JP2001309778A - Method for incubating photosynthetic microorganism in high efficiency - Google Patents

Method for incubating photosynthetic microorganism in high efficiency

Info

Publication number
JP2001309778A
JP2001309778A JP2000133906A JP2000133906A JP2001309778A JP 2001309778 A JP2001309778 A JP 2001309778A JP 2000133906 A JP2000133906 A JP 2000133906A JP 2000133906 A JP2000133906 A JP 2000133906A JP 2001309778 A JP2001309778 A JP 2001309778A
Authority
JP
Japan
Prior art keywords
light
photosynthetic
culturing
culture
culture tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000133906A
Other languages
Japanese (ja)
Inventor
Norihide Kurano
憲秀 藏野
Guroberaa Johan
グロベラー ヨハン
Yoshi Cho
凱 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marine Biotechnology Institute Co Ltd
Original Assignee
Marine Biotechnology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Biotechnology Institute Co Ltd filed Critical Marine Biotechnology Institute Co Ltd
Priority to JP2000133906A priority Critical patent/JP2001309778A/en
Publication of JP2001309778A publication Critical patent/JP2001309778A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for incubating photosynthetic microorganisms, capable of effectively utilizing light energy. SOLUTION: This method for incubating photosynthetic microorganisms is characterized by comprising combining cells acclimated to strong light with cells acclimated to feeble light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光合成微生物の培養
方法に関し、さらに詳細には光合成微生物による有用物
質生産、健康補助食品生産などの分野において光の利用
効率を改善する培養方法に関するものである。
The present invention relates to a method for culturing photosynthetic microorganisms, and more particularly, to a method for culturing photosynthetic microorganisms to improve the light use efficiency in fields such as production of useful substances and health supplements.

【0002】[0002]

【従来の技術】光独立栄養的に増殖する微生物(例え
ば、緑藻やラン藻などの微細藻類、光合成細菌)は、光
のエネルギーを利用して二酸化炭素と水から有機物を合
成して生命を営んでいる。従って、高効率に光合成微生
物を培養するためには如何に光を供給するかが重要なポ
イントである。この点に関して、例えば平板型培養槽を
有する高効率光合成微生物培養装置(特開平10-150974
号公報)が開発され、微生物細胞に十分光が供給される
ようになった。しかし、この平板型培養槽を含む培養装
置は、培養槽内の細胞濃度分布が均一になるような工夫
がなされており、与えられる光強度に応じた光合成特性
を有する細胞のみを培養するものであった。
2. Description of the Related Art Microorganisms that grow photoautotrophically (for example, microalgae such as green algae and cyanobacteria, and photosynthetic bacteria) use light energy to synthesize organic matter from carbon dioxide and water, and survive. In. Therefore, in order to culture photosynthetic microorganisms with high efficiency, it is important how light is supplied. In this regard, for example, a high-efficiency photosynthetic microorganism culturing apparatus having a plate-type culturing tank (JP-A-10-150974)
Has been developed to provide sufficient light to microbial cells. However, the culture apparatus including this flat plate culture tank is devised so that the cell concentration distribution in the culture tank becomes uniform, and only the cells having photosynthetic characteristics according to the applied light intensity are cultured. there were.

【0003】[0003]

【発明が解決しようとする課題】本発明は、光合成微生
物が与えられた光環境に順化する生理的能力を有してい
る点に着目し、この生理的特性を活用して、より一層効
率が高く、新規で、かつ従来法の欠点を克服した光合成
微生物の培養法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention focuses on the fact that photosynthetic microorganisms have a physiological ability to adapt to a given light environment. It is an object of the present invention to provide a novel method for culturing photosynthetic microorganisms which is highly efficient, and which overcomes the disadvantages of the conventional method.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記の課
題に関して鋭意検討を重ねた結果、光合成微生物が持つ
光合成色素の量と光合成活性の関係に着目して、色素含
量の高い細胞と低い細胞を組み合わせることにより従来
よりもはるかに効率よく光合成微生物の培養が可能であ
ることを見出した。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors focused on the relationship between the amount of photosynthetic pigments possessed by photosynthetic microorganisms and photosynthetic activity, It has been found that photosynthetic microorganisms can be cultured much more efficiently by combining low cells.

