JP2001305128A - Method and means for detecting deterioration of lubricating oil and refrigerating system - Google Patents

Method and means for detecting deterioration of lubricating oil and refrigerating system

Info

Publication number
JP2001305128A
JP2001305128A JP2000120791A JP2000120791A JP2001305128A JP 2001305128 A JP2001305128 A JP 2001305128A JP 2000120791 A JP2000120791 A JP 2000120791A JP 2000120791 A JP2000120791 A JP 2000120791A JP 2001305128 A JP2001305128 A JP 2001305128A
Authority
JP
Japan
Prior art keywords
lubricating oil
deterioration
oil
detecting
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000120791A
Other languages
Japanese (ja)
Inventor
Munetaka Yamada
宗登 山田
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000120791A priority Critical patent/JP2001305128A/en
Publication of JP2001305128A publication Critical patent/JP2001305128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which the deterioration of lubricating oil, such as the engine oil, turbine oil, refrigerating machine oil, etc., can be detected with high accuracy and a refrigerating system for which whether or not the fault of the system is caused by low-pressure gas leakage can be discriminated. SOLUTION: In the method, the deterioration of lubricating oil is detected with high accuracy by using the characteristic ultraviolet-absorbing peak of a resulted product of deterioration contained in the lubricating oil. Since a low-pressure gas leakage detecting means 6 using the method is provided in the refrigerating system composed of a compressor 1, a condenser 2, an expanding mechanism 3, and an evaporator 4 to detect the quantity of a product of oxidative deterioration of the lubricating oil dissolved in the oil, the presence/ absence of mixed air in the refrigerating system caused by the gas leakage from a low pressure-side pipeline can be confirmed and whether or not a fault is caused by low-pressure gas leakage can be discriminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン油,ター
ビン油,冷凍機油などの潤滑油の酸化劣化および熱劣化
生成物を高精度で検出する劣化検出手段に関するもので
ある。特に冷蔵庫,エアコン等の冷凍システム内におけ
る冷凍機油の劣化生成物を検出する劣化検出手段に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deterioration detecting means for detecting oxidation deterioration and heat deterioration products of lubricating oils such as engine oil, turbine oil and refrigerating machine oil with high accuracy. In particular, the present invention relates to a deterioration detecting means for detecting deterioration products of refrigerating machine oil in a refrigerating system such as a refrigerator and an air conditioner.

【0002】[0002]

【従来の技術】従来の潤滑油の劣化検出手段としては、
特開平8−226896号公報に走行運転中の車両のエ
ンジン油の劣化の進行状態を検出するための、潤滑油中
の酸化防止剤である2,6−ジt−ブチル基をもつヒン
ダードフェノールを赤外分光分析計により測定し酸化防
止剤の減少量を定量する潤滑油の劣化検出手段が開示さ
れている。
2. Description of the Related Art Conventional lubricating oil deterioration detecting means include:
JP-A-8-226896 discloses a hindered phenol having a 2,6-di-tert-butyl group as an antioxidant in a lubricating oil for detecting the progress of deterioration of an engine oil of a running vehicle. A means for detecting deterioration of a lubricating oil, which measures the amount of decrease in the antioxidant by measuring the amount of the antioxidant with an infrared spectrometer, is disclosed.

【0003】また、特開平10−38423号公報に
は、冷凍システムの故障原因である低圧ガスリークを判
定するための、冷凍システム中への空気混入によって潤
滑油が酸化劣化して生成した有機酸金属塩に起因する赤
外光線の吸光度を測定し有機酸金属塩の増加量を定量す
ることによる潤滑油の劣化検出手段が開示されている。
Japanese Patent Application Laid-Open No. H10-38423 discloses an organic acid metal formed by oxidizing and deteriorating a lubricating oil due to air mixing into a refrigeration system, in order to determine a low-pressure gas leak which is a cause of a refrigeration system failure. There is disclosed a means for detecting deterioration of lubricating oil by measuring the absorbance of infrared rays caused by the salt and quantifying the increase in the amount of the organic acid metal salt.

【0004】図1は、特開平10−38423号公報に
開示された前記劣化検出手段を設けた冷凍サイクルであ
る。図1において、1は圧縮機であり、2は凝縮器であ
り、3は膨張機構であり、4は蒸発器であり、5は冷媒
配管であり、6は冷凍システム中への空気混入によって
潤滑油が劣化して生成した有機酸金属塩に起因する赤外
光線の吸光度を測定する低圧ガスリーク検知手段であ
り、冷凍システムの故障原因である低圧ガスリークを判
定する。
FIG. 1 shows a refrigeration cycle provided with the deterioration detecting means disclosed in Japanese Patent Application Laid-Open No. 10-38423. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is an expansion mechanism, 4 is an evaporator, 5 is a refrigerant pipe, and 6 is lubricated by mixing air into the refrigeration system. A low-pressure gas leak detection unit that measures the absorbance of infrared rays caused by an organic acid metal salt generated by deterioration of oil, and determines low-pressure gas leak that is a cause of failure of a refrigeration system.

【0005】また、特開平7−35742号公報には内
燃機関用潤滑油,タービン油等の潤滑油の劣化を品質管
理する場合において、劣化管理の基本性状の1つである
酸化安定度を簡便に測定するための、紫外吸収スペクト
ル検出器による潤滑油の酸化安定度の測定法も開示され
ている。
Japanese Patent Application Laid-Open No. 7-35742 discloses a technique for easily controlling the oxidation stability, which is one of the basic characteristics of deterioration management, in quality control of deterioration of lubricating oil such as lubricating oil for an internal combustion engine and turbine oil. There is also disclosed a method for measuring the oxidation stability of lubricating oil using an ultraviolet absorption spectrum detector for the measurement.

