and polypropylene; cellulosic materials such as carboxymethylcellulose, methylcellulose and hydroxypropylmethylcellulose; acrylates such as sodium polyacrylate; Examples include hydrophilic polymers such as alcohol and polyethylene oxide; and rubber-based polymers such as latex.

【0032】前記導電性芯体としては、例えばニッケ
ル、ステンレスまたはニッケルメッキが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体等を挙げることができる。
Examples of the conductive core include a mesh-like, sponge-like, fibrous, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0033】2)負極4 この負極4は、前述した一般式 Ln1-xMgx(Ni
1-yyz(ただし、式中のLnはランタノイド元素,
Ca,Sr,Sc,Y,Ti,ZrおよびHfから選ば
れる少なくとも1つの元素で、かつLnに占めるLa量
が10〜50原子%であり、TはLi,V,Nb,T
a,Cr,Mo,Mn,Fe,Al,Co,Ga,Z
n,Sn,In,Cu,Si,PおよびBから選ばれる
少なくとも1つの元素、x,y,zはそれぞれ0.05
≦x<0.20,0≦y≦0.5,2.8≦z≦3.9
を示す)にて表わされる水素吸蔵合金を含有する。
2) Negative electrode 4 This negative electrode 4 is made of the above-mentioned general formula Ln 1-x Mg x (Ni
1-y T y ) z (where Ln is a lanthanoid element,
At least one element selected from Ca, Sr, Sc, Y, Ti, Zr and Hf, and the La content in Ln is 10 to 50 atomic%, and T is Li, V, Nb, T
a, Cr, Mo, Mn, Fe, Al, Co, Ga, Z
at least one element selected from n, Sn, In, Cu, Si, P and B, x, y and z are each 0.05
≦ x <0.20, 0 ≦ y ≦ 0.5, 2.8 ≦ z ≦ 3.9
Is shown)).

【0034】前記負極(ペースト式負極)は、例えば前
記水素吸蔵合金粉末と導電材料と結着剤を水と共に混練
してペーストを調製し、このペーストを導電性芯体に充
填し、乾燥し、必要に応じて加圧成形を施すことにより
作製される。
The negative electrode (paste type negative electrode) is prepared, for example, by kneading the hydrogen storage alloy powder, a conductive material and a binder together with water to prepare a paste, filling the paste into a conductive core, and drying the paste. It is produced by performing pressure molding as necessary.

【0035】前記結着剤としては、前記正極2で用いた
のと同様なものを挙げることができる。この結着剤は、
前記水素吸蔵合金粉末100質量部に対して0.5〜6
質量部配合することが好ましい。
Examples of the binder include those similar to those used for the positive electrode 2. This binder is
0.5 to 6 with respect to 100 parts by mass of the hydrogen storage alloy powder
It is preferable to mix parts by mass.

【0036】前記導電性材料としては、例えばアセチレ
ンブラック、ケッチェンブラック(ライオンアグゾ社製
商品名)、ファーネスブラックのようなカーボンブラッ
ク、または黒鉛等を用いることができる。この導電材
料は、前記水素吸蔵合金粉末100質量部に対して5質
量部以下配合することが好ましい。
As the conductive material, for example, carbon black such as acetylene black, Ketjen black (trade name, manufactured by Lion Aguso), furnace black, or graphite can be used. This conductive material is preferably blended in an amount of 5 parts by mass or less with respect to 100 parts by mass of the hydrogen storage alloy powder.

【0037】前記導電性芯体としては、パンチドメタ
ル、エキスパンデッドメタル、穿孔鋼板、金網などの二
次元構造や、発泡メタル、網状焼結金属繊維などの三次
元構造のものを挙げることができる。
Examples of the conductive core include those having a two-dimensional structure such as punched metal, expanded metal, perforated steel sheet, and wire mesh, and a three-dimensional structure such as foamed metal and reticulated sintered metal fiber. it can.