【0005】光合成微生物を効率よく培養する際の大き
な問題点のひとつに、細胞による光相互遮蔽効果が挙げ
られる。培養槽に入射した光は細胞に吸収されて光合成
のエネルギー源として利用されるが、細胞濃度が上がる
と培養液の深部に存在する細胞には十分な光が供給され
なくなって、全体としての光エネルギー利用効率が低下
してしまう現象が観察される。これが、いわゆる相互遮
蔽効果である。この欠点を克服するために平板型培養槽
を含む高効率光合成微生物培養装置(特開平10-150974
号公報)が考案されたが、本発明においては光合成微生
物の生理学的要件に注目して、新規な培養方法を創案し
た。
[0005] One of the major problems in efficiently culturing photosynthetic microorganisms is the mutual light shielding effect of cells. The light that enters the culture tank is absorbed by the cells and used as an energy source for photosynthesis.However, when the cell concentration increases, sufficient light is not supplied to the cells that exist deep in the culture solution, and the overall light A phenomenon in which the energy use efficiency is reduced is observed. This is the so-called mutual shielding effect. In order to overcome this drawback, a highly efficient photosynthetic microorganism culturing apparatus including a plate-type culturing tank (Japanese Patent Laid-Open No. 10-150974)
In the present invention, a new culture method has been devised, focusing on the physiological requirements of photosynthetic microorganisms.

【0006】光合成微生物は、与えられた光環境に応じ
て細胞内の光合成色素含量を変化させる能力を有してい
る。例えば、緑藻Dunaliella salinaは強光に順化して
アンテナクロロフィルの含量を低下させ、また、強光下
で高い光合成活性(すなわち高い増殖速度)を示すこと
が知られている。一方、弱光に順化した細胞では最大光
合成活性が低下するが、アンテナクロロフィル量が高く
弱い光を効率よく利用して光合成を行う。図1に強光順
化細胞と弱光順化細胞の光合成活性を示す。横軸に光強
度、縦軸に光合成酸素発生活性を表した。図に示される
様に、光が弱い場合(この図で160μmol m-2 s-1
下)、強光順化細胞より弱光順化細胞の方が光合成酸素
発生速度が高いが、それ以上の光強度では強光順化細胞
の方が光合成速度も高く最大光合成速度自体も高い。こ
の光強度に対する反応性の違いを利用して強光順化細胞
と弱光順化細胞を組み合わせると、光エネルギー利用効
率が改善される。以下、その内容を説明する。
[0006] Photosynthetic microorganisms have the ability to change the photosynthetic pigment content in cells according to the given light environment. For example, the green alga Dunaliella salina is known to acclimate to intense light and reduce the content of antenna chlorophyll, and to exhibit high photosynthetic activity (ie, high growth rate) under intense light. On the other hand, the maximum photosynthetic activity decreases in cells that have been adapted to weak light, but the amount of antenna chlorophyll is high, and photosynthesis is performed using weak light efficiently. FIG. 1 shows the photosynthetic activity of the high- and low-light-adapted cells. The horizontal axis represents light intensity, and the vertical axis represents photosynthetic oxygen generation activity. As shown in the figure, when the light is weak (160 μmol m -2 s -1 or less in this figure), the photosynthetic oxygen generation rate is higher in the weakly light-adapted cells than in the strongly light-adapted cells. In terms of light intensity, the photosynthetic cells have higher photosynthetic rates and higher maximum photosynthetic rates. The light energy utilization efficiency is improved by combining the highly light-adapted cells and the weakly light-adapted cells using the difference in reactivity to light intensity. Hereinafter, the contents will be described.