【0006】これは潤滑油中の酸化防止剤である2,6
−ジt−ブチル−p−クレゾールの減少量を定量し潤滑
油の酸化安定度を測定する。他に紫外光線を利用したも
のとしては、実開平4−20971号公報に冷凍サイク
ルにおける冷凍機油の循環量検知装置が開示されてお
り、これは冷凍サイクル中の液冷媒が流過する冷媒配管
中に循環量検知部を持ち、その検知部に紫外光線を通し
冷凍機油中の2,6−ジt−ブチル−p−クレゾールの
存在量を測定し、冷凍機油中の2,6−ジt−ブチル−
p−クレゾールの濃度が一定とすることにより液冷媒中
の冷凍機油の循環量を計算するものである。
This is an antioxidant in lubricating oils of 2,6
-Determine the amount of decrease in di-t-butyl-p-cresol and measure the oxidation stability of the lubricating oil. As another apparatus utilizing ultraviolet rays, Japanese Utility Model Laid-Open No. 4-20971 discloses a device for detecting the amount of refrigerating machine oil circulating in a refrigeration cycle, which is provided in a refrigerant pipe through which a liquid refrigerant in the refrigeration cycle flows. Has a circulating amount detecting unit, and the amount of 2,6-di-tert-butyl-p-cresol in the refrigerating machine oil is measured by passing ultraviolet light through the detecting unit, and the amount of 2,6-di-t- in the refrigerating machine oil is measured. Butyl-
The amount of circulating refrigerating machine oil in the liquid refrigerant is calculated by keeping the concentration of p-cresol constant.

【0007】[0007]

【発明が解決しようとする課題】前記紫外光線を利用す
る潤滑油の劣化検出手段は、酸化防止剤である2,6−
ジt−ブチル基をもつヒンダードフェノールおよび有機
酸金属塩に含まれるカルボン酸イオンに起因する、それ
ぞれ3650cm-1および1610〜1550cm-1
赤外吸収スペクトルの特徴ピークを測定するとあるが、
ともに紫外吸収は弱く潤滑油の劣化度合を精度良く判定
することが困難である。
The means for detecting the deterioration of lubricating oil utilizing ultraviolet rays is based on the antioxidant 2,6-
Due to carboxylate ions contained in hindered phenols and organic acid metal salt having a di t- butyl group, although each is as measured characteristic peaks of the infrared absorption spectrum of 3650 cm -1 and 1610~1550Cm -1,
In both cases, the ultraviolet absorption is weak, and it is difficult to accurately determine the degree of deterioration of the lubricating oil.

【0008】また、前記紫外光線を利用した潤滑油の劣
化検出手段は、紫外吸光の対象が2,6−ジt−ブチル
−p−クレゾールであるので2,6−ジt−ブチル−p
−クレゾールが全て消費された後の潤滑油の劣化評価が
できない。
In addition, the means for detecting the deterioration of lubricating oil using the ultraviolet rays is based on 2,6-di-tert-butyl-p-cresol because the object of ultraviolet absorption is 2,6-di-tert-butyl-p-cresol.
-It is not possible to evaluate the deterioration of the lubricating oil after all the cresol has been consumed.

【0009】そこで本発明では、紫外吸光の対象を潤滑
油中の酸化劣化および熱劣化生成物としたので、潤滑油
の酸化劣化および熱劣化度合の情報を直接得ることがで
きる。特に前記特開平10−38423号公報に開示さ
れる冷凍システム中への空気混入によって潤滑油が劣化
して生成した有機酸金属塩に起因する赤外線の吸光度を
測定する潤滑油の劣化検出方法よりも、感度良く高精度
な潤滑油の劣化検出方法により、冷凍システムの故障原
因が低圧ガスリークによるものかどうか正しく判定する
ことができる冷凍システムを提供することを目的とす
る。
Therefore, in the present invention, since the object of ultraviolet absorption is a product of oxidation deterioration and heat deterioration in lubricating oil, information on the degree of oxidation deterioration and heat deterioration of lubricating oil can be directly obtained. In particular, the method for detecting deterioration of a lubricating oil disclosed in JP-A-10-38423, which measures the absorbance of infrared rays due to the organic acid metal salt generated by the deterioration of the lubricating oil due to the incorporation of air into the refrigeration system. It is another object of the present invention to provide a refrigeration system capable of correctly determining whether a failure of the refrigeration system is caused by a low-pressure gas leak by a sensitive and highly accurate method for detecting deterioration of a lubricating oil.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明は潤滑油中に生成する油劣化生成物の紫外吸収
特性を用いて劣化を検出することにより、潤滑油を使い
ながら検知することができる。また、冷凍システムは、
圧縮機と、凝縮器と、膨張機構と、蒸発器と、低圧ガス
リーク検知手段とから構成されている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention detects deterioration while using lubricating oil by detecting deterioration using the ultraviolet absorption characteristics of oil deterioration products generated in lubricating oil. be able to. Also, the refrigeration system
It comprises a compressor, a condenser, an expansion mechanism, an evaporator, and low-pressure gas leak detection means.

