JP2001303182A - Steel sheet for can good in workability and small in defect and its producing method - Google Patents

Steel sheet for can good in workability and small in defect and its producing method

Info

Publication number
JP2001303182A
JP2001303182A JP2000122744A JP2000122744A JP2001303182A JP 2001303182 A JP2001303182 A JP 2001303182A JP 2000122744 A JP2000122744 A JP 2000122744A JP 2000122744 A JP2000122744 A JP 2000122744A JP 2001303182 A JP2001303182 A JP 2001303182A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
cans
steel
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000122744A
Other languages
Japanese (ja)
Other versions
JP4555433B2 (en
Inventor
Hisamasa Tomokiyo
寿雅 友清
Yuichi Taniguchi
裕一 谷口
Toshiaki Mizoguchi
利明 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000122744A priority Critical patent/JP4555433B2/en
Publication of JP2001303182A publication Critical patent/JP2001303182A/en
Application granted granted Critical
Publication of JP4555433B2 publication Critical patent/JP4555433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a low-cost steel sheet for a can which is small in defects caused by inclusions, in which, even in the case of a stock having a laminated thermoplastic resin film on the surface of a steel sheet, the fracture of the film at the time of can making is prevented, and which has good workability and to provide its producing method. SOLUTION: This steel sheet for a can good in workability and small in defects has a composition containing one or more elements selected from, by weight, 0.0002 to 0.0080% C, 0.001 to 0.10% Si, 0.05 to 1.0% Mn, 0.001 to 0.050% P, 0.001 to 0.030% S, 0.001 to 0.008% Sol.Al, 0.0005 to 0.0080% N, 0.002 to 0.030% Ti, <=50 ppm Ca and <=50 ppm Mg, and the balance iron with inevitable impurities, in which oxide inclusions to be formed are mainly composed of a crystallized phase essentially consisting of Ti oxide and a crystallized phase essentially consisting of alumina, and further one or more kinds of a crystallized phase essentially consisting of CaO and a crystallized phase essentially consisting of MgO, and the crystallized phases are present in the steel sheet. The producing method of the same is also presented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加工性が良好で欠
陥が少ない缶用鋼板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for cans having good workability and few defects, and a method for producing the same.

【0002】[0002]

【従来の技術】ぶりき、ティンフリースチール等の缶用
鋼板は通常、深絞り加工、しごき加工、曲げ加工、スト
レッチ加工等を施して容器として使用される。これらの
鋼板は、通常転炉で溶製された未脱酸の溶鋼をAlで脱
酸を行うAlキルド鋼で製造されている。このようなA
l脱酸鋼では、脱酸時に添加したAlと溶鋼中の酸素が
反応したり、脱酸後に鋼中に残留したAlがスラグや空
気中等の酸素によって酸化してアルミナが生じる。この
アルミナは硬質であるため圧延や加工等で破砕されずに
鋼板に塊状で残存し、製缶時に割れや疵等の欠陥発生の
原因となる。そこでこれらのアルミナに対して、<1> ス
ラグ中や雰囲気中の酸素の制御による溶鋼中のAlの酸
化によるアルミナの生成防止や、<2> 溶鋼中へのガスや
フラックスの吹き込みによる溶鋼中のアルミナの浮上促
進による低減と、<3> 溶鋼中へのCaの添加によってア
ルミナを圧延・加工時に破砕されやすいカルシウムアル
ミネートに形態制御する無害化が行われてきた。
2. Description of the Related Art Tinplate steel sheets such as tinplate and tin-free steel are usually subjected to deep drawing, ironing, bending, stretching and the like, and used as containers. These steel sheets are usually made of Al-killed steel that deoxidizes undeoxidized molten steel that has been produced in a converter with Al. Such an A
In 1-deoxidized steel, Al added during deoxidation reacts with oxygen in the molten steel, or Al remaining in the steel after deoxidation is oxidized by oxygen in slag, air or the like to produce alumina. Since this alumina is hard, it remains in a lump in the steel sheet without being crushed by rolling or processing, and causes defects such as cracks and flaws during can manufacturing. Therefore, for these aluminas, <1> the control of oxygen in the slag and the atmosphere to prevent the generation of alumina due to the oxidation of Al in the molten steel, and <2> the injection of gas and flux into the molten steel Reduction by promoting the levitation of alumina and <3> detoxification of form control of alumina into calcium aluminate which is easily crushed during rolling and processing by adding Ca to molten steel have been performed.

【0003】しかし、Alで脱酸を行っている限りはア
ルミナの生成は皆無にはできず、除去も不十分である。
そして、Ca添加による方法もCaは高価であるととも
に歩留まりが極めて悪いために合金コストが高くなる。
また介在物にアルミナを含有するため冷却時に介在物中
に固いアルミナが部分的に晶出し、圧延等によっても破
砕されずに残存し欠陥が発生する。さらに、Caを添加
して生成するカルシウムアルミネートは肥大化しやす
く、このような介在物が浮上しきれず残留した場合には
欠陥となる。これらの問題を解決するためにはAl以外
の元素で脱酸することが考えられ、特公昭48−290
05号公報に見られるようにAlもSiも全く添加せず
にTiのみで脱酸する方法があるが、この場合Tiのみ
による脱酸のためにTi添加前の溶鋼中酸素は非常に高
い値となり、この様な溶鋼にTiを添加すると粒径の大
きなチタン酸化物が多量に生成して溶鋼中に残存し、こ
れはアルミナと同様に固く破砕されにくいため欠陥とな
る。このため、特公平2−9646号公報に見られるよ
うにTi添加前にAlを添加して予備脱酸を行い、溶鋼
酸素を低減した後にTiを添加する方法がある。
[0003] However, as long as deoxidation is carried out with Al, generation of alumina cannot be eliminated and removal is insufficient.
In addition, Ca is expensive and the yield is extremely low, so that the alloy cost is high.
In addition, since the inclusions contain alumina, hard alumina is partially crystallized in the inclusions during cooling, and remains without being crushed even by rolling or the like, causing defects. Furthermore, calcium aluminate generated by adding Ca tends to be enlarged, and if such inclusions cannot be completely floated and remain, they become defects. In order to solve these problems, deoxidation with an element other than Al may be considered.
As disclosed in Japanese Patent Publication No. 05-2005, there is a method of deoxidizing only with Ti without adding any Al or Si. In this case, oxygen in molten steel before adding Ti is extremely high because of deoxidation with only Ti. When Ti is added to such molten steel, a large amount of titanium oxide having a large particle size is generated and remains in the molten steel, which is hard and hard to be crushed, like alumina, and becomes a defect. Therefore, as disclosed in Japanese Patent Publication No. 2-9646, there is a method in which Al is added before Ti is added to perform preliminary deoxidation to reduce molten steel oxygen and then Ti is added.

