JP2001316308A - Method for producing ethylene glycol - Google Patents

Method for producing ethylene glycol

Info

Publication number
JP2001316308A
JP2001316308A JP2000134796A JP2000134796A JP2001316308A JP 2001316308 A JP2001316308 A JP 2001316308A JP 2000134796 A JP2000134796 A JP 2000134796A JP 2000134796 A JP2000134796 A JP 2000134796A JP 2001316308 A JP2001316308 A JP 2001316308A
Authority
JP
Japan
Prior art keywords
ethylene oxide
tower
ethylene
ethylene glycol
glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000134796A
Other languages
Japanese (ja)
Other versions
JP3800488B2 (en
Inventor
Yukihiko Kakimoto
行彦 柿本
Yoshihisa Oka
義久 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000134796A priority Critical patent/JP3800488B2/en
Priority to US09/844,478 priority patent/US6417411B2/en
Priority to BE2001/0316A priority patent/BE1014247A3/en
Priority to SA01220125A priority patent/SA01220125B1/en
Publication of JP2001316308A publication Critical patent/JP2001316308A/en
Application granted granted Critical
Publication of JP3800488B2 publication Critical patent/JP3800488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the effective utilization of energy in the dehydrating concentration step of an aqueous solution of ethylene glycol in a composite process comprising the catalytic vapor-phase oxidation of ethylene and the reaction of the produced ethylene oxide with water to form ethylene glycol. SOLUTION: Ethylene glycol is produced by supplying an aqueous solution of ethylene glycol to a multiple-effect evaporator and concentrating the solution. In the above process, steam generated by the multiple-effect evaporator is used as a heat source of at least one step of specific steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エチレングリコー
ルの製造方法に関する。特に本発明は、エチレンを接触
気相酸化してエチレンオキシドを取得し、このエチレン
オキシドを水と反応させてエチレングリコールを得る複
合プロセスにおいて、得られるエチレングリコール水溶
液の脱水濃縮工程で使用する多重効用蒸発缶で発生する
蒸気を、該複合プロセスに有利に使用してなるエチレン
グリコールの製造方法に関する。
[0001] The present invention relates to a method for producing ethylene glycol. In particular, the present invention relates to a multi-effect evaporator used in a dehydration and concentration step of an obtained ethylene glycol aqueous solution in a composite process of obtaining ethylene oxide by subjecting ethylene to catalytic gas phase oxidation and reacting the ethylene oxide with water to obtain ethylene glycol. The present invention relates to a method for producing ethylene glycol, wherein the steam generated in the above is advantageously used in the combined process.

【0002】[0002]

【従来の技術】エチレングリコールは、通常エチレンオ
キシドと水との反応により製造される。そしてエチレン
オキシドは、今日ではエチレンを銀触媒の存在下で分子
状酸素含有ガスにより接触気相酸化して製造される。エ
チレンオキシドの製造プロセスは大略以下のとおりであ
る。
2. Description of the Related Art Ethylene glycol is usually produced by reacting ethylene oxide with water. And ethylene oxide is today produced by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. The process for producing ethylene oxide is roughly as follows.

【0003】エチレンと分子状酸素含有ガスとを銀触媒
上で接触気相酸化して生成するエチレンオキシドを含む
反応生成ガスをエチレンオキシド吸収塔へ導き水を主成
分とする吸収液と接触させエチレンオキシド水溶液とし
て回収し、ついでエチレンオキシド放散塔へ送りエチレ
ンオキシド放散塔底部を加熱蒸気で加熱することによっ
てエチレンオキシドを水溶液から放散させ、エチレンオ
キシド放散塔底部より得られる実質的にエチレンオキシ
ドを含まない水溶液は吸収液として循環使用し、エチレ
ンオキシド放散塔頂部より得られるエチレンオキシド、
水、二酸化炭素、不活性ガス(窒素、アルゴン、メタ
ン、エタン等)の他にホルムアルデヒド等の低沸点不純
物およびアセトアルデヒド、酢酸等の高沸点不純物を含
む放散物を脱水工程、軽質分分離工程および重質分分離
工程の各々を経て精製エチレンオキシドが取得される。
なお、この際エチレンオキシド吸収塔塔頂から得られる
未反応エチレン、副生の二酸化炭素や水、さらに不活性
ガス(窒素、アルゴン、メタン、エタン等)を含むガス
の一部はそのままエチレン酸化工程に循環してもよい
が、その一部を抜き出し、二酸化炭素吸収塔に導きアル
カリ性吸収液により二酸化炭素を選択的に吸収させ、こ
の吸収液から二酸化炭素を放散回収することが通常採用
されている。
[0003] A reaction product gas containing ethylene oxide, which is produced by catalytic gas phase oxidation of ethylene and a molecular oxygen-containing gas on a silver catalyst, is led to an ethylene oxide absorption tower, where it is brought into contact with an absorbent mainly composed of water to form an aqueous ethylene oxide solution. The ethylene oxide is then recovered and then sent to an ethylene oxide stripper to evaporate ethylene oxide from the aqueous solution by heating the bottom of the ethylene oxide stripper with heated steam.The aqueous solution substantially free of ethylene oxide obtained from the bottom of the ethylene oxide stripper is circulated and used as an absorbent. Ethylene oxide obtained from the top of the ethylene oxide stripping tower,
Water, carbon dioxide, inert gas (nitrogen, argon, methane, ethane, etc.) as well as low-boiling impurities such as formaldehyde and high-boiling impurities such as acetaldehyde and acetic acid are dehydrated, lightly separated, and separated. Purified ethylene oxide is obtained through each of the mass separation steps.
At this time, unreacted ethylene, by-product carbon dioxide and water obtained from the top of the ethylene oxide absorption tower, and a part of gas containing inert gas (nitrogen, argon, methane, ethane, etc.) are directly subjected to the ethylene oxidation step. Although it may be circulated, it is usually adopted that a part of the carbon dioxide is extracted, led to a carbon dioxide absorption tower, and selectively absorbs carbon dioxide with an alkaline absorbing liquid, and then the carbon dioxide is diffused and recovered from the absorbing liquid.