【0038】3)セパレータ3 このセパレータ3は、例えばポリエチレン繊維製不織
布、エチレン−ビニルアルコール共重合体繊維製不織
布、ポリプロピレン繊維製不織布などのオレフィン系繊
維製不織布、またはポリプロピレン繊維製不織布のよう
なオレフィン系繊維製不織布に親水性官能基を付与した
もの、ナイロン6,6のようなポリアミド繊維製不織布
を挙げることができる。前記オレフィン系繊維製不織布
に親水性官能基を付与するには、例えばコロナ放電処
理、スルホン化処理、グラフト共重合、または界面活性
剤や親水性樹脂の塗布等を採用することができる。
3) Separator 3 The separator 3 is made of, for example, an olefin-based nonwoven fabric such as a nonwoven fabric made of polyethylene fiber, a nonwoven fabric made of ethylene-vinyl alcohol copolymer fiber, or a nonwoven fabric made of polypropylene fiber, or an olefin such as a nonwoven fabric made of polypropylene fiber. Examples thereof include nonwoven fabrics made of a nonwoven fabric made of a base fiber and hydrophilic functional groups, and nonwoven fabrics made of polyamide fibers such as nylon 6,6. In order to impart a hydrophilic functional group to the olefin fiber nonwoven fabric, for example, corona discharge treatment, sulfonation treatment, graft copolymerization, or application of a surfactant or a hydrophilic resin can be employed.

【0039】4)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、KOH
とLiOHとNaOHの混合液等を用いることができ
る。
4) Alkaline Electrolyte As the alkaline electrolyte, for example, a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
A mixture of potassium hydroxide (KOH) and LiOH, KOH
And a mixed solution of LiOH and NaOH.

【0040】以上説明した本発明に係わるアルカリ二次
電池は、一般式 Ln1-xMgx(Ni1-yyz(ただ
し、式中のLnはランタノイド元素,Ca,Sr,S
c,Y,Ti,ZrおよびHfから選ばれる少なくとも
1つの元素で、かつLnに占めるLa量が10〜50原
子%であり、TはLi,V,Nb,Ta,Cr,Mo,
Mn,Fe,Co,Al,Ga,Zn,Sn,In,C
u,Si,PおよびBから選ばれる少なくとも1つの元
素、x,y,zはそれぞれ0.05≦x<0.20,0
≦y≦0.5,2.8≦z≦3.9を示す)にて表わさ
れる水素吸蔵合金を含有する負極を備える。この負極
は、前記水素吸蔵合金により高容量化と高耐食性を有す
るため、高容量で、高率充放電性および長寿命を同時に
満たすアルカリ二次電池を得ることができる。
The alkaline secondary battery according to the present invention described above has a general formula Ln 1-x Mg x (Ni 1-y T y ) z (where Ln is a lanthanoid element, Ca, Sr, S
at least one element selected from c, Y, Ti, Zr and Hf, wherein the La content in Ln is 10 to 50 atomic%, and T is Li, V, Nb, Ta, Cr, Mo,
Mn, Fe, Co, Al, Ga, Zn, Sn, In, C
at least one element selected from u, Si, P, and B, x, y, and z are respectively 0.05 ≦ x <0.20, 0
≤ y ≤ 0.5, 2.8 ≤ z ≤ 3.9). Since this negative electrode has a high capacity and a high corrosion resistance due to the hydrogen storage alloy, it is possible to obtain an alkaline secondary battery having a high capacity and simultaneously satisfying a high rate charge / discharge property and a long life.

【0041】[0041]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0042】(実施例1〜8および比較例1〜7)L
a,Ce,Pr,Nd,Mg,Ni,Co,Cr,Mn
およびAlの各元素を混合し、高周波溶解炉を用いてア
ルゴン雰囲気中で溶解・冷却することにより下記表1に
示す組成を有する15種の水素吸蔵合金を製造した。
(Examples 1 to 8 and Comparative Examples 1 to 7) L
a, Ce, Pr, Nd, Mg, Ni, Co, Cr, Mn
And Al were mixed and melted and cooled in an argon atmosphere using a high-frequency melting furnace to produce 15 types of hydrogen storage alloys having the compositions shown in Table 1 below.