【0007】特開平10-150974号公報に記載された平板
型培養槽、即ち、少なくとも両側面が光透過性透明材料
で作られかつ該両側面間の距離がほぼ2cm以下である培
養槽を複数用意し(第2図、平板培養槽二枚の例)、光
源に近い方から順番に培養槽A、Bとする。厚さは同じ
か、あるいはBよりもAの方が薄くなるように、例えばA
が1 cm、Bが2 cmとする。両方の培養槽に光合成微生物
を入れて連続培養すると、培養槽Aで増殖した細胞には
十分に光が供給されるため強光順化する。一方、培養槽
Aの細胞によって光が遮られるため、培養槽Bの細胞には
弱い光が当たり弱光順化を起こす。別に培養槽Aの厚さ
と培養槽Bの厚さを足し合わせた厚さの培養槽C(例えば
厚さ3 cm)を用意する。培養槽Cにおいては、平均的な
光の量が低いため弱光順化細胞が得られる。十分な光エ
ネルギーを供給された培養槽Aの細胞では高い光合成活
性、高い細胞増殖速度と低い光遮蔽(細胞濃度が低く、
また、アンテナクロロフィル含量が低いため)が達成さ
れ、培養槽Bでは弱光を用いる高効率の光合成(=増殖)
が得られる。すなわち、培養槽Aでは図1の上の曲線で
示される光合成速度が、培養槽Bでは下の曲線の光合成
速度が得られる。一方、培養槽Cにおいては培養槽Bと同
様一律に弱光順化細胞になっており、強光を当てても図
1の下の曲線の光合成しか得られない。従って、培養槽
A+Bと培養槽Cの生産性を比較すると、培養槽A+Bの方が
高い光合成活性、ひいては藻体あるいは物質生産性が得
られる。
[0007] A plurality of plate-type culture vessels described in JP-A-10-150974, that is, a plurality of culture vessels in which at least both sides are made of a light-transmitting transparent material and the distance between the both sides is approximately 2 cm or less. Prepare (FIG. 2, example of two plate culture tanks), and culture tanks A and B in order from the one near the light source. The thickness is the same or A is thinner than B, for example A
Is 1 cm and B is 2 cm. When photosynthetic microorganisms are continuously cultured in both culture vessels, the cells grown in the culture vessel A are sufficiently supplied with light, so that the cells acclimate to strong light. Meanwhile, the culture tank
Since the light is blocked by the cells of A, the cells in the culture tank B are exposed to weak light and cause weak light acclimation. Separately, a culture tank C (for example, 3 cm thick) having a thickness obtained by adding the thickness of the culture tank A and the thickness of the culture tank B is prepared. In the culture tank C, weakly light-adapted cells can be obtained because the average amount of light is low. In cells in culture tank A supplied with sufficient light energy, high photosynthetic activity, high cell growth rate and low light shielding (low cell concentration,
In addition, high efficiency of photosynthesis (= proliferation) using weak light was achieved in the culture tank B in the culture tank B because the antenna chlorophyll content was low.
Is obtained. That is, in the culture tank A, the photosynthetic rate indicated by the upper curve in FIG. 1 is obtained, and in the culture tank B, the photosynthetic rate indicated by the lower curve is obtained. On the other hand, in the culture tank C, as in the case of the culture tank B, the cells are uniformly weakly light-adapted, and even when exposed to strong light, only the photosynthesis of the lower curve in FIG. 1 can be obtained. Therefore, the culture tank
Comparing the productivity of A + B with that of the culture tank C, the culture tank A + B has higher photosynthetic activity and, consequently, algal cells or substance productivity.