【0004】かくして得られた精製または粗製エチレン
オキシドを水と反応させ得られるモノエチレングリコー
ル、ジエチレングリコール、トリエチレングリコール、
テトラエチレングリコールおよびポリエチレングリコー
ルを含む水溶液を多重効用蒸発缶などで水分を蒸発除去
し、得られる濃縮液を高度に脱水し、さらにモノエチレ
ングリコール蒸留塔、ジエチレングリコール蒸留塔、ト
リエチレングリコール蒸留塔で順次精製して各精製エチ
レングリコール類が得られる。なお、エチレンオキシド
の製造工程においてもエチレンオキシド吸収塔におい
て、水とエチレンオキシドとの反応が起りエチレングリ
コールが生成する。
The thus obtained purified or crude ethylene oxide is reacted with water to obtain monoethylene glycol, diethylene glycol, triethylene glycol,
The aqueous solution containing tetraethylene glycol and polyethylene glycol is evaporated and removed with a multi-effect evaporator, etc., and the resulting concentrated solution is highly dehydrated.Then, the monoethylene glycol distillation column, the diethylene glycol distillation column, and the triethylene glycol distillation column are sequentially used. Purification gives each purified ethylene glycol. In the ethylene oxide production process, a reaction between water and ethylene oxide occurs in the ethylene oxide absorption tower to produce ethylene glycol.

【0005】したがって、この吸収液も一部を抜き出し
て上記と同様に多重効用蒸発缶や脱水蒸留塔を用いて濃
縮し各種エチレングリコール製品が得られている。
[0005] Therefore, a part of this absorption liquid is extracted and concentrated using a multiple effect evaporator or a dehydration distillation column in the same manner as described above to obtain various ethylene glycol products.

【0006】(例えば、「化学プロセス−基礎から技術
開発まで−」財団法人化学工学会編1998年3月25
日東京化学同人発行第121〜128頁参照。)
(For example, “Chemical Process-From Basic to Technical Development-” edited by The Chemical Engineering Society, March 25, 1998
See pages 121-128 issued by Nippon Tokyo Doujinshi. )

【0007】[0007]

【発明が解決しようとする課題】このようにエチレンか
らエチレンオキシド経由でエチレングリコールを製造す
るに際しては、二酸化炭素放散操作、エチレンオキシド
放散操作、脱水操作、軽質分分離操作、エチレンオキシ
ド精留操作、副生エチレングリコール脱水濃縮操作、さ
らにはモノ、ジ、トリエチレングリコールなどの精留操
作などの操作が必要とされ、多量の熱源が消費され、そ
の供給を効率的に行なわねばならない課題がある。した
がって、本発明の目的は、エチレンを接触気相酸化して
得られるエチレンオキシドを水と反応させてエチレング
リコールを得る複合プロセスにおいて、得られるエチレ
ングリコール水溶液の脱水工程で使用する多重効用蒸発
缶で発生する蒸気を、該複合プロセスに有利に使用して
なるエチレングリコールの製造方法を提供することにあ
る。
As described above, when producing ethylene glycol from ethylene via ethylene oxide, carbon dioxide emission operation, ethylene oxide emission operation, dehydration operation, light fraction separation operation, ethylene oxide rectification operation, by-product ethylene An operation such as a glycol dehydration concentration operation and an operation for rectifying mono-, di-, triethylene glycol and the like are required, a large amount of heat source is consumed, and there is a problem that the supply must be performed efficiently. Accordingly, an object of the present invention is to produce a multi-effect evaporator used in a dehydration step of an obtained ethylene glycol aqueous solution in a combined process of obtaining ethylene glycol by reacting ethylene oxide obtained by catalytic gas phase oxidation of ethylene with water. It is an object of the present invention to provide a method for producing ethylene glycol, which is advantageously used for the combined process.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく研究を行い、エチレンオキシドと水とを反
応させて得られたエチレングリコール水溶液を蒸発濃縮
させる多重効用蒸発缶より発生する蒸気のエネルギーを
有効に利用することに着眼し、その結果上記課題が容易
に解決しうることを見出し本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have studied to solve the above-mentioned problems, and produced from a multiple effect evaporator in which an ethylene glycol aqueous solution obtained by reacting ethylene oxide and water is evaporated and concentrated. Focusing on the effective use of the energy of the steam, the inventors have found that the above problems can be easily solved, and have completed the present invention.

【0009】したがって、上記目的は、下記(1)〜
(2)により達成される。
[0009] Therefore, the above objects are as follows:
This is achieved by (2).

【0010】(1)エチレンを銀触媒の存在下に分子状
酸素含有ガスにより接触気相酸化して得られるエチレン
オキシドを水と反応させて得られたエチレングリコール
水溶液を、多重効用蒸発缶による濃縮操作に供し、脱水
してエチレングリコールを製造するに際し、該多重効用
蒸発缶で発生した蒸気を以下の(A)〜(H)の少くと
も一つの工程の加熱源として使用することを特徴とする
エチレングリコールの製造方法。
(1) An ethylene glycol aqueous solution obtained by reacting ethylene oxide with water by subjecting ethylene oxide to catalytic gas phase oxidation with molecular oxygen-containing gas in the presence of a silver catalyst to concentrate an ethylene glycol aqueous solution using a multiple effect evaporator. Wherein the steam generated in the multi-effect evaporator is used as a heating source in at least one of the following steps (A) to (H) in producing ethylene glycol by dehydration: Method for producing glycol.