【0043】[0043]

【表1】 [Table 1]

【0044】得られた各水素吸蔵合金を所定の容器内に
それぞれ収納し、水素を80℃の温度下で各容器内に1
時間供給した後の水素吸蔵速度(H/M・h-1)を測定
した。その結果、実施例1〜8の水素吸蔵合金は0.9
H/M・h-1以上であったのに対し、比較例1〜7の水
素吸蔵合金は0.6〜0.9H/M・h-1以上であっ
た。
Each of the obtained hydrogen storage alloys is stored in a predetermined container, and hydrogen is stored in each container at a temperature of 80 ° C.
The hydrogen storage rate (H / M · h −1 ) after supply for a time was measured. As a result, the hydrogen storage alloys of Examples 1 to 8
H / M · h −1 or more, whereas the hydrogen storage alloys of Comparative Examples 1 to 7 were 0.6 to 0.9 H / M · h −1 or more.

【0045】次に、前記水素吸蔵合金を含む負極を備え
たニッケル水素二次電池について説明する。
Next, a nickel hydride secondary battery provided with a negative electrode containing the above-mentioned hydrogen storage alloy will be described.

【0046】<ペースト式負極の作製>前記表1に示す
組成の水素吸蔵合金(インゴット)を熱処理して均質化
を行ない、不活性雰囲気中で粉砕後、粒径が75μm以
下になるように篩を通し水素吸蔵合金粉末を得た。つづ
いて、前記各水素吸蔵合金粉末100質量部に結着剤と
してカルボキシメチルセルロース(CMC)0.2質量
部および水50質量部と共に添加した後、混練すること
により15種のペーストを調製した。つづいて、前記各
ペーストを多孔度95%の発泡ニッケルに充填した後、
125℃で乾燥し、厚さ0.3mmにプレス成形し、さ
らに幅60mm、長さ168mmに裁断することにより
15種のペースト式負極を作製した。
<Preparation of Paste Negative Electrode> A hydrogen storage alloy (ingot) having the composition shown in Table 1 above was heat-treated to homogenize it, pulverized in an inert atmosphere, and then sieved to a particle size of 75 μm or less. To obtain a hydrogen storage alloy powder. Subsequently, after adding 0.2 parts by mass of carboxymethylcellulose (CMC) and 50 parts by mass of water as binders to 100 parts by mass of the respective hydrogen storage alloy powders, 15 kinds of pastes were prepared by kneading. Subsequently, after filling each paste into foamed nickel having a porosity of 95%,
The paste was dried at 125 ° C., press-molded to a thickness of 0.3 mm, and further cut to a width of 60 mm and a length of 168 mm to produce 15 types of paste-type negative electrodes.

【0047】<ペースト式正極の作製>水酸化ニッケル
粉末90質量部および一酸化コバルト粉末10質量部か
らなる混合粉体に、ポリテトラフルオロエチレン1質量
部およびカルボキシメチルセルロース0.2質量部を添
加し、これらに純水を60質量部添加して混練すること
によりペーストを調製した。つづいて、このペーストを
発泡ニッケルに充填し、乾燥した後、プレス成形するこ
とにより幅60mm、長さ135mm、厚さ0.75m
mのペースト式正極を作製した。
<Preparation of Paste-Type Positive Electrode> To a mixed powder consisting of 90 parts by mass of nickel hydroxide powder and 10 parts by mass of cobalt monoxide powder, 1 part by mass of polytetrafluoroethylene and 0.2 parts by mass of carboxymethyl cellulose were added. A paste was prepared by adding 60 parts by mass of pure water to these and kneading them. Subsequently, this paste was filled in foamed nickel, dried, and then press-molded to obtain a width of 60 mm, a length of 135 mm, and a thickness of 0.75 m.
m of paste-type positive electrodes were prepared.