【0008】説明の便宜上、培養槽AとBを別物として取
り扱ったが、培養槽Cを透明材料で区切るだけでも同様
の生産性の向上が可能であり、また、3枚の培養槽を用
いても、あるいは3区画に区切っても生産性の向上が可
能である。区画に用いる材料は透明な薄膜で十分であ
り、培養槽製造に必要な材料費の節約も可能である。一
般的な培養槽の厚さとしては、光源から近い物で1〜2 c
m、光源から遠い物で2〜5 cmが適しているが、用いる光
合成微生物の種類によっても適正な厚さは異なる。連続
培養は、両培養槽で独立に行ってもよいし、培養槽Aか
らのオーバーフローを培養槽Bへ導いてもよい。このよ
うな培養槽を用いて培養する光合成微生物としては、光
合成細菌、単細胞の微細藻類、糸状の微細藻類、単細胞
ラン藻、糸状のラン藻などが対象として挙げられる。ま
た、これらの培養に用いる培地としてはこれまでに微細
藻類用に考案されてきたあらゆる培地が使用可能であ
る。具体例としては、BG-11、MC、ESM、PE
S、SOT、MDM、MBM等である。また、培地に二
酸化炭素以外の炭素源を添加した光従属的な培養も可能
である。
For convenience of explanation, the culture tanks A and B are treated as separate products. However, the same productivity can be improved simply by dividing the culture tank C with a transparent material. Even if it is divided into three or three sections, productivity can be improved. A transparent thin film is sufficient for the material used for the compartment, and the material cost required for manufacturing the culture tank can be reduced. A typical culture tank thickness is 1 to 2 c, close to the light source.
m, 2 to 5 cm suitable for objects far from the light source, but the appropriate thickness varies depending on the type of photosynthetic microorganism used. Continuous culture may be performed independently in both culture vessels, or the overflow from culture vessel A may be led to culture vessel B. Examples of photosynthetic microorganisms cultured in such a culture tank include photosynthetic bacteria, single-cell microalgae, filamentous microalgae, single-celled cyanobacteria, and filamentous cyanobacteria. Further, as the medium used for these cultures, any medium that has been devised for microalgae can be used. Specific examples include BG-11, MC, ESM, PE
S, SOT, MDM, MBM, etc. Light-dependent culture in which a carbon source other than carbon dioxide is added to the medium is also possible.

【0009】培養槽の材質としては、アクリル、ガラ
ス、ポリカーボネートなど透明性が高く、細胞毒性の無
いものならばいずれも可能であるが、屋外の使用を前提
とする場合は紫外線耐性の材料が適切である。培養槽の
大きさは、培養に必要な容量に基づいて自由に高さと幅
を設計できる。光源も特定しないし、光強度も特定しな
い。また、第2図では、平板培養槽を直立させたものを
示しているが、屋外において太陽光を利用するケースで
は設置場所の緯度に応じて平板培養槽を傾斜させた物を
用いてもよい。さらに、屋外の大量培養においては、平
板型培養槽のセット(例えば培養槽A+B)を適度の間隔
を隔てて複数設置することも可能である。培養槽の上部
は特に蓋をせず開放しておくことも出来るが、無菌的な
培養を行う場合には蓋をして密封し、事前に5〜10%の
過酸化水素を培養槽内に導入して滅菌する事も可能であ
る。
As the material for the culture tank, any material having high transparency and no cytotoxicity, such as acrylic, glass, and polycarbonate, can be used. It is. The height and width of the culture tank can be freely designed based on the capacity required for culture. Neither the light source nor the light intensity is specified. Further, FIG. 2 shows the plate culture tank standing upright, but in the case of using sunlight outdoors, a plate culture tank that is inclined according to the latitude of the installation location may be used. . Further, in outdoor mass culture, a plurality of plate-type culture tank sets (for example, culture tanks A and B) can be provided at appropriate intervals. The upper part of the culture tank can be left open without a cover, but if sterile culture is to be performed, the lid should be closed and sealed, and 5-10% hydrogen peroxide should be placed in the culture tank beforehand. It is also possible to introduce and sterilize.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
る。図2に示す培養槽を用いて、温泉ラン藻Synechocys
tis aquatilis SI-2株を回分培養した例を以下に示す。
水道水に対して岩手県釜石湾より採取した海水を9対1
の割合で混合した10%海水1リッターに対して以下の
栄養塩類を添加したものを培養液として用いた。
The present invention will be described below in detail with reference to examples. Using the culture tank shown in Fig. 2, the hot spring cyanobacterium Synechocys
An example of batch culture of tis aquatilis SI-2 strain is shown below.
9 to 1 seawater collected from Kamaishi Bay in Iwate Prefecture for tap water
The following nutrients were added to 1 liter of 10% seawater mixed at a ratio of 1% and used as a culture solution.