【0011】(A)該接触気相酸化反応で生成したエチ
レンオキシド含有ガスをエチレンオキシド吸収塔に導
き、水性媒体吸収液と接触させてエチレンオキシドを含
有する塔底液を得、該塔底液をエチレンオキシド放散塔
へ導き、当該放散塔塔底部を加熱することによりエチレ
ンオキシドを分離する工程、(B)該エチレンオキシド
吸収塔塔頂部からのガスの一部をエチレン酸化工程に循
環し、残部を二酸化炭素吸収塔に導き、アルカリ性吸収
液と接触させて二酸化炭素を含有する塔底液を得、該塔
底液を二酸化炭素放散塔へ導き、該放散塔塔底部を加熱
することにより二酸化炭素を分離する工程、(C)該エ
チレンオキシド放散塔塔頂部からのガスを凝縮させて得
られるエチレンオキシド水溶液をエチレンオキシド脱水
塔に導き、塔底液を加熱してエチレンオキシドなど軽質
分を分離する工程、(D)該脱水塔塔頂からのガスを凝
縮させて得られるエチレンオキシドを含有する留分を軽
質分分離塔に導き、塔底液を加熱して軽質分を分離し、
粗エチレンオキシドを塔底より取得する工程、(E)該
粗エチレンオキシドをエチレンオキシド精留塔に導き、
塔底液を加熱して当該精留塔塔頂より精製エチレンオキ
シドを得る工程、(F)該エチレンオキシド放散塔塔底
から得られる吸収液の一部を抜き出し、副生エチレング
リコール濃縮塔へ導き塔底液を加熱して脱水濃縮する工
程、(G)該多重効用蒸発缶で得られた濃縮エチレング
リコール水溶液をエチレングリコール脱水塔に導き塔底
部を加熱して塔頂から実質的に水分を分離する工程、
(H)実質的に水分を除去されたエチレングリコール脱
水塔塔液をモノエチレングリコール蒸留塔に導き、塔底
液を加熱して塔頂からモノエチレングリコールを分離取
得する工程。
(A) The ethylene oxide-containing gas produced by the catalytic gas phase oxidation reaction is led to an ethylene oxide absorption tower, and is brought into contact with an aqueous medium absorbing liquid to obtain a bottom liquid containing ethylene oxide. (B) circulating a part of the gas from the top of the ethylene oxide absorption tower to the ethylene oxidation step, and the remaining part to the carbon dioxide absorption tower. Guiding, contacting with an alkaline absorbing solution to obtain a bottom liquid containing carbon dioxide, guiding the bottom liquid to a carbon dioxide stripping tower, and heating the bottom of the stripping tower to separate carbon dioxide, C) An ethylene oxide aqueous solution obtained by condensing the gas from the top of the ethylene oxide stripping tower is led to an ethylene oxide dehydration tower, and the bottom liquid is discharged. A step of heating to separate light components such as ethylene oxide; (D) introducing a fraction containing ethylene oxide obtained by condensing the gas from the top of the dehydration tower to a light separation column, and heating the bottom liquid to obtain a light fraction. Separate the minutes,
Obtaining crude ethylene oxide from the bottom of the column, (E) guiding the crude ethylene oxide to an ethylene oxide rectification column,
A step of heating the bottom liquid to obtain purified ethylene oxide from the top of the rectification tower; (F) extracting a part of the absorption liquid obtained from the bottom of the ethylene oxide stripping tower; Heating the liquid to dehydrate and concentrate; (G) guiding the concentrated ethylene glycol aqueous solution obtained in the multiple effect evaporator to an ethylene glycol dehydration tower and heating the bottom of the tower to substantially separate water from the top of the tower. ,
(H) A step of introducing the ethylene glycol dehydration tower liquid from which water has been substantially removed to a monoethylene glycol distillation tower, heating the bottom liquid, and separating and obtaining monoethylene glycol from the top of the tower.

【0012】(2)該多重効用蒸発缶は少くとも3重で
あり、加熱源として利用する水蒸気の圧力は−0.08
〜1.2MPaゲージである前記(1)に記載の方法。
(2) The multiple effect evaporator has at least three layers, and the pressure of steam used as a heating source is -0.08
The method according to the above (1), which is a gauge of up to 1.2 MPa.

【0013】[0013]

【発明の実施の態様】以下に実施の態様を示し、本発明
を具体的に説明する。
Embodiments of the present invention will be described below to specifically describe the present invention.

【0014】エチレンオキシドと水との反応は、以下の
条件下に実施される。すなわち、エチレンオキシドと水
とのモル比としてエチレンオキシド:水=1:7〜1:
50、好ましくは1:5〜1:30である。反応圧力
は、0.5〜3.0MPaゲージ、好ましくは1.5〜
2.5MPaゲージ、反応温度は120〜250℃、好
ましくは130〜180℃、生成エチレングリコール濃
度は5〜40質量%である。反応はバッチ式、セミバッ
チ式ないし連続式のいずれでも実施される。かくして得
られるエチレングリコールを多重効用蒸発缶に供給して
40〜95質量%ないしそれ以上にまで濃縮脱水させ
る。
The reaction between ethylene oxide and water is carried out under the following conditions. That is, as a molar ratio of ethylene oxide and water, ethylene oxide: water = 1: 7-1.
50, preferably 1: 5 to 1:30. The reaction pressure is 0.5-3.0 MPa gauge, preferably 1.5-3.0 MPa.
2.5 MPa gauge, reaction temperature is 120 to 250 ° C, preferably 130 to 180 ° C, and the produced ethylene glycol concentration is 5 to 40% by mass. The reaction is carried out in any of a batch system, a semi-batch system or a continuous system. The ethylene glycol thus obtained is supplied to a multiple effect evaporator and concentrated and dehydrated to 40 to 95% by mass or more.

【0015】多重効用蒸発缶効用缶数は、例えば、化学
工学便覧(改定四版、昭和59年1月20日丸善株式会
社発行)第428〜431頁に詳細に説明されている。
多重効用蒸発缶効用缶数は2以上であり、設備費とエネ
ルギーコストとを考慮して決定されるが、本発明におい
ては3〜5である。第一の蒸発缶にイニシャルエネルギ
ーを供給すれば、第二蒸発缶以降はより操作圧力の高い
前段蒸発缶の頂部からの蒸気により順次濃縮される。イ
ニシャルエネルギー熱源の種類は特に制限されない。好
ましくは、水蒸気、ダウサム(ダウ社の伝熱媒体の商
品)あるいはナイターなどの溶融塩が熱媒として使用さ
れる。イニシャルエネルギーを供給された第一蒸発缶の
圧力は、特に制限されない。次段以降に使用される蒸発
缶加熱に有効に使用されることを考慮して決められる。
通常は0.20〜2.5MPaゲージ、好ましくは0.
5〜1.2MPaゲージである。
The number of multi-effect evaporator cans is described in detail in, for example, Chemical Engineering Handbook (Revised 4th Edition, published on January 20, 1984 by Maruzen Co., Ltd.), pages 428-431.
The number of multiple-effect evaporator cans is 2 or more, and is determined in consideration of equipment costs and energy costs, but is 3 to 5 in the present invention. If the initial energy is supplied to the first evaporator, the second evaporator and the subsequent evaporators are successively concentrated by steam from the top of the former evaporator having a higher operating pressure. The type of the initial energy heat source is not particularly limited. Preferably, steam, Dowsome (a product of Dow's heat transfer medium), or a molten salt such as a night game is used as the heat transfer medium. The pressure of the first evaporator supplied with the initial energy is not particularly limited. It is determined in consideration of being effectively used for heating the evaporator used in the subsequent stages.
Usually 0.20-2.5MPa gauge, preferably 0.
It is 5 to 1.2 MPa gauge.