【0011】このことにより、低圧側配管からのガスリ
ークによって冷凍システム内に空気が混入しているのか
精度良く確認でき、故障原因が低圧ガスリークによるも
のかどうか正しく判定することができる冷凍システムが
得られる。
Thus, it is possible to accurately confirm whether air is mixed in the refrigeration system due to gas leak from the low-pressure side pipe, and to obtain a refrigeration system that can correctly determine whether the failure is caused by low-pressure gas leak. .

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、潤滑油中に生成する油劣化生成物の紫外吸収の特徴
ピークを用いて、潤滑油中の油劣化生成物の存在量を測
定する潤滑油の劣化検出方法であり、潤滑油の酸化劣化
生成物を高感度で検出する作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention uses the characteristic peak of the ultraviolet absorption of the oil deterioration product generated in the lubricating oil to determine the amount of the oil deterioration product in the lubricating oil. Is a method for detecting deterioration of lubricating oil, which has a function of detecting oxidation deterioration products of lubricating oil with high sensitivity.

【0013】請求項2に記載の発明は、前記潤滑油の主
成分がネオペンチルポリオールエステル化合物である請
求項1記載の潤滑油の劣化検出方法であり、主成分がネ
オペンチルポリオールエステル化合物である潤滑油の酸
化劣化生成物だけでなく熱劣化生成物も高感度で検出す
る作用を有する。前記好適なネオペンチルポリオールエ
ステル化合物の1例を化1に示す。
According to a second aspect of the present invention, there is provided the method for detecting deterioration of a lubricating oil according to the first aspect, wherein the main component of the lubricating oil is a neopentyl polyol ester compound, and the main component is a neopentyl polyol ester compound. It has the function of detecting not only oxidation degradation products of lubricating oil but also thermal degradation products with high sensitivity. An example of the preferred neopentyl polyol ester compound is shown in Chemical formula 1.

【0014】[0014]

【化1】 Embedded image

【0015】請求項3に記載の発明は、前記潤滑油の主
成分がモノカーボネート化合物である請求項1記載の潤
滑油の劣化検出方法であり、主成分がモノカーボネート
化合物である潤滑油の酸化劣化生成物だけでなく熱劣化
生成物も高感度で検出する作用を有する。前記好適なモ
ノカーボネート化合物の1例を化2に示す。
According to a third aspect of the present invention, there is provided the method for detecting deterioration of a lubricating oil according to the first aspect, wherein the main component of the lubricating oil is a monocarbonate compound. It has the function of detecting not only degradation products but also thermal degradation products with high sensitivity. An example of the preferred monocarbonate compound is shown in Chemical formula 2.

【0016】[0016]

【化2】 Embedded image

【0017】請求項4記載の発明は、波長210〜24
0nmで検出される前記油劣化生成物の特徴ピークを用
いた請求項1,請求項2、あるいは請求項3いずれか1
項記載の潤滑油の劣化検出方法であり、波長範囲を21
0〜240nmとしているので、潤滑油の酸化劣化およ
び熱劣化生成物を感度良く検出する作用を有する。
According to a fourth aspect of the present invention, the wavelengths of 210 to 24 are provided.
4. The method according to claim 1, wherein a characteristic peak of the oil degradation product detected at 0 nm is used.
The method for detecting the deterioration of lubricating oil described in the above item, wherein the wavelength range is 21
Since it is 0 to 240 nm, it has the function of detecting oxidation degradation and thermal degradation products of lubricating oil with high sensitivity.

【0018】請求項5記載の発明は、請求項4記載の潤
滑油の劣化検出方法を用いた潤滑油の劣化検出手段であ
り、冷凍システム中における潤滑油の酸化劣化および熱
劣化生成物を精度良く検出する作用を有する。
According to a fifth aspect of the present invention, there is provided a means for detecting deterioration of a lubricating oil using the method for detecting deterioration of a lubricating oil according to the fourth aspect of the present invention. It has the function of detecting well.

【0019】請求項6記載の発明は、圧縮機と、凝縮器
と、膨張機構と、蒸発器とからなる冷凍システムにおい
て、請求項5記載の潤滑油の劣化検出手段を設けた冷凍
システムであり、低圧側配管からのガスリークによって
冷凍システム内に空気が混入しているのか精度良く確認
でき、故障原因が低圧ガスリークによるものかどうか正
しく判定する作用を有する。
According to a sixth aspect of the present invention, there is provided a refrigeration system comprising a compressor, a condenser, an expansion mechanism, and an evaporator, wherein the refrigeration system according to the fifth aspect is provided with lubricating oil deterioration detecting means. In addition, it is possible to accurately confirm whether air has entered the refrigeration system due to gas leak from the low-pressure side pipe, and has an operation of correctly determining whether the failure is caused by low-pressure gas leak.

【0020】[0020]

【実施例】以下、本発明の実施の形態について、図2,
3を用いて説明する。
Embodiments of the present invention will now be described with reference to FIGS.
3 will be described.

【0021】図2は、本発明の実施の形態による冷凍シ
ステムの冷凍サイクル図である。図2において、1は圧
縮機であり、2は凝縮器であり、3は膨張機構であり、
4は蒸発器である。5は冷媒配管である。6は潤滑油中
の劣化生成物を検出する低圧ガスリーク検知手段であ
り、圧縮機1の側面に設けられている。
FIG. 2 is a refrigeration cycle diagram of the refrigeration system according to the embodiment of the present invention. In FIG. 2, 1 is a compressor, 2 is a condenser, 3 is an expansion mechanism,
4 is an evaporator. 5 is a refrigerant pipe. Reference numeral 6 denotes low-pressure gas leak detection means for detecting a degradation product in the lubricating oil, and is provided on a side surface of the compressor 1.