【0004】上記のごとき方法では溶鋼中の酸素が高い
状態でAlを添加するために、多量のAlを添加する必
要があり、その結果、多量のアルミナが生成してそのま
ま残留したり、アルミナを含有する複合介在物が生成し
て冷却時に介在物中の一部にアルミナが晶出し、この部
分が圧延等によっても破砕されずに残存し欠陥が発生す
る。また、Alは脱酸力が強いので酸素のコントロール
が不安定である。さらに、Tiを添加した際にTiと溶
鋼中の酸素との反応によって生成したチタン酸化物の一
部は複合介在物となるが、この複合酸化物はアルミナを
含むために冷却時に介在物中に晶出するアルミナが破砕
されずに残存し欠陥が発生する。一方、生成したチタン
酸化物の大部分は粒径が大きくかつ、破砕されにくいチ
タン酸化物となって溶鋼中に存在し、その一部は浮上し
きれずに残留して欠陥となる等の課題がある。このよう
に通常の製造方法では、粒径が大きくかつ、硬質の介在
物が含まれるのが一般的であり、この介在物は製缶時に
亀裂の起点となるため、この種の介在物が多量に含まれ
ると、破胴、ピンホール等の欠陥が多発するという問題
を有していた。
In the above method, a large amount of Al needs to be added in order to add Al in a state where oxygen in the molten steel is high. As a result, a large amount of alumina is generated and remains as it is, or alumina is removed. The contained inclusions are formed, and alumina is crystallized in a part of the inclusions upon cooling, and this part remains without being crushed even by rolling or the like, causing defects. In addition, since Al has a strong deoxidizing power, control of oxygen is unstable. Furthermore, when Ti is added, part of the titanium oxide generated by the reaction between Ti and oxygen in the molten steel becomes a composite inclusion, but this composite oxide contains alumina so that it is contained in the inclusion during cooling. The crystallized alumina remains without being crushed, causing defects. On the other hand, most of the generated titanium oxide has a large particle size and is hard to be crushed and exists in molten steel as titanium oxide, and some of the titanium oxide remains without floating and remains as a defect. is there. As described above, in the ordinary manufacturing method, it is common that a large particle size and a hard inclusion are included, and this inclusion becomes a starting point of a crack at the time of can-making. , There is a problem that defects such as a broken body and a pinhole frequently occur.

【0005】上記の鋼板中の介在物に起因した製缶時の
欠陥の防止を実現するために、本発明者らは、鋼中の介
在物を微細でかつ、部分的に固い晶出相がなく介在物全
体が変形・破砕しやすい組成の介在物にコントロールし
た缶用鋼板およびその製造方法を先に提案(特開平9−
184044号公報、特開平11−264052号公
報)した。
[0005] In order to prevent the above defects at the time of can making caused by inclusions in the steel sheet, the present inventors made the inclusions in the steel fine and partially hard crystallization phase. A steel sheet for cans in which the inclusions are controlled to include a composition in which the entire inclusion is easily deformed and crushed, and a method for producing the same are proposed first (Japanese Patent Application Laid-Open No.
No. 184044, JP-A-11-264052).

【0006】これらの技術によって、従来鋼に比して製
缶時の欠陥が低減し、さらに、実操業における適正操業
範囲の拡大(緩和)が可能になった。しかしながら、製
缶時に発生する欠陥は完全には防止されておらず、さら
なる改善が望まれていた。特に近年、製造工程省略によ
るコスト低減、環境保全の観点から、金属板素材の表面
に熱可塑性樹脂フィルムをラミネートした素材が缶用鋼
板として使用されているが、鋼板中に存在する硬質の介
在物が製缶時にフィルムを破断させ、耐食性等の缶特性
を劣化させる課題が残る。
[0006] These techniques have reduced defects during can-making compared to conventional steel, and have made it possible to expand (relax) the proper operation range in actual operation. However, defects that occur during can-making are not completely prevented, and further improvements have been desired. Particularly, in recent years, from the viewpoint of cost reduction by omitting the manufacturing process and environmental protection, a material obtained by laminating a thermoplastic resin film on the surface of a metal plate material has been used as a steel plate for cans, but hard inclusions present in the steel plate However, there remains a problem that the film is broken at the time of can manufacturing and the can characteristics such as corrosion resistance are deteriorated.

【0007】また、缶用として用いられる表面処理鋼板
の原板の調質度は、JIS(G3303)に規定されるように、ロ
ックウェル硬さに応じて軟質のものから調質度T1とし
て、T6までの6種に分類される。一般に調質度がT1〜T3
の軟質ぶりきは焼鈍工程において箱型焼鈍法で、調質度
がT4〜T6までの硬質ぶりきは連続焼鈍法で製造されてい
る。しかし、箱型焼鈍法では生産性や材質ばらつき等の
問題があり、軟質ぶりきの製造も連続焼鈍法で行うこと
が望まれていた。連続焼鈍法による軟質ぶりきの製造に
関しては、特開昭58−197224号公報や特開平4
−228526号公報がある。これらの技術はいずれも
極低炭素鋼を用い、さらに結晶粒の微細化や面内異方性
を改善するために、所定量のNbを添加した鋼板あるい
はその製造方法に関するものである。これらの技術の提
案により、連続焼鈍法において軟質でかつ加工性の良好
なブリキ原板の製造が可能となった。
[0007] Further, as specified in JIS (G3303), the tempering degree of a base sheet of a surface-treated steel sheet used for cans can be changed from soft one according to Rockwell hardness to T6 as tempering degree T1. It is classified into the following six types. Generally, tempering degree is T1-T3
The soft tinplate is manufactured by a box-type annealing method in the annealing step, and the hard tinplate having a tempering degree of T4 to T6 is manufactured by a continuous annealing method. However, in the box-type annealing method, there are problems such as productivity and material variation, and it is desired that the soft tinplate is manufactured by the continuous annealing method. Regarding the production of soft tinplate by the continuous annealing method, Japanese Patent Application Laid-Open No. 58-197224 and
No. 228526. All of these techniques relate to a steel sheet using ultra-low carbon steel and further adding a predetermined amount of Nb in order to further refine crystal grains and improve in-plane anisotropy, or a method of manufacturing the same. By the proposal of these techniques, it has become possible to manufacture a tinplate sheet which is soft and has good workability in the continuous annealing method.

【0008】しかしながら、成形性の改善を目的とした
Nbの多量添加は鋼板の耐食性劣化や再結晶温度の上昇
を招き、連続焼鈍工程での鋼板の軟化による通板不良等
の原因となり、材質特性と安定製造に関して課題も残っ
ている。
However, the addition of a large amount of Nb for the purpose of improving the formability causes deterioration of the corrosion resistance of the steel sheet and an increase in the recrystallization temperature, which results in poor passing of the steel sheet due to softening of the steel sheet in the continuous annealing step, and the like. There are still issues regarding stable production.