【0016】多重効用型式は順流、逆流および錯流とあ
るが、いずれでもよい。さらに蒸発缶の型式は重質分の
水蒸気への同伴量を低減するためトレイや充填物を設置
してもよい。
The multiple-effect type includes forward flow, reverse flow, and complex flow, but any of them may be used. Further, the type of the evaporator may be provided with a tray or a packing in order to reduce the amount of heavy components entrained in water vapor.

【0017】なお、本発明においては、第二蒸発缶以降
の操作圧力は順次低下させて運転され、そこから得られ
る水蒸気圧力は−0.08〜1.2MPaゲージ好まし
くは−0.05〜0.5MPaゲージの範囲であり、こ
の水蒸気が本発明において有利に使用される。また、各
蒸発缶から発生するドレンは、その持つ熱量は少なく、
熱源としてよりは水蒸気発生用の原料として再利用され
る。
In the present invention, the operation is carried out while the operating pressure after the second evaporator is gradually reduced, and the steam pressure obtained therefrom is -0.08 to 1.2 MPa gauge, preferably -0.05 to 0. In the range of 0.5 MPa gauge, this water vapor is advantageously used in the present invention. Also, the drain generated from each evaporator has a small amount of heat,
It is reused as a raw material for generating steam rather than as a heat source.

【0018】かくして得られる水蒸気の熱量は、以下の
如きエチレンオキシドおよびエチレングリコール製造工
程において、有効に使用される。以下に本発明が規定す
る各工程の操作条件を具体的に示す。
The calorific value of the water vapor thus obtained is effectively used in the following processes for producing ethylene oxide and ethylene glycol. The operating conditions of each step specified by the present invention are specifically shown below.

【0019】A:エチレンオキシド放散塔条件 塔頂圧力は0.01〜0.2MPaゲージ、好ましくは
0.03〜0.06MPaゲージ。
A: Ethylene oxide stripping column conditions The top pressure is 0.01 to 0.2 MPa gauge, preferably 0.03 to 0.06 MPa gauge.

【0020】塔頂温度は85〜120℃、好ましくは9
0〜100℃、塔底温度は100〜150℃、好ましく
は110〜120℃。
The top temperature is 85-120 ° C., preferably 9
0-100 ° C, the bottom temperature is 100-150 ° C, preferably 110-120 ° C.

【0021】B:二酸化炭素放散塔条件 操作圧力0〜0.05MPaゲージ、好ましくは0.0
01〜0.02MPaゲージ。塔底温度80〜120
℃、好ましくは100〜110℃。
B: Carbon dioxide stripping tower conditions Operating pressure 0 to 0.05 MPa gauge, preferably 0.0
01 to 0.02 MPa gauge. Tower bottom temperature 80-120
° C, preferably 100-110 ° C.

【0022】C:エチレンオキシド脱水塔条件 塔頂圧力0〜0.5MPaゲージ、好ましくは0.01
〜0.05MPaゲージ。
C: Ethylene oxide dehydration column conditions Top pressure 0 to 0.5 MPa gauge, preferably 0.01
~ 0.05MPa gauge.

【0023】塔頂温度は10〜60℃、好ましくは15
〜20℃、塔底温度は10〜130℃、好ましくは20
〜40℃。
The overhead temperature is 10 to 60 ° C., preferably 15 to 60 ° C.
-20 ° C, bottom temperature 10-130 ° C, preferably 20
4040 ° C.

【0024】D:軽質分分離塔条件 塔頂圧力0.1〜1MPaゲージ、好ましくは0.3〜
0.7MPaゲージ。
D: Light fractionation column conditions Top pressure 0.1 to 1 MPa gauge, preferably 0.3 to 1 MPa
0.7 MPa gauge.

【0025】塔頂温度30〜90℃、好ましくは45〜
80℃、塔底温度は30〜90℃、好ましくは45〜8
0℃。
The top temperature is 30 to 90 ° C., preferably 45 to 90 ° C.
80 ° C., tower bottom temperature 30-90 ° C., preferably 45-8
0 ° C.

【0026】E:エチレンオキシド精留塔条件 塔頂圧力0.1〜0.8MPaゲージ、好ましくは0.
2〜0.5MPaゲージ。
E: Ethylene oxide rectification column conditions Top pressure 0.1 to 0.8 MPa gauge, preferably 0.1 to 0.8 MPa.
2 to 0.5 MPa gauge.

【0027】塔頂温度30〜80℃、好ましくは40〜
65℃、塔底温度は35℃〜85℃、好ましくは45〜
70℃。
The top temperature is 30 to 80 ° C., preferably 40 to 80 ° C.
65 ° C., the bottom temperature is 35 ° C. to 85 ° C., preferably 45 to 85 ° C.
70 ° C.

【0028】F:副生グリコール濃縮塔条件 塔頂圧力−0.08〜0.2MPaゲージ、好ましくは
0〜0.15MPaゲージ。
F: By-product glycol concentration column conditions Top pressure -0.08 to 0.2 MPa gauge, preferably 0 to 0.15 MPa gauge.

【0029】塔頂温度60〜150℃、好ましくは70
〜110℃、塔底温度は70〜200℃、好ましくは8
0〜120℃。塔底エチレングリコール濃度は、10〜
90質量%、好ましくは70〜90質量%。
The top temperature is 60 to 150 ° C., preferably 70
To 110 ° C, the tower bottom temperature is 70 to 200 ° C, preferably 8
0-120 ° C. The ethylene glycol concentration at the bottom is 10 to
90% by weight, preferably 70 to 90% by weight.

【0030】G:エチレングリコール脱水塔条件 圧力50〜500hPa、好ましくは90〜140hP
a。
G: Ethylene glycol dehydration column conditions Pressure 50 to 500 hPa, preferably 90 to 140 hP
a.

【0031】塔頂温度30〜80℃、好ましくは45〜
55℃、塔底温度は80〜120℃、好ましくは90〜
110℃。
The top temperature is 30 to 80 ° C., preferably 45 to 80 ° C.
55 ° C., the bottom temperature is 80 to 120 ° C., preferably 90 to 120 ° C.
110 ° C.

【0032】H:モノエチレングリコール蒸留塔条件 圧力10〜70hPa、好ましくは25〜55hPa。H: Monoethylene glycol distillation column conditions Pressure is 10 to 70 hPa, preferably 25 to 55 hPa.

【0033】塔頂温度85〜125℃、好ましくは10
0〜120℃、塔底温度は90〜130℃、好ましくは
105〜125℃。
The top temperature is 85 to 125 ° C., preferably 10
0-120 ° C, the bottom temperature is 90-130 ° C, preferably 105-125 ° C.