【0011】 NaNO3 2.0g NaHCO3 1.0g KH2PO4 0.2g MgSO4・7H2O 0.1g Clewat 32 50mg Fe-EDTA 3.0mgNaNO3 2.0g NaHCO3 1.0g KH2PO4 0.2g MgSO4.7H2O 0.1g Clewat 32 50mg Fe-EDTA 3.0mg

【0012】厚さ1 cmの培養槽A、2 cmの培養槽Bを図2
のように配置し、さらに厚さ3 cmの培養槽Cを準備し
て、培養槽Aには強光順化細胞、培養槽BとCには弱光順
化細胞を同じ濃度で植え込んだ。培養槽の素材は厚さ1
cmの透明アクリル樹脂である。白色蛍光灯を用いて培養
槽A+BとCに平均強度400μmol m-2 s-1の光を片側から照
射し、また、両培養槽を高温水槽内に設置して培養温度
を40℃に保った。両培養槽の底部に散気管を設けて、5%
CO2を含んだ空気を0.5 vvmの速度で通気し、培養液を撹
拌した。実働容量は培養槽Aが300 ml、Bが600 ml、Cが9
00 mlである。
FIG. 2 shows a culture tank A having a thickness of 1 cm and a culture tank B having a thickness of 2 cm.
Was prepared, and a culture tank C having a thickness of 3 cm was further prepared. The culture tank A was inoculated with strong light-adapted cells, and the culture tanks B and C were inoculated with the same concentration of weak light-adapted cells. The culture tank material is 1 thick
cm transparent acrylic resin. The culture tanks A + B and C were irradiated with light having an average intensity of 400 μmol m -2 s -1 from one side using a white fluorescent lamp, and both culture tanks were set in a high-temperature water tank to raise the culture temperature to 40 ° C. Kept. A diffuser tube is provided at the bottom of both culture tanks, and 5%
Air containing CO2 was bubbled in at a rate of 0.5 vvm and the culture was agitated. The actual working volumes were 300 ml for culture tank A, 600 ml for B, and 9 for C.
00 ml.

【0013】図3に各培養槽における短時間の増殖曲線
を示す。培養槽Aにおいて4.5時間のうちに0.3 g l-1
増殖が認められた。同じ時間内で、培養槽Bでは0.1、培
養槽Cでは0.13 g l-1の細胞量の増加が認められた。生
産性の観点で比較すると、培養槽A+Bで0.034 g l-1 h-1
の生産性が得られたのに対し、培養槽Cでは0.026 g l-1
h-1であった。すなわち、培養槽A+Bの方が約31%高い生
産性を示した。さらに、時間を延長して20時間の回分培
養においても、培養槽Aで2.42、Bで0.61、Cで0.88 g l
-1の細胞量の増加があり、生産性では培養槽A+Bの方が
約38%高かった。
FIG. 3 shows a short-term growth curve in each culture tank. In culture tank A, a growth of 0.3 gl -1 was observed within 4.5 hours. Within the same time, an increase in cell amount of 0.1 in culture tank B and 0.13 gl -1 in culture tank C was observed. When compared in terms of productivity, 0.034 gl -1 h -1 in culture tank A + B
, Whereas in culture tank C 0.026 gl -1
h- 1 . That is, the culture tank A + B showed about 31% higher productivity. Furthermore, in a batch culture for 20 hours with the time extended, 2.42 in culture tank A, 0.61 in B, and 0.88 gl in C
There was an increase in cell amount of -1 and the productivity was about 38% higher in culture tank A + B.

【0014】[0014]

【発明の効果】本発明は、光合成微生物の新規な培養手
段を提供するものである。従来型の均一系の培養ではな
く、人為的に不均一な細胞を作り出すことによって、光
エネルギーを有効に活用することができる。既に開発さ
れている平板型の高効率光合成微生物培養槽の内部を透
明な素材で区切るという単純な工夫で、生産性を大幅に
(具体的には30〜40%程度)向上させることができる。
The present invention provides a novel means for culturing photosynthetic microorganisms. Light energy can be effectively utilized by artificially creating non-uniform cells instead of conventional homogeneous culture. The productivity can be greatly improved (specifically, about 30 to 40%) by a simple device that partitions the inside of the plate-type highly efficient photosynthetic microorganism culture tank that has already been developed with a transparent material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】弱光順化細胞と強光順化細胞の典型的な光強度
-光合成反応曲線を示す図
FIG. 1. Typical light intensity of weakly and lightly conditioned cells
-Diagram showing photosynthetic reaction curve

【図2】本培養方法に用いる培養槽の概念図FIG. 2 is a conceptual diagram of a culture tank used in the main culture method.