【0022】尚、膨張機構とは、キャピラリチューブ,
毛細管,膨張弁等を指すものである。
The expansion mechanism includes a capillary tube,
It refers to capillaries, expansion valves, and the like.

【0023】図3は、本発明の実施の形態による低圧ガ
スリーク検知手段の断面図である。図3において、6は
低圧ガスリーク検知手段であり、圧縮機1の側面に備え
られている。低圧ガスリーク検知手段6において、7は
透過セルであり圧縮機1内の潤滑油を保持している。
FIG. 3 is a sectional view of the low-pressure gas leak detecting means according to the embodiment of the present invention. In FIG. 3, reference numeral 6 denotes a low-pressure gas leak detecting means, which is provided on a side surface of the compressor 1. In the low-pressure gas leak detecting means 6, reference numeral 7 denotes a permeation cell which holds the lubricating oil in the compressor 1.

【0024】8は透過セル7の外部より波長210〜2
40nmの紫外光線を放射する光源であり、透過セル7
の外部に位置している。9は潤滑油を透過した紫外光線
を受光する受光部である。
Reference numeral 8 denotes a wavelength 210 to 2 from the outside of the transmission cell 7.
A light source that emits 40 nm ultraviolet light,
Located outside. Reference numeral 9 denotes a light receiving unit that receives ultraviolet light transmitted through the lubricating oil.

【0025】以上のように構成された冷凍システムにつ
いて、以下その作用を説明する。まず、圧縮機1で冷媒
は圧縮され、高温高圧のガス状態で冷媒配管5を通って
凝縮器2へ送られる。凝縮器2で放熱された冷媒は液化
し冷媒配管5を通って膨張機構3へ送られる。液化した
冷媒は膨張機構3で減圧され冷媒配管5を通って蒸発器
4へ送られる。蒸発器4で冷媒は気化することにより冷
却を行った後、冷媒配管5を通って再び圧縮機1に戻っ
てくる。以上のように冷媒は循環している。
The operation of the refrigeration system configured as described above will be described below. First, the refrigerant is compressed by the compressor 1 and sent to the condenser 2 through the refrigerant pipe 5 in a high-temperature and high-pressure gas state. The refrigerant radiated in the condenser 2 is liquefied and sent to the expansion mechanism 3 through the refrigerant pipe 5. The liquefied refrigerant is decompressed by the expansion mechanism 3 and sent to the evaporator 4 through the refrigerant pipe 5. After the refrigerant is cooled by being vaporized in the evaporator 4, the refrigerant returns to the compressor 1 again through the refrigerant pipe 5. The refrigerant is circulating as described above.

【0026】前記冷凍システムにおいて、膨張機構の直
後から圧縮機の手前までの低圧側の冷媒配管内の圧力
は、圧縮機の運転中に、負荷の変動によって蒸発器の温
度が下がると負圧になる。
In the refrigeration system, the pressure in the refrigerant pipe on the low-pressure side from immediately after the expansion mechanism to just before the compressor is reduced to a negative pressure when the temperature of the evaporator decreases due to a change in load during operation of the compressor. Become.

【0027】したがって、溶接不良等によって低圧側の
冷媒配管からガスリークが生じた場合、冷媒が放出され
るとともに空気が混入する。混入した空気によって潤滑
油が劣化し、生成した有機酸が冷媒配管等を腐蝕して有
機酸金属塩を生成する。そして、この有機酸金属塩が冷
媒配管に付着し、膨張機構等が閉塞し不冷症状に至る。
Therefore, when gas leaks from the refrigerant pipe on the low pressure side due to poor welding or the like, the refrigerant is released and air is mixed in. The lubricating oil is degraded by the mixed air, and the generated organic acid corrodes the refrigerant pipe and the like to generate an organic acid metal salt. Then, the organic acid metal salt adheres to the refrigerant pipe, and the expansion mechanism and the like are blocked, leading to an uncooled symptom.

【0028】このとき、圧縮機1の側面に設けられた低
圧ガスリーク検知手段6において、潤滑油は透過セル7
内に保持されている。透過セル7の外部に位置した光源
8から透過セル7に保持されている潤滑油に紫外光線を
放射すると、潤滑油中に溶解している成分が210〜2
40nmの波長範囲で紫外光線を吸収し、透過セル7の
外部に位置した受光部9で受光される。
At this time, in the low pressure gas leak detecting means 6 provided on the side surface of the compressor 1, the lubricating oil
Is held within. When ultraviolet light is emitted from the light source 8 located outside the transmission cell 7 to the lubricating oil held in the transmission cell 7, the components dissolved in the lubricating oil are 210 to 2.
Ultraviolet rays are absorbed in the wavelength range of 40 nm, and are received by the light receiving section 9 located outside the transmission cell 7.

【0029】低圧ガスリーク検知手段6で検出される値
は、劣化生成物と潤滑油の基油と酸化防止剤およびその
他潤滑油中に含まれる成分の紫外光線に対する吸光度の
総和である。
The value detected by the low-pressure gas leak detecting means 6 is the sum of the absorbance of the deterioration products, the base oil of the lubricating oil, the antioxidant, and other components contained in the lubricating oil to ultraviolet rays.