【0034】かくして、エチレンオキシドを出発原料と
してエチレングリコールが製造される。このエチレング
リコールは、上記のモノエチレングリコールのほか、さ
らにその蒸留塔塔底液を蒸留操作にかけることによりジ
エチレングリコール、トリエチレングリコール、テトラ
エチレングリコールおよびポリエチレングリコールが、
順次得られる。
[0034] Thus, ethylene glycol is produced using ethylene oxide as a starting material. This ethylene glycol, in addition to the above monoethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol and polyethylene glycol by further subjecting the bottom of the distillation column to a distillation operation,
Obtained sequentially.

【0035】本発明で規定される放散塔、脱水塔、分離
塔、精留塔および濃縮塔は、いずれも通常の蒸留塔型式
のものが使用され、トレイまたは充填物を設置されてな
る。トレイとしては、バブルキャップトレイ、シーブト
レイ、バラストトレイ等、充填物としては、ラシヒリン
グ、ボールリング、サドルリング、マクマホンパッキン
グ、インターロックスメタルパッキング(米国ノートン
社製)、メラパック(スイス国スルーザー社製)、スル
ーザーBXパッキング(スイス国スルーザー社製)等が
適宜使用される。
As the stripping tower, dehydrating tower, separation tower, rectifying tower and concentrating tower specified in the present invention, all ordinary distillation tower types are used, and are provided with trays or packing. Trays include bubble cap trays, sheave trays, ballast trays, etc. Fillers include Raschig rings, ball rings, saddle rings, McMahon packings, Interlocks metal packings (Norton, USA), Melapaks (Sluzer, Switzerland), Sluzer BX packing (made by Sluzer, Switzerland) or the like is used as appropriate.

【0036】[0036]

【実施例】本発明の効果を明示するため、以下に実施例
および比較例を記述する。
EXAMPLES In order to clarify the effects of the present invention, examples and comparative examples will be described below.

【0037】実施例1(図1参照) エチレンを銀触媒の存在下に分子上酸素含有ガスにより
接触気相酸化して得られるエチレンオキシドを含む反応
生成ガスをエチレンオキシド吸収塔下部へ供給し、吸収
塔上部から吸収液(水)を導入して反応生成ガスと向流
接触させ、反応生成ガス中のエチレンオキシドを吸収液
(水)に吸収させた。吸収塔塔頂よりの未吸収ガスはエ
チレン酸化反応装置に循環した。図1に示すように、吸
収塔塔底液を塔頂圧力0.045MPaゲージ、塔底温
度115℃のエチレンオキシド放散塔1上部へ供給し、
塔底液の一部は、塔頂圧力0.076Mpaゲージ、塔
底温度122℃の副生エチレングリコール濃縮塔2へ送
り、残部をエチレンオキシド吸収塔(図示せず)に循環
し、エチレンオキシド放散塔1塔頂よりのエチレンオキ
シドを含む放散蒸気は凝縮器7で凝縮し、一部はエチレ
ンオキシド放散塔1へ還流し、一部はエチレンオキシド
脱水塔(図示せず)ヘ供給した。脱水塔頂部よりのエチ
レンオキシドを含む蒸気は凝縮器(図示せず)で凝縮さ
せて、一部は脱水塔へ還流し凝縮液の残りは軽質分分離
塔(図示せず)へ供給した。凝縮器の未凝縮蒸気はエチ
レンオキシド再吸収塔(図示せず)へ供給した。軽質分
分離塔の頂部よりの蒸気は凝縮器へ送り、凝縮液は、軽
質分分離塔へ還流し凝縮器の未凝縮蒸気はエチレンオキ
シド再吸収塔へ供給した。軽質分分離塔底液は、エチレ
ンオキシド精留塔へ送り、塔頂よりのエチレンオキシド
蒸気を凝縮器で凝縮させて一部はエチレンオキシド精留
塔(図示せず)へ還流し、他部はエチレンオキシドの製
品として抜き出した。エチレンオキシド精留塔塔底液
は、アルデヒド、酢酸などの高沸点物質を分離するため
に抜き出した。
Example 1 (see FIG. 1) A reaction product gas containing ethylene oxide obtained by subjecting ethylene to catalytic gas-phase oxidation with a molecular oxygen-containing gas in the presence of a silver catalyst was supplied to the lower portion of the ethylene oxide absorption tower, The absorbing solution (water) was introduced from above and brought into countercurrent contact with the reaction product gas to absorb ethylene oxide in the reaction product gas into the absorbing solution (water). The unabsorbed gas from the top of the absorption tower was circulated to the ethylene oxidation reactor. As shown in FIG. 1, the bottom liquid of the absorption tower is supplied to the top of the ethylene oxide stripping tower 1 having a top pressure of 0.045 MPa gauge and a bottom temperature of 115 ° C.
A part of the bottom liquid is sent to a by-product ethylene glycol concentrating tower 2 having a top pressure of 0.076 MPa gauge and a bottom temperature of 122 ° C., and the remainder is circulated to an ethylene oxide absorption tower (not shown). Evaporated vapor containing ethylene oxide from the top was condensed in the condenser 7, a part of the vapor was refluxed to the ethylene oxide evaporating column 1, and a part was supplied to an ethylene oxide dehydrating column (not shown). The vapor containing ethylene oxide from the top of the dehydration column was condensed in a condenser (not shown), a part of the vapor was refluxed to the dehydration column, and the remainder of the condensate was supplied to a light fractionation column (not shown). The uncondensed vapor of the condenser was supplied to an ethylene oxide reabsorption column (not shown). The vapor from the top of the light fractionation tower was sent to the condenser, the condensate was refluxed to the light fractionation tower, and the uncondensed vapor of the condenser was supplied to the ethylene oxide reabsorption tower. The bottoms of the light fractionation tower are sent to an ethylene oxide rectification column, where ethylene oxide vapor from the top is condensed by a condenser and a part is refluxed to an ethylene oxide rectification column (not shown), and the other part is ethylene oxide product. I was extracted as. The bottom liquid of the ethylene oxide rectification column was withdrawn to separate high-boiling substances such as aldehyde and acetic acid.