【0009】極低炭素鋼を用いた連続焼鈍での安定製造
に関しては、特開平7−278678号公報がある。こ
の技術は、加工性および時効性を改善するために、焼鈍
工程で脱炭反応を利用し、最終的に鋼中に残存するC量
を0.0015mass%未満にするものであり、この技術
により軟質でかつ加工性の良好なブリキ原板が連続焼鈍
法で安定的に製造することが可能となったが、この技術
もAlで脱酸しているのでAlの酸化物が鋼中に残存す
るのは必然で、これらの鋼においてもAlの酸化物のよ
る欠陥の発生は抑え得ないものである。
Japanese Patent Application Laid-Open No. Hei 7-278678 discloses stable production by continuous annealing using ultra-low carbon steel. This technique utilizes a decarburization reaction in the annealing step to improve workability and aging properties, and finally reduces the amount of C remaining in steel to less than 0.0015 mass%. Although it was possible to stably produce a soft original tin plate with good workability by the continuous annealing method, this technique is also deoxidized with Al, so that oxides of Al remain in the steel. Inevitably, the generation of defects due to Al oxide cannot be suppressed even in these steels.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような課
題を解決するためになされたものであり、鋼中の介在物
を微細で、かつ、部分的に固い晶出相がなく、介在物全
体が変形・破砕しやすい組成の介在物にコントロール
し、従来、一般的に実施されている操業条件範囲の中で
低コストで介在物欠陥を少なくし、鋼板表面にラミネー
トした熱可塑性樹脂フィルムを有する素材でも製缶時の
フィルムの破断を防止し、かつ、加工性の良好な缶用鋼
板およびその製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve such a problem, and it has been found that inclusions in steel have a fine and partially hard crystallization phase, Controlling inclusions that are easily deformable and crushable as a whole, reducing the number of inclusion defects at low cost within the range of operating conditions that are conventionally commonly used, and using a thermoplastic resin film laminated on the steel sheet surface An object of the present invention is to provide a steel plate for a can which prevents breakage of a film at the time of can-making and has good workability, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、(1)重量%で、C :0.0002〜0.0080%、S
i:0.001 〜0.10%、Mn: 0.05〜1.0 %、P :0.
001 〜0.050 %、S :0.001 〜0.030 %、Sol.A
l:0.001 〜0.008 %、N :0.0005〜0.0080%、T
i:0.002 〜0.030 %、を含有し、残部がFe及び不可避
的不純物からなる鋼において、生成される酸化物系介在
物が、主としてTi酸化物を主成分とする晶出相とアルミ
ナを主成分とする晶出相からなり、該晶出相が鋼板中に
存在していることを特徴とする加工性が良好で欠陥の少
ない缶用鋼板、(2)前記(1)に加えてさらに、 Ca:50ppm 以下 Mg:50ppm 以下 の1種以上を含有し、残部鉄および不可避的不純物より
なり、生成される酸化物系介在物が、主としてTi酸化
物を主成分とする晶出相とアルミナを主成分とする晶出
相、更にCaOを主成分とする晶出相、MgOを主成分
とする晶出相の1種以上からなり、該晶出相が鋼板中に
存在していることを特徴とする加工性が良好で欠陥の少
ない缶用鋼板、(3)前記(1)または(2)に記載さ
れた鋼板に錫またはCrめっきを施し、さらに表面に熱
可塑性樹脂フィルムを配置したことを特徴とする加工性
が良好で欠陥の少ない缶用鋼板、(4)酸化物系介在物
の晶出相が、鋳片の中央付近において圧延方向に列状に
分散していることを特徴とする前記(1)または(2)
または(3)記載の加工性が良好で欠陥の少ない缶用鋼
板、(5)酸化物系介在物の常温マイクロビッカース硬
度が、600〜1300であることを特徴とする前記
(1)または(2)または(3)または(4)記載の加
工性が良好で欠陥の少ない缶用鋼板、(6)鋳片からの
スライム抽出で得られる酸化物系介在物の最大径が、3
00μm以下であることを特徴とする前記(1)または
(2)または(3)または(4)または(5)記載の加
工性が良好で欠陥の少ない缶用鋼板、(7)鋳片からの
スライム抽出で得られる38μm以上の酸化物系介在物
の個数が、50個/kg以下であることを特徴とする前
記(6)記載の加工性が良好で欠陥の少ない缶用鋼板、
(8) 精錬後の溶鋼成分を前記(1)または(2)記
載の成分の鋼とし、この鋼を連続鋳造−熱間圧延の後、
600 ℃〜750 ℃で巻取って、ついで脱スケール処理、冷
間圧延後、650 ℃〜750 ℃の連続焼鈍を施し、調質圧延
あるいは2次冷間圧延の後、めっき工程、または、めっ
き工程、フィルムラミネート工程を経て缶用鋼板とする
加工性が良好で欠陥の少ない缶用鋼板の製造方法、にあ
る。
The features of the present invention are as follows: (1) C: 0.0002 to 0.0080% by weight, S:
i: 0.001 to 0.10%, Mn: 0.05 to 1.0%, P: 0.
001 to 0.050%, S: 0.001 to 0.030%, Sol. A
l: 0.001 to 0.008%, N: 0.0005 to 0.0080%, T
i: 0.002 to 0.030%, with the balance being Fe and unavoidable impurities, the oxide-based inclusions produced are mainly composed of a crystallization phase mainly composed of Ti oxide and alumina. (2) In addition to the above (1), a steel plate for cans having good workability and few defects, characterized in that the crystallized phase is present in the steel plate. : 50 ppm or less Mg: 50 ppm or less, containing at least one of the following, the balance being iron and unavoidable impurities, and the oxide-based inclusions produced being mainly composed of a crystallization phase mainly composed of Ti oxide and alumina. A crystallized phase comprising CaO as a main component, and a crystallized phase comprising MgO as a main component, wherein the crystallized phase is present in the steel sheet. Steel sheet for cans with good workability and few defects, (3) described in (1) or (2) above. Good workability and few defects for cans characterized by applying tin or Cr plating to the mounted steel sheet and further arranging a thermoplastic resin film on the surface, and (4) crystallization of oxide inclusions (1) or (2), wherein the phases are dispersed in rows near the center of the slab in the rolling direction.
Or (3) the steel plate for cans having good workability and few defects according to (3), and (5) the room-temperature micro-Vickers hardness of the oxide-based inclusion is from 600 to 1300, wherein (1) or (2). ) Or (3) or (4), a steel plate for cans having good workability and few defects, and (6) a maximum diameter of oxide inclusions obtained by slime extraction from a slab is 3
(1) or (2) or (3) or (4) or (5), wherein the steel sheet for cans having good workability and few defects is provided; The steel plate for cans according to the above (6), wherein the number of oxide-based inclusions having a size of 38 μm or more obtained by slime extraction is 50 or less,
(8) The molten steel component after the refining is a steel having the component described in the above (1) or (2), and the steel is subjected to continuous casting and hot rolling.
Winding at 600 ° C to 750 ° C, descaling, cold rolling, continuous annealing at 650 ° C to 750 ° C, temper rolling or secondary cold rolling, plating process or plating process And a method for producing a steel sheet for a can having good workability and few defects by forming a steel sheet for a can through a film laminating step.

【0012】[0012]

【発明の実施の形態】本発明者らは、種々の組成の介在
物を人工的に合成して鋼中に埋め込み、実験室的に圧延
実験を行った。その結果、介在物をTi酸化物とアルミ
ナ酸化物を主成分とする晶出相、あるいはTi酸化物と
アルミナ酸化物とCaOとMgOの1種以上からなる晶
出相の介在物とすれば、融点が比較的低く、冷却時に高
融点で固い晶出相が生成せず、圧延等によって微細に破
砕されることを知見した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors artificially synthesized inclusions having various compositions, embedded them in steel, and performed a rolling experiment in a laboratory. As a result, if the inclusion is a crystallized phase mainly composed of Ti oxide and alumina oxide, or a crystallized phase composed of one or more of Ti oxide, alumina oxide, CaO and MgO, It has been found that the melting point is relatively low, a high melting point hard solid crystallization phase is not generated upon cooling, and the material is finely crushed by rolling or the like.

【0013】このような組成の異なる介在物を分散させ
た鋼を実験室的に溶製、鋳造し、通常の方法で熱間圧
延、酸洗、冷間圧延、焼鈍、調質圧延、めっきを行って
鋼板とし、製缶を行ったが一部の鋼板で割れ等の欠陥が
発生した。この欠陥の部分の調査を行った結果、欠陥部
には伸延した介在物が検出された。介在物サイズを測定
した結果、その大きさは鋳片での大きさに換算すると粒
径が300μm より大きい場合が大半であった。また、
介在物の大きさ(鋳片での大きさに換算)が粒径300
μm 以下でも欠陥となる場合があり、この場合には欠陥
部に多数の介在物が存在していることが判明した。さら
に詳細に調査した結果、欠陥部に存在する多数の介在物
は、鋳片での介在物の大きさに換算すると粒径が38μ
m 以上であった。この38μm 以上の介在物は50個/
1kg(スライム抽出にて測定)より多く存在した。欠
陥が発生しなかった部分を切断し鋼中の介在物の大きさ
を測定すると、この部分には、鋳片での介在物の大きさ
に換算すると粒径が38μm以上の介在物が50個/k
g以下であった。しかし、粒径が38μm 以上の個数が
50個/1kg以下でも欠陥が発生した場合もあり、こ
のときの介在物の硬度(マイクロビッカース硬度)は6
00未満、あるいは1300より大きくなっていた。
The steel in which inclusions having different compositions are dispersed is smelted and cast in a laboratory and subjected to hot rolling, pickling, cold rolling, annealing, temper rolling, and plating in a usual manner. The steel plate was made and the can was made. However, defects such as cracks occurred in some steel plates. As a result of investigating the defect, an elongated inclusion was detected in the defect. As a result of measuring the size of the inclusions, when converted to the size of a slab, the size of the inclusions was mostly larger than 300 μm. Also,
Inclusion size (converted to slab size) is 300 grain size
Defects may occur even below μm, in which case it was found that many inclusions were present in the defect. As a result of a more detailed investigation, it was found that a large number of inclusions present in the defect had a grain size of 38 μm when converted to the size of the inclusions in the slab.
m or more. The number of the inclusions of 38 μm or more is 50 /
There was more than 1 kg (measured by slime extraction). When the size of the inclusions in the steel was measured by cutting the part where no defect occurred and measuring the size of the inclusions in the steel, 50 inclusions with a grain size of 38 μm or more were calculated in this part. / K
g or less. However, even when the number of particles having a particle diameter of 38 μm or more is 50 pieces / 1 kg or less, a defect may occur, and the hardness of the inclusion (micro Vickers hardness) at this time is 6 μm.
It was less than 00 or greater than 1300.