【0048】次いで、前記各負極と前記正極との間にポ
リプロピレン繊維製不織布を介装し、渦巻状に捲回して
電極群を作製した。このような各電極群を有底円筒状容
器に収納した後、比重1.31の水酸化カリウム水溶液
からなる電解液を前記容器内に注入し、封口等を行うこ
とにより前述した図1に示す構造を有する15種の4/
3Aサイズの円筒形ニッケル水素二次電池(容量420
0mAh)を組み立てた。
Next, a nonwoven fabric made of polypropylene fiber was interposed between each of the negative electrode and the positive electrode, and spirally wound to form an electrode group. After each such electrode group is accommodated in a bottomed cylindrical container, an electrolytic solution comprising a potassium hydroxide aqueous solution having a specific gravity of 1.31 is injected into the container, and the container is sealed and the like, as shown in FIG. 1 described above. 15 types of 4 /
3A size cylindrical nickel-metal hydride secondary battery (capacity 420
0 mAh).

【0049】得られた実施例1〜8および比較例1〜7
の二次電池について、25℃、10時間率で13時間充
電し、25℃、5時間率で終止電圧1.0Vまで放電す
る条件で3サイクル行い、その後25℃、0.1時間率
で6分間充電し、25℃、0.1時間率で終止電圧1.
0V間で放電する条件で1サイクル行い、さらに5サイ
クル目以降を25℃、10時間率で10時間充電し、2
5℃、10時間率で終止電圧1.0Vまで放電する条件
で充放電を繰り返し、初期容量、0.1時間率容量およ
びサイクル寿命を調べた。なお、初回の放電容量を初期
容量とし、初期容量に対して0.1時間率での放電容量
を0.1時間率容量とし、初期容量に対して80%の容
量に達した時のサイクル数をサイクル寿命とした。
The obtained Examples 1 to 8 and Comparative Examples 1 to 7
The battery was charged at 25 ° C. for 13 hours at a rate of 10 hours, discharged at 25 ° C. for 5 hours at a rate of 5 hours to a final voltage of 1.0 V, and then subjected to three cycles. Charge for 25 minutes at 25 ° C. and 0.1 hour rate.
One cycle is performed under the condition of discharging between 0 V, and the fifth and subsequent cycles are further charged at 25 ° C. for 10 hours at a rate of 10 hours.
The charge and discharge were repeated under the condition of discharging at 5 ° C. and a 10-hour rate to a final voltage of 1.0 V, and the initial capacity, 0.1-hour rate capacity and cycle life were examined. The initial discharge capacity is defined as the initial capacity, the discharge capacity at a 0.1 hour rate relative to the initial capacity is defined as the 0.1 hour rate capacity, and the number of cycles when the capacity reaches 80% of the initial capacity. Was defined as the cycle life.

【0050】これらの結果を下記表2に示す。The results are shown in Table 2 below.

【0051】[0051]

【表2】 [Table 2]

【0052】前記表1および表2から明らかなように一
般式Ln1-xMgx(Ni1-yyzで表わされ、Lnに
占めるLa量が10〜50原子%、x(Mg量)が0.
05≦x<0.20,y(Niに対する置換量)が0≦
y≦0.5,zが2.8≦z≦3.9である水素吸蔵合
金を含む負極を備えた実施例1〜8の二次電池はLn中
のLa量、x,y,zが前記範囲から外れる水素吸蔵合
金を含む負極を備えた比較例1〜7に比べて優れた初期
容量、0.1時間率容量およびサイクル寿命を有するこ
とがわかる。特に、Ln中のLa量は20〜40原子
%、x(Mg量)が0.10≦x<0.15、y(Ni
に対する置換量)が0≦y≦0.2、zが3.0≦z≦
3.6である水素吸蔵合金を含む負極を備えた実施例
2,4,5,7の二次電池は初期容量、0.1時間率容
量およびサイクル寿命がいずれも比較例1〜7に比べて
優れていることがわかる。
As is clear from Tables 1 and 2, the formula is represented by the general formula Ln 1-x Mg x (Ni 1-y T y ) z , where the La content in Ln is 10 to 50 atomic%, x ( Mg content).
05 ≦ x <0.20, y (substitution amount for Ni) is 0 ≦
The secondary batteries of Examples 1 to 8 each including the negative electrode containing a hydrogen storage alloy in which y ≦ 0.5 and z satisfy 2.8 ≦ z ≦ 3.9 have the La content in Ln, x, y, and z. It can be seen that it has excellent initial capacity, 0.1 hour rate capacity and cycle life as compared with Comparative Examples 1 to 7 provided with the negative electrode containing the hydrogen storage alloy out of the above range. In particular, the La content in Ln is 20 to 40 atomic%, x (Mg content) is 0.10 ≦ x <0.15, and y (Ni
0 ≦ y ≦ 0.2, and z is 3.0 ≦ z ≦
The secondary batteries of Examples 2, 4, 5, and 7 including the negative electrode containing the hydrogen storage alloy of 3.6 had an initial capacity, a 0.1 hour rate capacity, and a cycle life which were all smaller than those of Comparative Examples 1 to 7. It is understood that it is excellent.