【0038】一方、エチレンオキシドを含む水溶液をエ
チレンオキシド脱水塔(図示せず)の塔底部から抜き出
し、これに製品のエチレンオキシドを加えて加水反応装
置へ送り、圧力1.8MPaゲージおよび反応温度15
0℃で反応させ、得られた15.2質量%のエチレング
リコール水溶液を頂部圧力0.41MPaゲージ、缶液
温度153℃で操作する第一蒸発缶3へ送った。
On the other hand, an aqueous solution containing ethylene oxide was withdrawn from the bottom of an ethylene oxide dehydration column (not shown), and ethylene oxide as a product was added to the column and sent to a water reactor, where the pressure was 1.8 MPa gauge and the reaction temperature was 15 MPa.
The reaction was carried out at 0 ° C., and the obtained 15.2% by mass aqueous solution of ethylene glycol was sent to the first evaporator 3 operating at a top pressure of 0.41 MPa gauge and a tank temperature of 153 ° C.

【0039】第一蒸発缶3の塔底液は、頂部圧力0.1
7MPaゲージ、底部温度136℃で操作する第二蒸発
缶4へ送り、第一蒸発缶3の頂部蒸気は第二蒸発缶4の
加熱器の熱源として使用し、第二蒸発缶4の塔底液は、
頂部圧力0.07MPaゲージ、底部温度124℃で操
作する第三蒸発缶5へ送り、第二蒸発缶4の頂部蒸気は
一部を第三蒸発缶5の加熱器の熱源として使用するとと
もに、残りをエチレンオキシド放散塔1の塔底加熱器お
よび副生エチレングリコール濃縮塔底加熱器の熱源とし
て使用し、第三蒸発缶5の塔底液は頂部圧力−0.03
MPaゲージ、底部温度105℃で操作する第四蒸発缶
6へ送り、第三蒸発缶5の頂部蒸気は、第四蒸発缶6の
加熱器の熱源として使用し、第四蒸発缶6の塔底液は、
エチレングリコール脱水塔へ送り、水分を除去したの
ち、モノエチレングリコール蒸留塔(図示せず)へ送
り、塔頂よりモノエチレングリコールを分離した。モノ
エチレングリコール蒸留塔塔底液は、ジエチレングリコ
ール蒸留塔(図示せず)へ送り、塔頂よりジエチレング
リコールを分離し、塔底液はトリエチレングリコール蒸
留塔(図示せず)へ送り塔頂よりトリエチレングリコー
ルを分離した。
The bottom liquid of the first evaporator 3 has a top pressure of 0.1
7 MPa gauge, sent to the second evaporator 4 operating at a bottom temperature of 136 ° C., the top vapor of the first evaporator 3 is used as a heat source of the heater of the second evaporator 4, and the bottom liquid of the second evaporator 4 Is
It is sent to the third evaporator 5 operating at a top pressure of 0.07 MPa gauge and a bottom temperature of 124 ° C., and a part of the top vapor of the second evaporator 4 is used as a heat source of the heater of the third evaporator 5 and the rest is Is used as a heat source for the bottom heater of the ethylene oxide stripping tower 1 and the bottom heater of the by-product ethylene glycol concentrating tower, and the bottom liquid of the third evaporator 5 has a top pressure of -0.03
Mpa gauge, sent to the fourth evaporator 6 operating at a bottom temperature of 105 ° C., and the top vapor of the third evaporator 5 is used as a heat source for the heater of the fourth evaporator 6, The liquid is
After being sent to an ethylene glycol dehydration tower to remove water, it was sent to a monoethylene glycol distillation tower (not shown) to separate monoethylene glycol from the top of the tower. The bottom liquid of the monoethylene glycol distillation column is sent to a diethylene glycol distillation column (not shown), and diethylene glycol is separated from the top, and the bottom liquid is sent to a triethylene glycol distillation column (not shown). The glycol was separated.

【0040】以上の操作を、図示した各工程毎にその運
転条件、蒸気の性能および使用量を表1に示した。
Table 1 shows the operating conditions, steam performance and amount of use for each of the steps shown above.

【0041】比較例1 実施例1において第二蒸発缶4の頂部蒸気の全てを第三
蒸発缶5の加熱器の熱源とすることにして多重効用蒸発
缶の濃縮操作およびエチレンオキシド放散塔および副生
エチレングリコールの濃縮塔の運転を行った。各工程で
の運転条件、蒸気の性能および使用量は表1に示される
結果を得た。
COMPARATIVE EXAMPLE 1 In Example 1, all the vapor at the top of the second evaporator 4 was used as the heat source for the heater of the third evaporator 5 to concentrate the multi-effect evaporator and to perform the ethylene oxide stripping tower and the by-product. The operation of the ethylene glycol concentration tower was performed. The operating conditions in each step, the performance of the steam, and the amount of use obtained the results shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】多重効用蒸発缶頂部で発生する蒸気を一
部取り出して他工程の加熱源に利用することにより、蒸
気が有する熱エネルギーを回収し、エネルギーの有効利
用ができかつ他工程および多重効用缶でのエネルギーの
使用量の和がより少ないエネルギー使用量の和で、他工
程での蒸留および多重効用蒸発缶での蒸発缶での蒸発濃
縮を行うことができることが明らかとなった。
According to the present invention, the steam generated at the top of the multi-effect evaporator is partially taken out and used as a heating source in another process, so that the heat energy of the steam can be recovered, the energy can be effectively used, and the other process and the multi-process can be used. It was found that the sum of the amounts of energy used in the effect cans can be used to carry out distillation in another step and evaporative concentration in the evaporators in the multi-effect evaporator with a smaller sum of energy consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1および比較例1での工程を示すプロ
セスフローシートである。
FIG. 1 is a process flow sheet showing the steps in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…エチレンオキシド放散塔 2…副生エチレングリコール濃縮塔 3…第一蒸発缶、 4…第二蒸発缶、 5…第三蒸発缶、 6…第四蒸発缶、 7…凝縮器。 DESCRIPTION OF SYMBOLS 1 ... Ethylene oxide stripping tower 2 ... By-product ethylene glycol concentration tower 3 ... 1st evaporator, 4 ... 2nd evaporator, 5 ... 3rd evaporator, 6 ... 4th evaporator, 7 ... Condenser.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 43/11 C07C 43/11 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4H006 AA02 AC41 AC43 AD11 BB31 BC10 BC11 BC51 BC52 BD33 BD40 BD52 BD53 BD80 BD84 BE60 FE11 FG24 GN06 GP01 GP10 4H039 CA42 CC40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (reference) C07C 43/11 C07C 43/11 // C07B 61/00 300 C07B 61/00 300 F term (reference) 4H006 AA02 AC41 AC43 AD11 BB31 BC10 BC11 BC51 BC52 BD33 BD40 BD52 BD53 BD80 BD84 BE60 FE11 FG24 GN06 GP01 GP10 4H039 CA42 CC40