【0030】従って、新油状態の潤滑油からの吸光度の
増加量が劣化生成物量に比例するので低圧ガスリーク検
知手段6では劣化生成物の生成量を検出していることに
なる。
Accordingly, since the amount of increase in absorbance from the lubricating oil in the new oil state is proportional to the amount of the degradation product, the low-pressure gas leak detecting means 6 detects the amount of the degradation product.

【0031】そこで、高速液体クロマトグラフィーによ
り劣化生成物と潤滑油の基油と酸化防止剤およびその他
潤滑油中に含まれる成分の検出を行った。具体的には冷
凍システム内の空気量を70〜350mlに調整した冷
蔵庫を3か月間運転後、その油劣化を劣化生成物の検出
量で評価した。
Therefore, degradation products, base oil of lubricating oil, antioxidants and other components contained in lubricating oil were detected by high performance liquid chromatography. Specifically, after operating the refrigerator in which the amount of air in the refrigeration system was adjusted to 70 to 350 ml for three months, the oil deterioration was evaluated based on the detected amount of the deterioration product.

【0032】この冷蔵庫に用いた冷凍機油は、アルコー
ルとしてペンタエリスリトールとネオペンチルグリコー
ルのネオペンチルポリオール、酸として2−エチルヘキ
サン酸を原料とするエステルの混合物であり、その混合
比率は重量で約8:2で、粘度10.3mm2/s(4
0℃)、全酸価0.01mgKOH/g以下であり、酸
化防止剤として2,6−ジt−ブチル−p−クレゾール
を油中に0.15%含んでいる。運転時の油温は110
℃である。前記冷蔵庫より回収した試験油の油劣化生成
物の分析は、試験油をアセトニトリルを用いて体積比で
25倍に希釈し、検出器に紫外吸光光度計を用いた高速
液体クロマトグラフィーLC−10A(株式会社島津製
作所製)により下記仕様で測定した。
The refrigerating machine oil used in this refrigerator is a mixture of pentaerythritol and neopentyl polyol of neopentyl glycol as alcohol and an ester of 2-ethylhexanoic acid as a raw material, and the mixing ratio thereof is about 8 by weight. : 2, viscosity 10.3 mm 2 / s (4
0 ° C.), the total acid value is 0.01 mg KOH / g or less, and 0.15% of 2,6-di-tert-butyl-p-cresol as an antioxidant is contained in the oil. The oil temperature during operation is 110
° C. The analysis of the oil degradation products of the test oil collected from the refrigerator was performed by diluting the test oil with acetonitrile at a 25-fold volume ratio, and using high performance liquid chromatography LC-10A using an ultraviolet absorption spectrophotometer as a detector ( (Manufactured by Shimadzu Corporation) with the following specifications.

【0033】カラム:イナートシルODS−3V(GL
サイエンス株式会社製、内径4.6m、長さ250m
m、カラム温度40℃)、移動相:高速液体クロマトグ
ラフィー用アセトニトリル(和光純薬株式会社製、流量
0.5ml/min)、検出器:紫外吸光光度計(測定
波長240nm)。
Column: Inertsil ODS-3V (GL
Manufactured by Science Corporation, 4.6 m inner diameter, 250 m length
m, column temperature 40 ° C.), mobile phase: acetonitrile for high performance liquid chromatography (manufactured by Wako Pure Chemical Industries, Ltd., flow rate 0.5 ml / min), detector: ultraviolet absorption spectrophotometer (measuring wavelength 240 nm).

【0034】前記高速液体クロマトグラフィーの仕様で
空気混入量150mlのときの試験油のクロマトグラム
を図4に示す。図4において、10は共役二重結合をも
つと推測される酸化劣化生成物、11は共役二重結合を
もつと推測される熱劣化生成物、12は共役二重結合を
もつと推測される熱劣化生成物、13は2,6−ジt−
ブチル−p−クレゾール、14はネオペンチルグリコー
ル−ジ−2−エチルヘキサン酸エステル、15はペンタ
エリスリトール−テトラ−2−エチルヘキサン酸エステ
ルである。
FIG. 4 shows a chromatogram of the test oil when the amount of air mixed in the specifications of the high performance liquid chromatography was 150 ml. In FIG. 4, 10 is an oxidative degradation product presumed to have a conjugated double bond, 11 is a thermal degradation product presumed to have a conjugated double bond, and 12 is presumed to have a conjugated double bond. Thermal degradation product, 13 is 2,6-di-t-
Butyl-p-cresol, 14 is neopentyl glycol-di-2-ethylhexanoate, and 15 is pentaerythritol-tetra-2-ethylhexanoate.