【0053】なお、実施例1〜8で用いた組成の水素吸
蔵合金以外の前記一般式で表わされる水素吸蔵合金を用
いた場合でも、実施例1〜8と同様な優れた特性を示す
アルカリ二次電池を得ることができる。
Incidentally, even when the hydrogen storage alloy represented by the above general formula other than the hydrogen storage alloy having the composition used in Examples 1 to 8 was used, the alkaline storage alloy having the same excellent characteristics as those of Examples 1 to 8 was used. The following battery can be obtained.

【0054】また、前記実施例では円筒形のニッケル水
素二次電池に適用した例を説明したが正極、セパレータ
および負極を積層して電極群を構成する角形の形状のニ
ッケル水素二次電池にも同様に適用することができる。
In the above-described embodiment, an example in which the present invention is applied to a cylindrical nickel-metal hydride secondary battery has been described. The same can be applied.

【0055】[0055]

【発明の効果】以上説明したように本発明によれば、優
れた耐酸化性を有し、低温および高温で高い水素吸蔵性
を有し、かつ吸蔵・放出の繰り返しにおいて十分な水素
吸蔵量を維持し、さらに高い水素吸蔵速度を有する水素
吸蔵合金を提供することができる。
As described above, according to the present invention, the present invention has excellent oxidation resistance, has high hydrogen storage properties at low and high temperatures, and has a sufficient hydrogen storage amount in repeated storage and release. It is possible to provide a hydrogen storage alloy that maintains and has a higher hydrogen storage rate.

【0056】また、本発明によれば前記優れた特性を有
する水素吸蔵合金を含む負極を備え、高容量化を実現し
つつ、充放電サイクル寿命の長いアルカリ二次電池を提
供することができる。
Further, according to the present invention, it is possible to provide an alkaline secondary battery having a negative electrode containing a hydrogen storage alloy having the above-mentioned excellent characteristics, realizing high capacity, and having a long charge-discharge cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアルカリ二次電池の一例である
ニッケル水素二次電池の斜視図。
FIG. 1 is a perspective view of a nickel-metal hydride secondary battery which is an example of an alkaline secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H028 EE01 FF04 HH00 5H050 AA07 AA08 BA14 CA03 CB16 EA03 EA12 EA23 EA24  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kazuta Takeno 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H028 EE01 FF04 HH00 5H050 AA07 AA08 BA14 CA03 CB16 EA03 EA12 EA23 EA24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 Ln1-xMgx(Ni1-yyz
(ただし、式中のLnはランタノイド元素,Ca,S
r,Sc,Y,Ti,ZrおよびHfから選ばれる少な
くとも1つの元素で、かつLnに占めるLa量が10〜
50原子%であり、TはLi,V,Nb,Ta,Cr,
Mo,Mn,Fe,Co,Al,Ga,Zn,Sn,I
n,Cu,Si,PおよびBから選ばれる少なくとも1
つの元素、x,y,zはそれぞれ0.05≦x<0.2
0,0≦y≦0.5,2.8≦z≦3.9を示す)にて
表わされる水素吸蔵合金。
1. The general formula Ln 1-x Mg x (Ni 1-y T y ) z
(Where Ln is a lanthanoid element, Ca, S
at least one element selected from the group consisting of r, Sc, Y, Ti, Zr and Hf;
50 atomic%, and T is Li, V, Nb, Ta, Cr,
Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, I
at least one selected from n, Cu, Si, P and B
X, y, and z are respectively 0.05 ≦ x <0.2.
0, 0 ≦ y ≦ 0.5, 2.8 ≦ z ≦ 3.9).
【請求項2】 前記一般式中のxは、0.05≦x<
0.15であることを特徴とする水素吸蔵合金。
2. In the general formula, x is 0.05 ≦ x <
0.15, wherein the hydrogen storage alloy is 0.15.
【請求項3】 請求項1記載の水素吸蔵合金を含む負極
を備えたことを特徴とするアルカリ二次電池。
3. An alkaline secondary battery comprising a negative electrode containing the hydrogen storage alloy according to claim 1.
JP2000137202A 2000-05-10 2000-05-10 Hydrogen storage alloy and alkali secondary battery Pending JP2001316744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137202A JP2001316744A (en) 2000-05-10 2000-05-10 Hydrogen storage alloy and alkali secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137202A JP2001316744A (en) 2000-05-10 2000-05-10 Hydrogen storage alloy and alkali secondary battery