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エチレンを銀触媒の存在下に分子状酸素
含有ガスにより接触気相酸化して得られるエチレンオキ
シドを水と反応させて得られたエチレングリコール水溶
液を、多重効用蒸発缶による濃縮操作に供し、脱水して
エチレングリコールを製造するに際し、該多重効用蒸発
缶で発生した蒸気を以下の(A)〜(H)の少くとも一
つの工程の加熱源として使用することを特徴とするエチ
レングリコールの製造方法。 (A)該接触気相酸化反応で生成したエチレンオキシド
含有ガスをエチレンオキシド吸収塔に導き、水性媒体吸
収液と接触させてエチレンオキシドを含有する塔底液を
得、該塔底液をエチレンオキシド放散塔へ導き、当該放
散塔塔底部を加熱することによりエチレンオキシドを分
離する工程、(B)該エチレンオキシド吸収塔塔頂部か
らのガスの一部をエチレン酸化工程に循環し、残部を二
酸化炭素吸収塔に導き、アルカリ性吸収液と接触させて
二酸化炭素を含有する塔底液を得、該塔底液を二酸化炭
素放散塔へ導き、該放散塔塔底部を加熱することにより
二酸化炭素を分離する工程、(C)該エチレンオキシド
放散塔塔頂部からのガスを凝縮させて得られるエチレン
オキシド水溶液をエチレンオキシド脱水塔に導き、塔底
液を加熱してエチレンオキシドなど軽質分を分離する工
程、(D)該脱水塔塔頂からのガスを凝縮させて得られ
るエチレンオキシドを含有する留分を軽質分分離塔に導
き、塔底液を加熱して軽質分を分離し、粗エチレンオキ
シドを塔底より取得する工程、(E)該粗エチレンオキ
シドをエチレンオキシド精留塔に導き、塔底液を加熱し
て当該精留塔塔頂より精製エチレンオキシドを得る工
程、(F)該エチレンオキシド放散塔塔底から得られる
吸収液の一部を抜き出し、副生エチレングリコール濃縮
塔へ導き塔底液を加熱して脱水濃縮する工程、(G)該
多重効用蒸発缶で得られた濃縮エチレングリコール水溶
液をエチレングリコール脱水塔に導き塔底部を加熱して
塔頂から実質的に水分を分離する工程、(H)実質的に
水分を除去されたエチレングリコール脱水塔塔底液をモ
ノエチレングリコール蒸留塔に導き、塔底液を加熱して
塔頂からモノエチレングリコールを分離取得する工程。
1. An ethylene glycol aqueous solution obtained by reacting ethylene oxide with water by subjecting ethylene oxide to catalytic gas-phase oxidation with a molecular oxygen-containing gas in the presence of a silver catalyst to concentrate an ethylene glycol aqueous solution using a multi-effect evaporator. Wherein the steam produced in the multiple effect evaporator is used as a heating source in at least one of the following steps (A) to (H) when producing ethylene glycol by dehydration and ethylene glycol production: Manufacturing method. (A) Ethylene oxide-containing gas generated by the catalytic gas phase oxidation reaction is led to an ethylene oxide absorption tower, which is brought into contact with an aqueous medium absorption liquid to obtain a bottom liquid containing ethylene oxide, and the bottom liquid is led to an ethylene oxide stripping tower. Heating the bottom of the stripping tower to separate ethylene oxide, and (B) circulating a part of the gas from the top of the ethylene oxide absorbing tower to the ethylene oxidation step, leading the remainder to the carbon dioxide absorbing tower, Contacting with an absorbing solution to obtain a bottom liquid containing carbon dioxide, guiding the bottom liquid to a carbon dioxide stripping tower, and heating the bottom of the stripping tower to separate carbon dioxide, (C) The ethylene oxide aqueous solution obtained by condensing the gas from the top of the ethylene oxide stripping tower is led to the ethylene oxide dehydration tower, and the bottom is heated to etch the ethylene oxide. (D) a fraction containing ethylene oxide obtained by condensing the gas from the top of the dehydration tower to a light fractionation column, and heating the bottom liquid to remove the light fraction. Separating and obtaining crude ethylene oxide from the bottom of the column, (E) guiding the crude ethylene oxide to an ethylene oxide rectification column, heating the bottom solution and obtaining purified ethylene oxide from the top of the rectification column, (F) A step of extracting a part of the absorption liquid obtained from the bottom of the ethylene oxide stripping tower, leading it to a by-product ethylene glycol concentrating tower, and heating and dehydrating and condensing the bottom liquid; (G) the concentration obtained in the multiple effect evaporator A step of introducing an aqueous solution of ethylene glycol to an ethylene glycol dehydration tower and heating the bottom of the tower to substantially separate water from the top; (H) ethylene glycol from which substantially water has been removed; Water column bottom liquid introduced into a monoethylene glycol distillation column, separating obtain the monoethylene glycol from the top to heat the bottom liquid.
【請求項2】 該多重効用蒸発缶は少くとも3重であ
り、加熱源として利用する水蒸気の圧力は−0.08〜
1.2MPaゲージである請求項1に記載の方法。
2. The multiple effect evaporator has at least three layers, and the pressure of steam used as a heating source is -0.08 to
2. The method according to claim 1, which is a 1.2 MPa gauge.
JP2000134796A 2000-05-08 2000-05-08 Method for producing ethylene glycol Expired - Lifetime JP3800488B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000134796A JP3800488B2 (en) 2000-05-08 2000-05-08 Method for producing ethylene glycol
US09/844,478 US6417411B2 (en) 2000-05-08 2001-04-27 Method for production of ethylene glycol
BE2001/0316A BE1014247A3 (en) 2000-05-08 2001-05-07 Method for producing ethylene glycol.
SA01220125A SA01220125B1 (en) 2000-05-08 2001-05-21 A method for producing ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000134796A JP3800488B2 (en) 2000-05-08 2000-05-08 Method for producing ethylene glycol

Publications (2)

Publication Number Publication Date
JP2001316308A true JP2001316308A (en) 2001-11-13
JP3800488B2 JP3800488B2 (en) 2006-07-26

Family

ID=18643003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000134796A Expired - Lifetime JP3800488B2 (en) 2000-05-08 2000-05-08 Method for producing ethylene glycol

Country Status (4)