【0035】ここで、冷凍システム内の空気量を70〜
350mlに調整した冷蔵庫において酸化劣化生成物1
0の検出量と冷凍システムへの空気混入量との相関を調
べた。この結果、図5に示すように相関係数は0.97
12であり、冷凍システム内の空気混入量を酸化劣化生
成物11の検出量で精度良く検出できることを確認し
た。図5における酸化劣化生成物の検出量とは、基油で
あるネオペンチルグリコール−ジ−2−エチルヘキサン
酸エステルとペンタエリスリトール−テトラ−2−エチ
ルヘキサン酸エステルの高速液体クロマトグラフィーに
おけるピーク面積の和に対する酸化劣化生成物のピーク
面積の割合である。
Here, the amount of air in the refrigeration system is set to 70 to
Oxidation degradation product 1 in refrigerator adjusted to 350 ml
The correlation between the detected amount of 0 and the amount of air mixed into the refrigeration system was examined. As a result, the correlation coefficient was 0.97 as shown in FIG.
12, and it was confirmed that the amount of air mixed in the refrigeration system can be accurately detected by the detection amount of the oxidation degradation product 11. The detected amount of the oxidative degradation products in FIG. 5 refers to the peak area of high-performance liquid chromatography of neopentyl glycol-di-2-ethylhexanoate and pentaerythritol-tetra-2-ethylhexanoate as base oils. It is the ratio of the peak area of the oxidation degradation product to the sum.

【0036】同様に、2,6−ジt−ブチル−p−クレ
ゾール13の検出量と冷凍システムへの空気混入量との
相関を調べると、図6に示すように相関係数が0.95
83となる。しかし、空気混入量が200ml以上では
2,6−ジt−ブチル−p−クレゾールが全て消費され
ているので2,6−ジt−ブチル−p−クレゾールによ
り空気混入量を予測することはできない。また、空気混
入量が350ml以上では酸化劣化生成物のピークが重
なるため油全体の検出量が増加する。従って、油全体の
吸光度を考えると空気量0〜200mlまでは2,6−
ジt−ブチル−p−クレゾールは消費され減少するが、
潤滑油中に含まれる全成分の吸光度の総和は増加傾向を
示す。より好ましくは2,6−ジt−ブチル−p−クレ
ゾール以外の本測定波長で紫外吸収を示さない酸化防止
剤を用いた方がより精度の良い劣化度合の判定が可能で
ある。
Similarly, when the correlation between the detected amount of 2,6-di-tert-butyl-p-cresol 13 and the amount of air mixed into the refrigeration system was examined, the correlation coefficient was 0.95 as shown in FIG.
83. However, when the amount of air entrainment is 200 ml or more, 2,6-di-tert-butyl-p-cresol is completely consumed, so that the amount of air entrapment cannot be predicted by 2,6-di-tert-butyl-p-cresol. . Further, when the amount of air mixed in is 350 ml or more, the peaks of oxidation degradation products overlap, and the detection amount of the entire oil increases. Therefore, considering the absorbance of the whole oil, 2,6-
Di-t-butyl-p-cresol is consumed and reduced,
The sum of the absorbances of all the components contained in the lubricating oil shows an increasing tendency. More preferably, the use of an antioxidant that does not exhibit ultraviolet absorption at the main measurement wavelength other than 2,6-di-tert-butyl-p-cresol allows more accurate determination of the degree of deterioration.

【0037】また本発明の紫外波長210〜240nm
の範囲においては劣化生成物に含まれると推測される共
役二重結合の吸収が極大であり、潤滑油の基油の吸収が
他の波長範囲よりも弱い。従って、紫外波長210〜2
40nmの範囲において前記低圧ガスリーク検知手段6
を用いることで、他の波長範囲よりも容易に劣化生成物
を検出することが可能となる。なお前記の共役二重結合
を有する劣化生成物は潤滑油の酸化劣化により生成す
る。特にネオペンチルポリオールエステル化合物および
モノカーボネート化合物を主成分とする潤滑油では酸化
劣化だけでなく熱劣化においても前記の共役二重結合を
有する劣化生成物が生成するので、他の潤滑油よりも容
易に油劣化を検出することが可能となる。
The ultraviolet wavelength of the present invention is from 210 to 240 nm.
In the range, the absorption of the conjugated double bond presumed to be contained in the degradation product is maximum, and the absorption of the base oil of the lubricating oil is weaker than other wavelength ranges. Accordingly, the ultraviolet wavelengths 210 to 2
In the range of 40 nm, the low pressure gas leak detecting means 6
By using, it is possible to detect a degradation product more easily than in other wavelength ranges. The degradation product having the conjugated double bond is generated by oxidative degradation of the lubricating oil. Particularly, in a lubricating oil containing a neopentyl polyol ester compound and a monocarbonate compound as main components, a deterioration product having the conjugated double bond is generated not only in oxidative deterioration but also in heat deterioration, so that it is easier than other lubricating oils. It is possible to detect oil deterioration.

【0038】一方、赤外吸光を用いて空気混入量150
mlのときの試験油の分析を行い、2,6−ジt−ブチ
ル−p−クレゾールおよび潤滑油の劣化生成物の吸光度
を調べた。結果、2,6−ジt−ブチル−p−クレゾー
ルの赤外吸光度は新油とほとんど変化がなく減少量を定
量することは困難である。また潤滑油の劣化生成物の吸
光度も新油との比較から検出されず、赤外吸収をもって
定量することは非常に困難である。
On the other hand, the amount of air entrainment was 150 using infrared absorption.
The test oil at ml was analyzed to determine the absorbance of 2,6-di-t-butyl-p-cresol and the degradation products of the lubricating oil. As a result, the infrared absorbance of 2,6-di-t-butyl-p-cresol hardly changes from that of the new oil, and it is difficult to quantify the decrease. In addition, the absorbance of the deterioration product of the lubricating oil is not detected from the comparison with the new oil, and it is very difficult to determine the amount by infrared absorption.