【0014】鋼板中に存在する介在物が<1> 鋳片での介
在物の大きさに換算で粒径が300μm以上、<2> 鋳片
での介在物の大きさに換算で粒径が38μm以上でその
個数が50個/kgを超える、<3> 介在物のビッカース
硬度が600未満あるいは1300を超える、場合に製
缶時に欠陥が発生する。これは鋼板製造時の圧延で伸展
・ 圧下を受けても、破砕されずに連続したまま残った
り、破砕されてもその粒が大きく連続して存在するため
に製缶時に欠陥になると考えられる。さらに、鋼板中に
存在する介在物は、鋼板の中央付近において圧延方向に
列状に分散しているほうが製缶時の欠陥発生に対しては
有利に作用することが判明した。
The inclusions present in the steel sheet have a grain size of 300 μm or more in terms of <1> the size of inclusions in the slab, and <2> the grain size in terms of the size of inclusions in the slab. If the number is more than 38 μm and the number exceeds 50 pieces / kg, and <3> the Vickers hardness of the inclusions is less than 600 or more than 1300, a defect occurs during can making. This is thought to be due to the fact that even when subjected to stretching and rolling during rolling during the production of steel sheets, they remain unfractured and continuous, and even if crushed, their grains are large and continuous, resulting in defects during can making. Furthermore, it has been found that inclusions present in the steel sheet, which are dispersed in a row in the rolling direction near the center of the steel sheet, have an advantageous effect on the occurrence of defects during can making.

【0015】以上のことより、介在物がTi酸化物とア
ルミナ酸化物を主成分とする晶出相、あるいはTi酸化
物とアルミナ酸化物とCaOとMgOの1種以上からな
る晶出相であり、鋳片での最大径が300μm 以下でか
つ粒径38μm以上の介在物の個数が50個/kg以
下、さらに介在物のビッカース硬度が600〜1300
であることが判明したため、これらの介在物のみを分散
させた鋼を実験室的に溶製、鋳造し、通常の方法で熱間
圧延、酸洗、冷間圧延、焼鈍、2次冷間圧延、Crめっ
きを行い、さらに鋼板表面にポリエチレンテレフタレー
ト樹脂フィルムを貼り付け缶用鋼板として、製缶を行っ
たところ加工性が良好でフィルムの破損等の欠陥の発生
がないことが確認できた。
As described above, the inclusion is a crystallized phase mainly composed of Ti oxide and alumina oxide or a crystallized phase composed of one or more of Ti oxide, alumina oxide, CaO and MgO. The number of inclusions having a maximum diameter of 300 μm or less and a particle diameter of 38 μm or more in a slab is 50 / kg or less, and the Vickers hardness of the inclusions is 600 to 1300.
Therefore, a steel in which only these inclusions are dispersed is smelted and cast in a laboratory, and hot rolling, pickling, cold rolling, annealing, and secondary cold rolling are performed in a usual manner. Then, a Cr plating was performed, and a polyethylene terephthalate resin film was stuck on the surface of the steel sheet to produce a steel sheet for a can. As a result, it was confirmed that the workability was good and no defects such as breakage of the film occurred.

【0016】さらに添加するTi濃度を変化させて実験
を行った結果、介在物をTi酸化物とアルミナ酸化物を
主成分とする晶出相、あるいはTi酸化物とアルミナ酸
化物とCaOとMgOの1種以上からなる晶出相の介在
物とするには、Ti濃度を0.030%以下にすること
が必要である。これはTiが高すぎるとクラスター化し
やすいTi酸化物のみが生成し、アルミナと同様な高融
点の硬質の介在物が生成するためである。一方、Tiの
下限を0.002%としたのは連続鋳造時に脱酸不足に
よる気泡の発生を防止するためであり、Ti量はNを固
定するのに必要最低量である鋼中N量の3.43倍以上
添加すればよい。Tiを添加した後にAlを添加するこ
とで、Al添加時の酸素濃度が下がっており、Alの添
加量が少なくてすみ、生成する介在物中のアルミナ含有
量も少なく、介在物中にアルミナが含有していても製缶
時の欠陥発生はほとんどない。この、Alの添加によっ
て操業範囲も緩和される。
As a result of an experiment in which the concentration of added Ti was changed, the inclusion was found to be a crystallized phase containing Ti oxide and alumina oxide as main components or a mixture of Ti oxide, alumina oxide, CaO and MgO. In order to include one or more kinds of inclusions in the crystallization phase, the Ti concentration needs to be 0.030% or less. This is because if the Ti content is too high, only Ti oxides that easily cluster are generated, and hard inclusions having a high melting point similar to alumina are generated. On the other hand, the reason for setting the lower limit of Ti to 0.002% is to prevent bubbles from being generated due to insufficient deoxidization during continuous casting. What is necessary is just to add 3.43 times or more. By adding Al after adding Ti, the oxygen concentration at the time of Al addition is lowered, the amount of Al added may be small, the alumina content in the inclusions to be generated is small, and alumina is included in the inclusions. Even if it is contained, there is almost no occurrence of defects during can making. The operation range is also reduced by the addition of Al.

【0017】以下、鋼の各成分を所定の範囲に限定する
理由について述べる。Cは、鋼板の強度を安定して向上
させる元素であり、所定の強度を保持するためには、
0.0002%以上を必要とする。しかし、含有量が多
くなると、加工性が劣化するため0.0080%を上限
とする。
Hereinafter, the reasons for limiting each component of the steel to a predetermined range will be described. C is an element that stably improves the strength of the steel sheet. In order to maintain a predetermined strength,
0.0002% or more is required. However, when the content increases, the workability deteriorates, so the upper limit is 0.0080%.

【0018】Tiは前述したが、溶鋼成分として0.0
02〜0.030%含有させる。溶鋼中のTi濃度を
0.030%以下とすることで介在物をTi酸化物とア
ルミナ酸化物を主成分とする晶出相、あるいはTi酸化
物とアルミナ酸化物とCaOとMgOの1種以上からな
る晶出相の介在物とすることが可能となる。溶鋼中のT
i濃度が高すぎると高融点のチタン酸化物が主成分の介
在物となる。
Although Ti is described above, 0.0 as a molten steel component
02-0.030%. By setting the Ti concentration in the molten steel to 0.030% or less, the inclusion can be a crystallized phase containing Ti oxide and alumina oxide as main components, or one or more of Ti oxide, alumina oxide, CaO, and MgO. It is possible to form inclusions of the crystallization phase consisting of T in molten steel
If the i-concentration is too high, a titanium oxide having a high melting point becomes an inclusion mainly composed of titanium oxide.