Publications (1)

Publication Number Publication Date
JP2001316744A true JP2001316744A (en) 2001-11-16

Family

ID=18645011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137202A Pending JP2001316744A (en) 2000-05-10 2000-05-10 Hydrogen storage alloy and alkali secondary battery

Country Status (1)

Country Link
JP (1) JP2001316744A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
EP1727229A1 (en) * 2005-05-26 2006-11-29 Saft Active material composition and alkaline electrolyte accumulator
US7198868B2 (en) 2003-01-17 2007-04-03 Sanyo Electric Co., Ltd. Alkaline storage battery
JP2007084846A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Hydrogen storage alloy
JP2007087722A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
EP1799874A2 (en) * 2004-09-16 2007-06-27 Ovonic Battery Company, Inc. Hydrogen storage alloys having reduced pct hysteresis
US7309547B2 (en) 2003-02-28 2007-12-18 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy, electrode thereof and nickel-metal hydride battery
JP2008059818A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Alkaline storage battery
EP1900834A1 (en) 2006-09-15 2008-03-19 Saft Groupe Sa Composition for negative electrode of accumulator with alkaline electrolyte
CN100428541C (en) * 2004-01-26 2008-10-22 三洋电机株式会社 Hydrogen-absorbing alloy for alkaline storage battery, method of manufacturing the same, and alkaline storage battery
CN101255523B (en) * 2006-03-30 2010-05-26 株式会社东芝 Hydrogen storage alloy, hydrogen storage film and hydrogen storage tank
US8101121B2 (en) 2002-12-25 2012-01-24 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery
EP2487270A1 (en) 2010-11-29 2012-08-15 Saft Active material for a negative electrode of a nickel-metal hydride alkaline accumulator
US8343659B2 (en) 2005-08-26 2013-01-01 Gs Yuasa International Ltd. Hydrogen absorbing alloy, production method thereof, and secondary battery
CN106133957A (en) * 2014-03-31 2016-11-16 Fdk株式会社 Nickel-hydrogen secondary cell
CN107338381A (en) * 2017-07-04 2017-11-10 内蒙古科技大学 Hydrogen-storage alloy that fuel cell is catalyzed with graphene and preparation method thereof
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101121B2 (en) 2002-12-25 2012-01-24 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery
US7198868B2 (en) 2003-01-17 2007-04-03 Sanyo Electric Co., Ltd. Alkaline storage battery
US7309547B2 (en) 2003-02-28 2007-12-18 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy, electrode thereof and nickel-metal hydride battery
CN100428541C (en) * 2004-01-26 2008-10-22 三洋电机株式会社 Hydrogen-absorbing alloy for alkaline storage battery, method of manufacturing the same, and alkaline storage battery
EP1799874A2 (en) * 2004-09-16 2007-06-27 Ovonic Battery Company, Inc. Hydrogen storage alloys having reduced pct hysteresis
EP1799874A4 (en) * 2004-09-16 2010-07-14 Ovonic Battery Co Hydrogen storage alloys having reduced pct hysteresis
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
FR2886462A1 (en) * 2005-05-26 2006-12-01 Accumulateurs Fixes ACTIVE MATERIAL COMPOSITION AND ALKALINE ELECTROLYTE BATTERY
EP1727229A1 (en) * 2005-05-26 2006-11-29 Saft Active material composition and alkaline electrolyte accumulator