【0039】以上より、潤滑油中に生成する油劣化生成
物の存在量を測定することを特徴とする本発明における
潤滑油の劣化検出方法は、従来技術にない高精度で潤滑
油の劣化の度合を判定することが可能となるので低圧ガ
スリーク不良と正しく判定でき、劣化の程度を精度良く
確認でき劣化の程度に合わせた修理方法を選択できる。
As described above, the method for detecting the deterioration of the lubricating oil according to the present invention, which is characterized by measuring the amount of the oil deterioration products generated in the lubricating oil, has a high accuracy of detecting the deterioration of the lubricating oil which is not available in the prior art. Since the degree can be determined, a low-pressure gas leak failure can be correctly determined, the degree of deterioration can be accurately confirmed, and a repair method suitable for the degree of deterioration can be selected.

【0040】[0040]

【発明の効果】以上のように本発明によれば、エンジン
油,タービン油,冷凍機油などの潤滑油の酸化劣化およ
び熱劣化生成物を高感度で検出することが可能となり、
走行運転中の車両のエンジン油の劣化の進行状態を検出
することや、潤滑油の酸化安定度を測定することや、冷
凍サイクルにおける冷凍機油の循環量を検知することが
可能となる。特に、圧縮機と、凝縮器と、膨張機構と、
蒸発器とからなる冷凍システムにおいて、潤滑油の酸化
劣化および熱劣化生成物を高感度で検出する低圧ガスリ
ーク検知手段を設けることで、冷凍システムへの空気混
入の有無を検知することができ、故障原因が低圧ガスリ
ークによるものかどうか正しく判定することができると
いう有利な効果が得られる。
As described above, according to the present invention, it is possible to detect oxidation deterioration and heat deterioration products of lubricating oil such as engine oil, turbine oil, and refrigerating machine oil with high sensitivity.
It is possible to detect the progress of deterioration of the engine oil of the vehicle during running operation, measure the oxidation stability of lubricating oil, and detect the amount of circulating refrigeration oil in the refrigeration cycle. In particular, a compressor, a condenser, an expansion mechanism,
In a refrigeration system consisting of an evaporator, by providing a low-pressure gas leak detection means for detecting oxidation degradation and thermal degradation products of lubricating oil with high sensitivity, the presence or absence of air entrapment in the refrigeration system can be detected, An advantageous effect is obtained that it can be correctly determined whether the cause is a low-pressure gas leak.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の発明による冷凍システムの冷凍サイクル
FIG. 1 is a refrigeration cycle diagram of a refrigeration system according to a conventional invention.

【図2】本発明の実施の形態による冷凍システムの冷凍
サイクル図
FIG. 2 is a refrigeration cycle diagram of the refrigeration system according to the embodiment of the present invention.

【図3】本発明の実施の形態による低圧ガスリークの検
知手段の断面図
FIG. 3 is a sectional view of a low-pressure gas leak detecting unit according to the embodiment of the present invention.

【図4】紫外波長240nmにおける潤滑油の空気混入
量350mlのときの高速液体クロマトグラフィーによ
るクロマトグラムを示す図
FIG. 4 is a diagram showing a chromatogram by high performance liquid chromatography at an ultraviolet wavelength of 240 nm when the amount of lubricating oil mixed with air is 350 ml.

【図5】高速液体クロマトグラフィーによって検出され
る酸化劣化生成物検出量(対新油比)と空気混入量の関
係を示すグラフ
FIG. 5 is a graph showing the relationship between the amount of oxidatively degraded products detected by high-performance liquid chromatography (to new oil ratio) and the amount of air entrapment.

【図6】高速液体クロマトグラフィーによって検出され
る2,6−ジt−ブチル−p−クレゾール検出量(対新
油比)と空気混入量の関係を示すグラフ
FIG. 6 is a graph showing the relationship between the amount of 2,6-di-tert-butyl-p-cresol detected by high performance liquid chromatography (the ratio of the new oil) to the amount of air entrapment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張機構 4 蒸発器 5 冷媒配管 6 低圧ガスリーク検知手段 7 透過セル 8 光源 9 受光部 10 共役二重結合をもつと推測される酸化劣化生成物 11,12 共役二重結合をもつと推測される熱劣化生
成物 13 2,6−ジt−ブチル−p−クレゾール 14 ネオペンチルグリコール−ジ−2−エチルヘキサ
ン酸エステル 15 ペンタエリスリトール−テトラ−2−エチルヘキ
サン酸エステル
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion mechanism 4 Evaporator 5 Refrigerant piping 6 Low-pressure gas leak detection means 7 Transmission cell 8 Light source 9 Light-receiving part 10 Oxidation degradation product presumed to have a conjugate double bond 11, 12 Conjugate double bond 13 2,6-di-tert-butyl-p-cresol 14 neopentylglycol-di-2-ethylhexanoate 15 pentaerythritol-tetra-2-ethylhexanoate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 潤滑油中に生成する油劣化生成物の紫外
吸収特性を用いて、潤滑油中の油劣化生成物の存在量を
測定することを特徴とする潤滑油の劣化検出方法。
1. A method for detecting deterioration of a lubricating oil, comprising measuring the abundance of oil deterioration products in a lubricating oil by using ultraviolet absorption characteristics of the oil deterioration products generated in the lubricating oil.
【請求項2】 前記潤滑油の主成分がネオペンチルポリ
オールエステル化合物である請求項1記載の潤滑油の劣
化検出方法。
2. The method according to claim 1, wherein a main component of the lubricating oil is a neopentyl polyol ester compound.
【請求項3】 前記潤滑油の主成分がモノカーボネート
化合物である請求項1記載の潤滑油の劣化検出方法。
3. The method according to claim 1, wherein a main component of the lubricating oil is a monocarbonate compound.
【請求項4】 波長210〜240nmで検出される前
記油劣化生成物の特徴ピークを用いた請求項1,請求項
2、あるいは請求項3いずれか1項記載の潤滑油の劣化
検出方法。
4. The method for detecting deterioration of lubricating oil according to claim 1, wherein a characteristic peak of the oil deterioration product detected at a wavelength of 210 to 240 nm is used.
【請求項5】 請求項4記載の潤滑油の劣化検出方法を
用いた潤滑油の劣化検出手段。
5. A means for detecting deterioration of lubricating oil using the method for detecting deterioration of lubricating oil according to claim 4.
【請求項6】 圧縮機と、凝縮器と、膨張機構と、蒸発
器とからなる冷凍システムにおいて、請求項5記載の潤
滑油の劣化検出手段を設けた冷凍システム。
6. A refrigeration system comprising a compressor, a condenser, an expansion mechanism, and an evaporator, wherein the refrigeration system is provided with the means for detecting deterioration of lubricating oil according to claim 5.
JP2000120791A 2000-04-21 2000-04-21 Method and means for detecting deterioration of lubricating oil and refrigerating system Pending JP2001305128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120791A JP2001305128A (en) 2000-04-21 2000-04-21 Method and means for detecting deterioration of lubricating oil and refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120791A JP2001305128A (en) 2000-04-21 2000-04-21 Method and means for detecting deterioration of lubricating oil and refrigerating system