【0019】Mnは、0.05%未満に下げるのは精錬
時間が長くなり経済性を大きく損ねるので、0.05%
を下限とし、1.0%を越えると鋼板の加工性が大きく
劣化し缶としての加工ができなくなるので、1.0%を
上限とする。
If the Mn content is reduced to less than 0.05%, the refining time becomes longer and the economic efficiency is greatly impaired.
When the content exceeds 1.0%, the workability of the steel sheet is greatly deteriorated, and it becomes impossible to work as a can. Therefore, the upper limit is 1.0%.

【0020】Si量は、0.001%未満に下げるのは
十分な予備処理等が必要で精錬に大幅なコスト負担をか
け経済性を損ねるので0.001%を下限とし、0.1
%を越えるとめっきの際にめっき不良が発生し、表面性
状、耐食性を損ねるので0.1%を上限とする。
If the amount of Si is reduced to less than 0.001%, a sufficient preliminary treatment is required, so that refining costs a great deal of cost and impairs economic efficiency.
%, Plating failure occurs during plating, impairing the surface properties and corrosion resistance. Therefore, the upper limit is 0.1%.

【0021】Pは、0.001%未満に下げることは溶
銑予備処理に時間とコストがかかり、経済性を大きく損
ねるので、0.001%を下限とし、0.050%を越
えると加工性が劣化し、缶としての加工に支障をきたす
ので0.050%を上限とする。
If the content of P is reduced to less than 0.001%, it takes time and cost for hot metal pretreatment, and the economic efficiency is greatly impaired. Since it deteriorates and hinders the processing as a can, the upper limit is 0.050%.

【0022】Sは、0.001%未満に下げることは溶
銑予備処理に時間とコストがかかり、経済性を大きく損
ねるので、0.001%を下限とし、0.030%を越
えると加工性・耐食性が劣化し、缶としての加工・性能
に支障をきたすので0.030%を上限とする。
If the content of S is reduced to less than 0.001%, it takes time and cost for the hot metal pretreatment, and the economic efficiency is greatly impaired. Since the corrosion resistance is deteriorated and the processing and performance as a can is hindered, the upper limit is made 0.030%.

【0023】Sol.Alは、0.001%未満では十
分な脱酸処理が行えず、0.008%より多いとアルミ
ナのみが生成し、製缶時の欠陥を発生させるため、上限
を0.008%とする。
Sol. If Al is less than 0.001%, sufficient deoxidation treatment cannot be performed, and if it is more than 0.008%, only alumina is generated and defects occur during can making, so the upper limit is made 0.008%.

【0024】Nは、0.0005%未満に下げることは
精錬の段階での大幅なコスト上昇を伴い経済性を大きく
損ねるので、0.0005%を下限とし、0.0080
%を越えると、固溶NをなくすためのTi添加量が多く
必要で、本願の目的である介在物の形態制御が不可能に
なるので、0.0080%を上限とする。固溶N量を少
なくするために、NをTiNとして固定するには、少な
くともTi>3.43Nとする必要がある。
Since lowering N to less than 0.0005% greatly increases the cost in the refining stage and greatly impairs economic efficiency, the lower limit of N is 0.0005% and 0.0080%.
%, The amount of Ti added to eliminate solid solution N is required to be large, and it is impossible to control the form of inclusions, which is the object of the present invention. Therefore, the upper limit is 0.0080%. To fix N as TiN in order to reduce the amount of solute N, at least Ti> 3.43N needs to be satisfied.

【0025】CaとMgはともに酸化物を主成分とする
晶出相を酸化物系介在物中に形成して、<1> 晶出相自体
の微細化と<2> 圧延時に微細な晶出相の界面に沿った更
なる介在物の破砕、微細化に寄与する。Caが50ppm 以
下、Mgが50ppm 以下の1種以上を含有するとしたの
は、CaとMgの蒸気圧が高く歩留が低いので、これ以
上ではコストデメリットが大きくなるためである。ま
た、CaとMgの下限を明示していないのは鋼の組成分
析において、CaとMgの濃度が分析下限値以下でも介
在物中に十分なCaO、MgOの一種以上を含有させる
ことができるためである。
Both Ca and Mg form a crystallized phase mainly composed of an oxide in the oxide-based inclusions. <1> Refinement of the crystallized phase itself and <2> Fine crystallization during rolling It contributes to further crushing and miniaturization of inclusions along the phase interface. The reason why the content of at least one of Ca is 50 ppm or less and Mg is 50 ppm or less is because the vapor pressure of Ca and Mg is high and the yield is low. Further, the lower limits of Ca and Mg are not specified because in the composition analysis of steel, sufficient CaO and one or more of MgO can be contained in inclusions even when the concentrations of Ca and Mg are lower than the lower limit of analysis. It is.

【0026】そして、本発明では前記したような成分を
基本構成および選択構成とする鋼板であり、且つ、脱酸
工程・凝固工程で生成される酸化物系介在物が、主とし
てTi酸化物とアルミナ酸化物を主成分とする晶出相、
あるいはTi酸化物とアルミナ酸化物とCaOとMgO
の1種以上からなる晶出相からなり、この晶出相が鋼板
中に分散して存在していることを特徴的構成としてい
る。ここで晶出相とは、固体状態の結晶相を示すもので
あり、固体状態のガラス相を含まない。即ち、酸化物系
介在物を主としてTi酸化物とアルミナ酸化物を主成分
とする晶出相、あるいはTi酸化物とアルミナ酸化物と
CaOとMgOの1種以上の少なくとも3相からなる晶
出相とすることにより、晶出相自体を微細化したうえ圧
延時に微細な晶出相の界面に沿ってさらに微細に破砕し
易くし、この結果、製缶時の欠陥が少なく加工性に優れ
た鋼板を得るものである。
In the present invention, a steel sheet having the above-described components as a basic structure and a selective structure is used, and the oxide-based inclusions generated in the deoxidizing step and the solidifying step are mainly composed of Ti oxide and alumina. Crystallized phase mainly composed of oxides,
Alternatively, Ti oxide, alumina oxide, CaO, and MgO
And a characteristic feature is that the crystallized phase is dispersed and present in the steel sheet. Here, the crystallization phase indicates a solid-state crystal phase, and does not include a solid-state glass phase. That is, a crystallized phase mainly composed of oxide-based inclusions mainly composed of Ti oxide and alumina oxide, or a crystallized phase composed of at least three phases of at least one of Ti oxide, alumina oxide, CaO and MgO. As a result, the crystallized phase itself is refined and further easily crushed more finely along the interface of the fine crystallized phase during rolling. Is what you get.

【0027】なお、酸化物系介在物の晶出相が、鋳片の
厚みに対し中央付近において圧延方向に列状に分散した
ものとした場合は、圧延後の鋼板表面に酸化物系介在物
がほとんど存在せず、より介在物起因による欠陥が少な
い鋼板が得られることとなって一層好ましい。
When the crystallization phase of the oxide-based inclusions is dispersed in a row in the rolling direction near the center with respect to the thickness of the slab, the oxide-based inclusions are added to the surface of the steel sheet after rolling. Is more preferable because a steel sheet with few defects and fewer defects caused by inclusions can be obtained.

【0028】また、酸化物系介在物の常温マイクロビッ
カース硬度は、熱間圧延後の圧延時における変形能への
影響を考慮すると600〜1300の範囲が好ましい。
これは、600未満では、伸延しすぎ、1300より大
きいとほとんど伸延せず圧延加工そのものが困難になっ
てくる。
The room-temperature micro-Vickers hardness of the oxide-based inclusion is preferably in the range of 600 to 1300 in consideration of the influence on the deformability during rolling after hot rolling.
This is because if it is less than 600, it is too elongated, and if it is more than 1300, it is hardly extended and the rolling process itself becomes difficult.