【図3】本培養方法によって温泉ラン藻Synechocystis
aquatilis SI-2株を培養した結果を示す図
Fig. 3 Hot spring cyanobacterium Synechocystis by this culture method
Figure showing the results of culturing aquatilis SI-2 strain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 張 凱 岩手県釜石市平田第3地割75番1 株式会 社海洋バイオテクノロジー研究所釜石研究 所内 Fターム(参考) 4B029 AA02 AA08 BB02 BB04 CC01 DB11 DF10 GA08 GB04 4B065 AA01X AA83X AC09 BA30 BC07 BC50 CA60  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Zhang Kai, 75-1, Hirata, Kamaishi-shi, Iwate Pref. GA08 GB04 4B065 AA01X AA83X AC09 BA30 BC07 BC50 CA60

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 強光に順化した細胞と弱光に順化した細
胞とを組み合わせることを特徴とする光合成微生物の培
養方法。
1. A method for culturing photosynthetic microorganisms, comprising combining cells adapted to high light and cells adapted to low light.
【請求項2】 平板型の培養槽を光源方向に重層的に設
置し、光源から近い培養槽で強光に順化した細胞を培養
し、光源から遠い培養槽で弱光に順化した細胞を培養す
ることを特徴とする請求項1に記載の光合成微生物の培
養方法。
2. A plate-type culture tank is arranged in a layered manner in the direction of the light source, cells cultured in the culture tank close to the light source are adapted to high light, and cells adapted to low light in the culture tank far from the light source. The method for culturing a photosynthetic microorganism according to claim 1, wherein the culturing is performed.
【請求項3】 人工光源として蛍光灯、白熱電球、又は
キセノンランプを用いて培養槽の片側から均一に光を照
射し、あるいは自然の太陽光を利用して培養することを
特徴とする請求項1に記載の光合成微生物の培養方法。
3. The method according to claim 1, wherein a fluorescent lamp, an incandescent lamp, or a xenon lamp is used as an artificial light source to uniformly irradiate light from one side of the culture tank, or that culture is performed using natural sunlight. 2. The method for culturing a photosynthetic microorganism according to 1.
【請求項4】 平板型の培養槽を距離をあけずに並列し
て培養することを特徴とする請求項1に記載の光合成微
生物の培養方法。
4. The method for culturing photosynthetic microorganisms according to claim 1, wherein the plate-type culture tanks are cultured in parallel without leaving a distance.
【請求項5】 距離をあけずに並列した複数の平板型の
培養槽を一セットとして、そのセットを複数平行に設置
することを特徴とする請求項1に記載の光合成微生物の
培養方法。
5. The method for culturing photosynthetic microorganisms according to claim 1, wherein a plurality of plate-type culture tanks arranged in parallel without leaving a distance are set as one set, and the sets are installed in parallel.
【請求項6】 請求項5に記載のセットを直立、あるい
は設置場所の緯度に応じて傾斜させて設置することを特
徴とする請求項1に記載の光合成微生物の培養方法。
6. The method for cultivating a photosynthetic microorganism according to claim 1, wherein the set according to claim 5 is installed upright or inclined at an installation location.
【請求項7】 光捕集のためのアンテナクロロフィル量
が少ない細胞と、アンテナクロロフィル量が多い細胞を
組み合わせることを特徴とする請求項1に記載の光合成
微生物の培養方法。
7. The method for culturing a photosynthetic microorganism according to claim 1, wherein a cell having a small amount of antenna chlorophyll for collecting light and a cell having a large amount of antenna chlorophyll are combined.
【請求項8】 アンテナクロロフィル量が少なく最大光
合成活性が高い細胞と、アンテナクロロフィル量が多く
最大光合成活性が低い細胞を組み合わせることを特徴と
する請求項1に記載の光合成微生物の培養方法。
8. The method for culturing a photosynthetic microorganism according to claim 1, wherein cells having a small amount of antenna chlorophyll and high maximum photosynthetic activity are combined with cells having a large amount of antenna chlorophyll and low maximum photosynthetic activity.
JP2000133906A 2000-05-02 2000-05-02 Method for incubating photosynthetic microorganism in high efficiency Pending JP2001309778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133906A JP2001309778A (en) 2000-05-02 2000-05-02 Method for incubating photosynthetic microorganism in high efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133906A JP2001309778A (en) 2000-05-02 2000-05-02 Method for incubating photosynthetic microorganism in high efficiency