Publications (1)

Publication Number Publication Date
JP2001305128A true JP2001305128A (en) 2001-10-31

Family

ID=18631545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120791A Pending JP2001305128A (en) 2000-04-21 2000-04-21 Method and means for detecting deterioration of lubricating oil and refrigerating system

Country Status (1)

Country Link
JP (1) JP2001305128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206956A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Corrosion diagnostic method, corrosion resistance inspection method and corrosion diagnostic system for rare earth permanent magnet
WO2018042495A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Refrigeration cycle apparatus
CN110657609A (en) * 2018-06-29 2020-01-07 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
CN111829137A (en) * 2020-07-29 2020-10-27 四川长虹空调有限公司 Method and system for identifying mixed air fault of air conditioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206956A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Corrosion diagnostic method, corrosion resistance inspection method and corrosion diagnostic system for rare earth permanent magnet
WO2018042495A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2018042495A1 (en) * 2016-08-29 2019-04-04 三菱電機株式会社 Refrigeration cycle equipment
CN110657609A (en) * 2018-06-29 2020-01-07 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
JP2020003166A (en) * 2018-06-29 2020-01-09 日立ジョンソンコントロールズ空調株式会社 Refrigerator oil deterioration determination system, water component contamination determination system, refrigeration cycle device and water component residual inspection method
CN110657609B (en) * 2018-06-29 2021-07-27 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
CN111829137A (en) * 2020-07-29 2020-10-27 四川长虹空调有限公司 Method and system for identifying mixed air fault of air conditioning system
CN111829137B (en) * 2020-07-29 2021-10-15 四川长虹空调有限公司 Method and system for identifying mixed air fault of air conditioning system

Similar Documents

Publication Publication Date Title
Grace et al. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
US20030182950A1 (en) Non-intrusive refrigerant charge indicator
US20160003509A1 (en) Coupler and methods of use for assessment of refrigeration systems
JP5226395B2 (en) Mechanical seal leak measurement method
JP2001305128A (en) Method and means for detecting deterioration of lubricating oil and refrigerating system
CN110848875A (en) Refrigerant leakage detection method and air conditioner
US6651487B1 (en) Test for brake fluid age and condition
US6514765B1 (en) Acid test kit and method of use
US10458963B2 (en) Quantitative HPTLC cannabinoid field testing device and method
JPH028670A (en) Method and device for inspecting contamination of low-pressure refrigerant
CN110658141A (en) Formaldehyde emission online measurement method and system suitable for multiple pollution sources
FR3091336A1 (en) Method for determining the level of refrigerant charge in a cooling circuit for an air conditioning system
CN110822675B (en) Air conditioner refrigerant leakage detection method
CN102933679B (en) Fluorescent detector
Crow et al. Analysis of urinary aromatic acids by liquid chromatography tandem mass spectrometry
US2434448A (en) Method of detection of small leaks in receptacles
CN110940046B (en) Refrigerant leakage detection method and air conditioner
CN211955205U (en) Binary or ternary mixed refrigerant concentration detection equipment and system
Kutsuna et al. Real time oil concentration measurement in automotive air conditioning by ultraviolet light absorption
CN110940050B (en) Refrigerant leakage detection method and air conditioner
Zhang et al. Improving long-term stability of retinol in dried blood spots and quantification of its levels via a novel LC-MS/MS method
Tranfo et al. Comparison of hydrolysis and HPLC/MS/MS procedure with ELISA assay for the determination of S-phenylmercapturic acid as a biomarker of benzene exposure in human urine
US10739270B2 (en) Rapid field testing method for detecting lubricant or refrigerant additives
JPH07280398A (en) Method and apparatus for determining air infiltration of refrigerator
JPH10288431A (en) Flow rate detector of refrigerating cycle