【0029】このようにして溶製した溶鋼を通常と同じ
方法でタンディッシュを通して、連続鋳造機で鋳造す
る。さらに、適宜、熱間圧延に先立って加熱を施し、こ
の鋳片を通常と同じ方法で熱間圧延した後、600〜7
50℃の温度範囲で巻取りを行う。ただ、単にTi量を
Nの当量以上加えても、Nは全量TiNとして析出する
ことはないので、捲取温度を600〜750℃の範囲と
する。また、巻取温度600℃未満では、TiによるN
の析出固定が不十分で加工性が劣化するので600℃を
下限とし、750℃を越えると粗大粒となり製缶後肌荒
れを起こして外観を損ねるので750℃を上限とする。
ついで、脱スケール処理を行う。一般には酸洗を施す
が、機械的にスケール除去を行っても良い。その後、冷
間圧延を行い、連続焼鈍を行う。連続焼鈍の温度は、6
50〜750℃とする。650℃未満では再結晶が完全
ではなく加工性が劣化するので650℃を下限とし、7
50℃を越えると鋼板の高温強度が弱まり、連続焼鈍炉
内で絞りと呼ばれる現象を起こし、破断するなどの問題
が生じやすくなるので750℃を上限とする。その後、
スキンパス圧延あるいは5〜40%程度のDR圧延を施
し、クロムめっきあるいは錫めっきなどの表面処理を施
し、缶用の鋼板とする。
The molten steel thus produced is passed through a tundish in the same manner as usual and cast by a continuous casting machine. Further, if necessary, heating is performed prior to hot rolling, and the slab is hot-rolled by the same method as usual, and then subjected to 600 to 7
Winding is performed in a temperature range of 50 ° C. However, even if the amount of Ti is simply added equal to or more than the equivalent of N, the whole amount of N does not precipitate as TiN, so the winding temperature is set in the range of 600 to 750 ° C. If the winding temperature is lower than 600 ° C., N
The lower limit is set at 600 ° C. because precipitation fixation of satisfactorily deteriorates the workability, and if it exceeds 750 ° C., the upper limit is set at 750 ° C., since coarse grains become coarse after can-making and the appearance is impaired.
Next, descaling is performed. Generally, pickling is performed, but scale removal may be performed mechanically. Thereafter, cold rolling is performed and continuous annealing is performed. The continuous annealing temperature is 6
50 to 750 ° C. If the temperature is lower than 650 ° C, recrystallization is not complete and the workability deteriorates.
If the temperature exceeds 50 ° C., the high-temperature strength of the steel sheet is weakened, a phenomenon called drawing occurs in the continuous annealing furnace, and problems such as breakage are likely to occur. afterwards,
Skin pass rolling or DR rolling of about 5 to 40% is performed, and a surface treatment such as chrome plating or tin plating is performed to obtain a steel plate for a can.

【0030】鋼板へのクロムめっきは、電解クロム酸処
理が望ましく、特に10〜200mg/m2 の金属クロム層
と1〜50mg/m2(金属クロム換算)のクロム酸化物層と
を備えたもので、塗膜密着性と耐食性との組み合わせに
優れている。また、錫めっきは0.5〜11.2mg/m2
のメッキ量を有する硬質ブリキ板であり、さらに金属ク
ロム換算で、クロム量が1〜30mg/m2 となるようなク
ロム酸/リン酸処理が行われていることが望ましい。
[0030] Chromium plating on the steel sheet, which electrolytic chromic acid treatment is preferred, in particular a chromium oxide layer of 10 to 200 mg / m 2 of metallic chromium layer and 1 to 50 mg / m 2 (reckoned as metal chromium) And excellent in combination of coating film adhesion and corrosion resistance. Further, tin plating is 0.5 to 11.2 mg / m 2.
And a chromic / phosphoric acid treatment is desirably performed so that the amount of chromium becomes 1 to 30 mg / m 2 in terms of chromium metal.

【0031】さらに、上記のめっきが施された鋼板の表
面に熱可塑性樹脂フィルムを貼り付けラミネート鋼板と
する。ラミネートに用いる熱可塑性樹脂フィルムとして
は、ポリエチレン、ポリプロピレン、エチレン−プロピ
レン共重合体、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリルエステル共重合体、アイオノマー等のオレ
フィン系樹脂フィルムやポリエチレンテレフタレート、
ポリブチレンテレフタレート、エチレンテレフタレート
/イソフタレート共重合体等のポリエステルフィルムや
ナイロン6、ナイロン6.6、ナイロン11、ナイロン
12等のポリアミドフィルム、さらにポリ塩化ビニルフ
ィルム、ポリビニリデンフィルム等が挙げられる。これ
らのフィルムは未延伸のものでも、二軸延伸のものでも
よい。その厚みは、一般に3〜50μm、特に5〜40
μmの範囲にあることが望ましい。フィルムの金属板へ
の積層は、熱融着法、ドライラミネーション、押出コー
ト法等により行われ、フィルムと鋼板との間に接着性
(熱融着性)が乏しい場合には、例えばウレタン系接着
剤、エポキシ系接着剤、酸変性オレフィン樹脂系接着
材、コポリアミド系接着剤、コポリエステル系接着剤等
を介在することができる。
Further, a thermoplastic resin film is adhered to the surface of the plated steel sheet to obtain a laminated steel sheet. As a thermoplastic resin film used for lamination, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acryl ester copolymer, olefin resin film such as ionomer and polyethylene terephthalate,
Examples include polyester films such as polybutylene terephthalate and ethylene terephthalate / isophthalate copolymer, polyamide films such as nylon 6, nylon 6.6, nylon 11, and nylon 12, and polyvinyl chloride film and polyvinylidene film. These films may be unstretched or biaxially stretched. Its thickness is generally 3 to 50 μm, especially 5 to 40 μm.
It is desirable to be in the range of μm. The lamination of the film to the metal plate is performed by a heat fusion method, dry lamination, extrusion coating method, or the like. If the adhesion between the film and the steel plate (heat fusion property) is poor, for example, urethane-based adhesion , An epoxy-based adhesive, an acid-modified olefin resin-based adhesive, a copolyamide-based adhesive, a copolyester-based adhesive, and the like.

【0032】さらに、熱可塑性樹脂フィルムには、製缶
時の鋼板へのしわ抑え力の伝達を向上させる目的で無機
フィラー(顔料)を含有することができる。無機フィラ
ーとしては、ルチル型またはアナターゼ型の二酸化チタ
ン、亜鉛華、グロスホワイト等の無機白色顔料やバライ
ト、沈降性硫酸バライト、炭酸カルシウム、石膏、沈降
性シリカ、エアロジル、タルク、焼成あるいは未焼成ク
レイ、炭酸バリウム、アルミナホワイト、合成あるいは
天然のマイカ、合成ケイ酸カルシウム、炭酸マグネシウ
ム等の白色体質顔料やカーボンブラック、マグネタイト
等の黒色顔料やベンガラ等の赤色顔料、シエナ等の黄色
顔料や群青、コバルト青等の青色顔料を挙げることがで
きる。これらの無機フィラーは、樹脂あたり10〜50
0重量%、特に10〜300重量%の量で配合させるこ
とができる。これらの鋼板は特に2ピース缶用の鋼板と
して好適である。
Further, the thermoplastic resin film may contain an inorganic filler (pigment) for the purpose of improving the transmission of the wrinkle suppressing force to the steel sheet during can making. Examples of the inorganic filler include rutile-type or anatase-type titanium dioxide, zinc white, and inorganic white pigments such as gloss white and barite, precipitated barite sulfate, calcium carbonate, gypsum, precipitated silica, aerosil, talc, calcined or unfired clay. White pigments such as barium carbonate, alumina white, synthetic or natural mica, synthetic calcium silicate, magnesium carbonate, etc., black pigments such as carbon black and magnetite, red pigments such as red iron, yellow pigments such as siena, ultramarine, cobalt Blue pigments such as blue can be mentioned. These inorganic fillers are 10 to 50 per resin.
It can be incorporated in an amount of 0% by weight, especially 10-300% by weight. These steel sheets are particularly suitable as steel sheets for two-piece cans.