Publications (1)

Publication Number Publication Date
JP2001309778A true JP2001309778A (en) 2001-11-06

Family

ID=18642299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133906A Pending JP2001309778A (en) 2000-05-02 2000-05-02 Method for incubating photosynthetic microorganism in high efficiency

Country Status (1)

Country Link
JP (1) JP2001309778A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222214A1 (en) * 2002-05-16 2003-12-18 Forschungszentrum Juelich Gmbh Laboratory culture reactor for phototrophic organisms such as algae is fabricated from translucent material and sub-divided into two or more compartments
WO2005059087A1 (en) 2003-12-16 2005-06-30 Inha-Industry Partnership Institute Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
JP2012191895A (en) * 2011-03-17 2012-10-11 Ihi Corp Culture apparatus
CN104232470A (en) * 2014-09-22 2014-12-24 新奥科技发展有限公司 Microalgae aquaculture system and method
JP2016131511A (en) * 2015-01-16 2016-07-25 国立大学法人 筑波大学 Algae culture apparatus and algae culture method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222214A1 (en) * 2002-05-16 2003-12-18 Forschungszentrum Juelich Gmbh Laboratory culture reactor for phototrophic organisms such as algae is fabricated from translucent material and sub-divided into two or more compartments
WO2005059087A1 (en) 2003-12-16 2005-06-30 Inha-Industry Partnership Institute Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
EP1694811A1 (en) * 2003-12-16 2006-08-30 Inha-Industry Partnership Institute Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
EP1694811A4 (en) * 2003-12-16 2007-01-03 Inha Ind Partnership Inst Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
US7618813B2 (en) 2003-12-16 2009-11-17 Inha-Industry Partnership Institute Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
JP2012191895A (en) * 2011-03-17 2012-10-11 Ihi Corp Culture apparatus
CN104232470A (en) * 2014-09-22 2014-12-24 新奥科技发展有限公司 Microalgae aquaculture system and method
CN104232470B (en) * 2014-09-22 2017-11-21 新奥科技发展有限公司 A kind of both culturing microalgae system and method
JP2016131511A (en) * 2015-01-16 2016-07-25 国立大学法人 筑波大学 Algae culture apparatus and algae culture method

Similar Documents

Publication Publication Date Title
Nwoba et al. Light management technologies for increasing algal photobioreactor efficiency
Benner et al. Lab-scale photobioreactor systems: principles, applications, and scalability
Suh et al. Photobioreactor engineering: design and performance
Pulz Photobioreactors: production systems for phototrophic microorganisms
Ogbonna et al. Sequential heterotrophic/autotrophic cultivation–an efficient method of producing Chlorella biomass for health food and animal feed
Marquez et al. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture
Moreno et al. Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047
Pulz et al. Photobioreactors: design and performance with respect to light energy input
Wang et al. Closed photobioreactors for production of microalgal biomasses
Ugwu et al. Photobioreactors for mass cultivation of algae
Xu et al. Microalgal bioreactors: challenges and opportunities
Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters
Tredici Mass production of microalgae: photobioreactors
US7770322B2 (en) Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes
JP4165715B2 (en) Multiple photobioreactor and photosynthetic microorganism culture method using the same
Cañedo et al. Considerations for photobioreactor design and operation for mass cultivation of microalgae
Saeid et al. Toward production of microalgae in photobioreactors under temperate climate
WO2009037683A1 (en) A system and apparatus for growing cultures
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
Grobbelaar et al. Use of photoacclimation in the design of a novel photobioreactor to achieve high yields in algal mass cultivation
Sergejevová et al. Photobioreactors with internal illumination
Wutthithien et al. Improved biohydrogen production by co-cultivation of N2-fixing cyanobacterium Fischerella muscicola TISTR 8215 and microalga Chlorella sp.
JP2001309778A (en) Method for incubating photosynthetic microorganism in high efficiency
Zarei et al. A review of bioreactor configurations for hydrogen production by cyanobacteria and microalgae
CN104711163A (en) Optical path variable plate-type microalgae culture reactor