Country Link
US (1) US6417411B2 (en)
JP (1) JP3800488B2 (en)
BE (1) BE1014247A3 (en)
SA (1) SA01220125B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043938A1 (en) * 2001-11-19 2003-05-30 Japan System Products Co., Ltd. Method and apparatus for producing zeolite continuously
JP2007031330A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Method for separating glycol
JP2007531612A (en) * 2003-05-07 2007-11-08 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Reactor system and process for producing ethylene oxide
CN108250038A (en) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 A kind of device and method of batch production ethylene glycol
JP7003237B2 (en) 2017-09-29 2022-02-10 サンテコ・リミテッド Energy reuse system using evaporative steam recompressor in complex chemical process

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224841A1 (en) * 2003-05-07 2004-11-11 Marek Matusz Silver-containing catalysts, the manufacture of such silver-containing catalysts, and the use thereof
US20040225138A1 (en) * 2003-05-07 2004-11-11 Mcallister Paul Michael Reactor system and process for the manufacture of ethylene oxide
TW200602123A (en) * 2004-04-01 2006-01-16 Shell Int Research Process for preparing a catalyst, the catalyst, and a use of the catalyst
TW200600190A (en) * 2004-04-01 2006-01-01 Shell Int Research Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation
TW200613056A (en) * 2004-04-01 2006-05-01 Shell Int Research A process for preparing a silver catalyst, the catalyst, and a use of the catalyst for olefin oxidation
BRPI0515905A (en) * 2004-09-24 2008-08-12 Shell Int Research a process for selecting molded particles, a process for installing a system, a process for reacting a gaseous feed load on such a system, a computer program product, and a computer system
EP1973620B1 (en) * 2005-12-29 2010-02-24 Basf Se A process for separating propylene glycol from aqueous compositions
EP2121552A1 (en) * 2006-12-05 2009-11-25 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-propanediol
WO2010120259A1 (en) * 2006-12-07 2010-10-21 Shell Oil Company Process for preparing 1,3-propanediol
BRPI0815487B1 (en) 2007-08-14 2017-09-12 Shell Internationale Research Maatschappij B.V. METHOD FOR PREPARING AN ALKYLENE GLYCOL FROM AN ALKEN.
US7569710B1 (en) 2008-02-23 2009-08-04 Brian Ozero Ethylene oxide recovery process
EP2291343B1 (en) * 2008-04-09 2015-01-14 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkylene glycol
BRPI0911996B8 (en) 2008-05-15 2018-03-20 Shell Int Research process for the production of an alkylene carbonate and / or an alkylene glycol, and process for the production of an alkylene glycol
US8193374B2 (en) * 2008-05-15 2012-06-05 Shell Oil Company Process for the preparation of alkylene carbonate and/or alkylene glycol
CN103709002A (en) * 2012-10-08 2014-04-09 中国石油化工股份有限公司 Method for separating glycol product produced by catalytic hydration
CN105174213A (en) * 2015-08-21 2015-12-23 中国五环工程有限公司 Purification technology of glycol prepared from crude coal gas
CN106565635B (en) * 2015-10-12 2019-02-01 中国石化工程建设有限公司 A kind of method and system separating and recovering ethylene top gas
CN109843842B (en) * 2016-08-09 2022-12-13 科学设计有限公司 Method for preparing glycol ether
WO2019000264A1 (en) * 2017-06-28 2019-01-03 Solvay Sa Process for manufacture of ethylene glycol
WO2019000266A1 (en) * 2017-06-28 2019-01-03 Solvay Sa Process for manufacture of ethylene glycol
US10738020B2 (en) 2017-11-22 2020-08-11 Joseph D. Duff Recovery of ethylene oxide from sterilization process
KR102663736B1 (en) * 2017-11-23 2024-05-10 쉘 인터내셔날 리써취 마트샤피지 비.브이. Methods for producing ethylene oxide and ethylene glycol
CN113683484A (en) * 2020-05-18 2021-11-23 北京诺维新材科技有限公司 Method and device for distilling ethylene glycol aqueous solution
CN111943552A (en) * 2020-08-14 2020-11-17 徐州吉兴新材料有限公司 Method for producing grinding aid by using heavy alcohol rectification polymerization polyol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU660318B2 (en) * 1991-08-23 1995-06-22 Union Carbide Chemicals & Plastics Technology Corporation Highly selective monoalkylene glycol catalysts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043938A1 (en) * 2001-11-19 2003-05-30 Japan System Products Co., Ltd. Method and apparatus for producing zeolite continuously
JP2007531612A (en) * 2003-05-07 2007-11-08 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Reactor system and process for producing ethylene oxide
JP2007031330A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Method for separating glycol
CN108250038A (en) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 A kind of device and method of batch production ethylene glycol
JP7003237B2 (en) 2017-09-29 2022-02-10 サンテコ・リミテッド Energy reuse system using evaporative steam recompressor in complex chemical process

Also Published As

Publication number Publication date
SA01220125B1 (en) 2006-11-25
JP3800488B2 (en) 2006-07-26
US6417411B2 (en) 2002-07-09
US20020010378A1 (en) 2002-01-24
BE1014247A3 (en) 2003-07-01

Similar Documents

Publication Publication Date Title
JP2001316308A (en) Method for producing ethylene glycol
KR100634678B1 (en) Method for producing methacrylic acid
EP2291363B1 (en) Improved ethylene oxide recovery process
US4875909A (en) Method for recovery of ethylene oxide
EP1888194B1 (en) New stripper configuration for the production of ethylene oxide
JP2010159212A (en) Method for separating alcohol
MXPA06010637A (en) Utilization of acetic acid reaction heat in other process plants.
JPS6251958B2 (en)
KR100670881B1 (en) Method for Producing Highly Pure Monoethylene Glycol
CN111328325B (en) Process for producing ethylene oxide and ethylene glycol
KR20010075276A (en) Method for Producing Highly Pure Monoethylene Glycol
JP2001031606A (en) Purification of ethylene glycol
EP1456191B1 (en) Process for preparing ethylene oxide
JPH0625199B2 (en) Method for purifying ethylene oxide
JP2001031600A (en) Production of highly pure monoethylene glycol
RU2785430C2 (en) Methods for production of ethylene oxide and ethylene glycol
JP2001316310A (en) Method for producing highly pure ethylene glycol
JPH02268126A (en) Production of dimethyl ether
JP2002145821A (en) Method for producing acrolein
CS258698B1 (en) Method of formaldehyde production by means of methanol's oxidizing dehydrogenation
JP2002114734A (en) Method for producing acrolein

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Ref document number: 3800488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term