【0033】[0033]

【実施例】270トン転炉で表1に示す脱酸用合金を用
いて、各成分の鋼を溶製し連続鋳造した。製造した鋼の
成分を合わせて表1に示す。ついで、加熱−熱間圧延を
行った。その際の仕上圧延及び巻取は、表3に示す温度
で行った。ついで、酸洗、冷間圧延を行った後、表3に
示す温度で焼鈍を行った。焼鈍の後、一部のものについ
てはDR圧延(ダブルレデュース圧延)を施した。つい
でクロムめっきまたは錫めっきを施し、さらに一部の鋼
板については表裏面にポリエチレンテレフタレート樹脂
フィルムを貼り付け、缶用鋼板となした。
EXAMPLES In a 270 ton converter, steels of each component were melted and continuously cast using the deoxidizing alloys shown in Table 1. Table 1 shows the components of the manufactured steel. Next, heating-hot rolling was performed. The finish rolling and winding at that time were performed at the temperatures shown in Table 3. Then, after performing pickling and cold rolling, annealing was performed at the temperatures shown in Table 3. After annealing, some of them were subjected to DR rolling (double reduce rolling). Then, chromium plating or tin plating was applied, and a polyethylene terephthalate resin film was attached to the front and back surfaces of some of the steel sheets to form steel sheets for cans.

【0034】その鋳片の一部および冷延鋼板の一部を採
取して断面を調査し、酸化物系介在物内晶出相中の主成
分、硬度、存在形態を調査した。その結果を表2に示
す。介在物の晶出相の成分は、重量1±0.1kgの全
厚鋳片からスライム電界抽出(最小メッシュ38μmを
使用)した介在物を走査型電子顕微鏡でエネルギー分散
分析装置によって成分同定した。さらに検出された副成
分については、特性X線ピークの積分強度から含有量を
求めた。表2の介在物の圧延方向断面での存在形態は、
圧延方向に平行な断面の全厚を光学顕微鏡で観察し、介
在物の存在する位置の光学顕微鏡写真(400倍、50
視野)から決めた。さらに、得られた缶用鋼板を用い
て、3段絞りにより成形した絞り缶と絞りとしごきを加
えたDI缶を製造し、このときの割れが発生した欠陥率
を調査した。この結果を表3に示す。本発明鋼では、比
較鋼に比べて欠陥率が少なくなっていることが確認され
た。
A part of the slab and a part of the cold-rolled steel sheet were sampled and their cross-sections were examined, and the main components, hardness and form of the crystallization phase in the oxide-based inclusions were investigated. Table 2 shows the results. The components of the crystallization phase of the inclusions were identified by an energy dispersive analyzer using a scanning electron microscope with slime electric field extraction (using a minimum mesh of 38 μm) from a full thickness slab having a weight of 1 ± 0.1 kg. Further, the content of the detected subcomponent was determined from the integrated intensity of the characteristic X-ray peak. The existence form of the inclusions in the cross section in the rolling direction of Table 2 is as follows.
The entire thickness of the cross section parallel to the rolling direction was observed with an optical microscope, and an optical microscope photograph (400 times, 50
Field of view). Further, using the obtained steel sheet for cans, a drawn can formed by three-step drawing and a DI can obtained by drawing and ironing were manufactured, and the defect rate at which cracks occurred at this time was investigated. Table 3 shows the results. It was confirmed that the steel of the present invention had a lower defect rate than the comparative steel.

【0035】なお、表1および表2における*1〜*4
の意味は以下のとおりである。 *1:Tr:分析可能下限以下 *2:1介在物当たり3箇所に25gの荷重をかけて、
介在物10個の室温における平均値を算出 *3、4:最大介在物径の測定方法は、重量1±0.1
kgの全厚鋳片からスライム電界抽出(最小メッシュ3
8μm を使用)した介在物を実体顕微鏡にて写真撮影
(40倍)し、写真撮影した介在物の長径と短径の平均
値を全ての介在物で求めてその平均値の最大値を最大介
在物径とした。介在物個数は重量1±0.1kgの全厚
鋳片からスライム電界抽出した介在物であり、光学顕微
鏡(100倍)で観察した全ての個数を1kg単位個数
に換算した。
Note that * 1 to * 4 in Tables 1 and 2
Has the following meanings. * 1: Tr: Lower limit of analysis possible * 2: A load of 25 g is applied to three places per inclusion.
Calculate the average value of 10 inclusions at room temperature * 3, 4: The method of measuring the maximum inclusion diameter is weight 1 ± 0.1.
Extraction of slime electric field from min.
8μm) is photographed with a stereoscopic microscope (× 40), the average value of the major and minor axes of the photographed inclusion is determined for all the inclusions, and the maximum value of the average value is determined as the maximum The diameter was used. The number of inclusions is inclusions obtained by extracting a slime electric field from a total thickness slab having a weight of 1 ± 0.1 kg, and all the numbers observed by an optical microscope (100 times) were converted into 1 kg unit numbers.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明によって、加工性が良好で欠陥の
発生が少ない表面処理用鋼板の製造が可能となった。
According to the present invention, it has become possible to produce a steel sheet for surface treatment which has good workability and has few defects.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝口 利明 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 Fターム(参考) 4K037 EA01 EA04 EA09 EA14 EA15 EA18 EA23 EA25 EA27 EA31 EB02 EB03 EB06 EB08 EC01 FE02 FE03 FH01 FJ04 FJ05 GA05 JA06 4K044 AA02 AB02 BA02 BA10 BA15 BA17 BA21 BB04 BC05 BC09 CA16 CA18 CA53  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiaki Mizoguchi 5-3 Tokai-cho, Tokai-shi, Aichi F-term in Nippon Steel Corporation Nagoya Works (reference) 4K037 EA01 EA04 EA09 EA14 EA15 EA18 EA23 EA25 EA27 EA31 EB02 EB03 EB06 EB08 EC01 FE02 FE03 FH01 FJ04 FJ05 GA05 JA06 4K044 AA02 AB02 BA02 BA10 BA15 BA17 BA21 BB04 BC05 BC09 CA16 CA18 CA53