US7820325B2 (en) 2005-05-26 2010-10-26 Saft Alkaline electrolyte storage battery having an anode formed of an active material composition
US8343659B2 (en) 2005-08-26 2013-01-01 Gs Yuasa International Ltd. Hydrogen absorbing alloy, production method thereof, and secondary battery
JP2007084846A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Hydrogen storage alloy
JP2007087722A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
US7678502B2 (en) 2005-09-21 2010-03-16 Sanyo Electric Co., Ltd. Alkaline storage cell and hydrogen storage alloy for negative electrode of alkaline storage cell
CN101255523B (en) * 2006-03-30 2010-05-26 株式会社东芝 Hydrogen storage alloy, hydrogen storage film and hydrogen storage tank
US7758805B2 (en) * 2006-03-30 2010-07-20 Kabushiki Kaisha Toshiba Hydrogen occlusive alloy, hydrogen storage film and hydrogen storage tank
JP2008059818A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Alkaline storage battery
US8652684B2 (en) 2006-09-15 2014-02-18 Saft Groupe Sa Composition for negative electrode of alkaline electrolyte battery
EP1900834A1 (en) 2006-09-15 2008-03-19 Saft Groupe Sa Composition for negative electrode of accumulator with alkaline electrolyte
FR2906084A1 (en) * 2006-09-15 2008-03-21 Accumulateurs Fixes COMPOSITION FOR NEGATIVE ELECTRODE OF ALKALINE ELECTROLYTE BATTERY.
JP2008071759A (en) * 2006-09-15 2008-03-27 Saft Groupe Sa Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
EP2487270A1 (en) 2010-11-29 2012-08-15 Saft Active material for a negative electrode of a nickel-metal hydride alkaline accumulator
CN106133957A (en) * 2014-03-31 2016-11-16 Fdk株式会社 Nickel-hydrogen secondary cell
EP3128584A4 (en) * 2014-03-31 2017-09-06 FDK Corporation Nickel hydrogen secondary battery
CN106133957B (en) * 2014-03-31 2019-01-01 Fdk株式会社 Nickel-hydrogen secondary cell
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder
JP7013782B2 (en) 2016-12-27 2022-02-01 株式会社豊田自動織機 Manufacturing method of hydrogen storage alloy powder
CN107338381A (en) * 2017-07-04 2017-11-10 内蒙古科技大学 Hydrogen-storage alloy that fuel cell is catalyzed with graphene and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
JP3247933B2 (en) Hydrogen storage alloy, method for producing hydrogen storage alloy, and alkaline secondary battery
JP4309494B2 (en) Nickel metal hydride secondary battery
JP2001325957A (en) Alkaline secondary cell
JP3925963B2 (en) Alkaline secondary battery
JP2001118597A (en) Alkaline secondary cell
JP2001223000A (en) Alkaline secondary battery
JPH11162503A (en) Nickel-hydrogen secondary battery
JP2000021398A (en) Alkaline secondary battery
JP2000188106A (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP2000200599A (en) Alkaline secondary battery
JP2000188105A (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JPH11339792A (en) Nickel-hydrogen secondary battery
JP2000021397A (en) Alkaline secondary battery
JP2000113879A (en) Metal oxide-hydrogen storage battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH10334941A (en) Alkaline secondary battery
JPH11339789A (en) Metal-oxide/hydrogen storage battery
JP2000195509A (en) Alkaline secondary battery
JP2001307722A (en) Alkaline secondary battery
JPH11339790A (en) Metal-oxide/hydrogen storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013