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.0002〜0.0080%、 Si:0.001 〜0.10%、 Mn: 0.05〜1.0 %、 P :0.001 〜0.050 %、 S :0.001 〜0.030 %、 Sol.Al:0.001 〜0.008 %、 N :0.0005〜0.0080%、 Ti:0.002 〜0.030 %、 を含有し、残部がFe及び不可避的不純物からなる鋼にお
いて、生成される酸化物系介在物が、主としてTi酸化
物を主成分とする晶出相とアルミナを主成分とする晶出
相からなり、該晶出相が鋼板中に存在していることを特
徴とする加工性が良好で欠陥の少ない缶用鋼板。
C .: 0.0002 to 0.0080%, Si: 0.001 to 0.10%, Mn: 0.05 to 1.0%, P: 0.001 to 0.050%, S: 0.001 to 0.030%, Sol. Al: 0.001 to 0.008%, N: 0.0005 to 0.0080%, Ti: 0.002 to 0.030%, with the balance being Fe and unavoidable impurities, the oxide-based inclusions produced are mainly Ti oxides Steel plate for cans with good workability and few defects, characterized by comprising a crystallized phase mainly composed of a material and a crystallized phase mainly composed of alumina, wherein the crystallized phase is present in the steel sheet. .
【請求項2】 請求項1に加えてさらに、 Ca:50ppm 以下 Mg:50ppm 以下 の1種以上を含有し、残部鉄および不可避的不純物より
なり、生成される酸化物系介在物が、主としてTi酸化
物を主成分とする晶出相とアルミナを主成分とする晶出
相、更にCaOを主成分とする晶出相、MgOを主成分
とする晶出相の1種以上からなり、該晶出相が鋼板中に
存在していることを特徴とする加工性が良好で欠陥の少
ない缶用鋼板。
2. The method according to claim 1, further comprising one or more of Ca: 50 ppm or less and Mg: 50 ppm or less, the balance being iron and unavoidable impurities, and the oxide-based inclusions produced being mainly composed of Ti. A crystallized phase mainly composed of an oxide, a crystallized phase mainly composed of alumina, a crystallized phase mainly composed of CaO, and a crystallized phase mainly composed of MgO; A steel plate for cans with good workability and few defects, characterized in that the phase is present in the steel plate.
【請求項3】 請求項1または2に記載された鋼板に錫
またはCrめっきを施し、さらに表面に熱可塑性樹脂フ
ィルムを配置したことを特徴とする加工性が良好で欠陥
の少ない缶用鋼板。
3. A steel sheet for cans having good workability and few defects, wherein the steel sheet according to claim 1 or 2 is plated with tin or Cr, and further a thermoplastic resin film is disposed on the surface.
【請求項4】 酸化物系介在物の晶出相が、鋳片の中央
付近において圧延方向に列状に分散していることを特徴
とする請求項1または2または3記載の加工性が良好で
欠陥の少ない缶用鋼板。
4. The workability according to claim 1, wherein the crystallization phase of the oxide-based inclusions is dispersed in a row in the rolling direction near the center of the slab. Steel plate for cans with few defects.
【請求項5】 酸化物系介在物の常温マイクロビッカー
ス硬度が、600〜1300であることを特徴とする請
求項1または2または3または4記載の加工性が良好で
欠陥の少ない缶用鋼板。
5. The steel sheet for cans according to claim 1, 2 or 3 or 4, wherein the oxide-based inclusion has a normal temperature micro-Vickers hardness of 600 to 1300.
【請求項6】 鋳片からのスライム抽出で得られる酸化
物系介在物の最大径が、300μm以下であることを特
徴とする請求項1または2または3または4または5記
載の加工性が良好で欠陥の少ない缶用鋼板。
6. The workability according to claim 1, wherein the maximum diameter of the oxide inclusions obtained by slime extraction from the slab is 300 μm or less. Steel plate for cans with few defects.
【請求項7】 鋳片からのスライム抽出で得られる38
μm以上の酸化物系介在物の個数が、50個/kg以下
であることを特徴とする請求項6記載の加工性が良好で
欠陥の少ない缶用鋼板。
7. A slime extract obtained from a slab is 38.
7. The steel sheet for cans with good workability and few defects according to claim 6, wherein the number of oxide-based inclusions having a size of not less than μm is not more than 50 pieces / kg.
【請求項8】 精錬後の溶鋼成分を請求項1または2記
載の成分の鋼とし、この鋼を連続鋳造−熱間圧延の後、
600 ℃〜750 ℃で巻取って、ついで脱スケール処理、冷
間圧延後、650 ℃〜750 ℃の連続焼鈍を施し、調質圧延
あるいは2次冷間圧延の後、めっき工程、または、めっ
き工程、フィルムラミネート工程を経て缶用鋼板とする
加工性が良好で欠陥の少ない缶用鋼板の製造方法。
8. The molten steel component after refining is the steel of the component according to claim 1 or 2, and after continuous casting and hot rolling,
Winding at 600 ° C to 750 ° C, then descaling, cold rolling, continuous annealing at 650 ° C to 750 ° C, tempering rolling or secondary cold rolling, plating process or plating process And a method for producing a steel sheet for cans having good workability and few defects through a film laminating step into a steel sheet for cans.
JP2000122744A 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans with good workability and few defects Expired - Fee Related JP4555433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122744A JP4555433B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans with good workability and few defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122744A JP4555433B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans with good workability and few defects

Publications (2)

Publication Number Publication Date
JP2001303182A true JP2001303182A (en) 2001-10-31
JP4555433B2 JP4555433B2 (en) 2010-09-29

Family

ID=18633189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122744A Expired - Fee Related JP4555433B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans with good workability and few defects

Country Status (1)

Country Link
JP (1) JP4555433B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production
JPH11279721A (en) * 1998-03-30 1999-10-12 Nippon Steel Corp Steel sheet for surface treatment good in workability and small in defect and its production
JP2000063984A (en) * 1998-08-13 2000-02-29 Kawasaki Steel Corp Steel sheet for can, extremely excellent in workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production
JPH11279721A (en) * 1998-03-30 1999-10-12 Nippon Steel Corp Steel sheet for surface treatment good in workability and small in defect and its production
JP2000063984A (en) * 1998-08-13 2000-02-29 Kawasaki Steel Corp Steel sheet for can, extremely excellent in workability

Also Published As

Publication number Publication date
JP4555433B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
CA2857987C (en) Method for producing packaging steel comprising metallic coating
WO2013008457A1 (en) Steel sheet for can and process for producing same
WO2014015823A1 (en) Ceramic-enameling steel and manufacturing method therefor
TW201102444A (en) High strength galvanized steel sheet having excellent formability, weldability and fatigue property and method for manufacturing the same
WO2013018334A1 (en) High-strength high-processability steel sheet for cans and method for producing same
JP5018843B2 (en) Steel plate for high workability 3-piece welded can and manufacturing method thereof
WO1981002900A1 (en) High-tensile,cold-rolled steel plate with excellent formability and process for its production,as well as high-tensile,galvanized steel plate with excellent formability,and process for its produciton
CN108950383A (en) A kind of high-strength and high-plasticity enhancing backplate cold-rolled steel sheet and its production technology
JP2007231371A (en) Cold-rolled steel sheet, galvanized steel sheet, and manufacturing method therefor
CN108130488A (en) Anti-corrosion steel plate, the method that the steel plate is prepared using steekle mill and its application in rolling stock
WO2005045083A1 (en) Thin steel sheet excelling in surface property, moldability and workability and process for producing the same
CN104245985B (en) High-strength high-processability steel plate and its manufacture method
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
CN110093563B (en) Enamel cold-rolled steel plate for deep drawing and production method thereof
JP2010037595A (en) High-strength cold-rolled steel sheet superior in weldability, and manufacturing method therefor
CN110938771A (en) Hot-rolled steel plate for wheel with tensile strength of 630MPa and manufacturing method thereof
JP2001303182A (en) Steel sheet for can good in workability and small in defect and its producing method
JP2001303183A (en) Steel sheet for can small in defect and excellent in workability and its producing method
JPH10251799A (en) Steel sheet for easy-open can top excellent in top openability and rivet formability, its production and easy-open can top
JP3739933B2 (en) Steel sheet for surface treatment with good workability and few defects and method for producing the same
JP2001303177A (en) Steel sheet for can small in defect and excellent in aging property and its producing method
JP2004010941A (en) Aluminum alloy sheet for bottle-type beverage can
JPH05331593A (en) Hot rolled steel plate for porcelain enameling increasing strength after firing of porcelain enameling and its production
JP3548314B2 (en) Steel sheet for cans with few defects and excellent aging and method for producing the same
JP3577413B2 (en) Steel sheet for cans having few defects and excellent seizure hardenability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees