JP2001296104A - Interference fringe detecting apparatus - Google Patents

Interference fringe detecting apparatus

Info

Publication number
JP2001296104A
JP2001296104A JP2000110734A JP2000110734A JP2001296104A JP 2001296104 A JP2001296104 A JP 2001296104A JP 2000110734 A JP2000110734 A JP 2000110734A JP 2000110734 A JP2000110734 A JP 2000110734A JP 2001296104 A JP2001296104 A JP 2001296104A
Authority
JP
Japan
Prior art keywords
light
sensor
interference fringe
specific wavelength
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110734A
Other languages
Japanese (ja)
Inventor
Koji Yoshimura
剛治 吉村
Takahiro Sometsugu
孝博 染次
Isao Ishida
勲 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000110734A priority Critical patent/JP2001296104A/en
Publication of JP2001296104A publication Critical patent/JP2001296104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate and detect interference fringes by automatically focusing an interference fringe detecting apparatus and adjusting the inclination of the apparatus. SOLUTION: The interference fringe detecting apparatus is provided with an interference fringe generating means, which generates interference fringes by branching the light emitted from a light source to the surface of an object to be measured and a reference surface and putting reflected light rays from the surfaces upon another and detects the interference fringes formed of the light having a first specific wavelength, an inclined angle measuring means which obtains information on the inclination of the surface of the object from the optical axis of an objective lens, by detecting a second specific wavelength component of the reflected light rays of the luminous flux projected upon the surface of the object, and a focal position measuring means which obtains the information on the deviation amount of the surface of the object from the focal point of the objective lens by detecting a third specific wavelength component of the patterned reflected light rays of the luminous flux projected upon the surface of object and transmitted through a pattern. The detecting device is also provided with a control means which calculates the inclination deviation amount of the surface from a prescribed angle or the position deviation amount of the surface from the focal point based on the detected information from the measuring means and issues a command that controls the attitude or position of the object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉縞を利用して
被測定物の表面形状を測定するための干渉縞検出装置に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an interference fringe detecting apparatus for measuring the surface shape of an object to be measured using interference fringes.

【0002】[0002]

【従来の技術】鏡面加工した表面の形状を高精度に測定
する装置として、例えば、雑誌「光技術コンタクト」、
1993年Vol31、No12、p713〜719に
記載されているように、2光束干渉顕微鏡を応用したも
のがあり、発生させた干渉縞から位相シフト法などを利
用して表面形状を算出している。2光束干渉顕微鏡は、
光の干渉現象を応用した干渉顕微鏡であって、光源から
発した光をハーフミラーで被測定物表面と参照ミラーの
2つの方向に分岐させ、各々から反射してきた光を重
ね、ハーフミラーと各々の表面までの距離が全く等しい
部位では輝度が最大になり、λ/2(ここで、λは光の
波長)ほど差がある部位では輝度が最小になることか
ら、干渉縞を発生させ、これを接眼レンズで観察できる
ようにした顕微鏡である。
2. Description of the Related Art As an apparatus for measuring the shape of a mirror-finished surface with high accuracy, for example, a magazine "Optical Technology Contact",
As described in Vol. 31, 1993, No. 12, pp. 713 to 719, a two-beam interference microscope is applied, and a surface shape is calculated from generated interference fringes by using a phase shift method or the like. Two-beam interference microscope
An interference microscope utilizing the light interference phenomenon, in which light emitted from a light source is split by a half mirror in two directions, that is, a surface of an object to be measured and a reference mirror, and light reflected from each is overlapped. Since the brightness is maximized in a portion where the distance to the surface is completely equal, and the brightness is minimized in a portion having a difference of λ / 2 (where λ is the wavelength of light), an interference fringe is generated. Is a microscope that enables observation with an eyepiece.

【0003】しかし、干渉顕微鏡で干渉縞を発生させる
ためには、被測定物表面と参照ミラー表面との距離を合
わせる(通常、被測定物表面を対物レンズの焦点に合せ
るためピント合せ或いは合焦と呼ぶ)だけでなく、傾き
の調整を高精度に行う必要がある。対物レンズの倍率、
光源の波長の帯域幅により変わるが、ピント合せのため
には、例えば、対物レンズの倍率を5倍、光源に半値幅
20nmの波長の光を使う場合には、20μm程度の位
置調整が必要である。また、傾きの調整は、例えば2m
mの視野内に干渉縞を数本程度出すようにするために
は、0.04度以内の精度で調整する必要がある。
However, in order to generate interference fringes with an interference microscope, the distance between the surface of the object to be measured and the surface of the reference mirror must be adjusted (normally, the surface of the object to be measured is focused or focused to focus on the objective lens). Not only), but also the inclination must be adjusted with high accuracy. Objective lens magnification,
Depending on the bandwidth of the wavelength of the light source, for focusing, for example, when the magnification of the objective lens is 5 times, and when the light source uses light having a wavelength with a half width of 20 nm, a position adjustment of about 20 μm is necessary. is there. The adjustment of the inclination is, for example, 2 m
In order to make several interference fringes appear in the field of view of m, it is necessary to adjust the accuracy with an accuracy within 0.04 degrees.

【0004】工業的に生産される部品の表面形状を測定
するためには、生産性高く行なうため素早く干渉縞を発
生させる必要があり、ピント合せや傾き調整を自動的に
行なうことが望まれている。干渉縞顕微鏡における自動
ピント合わせ方法として、例えば雑誌Appl.Opt.,31,No.
31(1992)6684-6689 に記載されているような方法がある
(公知例1)。これは、0次干渉縞では輝度が最大にな
ることを利用し、ポイントディテクタで反射光の光量を
測定しながら干渉対物レンズを焦点深度方向に走査し、
ポイントディテクタの出力値が最大になる位置をピント
合わせ位置とするものである。また、顕微鏡のオートフ
ォーカスシステムとして、顕微鏡の視野絞りの位置にオ
ートフォーカスの縞パターンを配置し、被測定物表面に
縞パターンを結像させ、それをラインセンサで検出する
ものが市販されている(中央精機(株):顕微鏡オート
フォーカスシステム)(公知例2)。
In order to measure the surface shape of industrially produced parts, it is necessary to generate interference fringes quickly in order to achieve high productivity, and it is desired to automatically perform focusing and tilt adjustment. I have. As an automatic focusing method in an interference fringe microscope, for example, a magazine Appl.Opt., 31, No.
31 (1992) 6684-6689 (known example 1). This utilizes the fact that the luminance is maximized in the zero-order interference fringes, scans the interference objective lens in the depth of focus direction while measuring the amount of reflected light with a point detector,
The position at which the output value of the point detector becomes maximum is set as the focusing position. As a microscope autofocus system, a system in which an autofocus stripe pattern is arranged at a position of a field stop of a microscope, an image of the stripe pattern is formed on the surface of an object to be measured, and the image is detected by a line sensor is commercially available. (Chuo Seiki Co., Ltd .: Microscope autofocus system) (known example 2).

【0005】また、特公平6−52168における3次
元形状測定装置には、集光光を対象物方向に照射して、
該集光光の集光位置と対象物との相対位置関係を判別す
る合焦判別光学系と、集光位置における対象物の傾斜角
度を測定する傾斜角測定光学系が示されている(公知例
3)。合焦状態の判別は、合焦用光源からの光を対物レ
ンズの上半分のみに入射させて、被測定物表面に集光さ
せ、被測定物から反射し対物レンズの下半分を通過した
光を対物レンズの後方に設けたセンサで検出して行なう
ものであり、対物レンズと被測定物表面の距離が変る
と、集光光の反射位置が変化して反射光の対物レンズで
の光路が変化し、センサに到達する位置が変化すること
を利用している。傾斜角測定は、傾斜角用光源からから
の光を対物レンズの光軸に平行に合致させて入射させ、
光軸上で被測定物に集光し、被測定物から反射し対物レ
ンズを通過した光を対物レンズの後方に設けた前記とは
別のセンサで検出して行なうものであり、被測定物表面
に傾きがあると、反射光の向きが変化し、センサに到達
する位置が変化することを利用している。
Further, the three-dimensional shape measuring device in Japanese Patent Publication No. 6-52168 irradiates condensed light toward the object,
A focusing discrimination optical system for discriminating a relative positional relationship between the condensing position of the condensed light and the object and an inclination angle measuring optical system for measuring an inclination angle of the object at the condensing position are shown (known in the art). Example 3). To determine the focusing state, light from the focusing light source is made incident on only the upper half of the objective lens, collected on the surface of the object to be measured, reflected from the object to be measured, and passed through the lower half of the objective lens. Is detected by a sensor provided behind the objective lens, and when the distance between the objective lens and the surface of the DUT changes, the reflection position of the condensed light changes and the optical path of the reflected light through the objective lens is changed. It takes advantage of the fact that it changes and the position that reaches the sensor changes. In the tilt angle measurement, the light from the tilt angle light source is made incident parallel to the optical axis of the objective lens.
The light condensed on the object to be measured on the optical axis, reflected from the object to be measured, and passed through the objective lens is detected by another sensor provided behind the objective lens to perform the measurement. This is based on the fact that if the surface is inclined, the direction of the reflected light changes and the position at which the light reaches the sensor changes.

【0006】[0006]

【発明が解決しようとする課題】しかし、公知例1にお
いては、被測定物或いは対物レンズを、ピント合せ位置
を通り過ぎるまで移動して初めて0次干渉縞かどうかが
確認されるので、被測定物表面位置のばらつき範囲分以
上を移動させる必要があり、被測定物の寸法ばらつきが
大きいものは計測に時間を要するという問題がある。ま
た、光源の波長の帯域幅が狭帯域になるほど干渉縞の輝
度の変化は緩やかになるので、狭帯域の光を使用する場
合にはピント合わせが高精度にできないという問題もあ
る。公知例2は、干渉顕微鏡に用いようとする場合、ピ
ント合せのための投影縞と、表面に発生した干渉縞との
区別ができないという問題がある。公知例3は、対物レ
ンズと対象物の距離と傾きを測定することを目的とした
測定装置であり、干渉縞を発生しこれを検出するための
手段は有していない。本発明は、被測定物個々の寸法が
ばらついて、干渉縞を発生させるための操作が都度必要
な場合でも、自動的にピント合せ並びに傾き調整を行っ
て干渉縞を発生・検出し、被測定物表面の形状を短時間
で測定するのに有用な干渉縞検出装置を提供することを
目的とする。
However, in the known example 1, it is not confirmed until the object to be measured or the objective lens is moved to the point where the focus is passed until the zero-order interference fringe is confirmed. It is necessary to move by more than the variation range of the surface position, and there is a problem that measurement of an object having large dimensional variation requires time. In addition, the narrower the bandwidth of the wavelength of the light source is, the smaller the change in the luminance of the interference fringes becomes. Therefore, there is a problem that the focusing cannot be performed with high accuracy when using light of a narrow band. Known example 2 has a problem in that when it is used for an interference microscope, it is not possible to distinguish between projection fringes for focusing and interference fringes generated on the surface. Known example 3 is a measuring device for measuring the distance and the inclination between the objective lens and the object, and does not have means for generating and detecting interference fringes. The present invention automatically performs focusing and tilt adjustment to generate and detect interference fringes even when an operation for generating interference fringes is required each time when the dimensions of the object to be measured vary and the measured fringes are measured. An object of the present invention is to provide an interference fringe detection device useful for measuring the shape of an object surface in a short time.

【0007】[0007]

【課題を解決するための手段】本発明の干渉縞検出装置
は、光源から発した光を被測定物表面と参照面に分岐
し、各々から反射してきた光を重ねて干渉縞を発生さ
せ、第1の特定の波長の光で形成された干渉縞を検出す
る干渉縞発生手段と、被測定物表面に照射した光束の反
射光の内、第2の特定の波長成分を検出して被測定物表
面と対物レンズ光軸との傾きに係わる情報を得る傾斜角
測定手段と、被測定物表面に投影したパターンの反射光
の内、パターンを透過する第3の特定の波長成分を検出
して、対物レンズ焦点からのずれ量に係わる情報を得る
合焦位置測定手段と、傾斜角測定手段や合焦位置測定手
段からの検出情報をもとに、所定角度からの傾きずれ量
や焦点からの位置ずれ量を算出し、被測定物の姿勢や位
置を制御するような指令を出力する制御手段と、を有し
ていることを特徴としている。また、本発明の干渉縞検
出装置においては、干渉縞発生手段は、干渉縞を検出す
るセンサと、このセンサの前面に装着した第1の特定の
波長の光を透過するフィルタと、被測定物表面を光軸方
向と光軸に垂直方向面の位置と傾きを制御できる被測定
物を載置するステージとを備え、傾斜角測定手段は、傾
斜角測定用光束照射手段と、被測定物表面に照射された
傾斜角測定用光束の反射光位置を検出するセンサと、こ
のセンサの前面に装着した第1の特定の波長とは異なる
第2の特定の波長を透過するフィルタとを備え、合焦位
置測定手段は、第1、第2の特定の波長とは異なる第3
の特定の波長を透過する部分を有するパターンが投影さ
れた被測定物表面からの光を異なる位置で検出するセン
サと、このセンサの前面に装着した第3の特定の波長を
透過するフィルタとを備えるようにするとよい。
An interference fringe detecting device according to the present invention divides light emitted from a light source into a surface of an object to be measured and a reference surface, and superimposes light reflected from each to generate interference fringes. Interference fringe generating means for detecting an interference fringe formed by light of a first specific wavelength, and detecting and measuring a second specific wavelength component of reflected light of a light beam applied to the surface of the object to be measured Tilt angle measuring means for obtaining information relating to the tilt between the object surface and the optical axis of the objective lens; and detecting a third specific wavelength component transmitted through the pattern from reflected light of the pattern projected on the surface of the object to be measured. A focus position measuring means for obtaining information relating to a shift amount from the focus of the objective lens, and a tilt shift amount from a predetermined angle and a focus shift amount based on detection information from the tilt angle measuring means and the focus position measuring means. A finger that calculates the displacement and controls the posture and position of the DUT It is characterized in that it has a control means for outputting. Further, in the interference fringe detecting device of the present invention, the interference fringe generating means includes: a sensor for detecting the interference fringe; a filter mounted on the front surface of the sensor and transmitting light of a first specific wavelength; A stage on which an object to be measured that can control the position and inclination of the surface in the direction of the optical axis and the direction perpendicular to the optical axis is mounted, the inclination angle measuring means includes a light beam irradiating means for inclination angle measurement, and a surface A sensor for detecting the reflected light position of the light beam for measuring the tilt angle applied to the sensor, and a filter mounted on the front surface of the sensor and transmitting a second specific wavelength different from the first specific wavelength. The focal position measuring means may be a third position different from the first and second specific wavelengths.
A sensor that detects light from the surface of the DUT onto which a pattern having a portion transmitting a specific wavelength is projected at a different position, and a filter mounted on the front surface of the sensor and transmitting a third specific wavelength. It is good to prepare.

【0008】[0008]

【発明の実施の形態】以下、図面をもとに本発明を説明
する。図1は、本発明に係る干渉縞検出装置の実施例を
示す概略構成図である。干渉顕微鏡構造をベースとした
干渉縞発生手段1、被測定物表面と対物レンズ光軸との
傾きを計測する傾斜角測定手段2、被測定物表面の対物
レンズ焦点からのずれ量を計測する合焦位置測定手段
3、及び傾斜角測定手段や合焦位置測定手段からの測定
情報をもとに、所定角度からの傾きずれ量や焦点からの
位置ずれ量を算出し、被測定物の姿勢や位置を制御する
ような指令を出力する制御手段(図示せず)を備えてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the interference fringe detection device according to the present invention. Interference fringe generating means 1 based on an interference microscope structure, tilt angle measuring means 2 for measuring the inclination between the surface of the object to be measured and the optical axis of the objective lens, and measurement of the amount of deviation of the surface of the object from the focus of the objective lens. Based on the measurement information from the focal position measuring means 3 and the inclination angle measuring means and the focusing position measuring means, the amount of inclination deviation from a predetermined angle and the amount of positional deviation from the focal point are calculated, and the posture and the posture of the object to be measured are calculated. Control means (not shown) for outputting a command for controlling the position is provided.

【0009】干渉縞発生手段1は、干渉縞に係わる主要
な光学素子が組込まれている鏡筒部5と、照明光学部6
と、被測定物の位置及び姿勢を制御するステージ7とを
有している。鏡筒部5は、第1の鏡筒8に、後述する干
渉対物レンズ系、照明光学系、傾斜角測定系、合焦測定
系、干渉縞測定系に係わる光学素子が、図1の紙面では
下方から順にアライメントされて組み付けられたもので
ある。干渉対物レンズ系の光学素子は、対物レンズ18
と、その下方に設置されたハーフプリズム19と、ハー
フプリズム19の側方で対物レンズ18の光軸に直交す
る方向に設けられ、対物レンズ18の焦点距離に等しい
光路長位置に平滑な表面を配置した参照ミラー21と、
参照ミラー21の前面に設けた特定の波長の光だけを透
過させるバンドパスフィルタ20などである。
The interference fringe generating means 1 includes a lens barrel 5 in which main optical elements related to interference fringes are incorporated, and an illumination optical unit 6.
And a stage 7 for controlling the position and orientation of the device under test. The lens barrel unit 5 includes, in the first lens barrel 8, optical elements related to an interference objective lens system, an illumination optical system, a tilt angle measurement system, a focus measurement system, and an interference fringe measurement system, which will be described later. They are aligned and assembled in order from the bottom. The optical element of the interference objective lens system is an objective lens 18.
And a half prism 19 installed under the half prism 19, and a smooth surface provided at a side of the half prism 19 in a direction orthogonal to the optical axis of the objective lens 18, at an optical path length position equal to the focal length of the objective lens 18. A reference mirror 21 disposed;
For example, the bandpass filter 20 provided on the front surface of the reference mirror 21 and transmitting only light of a specific wavelength.

【0010】照明光学系の光学素子は、対物レンズ18
の上方にアライメントされて設けられたハーフプリズム
17である。ハーフプリズム17が配置されている側方
の第1の鏡筒8に、照明光学部6の外殻を成す第2の鏡
筒9が取り付けられており、照明光学部6からの照明光
が、ハーフプリズム17で反射し、対物レンズ18に向
けて照射される。
The optical element of the illumination optical system includes an objective lens 18
Is a half prism 17 aligned above. A second lens barrel 9 forming an outer shell of the illumination optical unit 6 is attached to the first lens barrel 8 on the side where the half prism 17 is disposed, and illumination light from the illumination optical unit 6 The light is reflected by the half prism 17 and irradiated toward the objective lens 18.

【0011】照明光学部6は、光源10、レンズ11、
開口絞り12、レンズ13、特定の波長のみ透過する縞
で形成されたパターンを有する平行平板14、視野絞り
15、投影レンズ16の順に第2の鏡筒9内にアライメ
ントされて配置され、光源10を発した光が前記光学素
子を順次通過してハーフプリズム17に至るようになっ
ている。
The illumination optical unit 6 includes a light source 10, a lens 11,
An aperture stop 12, a lens 13, a parallel plate 14 having a pattern formed by stripes transmitting only a specific wavelength, a field stop 15, and a projection lens 16 are arranged and arranged in the second lens barrel 9 in this order. Is sequentially passed through the optical element and reaches the half prism 17.

【0012】傾斜角測定系光学素子として、ハーフプリ
ズム32が、鏡筒部5のハーフプリズム17の上部にア
ライメントされて設けられている。ハーフプリズム32
が配置されている側方の第1の鏡筒8に、傾斜角測定手
段2が取り付けられており、傾斜角測定手段2の光源か
らの光は、ハーフプリズム32で反射し、対物レンズ1
8に向けて照射される。
As an optical element for measuring a tilt angle, a half prism 32 is provided on the upper part of the half prism 17 of the lens barrel 5 so as to be aligned. Half prism 32
The tilt angle measuring means 2 is attached to the first lens barrel 8 on the side where is disposed, and the light from the light source of the tilt angle measuring means 2 is reflected by the half prism 32 and the objective lens 1
Irradiated toward 8.

【0013】傾斜角測定手段2は、ハーフプリズム32
の側面に設けた外殻に、反射面がハーフプリズム32の
反射面と平行になるように配置したハーフプリズム31
と、特定の波長の光のみ透過するバンドパスフィルタ3
3と、2次元センサ34とを直線状に順に設けるととも
に、光源30をハーフプリズム31の反射面上方に設け
た構成である。光源30は、例えばレーザのような指向
性が高く光束状に直進する光(以下、光束と称す)を発
するものを使用する。光源30とハーフプリズム31
は、ハーフプリズム32で反射した光束の中心が、対物
レンズ18の光軸に一致するような位置関係に配置して
いる。
The inclination angle measuring means 2 includes a half prism 32
A half prism 31 arranged on the outer shell provided on the side surface of the half prism 32 so that the reflection surface is parallel to the reflection surface of the half prism 32
And a band-pass filter 3 that transmits only light of a specific wavelength
3 and a two-dimensional sensor 34 are provided in order in a straight line, and the light source 30 is provided above the reflection surface of the half prism 31. As the light source 30, for example, a light source such as a laser that emits light (hereinafter, referred to as a light beam) having a high directivity and traveling straight in a light beam shape is used. Light source 30 and half prism 31
Are arranged so that the center of the light beam reflected by the half prism 32 coincides with the optical axis of the objective lens 18.

【0014】鏡筒部5のハーフプリズム32の上部に、
結像レンズ45と、合焦測定系光学素子としてのハーフ
プリズム44が、順にアライメントされて設けられてい
る。ハーフプリズム44が配置されている側方の第1の
鏡筒8に、合焦位置測定手段3が取り付けられており、
結像レンズ45を透過した光は、ハーフプリズム44で
反射し、合焦位置測定手段3の検出センサに向けて照射
される。
Above the half prism 32 of the lens barrel 5,
An imaging lens 45 and a half prism 44 as a focusing measurement system optical element are provided in order aligned. The focus position measuring means 3 is attached to the first lens barrel 8 on the side where the half prism 44 is arranged,
The light transmitted through the imaging lens 45 is reflected by the half prism 44 and is emitted toward the detection sensor of the focus position measuring unit 3.

【0015】合焦位置測定手段3は、ハーフプリズム4
4の側面に隣接して、反射面がハーフプリズム44の反
射面と平行になるように配置したハーフプリズム42
と、ハーフプリズム42の反射面上方に設けた前ピン検
出センサ41と、ハーフプリズム42の透過光側に設け
た後ピン検出センサ40と、ハーフプリズム44とハー
フプリズム42の間に設けた特定の波長以上の光のみ透
過するシャープカットフィルタ43とを備えた構成であ
る。前ピン検出センサ41と後ピン検出センサ40と
は、結像レンズ45の焦点距離に等しい光路長位置の近
傍で、後述する所定位置になるように配置する。
The focus position measuring means 3 includes a half prism 4
And a half prism 42 disposed adjacent to the side surface of the half prism 44 such that the reflection surface is parallel to the reflection surface of the half prism 44.
A front pin detection sensor 41 provided above the reflection surface of the half prism 42, a rear pin detection sensor 40 provided on the transmitted light side of the half prism 42, and a specific pin provided between the half prism 44 and the half prism 42. A sharp cut filter 43 that transmits only light having a wavelength or more is provided. The front-pin detection sensor 41 and the rear-pin detection sensor 40 are arranged near a light path length position equal to the focal length of the imaging lens 45 so as to be a predetermined position described later.

【0016】鏡筒部5のハーフプリズム44の上部に、
干渉縞測定系に係わる光学素子として特定の波長の光だ
けの光を透過させるバンドパスフィルタ51と、2次元
センサ50が、順にアライメントされて設けられてい
る。2次元センサ50は、検出面が光軸に直交するよう
に、かつ結像レンズ45の焦点位置にくるように配置す
る。2次元センサ50からの干渉縞に係わる情報は、図
示しない表面形状測定手段に送られ、位相シフト法等で
表面形状を計測することができる。
Above the half prism 44 of the lens barrel 5,
As an optical element related to the interference fringe measurement system, a band-pass filter 51 that transmits only light of a specific wavelength and a two-dimensional sensor 50 are provided in alignment with each other. The two-dimensional sensor 50 is disposed so that the detection surface is orthogonal to the optical axis and at the focal position of the imaging lens 45. Information on the interference fringes from the two-dimensional sensor 50 is sent to a surface shape measuring unit (not shown), and the surface shape can be measured by a phase shift method or the like.

【0017】また、鏡筒部5の下方には、被測定物60
を載置するステージ7が配設されている。ステージ7
は、対物レンズ18の光軸方向に沿った位置の制御がで
きる公知の構造の移動手段と、前記光軸に直交する平面
の傾きを2次元的に制御できる公知の構造の移動手段を
有している。各々の移動手段は、傾斜角測定手段2及び
合焦位置測定手段3からの情報が入力される制御手段と
電気的に接続されており、制御手段からの指令でステー
ジ7の位置及び傾きを制御することができる。
An object 60 to be measured is located below the lens barrel 5.
Is mounted on the stage 7. Stage 7
Has moving means having a known structure capable of controlling the position of the objective lens 18 along the optical axis direction, and moving means having a known structure capable of two-dimensionally controlling the inclination of a plane orthogonal to the optical axis. ing. Each moving means is electrically connected to a control means to which information from the inclination angle measuring means 2 and the in-focus position measuring means 3 is inputted, and controls the position and the inclination of the stage 7 by a command from the controlling means. can do.

【0018】前述の鏡筒部5及び照明光学部6は、無限
遠補正顕微鏡構造としている。即ち、鏡筒部5において
は、被測定物60からの反射光は、対物レンズ18では
結像せず、無限遠の平行光束として結像レンズ45に入
り、結像レンズ45によって結像する。照明光学部6に
おいては、光源10から発せられた光は、レンズ11を
透過して集光され、開口絞り12で光の集束度合いをコ
ントロールされ、レンズ13を透過して略平行光になる
ように光束状態をコントロールされ、視野絞り15を通
過してレンズ16を経た光は平行光となる。従って、ハ
ーフプリズム17で反射した光は、対物レンズ18に平
行光として入射する。
The lens barrel 5 and the illumination optical unit 6 have an infinity corrected microscope structure. That is, in the lens barrel 5, the reflected light from the measured object 60 does not form an image with the objective lens 18, enters the imaging lens 45 as a parallel light beam at infinity, and forms an image with the imaging lens 45. In the illumination optical unit 6, light emitted from the light source 10 is transmitted through the lens 11 and collected, the degree of convergence of the light is controlled by the aperture stop 12, and transmitted through the lens 13 to become substantially parallel light. The state of the luminous flux is controlled, and the light passing through the field stop 15 and passing through the lens 16 becomes parallel light. Therefore, the light reflected by the half prism 17 enters the objective lens 18 as parallel light.

【0019】これより、平行平板14の縞パターンは、
レンズ16によって無限遠の平行光束として対物レンズ
18に入射し、対物レンズ18によって、その焦点位置
に結像する。無限遠補正顕微鏡では、被測定物60の表
面が対物レンズ18の焦点位置にある時に合焦状態とな
る。合焦状態にある時には、ハーフプリズム19によっ
て分けられ、参照ミラー21と被測定物60に向かい、
各々反射して戻ってきた光は干渉し、被測定物60表面
の凹凸に応じた縞状のパターン(以下、干渉縞と称す)
を形成する。
Thus, the stripe pattern of the parallel plate 14 is
The light enters the objective lens 18 as a parallel light beam at infinity by the lens 16, and is imaged at the focal position by the objective lens 18. In the infinity-corrected microscope, the in-focus state is established when the surface of the measured object 60 is at the focal position of the objective lens 18. When in the focused state, the light is divided by the half prism 19 and is directed to the reference mirror 21 and the object 60 to be measured.
The light reflected and returned interferes with each other, and has a stripe pattern (hereinafter, referred to as interference fringes) corresponding to the unevenness of the surface of the measured object 60.
To form

【0020】本実施例においては、平行平板14は70
0nm以上の波長の光(以下、合焦判別波長光と称す)
だけを透過する膜で縞パターンを形成した。これをもと
に、各フィルターは次のような仕様とした。参照ミラー
21の前面に配置したバンドパスフィルタ20は、合焦
判別波長光の波長以下の特定の波長、例えば500nm
の波長の光(以下、干渉波長光と称す)だけを透過させ
る。傾斜角測定手段2のバンドパスフィルタ33は、合
焦判別波長光の波長以下で、干渉波長光と異なる特定の
波長、例えば600nmの波長の光(以下、傾斜角波長
光と称す)だけを透過させる。合焦位置測定手段3のシ
ャープカットフィルタ43は、合焦判別波長光(700
nm以上)を透過させる。2次元センサ50の前面に配
置したバンドパスフィルタ51は、干渉波長光(500
nm)だけを透過させる。
In this embodiment, the parallel flat plate 14 is 70
Light having a wavelength of 0 nm or more (hereinafter, referred to as focus determination wavelength light)
A stripe pattern was formed with a film that transmits only the light. Based on this, each filter had the following specifications. The band-pass filter 20 disposed in front of the reference mirror 21 has a specific wavelength equal to or less than the wavelength of the focus determination wavelength light, for example, 500 nm.
(Hereinafter referred to as interference wavelength light). The band-pass filter 33 of the tilt angle measuring means 2 transmits only light having a wavelength equal to or less than the wavelength of the focus determination wavelength light and different from the interference wavelength light, for example, a wavelength of 600 nm (hereinafter referred to as tilt angle wavelength light). Let it. The sharp cut filter 43 of the focus position measuring means 3 outputs the focus determination wavelength light (700
nm or more). The band-pass filter 51 disposed on the front of the two-dimensional sensor 50 transmits the interference wavelength light (500
nm).

【0021】次に、傾斜角測定手段2における傾斜角測
定方法について説明する。光源30から発せられた指向
性が高い光束Aは、ハーフプリズム31で90度反射し
て鏡筒部5に入射し、ハーフプリズム32で反射し、鏡
筒部5の光軸を中心とした平行光束として対物レンズ1
8を透過し、被測定物60の表面に光軸上に中心を有す
るスポットを結像する。該スポットから反射された光束
Bは、ハーフプリズム19、対物レンズ18を透過した
後、ハーフプリズム32で反射して鏡筒部5から傾斜角
測定手段2へと戻り、バンドパスフィルタ33を透過し
て2次元センサ34に到達する。ハーフプリズム31を
透過した光には、参照ミラー21から反射した干渉波長
光(500nm)も含まれているが、バンドパスフィル
タ33は傾斜角波長光(600nm)だけを透過させる
ので、2次元センサ34に到達する光は被測定物60の
表面から反射した光のみとなる。
Next, a method of measuring the tilt angle in the tilt angle measuring means 2 will be described. A light beam A having a high directivity emitted from the light source 30 is reflected by the half prism 31 at 90 degrees, enters the lens barrel 5, is reflected by the half prism 32, and is parallel with the optical axis of the lens barrel 5 as a center. Objective lens 1 as light flux
8, a spot having a center on the optical axis is formed on the surface of the measured object 60. The light flux B reflected from the spot passes through the half prism 19 and the objective lens 18, is reflected by the half prism 32, returns from the lens barrel 5 to the tilt angle measuring means 2, and passes through the bandpass filter 33. And reaches the two-dimensional sensor 34. Although the light transmitted through the half prism 31 includes the interference wavelength light (500 nm) reflected from the reference mirror 21, the band-pass filter 33 transmits only the tilt angle wavelength light (600 nm). The light reaching 34 is only light reflected from the surface of the device under test 60.

【0022】図2に、被測定物60表面の傾きと2次元
センサ34に到達する光束の位置の関係を、説明を簡単
にするために、傾きが紙面に左右方向である場合の例で
示した。被測定物60の表面が光軸に直交する面に対し
角度αだけ傾いているとすると、スポットからの反射光
束Bは、光軸に対し角度2αをなして対物レンズ18に
入射する。この時のスポットは、対物レンズの焦点位置
にあるので、対物レンズ18に入射した光束は光軸と平
行に進行し、その光束中心は下記式で求められるHだけ
光軸から隔てられることになる。 H=F×tan(2α) (Fは対物レンズ18の焦点距離で既知)
FIG. 2 shows the relationship between the inclination of the surface of the object 60 to be measured and the position of the light beam reaching the two-dimensional sensor 34, for the sake of simplicity, in the case where the inclination is in the horizontal direction on the paper. Was. Assuming that the surface of the device under test 60 is inclined by an angle α with respect to a plane orthogonal to the optical axis, the reflected light beam B from the spot enters the objective lens 18 at an angle 2α with respect to the optical axis. Since the spot at this time is at the focal position of the objective lens, the light beam incident on the objective lens 18 travels in parallel with the optical axis, and the center of the light beam is separated from the optical axis by H obtained by the following equation. . H = F × tan (2α) (F is known by the focal length of the objective lens 18)

【0023】ハーフプリズム32で反射された反射光束
Bは、入射光束AとHだけずれて2次元センサ34に達
する。被測定物60が傾いていない時の反射光束Bは、
入射光束Aと光路が一致しており、この時の反射光束B
の2次元センサ34上の位置は予め検出できる。この予
め検出した位置を基準とすれば、反射光束Bの2次元セ
ンサ34の検出値からHを求めることができるので、前
述した式により傾き角度を算出することができる。
The reflected light beam B reflected by the half prism 32 reaches the two-dimensional sensor 34 by being shifted from the incident light beam A by H. The reflected light flux B when the device under test 60 is not tilted is
The light path coincides with the incident light flux A, and the reflected light flux B at this time
The position on the two-dimensional sensor 34 can be detected in advance. If the position detected in advance is used as a reference, H can be obtained from the detected value of the reflected light beam B by the two-dimensional sensor 34, so that the inclination angle can be calculated by the above-described equation.

【0024】次に、合焦位置測定方法について説明す
る。照明光学部6の平行平板14には、合焦判別波長光
(700nm以上の波長)だけを透過する膜で縞パター
ンが形成されており、膜のない部分は全ての波長の光が
透過する。光源10から発せられ、平行平板14を透過
した光は、レンズ16によって無限遠の平行光束にな
り、ハーフプリズム17で反射し、対物レンズ18によ
って被測定物60の表面に結像される。この結像を合焦
判別波長光で観察すれば、被測定物60の表面には平行
平板14の縞パターン(以下、投影縞と称す)が見える
ことになる。この投影縞は、対物レンズ18によって再
び平行光束となり、結像レンズ45で絞られ、ハーフプ
リズム44、シャープカットフィルタ43、ハーフプリ
ズム42を経て、前ピン検出センサ41と後ピン検出セ
ンサ40上に結像する。シャープカットフィルタ43
は、合焦判別波長光だけを透過させるフィルタであり、
干渉波長光(500nm)はカットされるので、前ピン
検出センサ41及び後ピン検出センサ40上には投影縞
のみ現れ、干渉縞は現れない。
Next, a method of measuring the focus position will be described. A stripe pattern is formed on the parallel plate 14 of the illumination optical unit 6 with a film that transmits only the focus discrimination wavelength light (wavelength of 700 nm or more), and light of all wavelengths passes through the portion without the film. Light emitted from the light source 10 and transmitted through the parallel flat plate 14 is converted into a parallel light flux at infinity by the lens 16, reflected by the half prism 17, and imaged on the surface of the measured object 60 by the objective lens 18. By observing this image with light having a wavelength for determining focus, a stripe pattern of the parallel flat plate 14 (hereinafter, referred to as a projection stripe) can be seen on the surface of the measured object 60. This projection fringe is again converted into a parallel light beam by the objective lens 18, narrowed down by the image forming lens 45, passes through the half prism 44, the sharp cut filter 43, and the half prism 42, and is applied to the front focus detection sensor 41 and the rear focus detection sensor 40. Form an image. Sharp cut filter 43
Is a filter that transmits only the focus determination wavelength light,
Since the interference wavelength light (500 nm) is cut, only projection fringes appear on the front-pin detection sensor 41 and the rear-pin detection sensor 40, and no interference fringes appear.

【0025】図3に示すように、前ピン検出センサ41
は、被測定物60の表面が対物レンズ18の焦点位置よ
り近い位置に存在する時に投影縞がセンサ面上に結像す
るように固定したセンサである。後ピン検出センサ40
は、被測定物60の表面が対物レンズ18の焦点位置よ
り遠い位置に存在する時に投影縞がセンサ面上に結像す
るように固定したセンサである。即ち、被測定物60の
表面がちょうど対物レンズ18の焦点位置に存在する場
合(図中のロの位置)には、投影縞は、前ピン検出セン
サ41側ではセンサ面より前の位置(図中のロ′の位
置)に結像し、後ピン検出センサ40側ではセンサ面の
後方(図中のロ″の位置)に結像する。従って、被測定
物60の表面が対物レンズ18の焦点位置より近い所定
位置に存在する場合(図中のイの位置)には、投影縞
は、前ピン検出センサ41側ではセンサ面上(図中の
イ′の位置)に結像し、後ピン検出センサ40側ではセ
ンサ面より後方(図中のイ″の位置)に結像し、被測定
物60の表面が対物レンズ18の焦点位置より遠い所定
位置に存在する場合(図中のハの位置)には、投影縞
は、前ピン検出センサ41側ではセンサ面より前の位置
(図中のハ′の位置)に結像し、後ピン検出センサ40
側ではセンサ面上(図中のハ″の位置)に結像する。
As shown in FIG. 3, the front focus detection sensor 41
Is a sensor fixed so that a projection fringe forms an image on the sensor surface when the surface of the device under test 60 is located at a position closer to the focal position of the objective lens 18. Rear pin detection sensor 40
Is a sensor fixed such that projection fringes form an image on the sensor surface when the surface of the device under test 60 is located at a position farther than the focal position of the objective lens 18. That is, when the surface of the device under test 60 is exactly at the focal position of the objective lens 18 (the position B in the figure), the projection fringe is located at a position before the sensor surface on the front focus detection sensor 41 side (see FIG. An image is formed at the position (b 'in FIG. 2), and on the side of the rear focus detection sensor 40, an image is formed behind the sensor surface (the position of "b" in the drawing). When it is located at a predetermined position closer to the focal position (position A in the figure), the projection stripe forms an image on the sensor surface (position A 'in the figure) on the front focus detection sensor 41 side, and On the pin detection sensor 40 side, an image is formed behind the sensor surface (position "a" in the figure), and the surface of the measured object 60 is located at a predetermined position farther than the focal position of the objective lens 18 (c in the figure). Is located at a position before the sensor surface on the front focus detection sensor 41 side (see FIG. , At the position) of the C ', rear focus detection sensor 40
On the side, an image is formed on the sensor surface (the position indicated by C in the figure).

【0026】図4に、投影縞の結像位置の違いとセンサ
出力の関係を示す。センサの出力波形は、投影縞がセン
サ面上に結像した場合が最もコントラストの高い像が得
られ、投影縞がセンサ面から離れるに従いコントラスト
は低くなる。前ピン検出センサの出力波形は、図4
(a)に示すように、投影縞がセンサ面上に存在するイ
の位置で最も波形のコントラストが高く、ロからハへと
投影縞がセンサ面から離れるに従いコントラストが低く
なる。逆に、後ピン検出センサの出力波形は、図4
(b)に示すように、ハの場合が最もコントラストが高
く、イの場合が最も低くなる。
FIG. 4 shows the relationship between the difference in the image formation position of the projection fringes and the sensor output. As for the output waveform of the sensor, an image with the highest contrast is obtained when the projection fringes are formed on the sensor surface, and the contrast decreases as the projection fringes move away from the sensor surface. The output waveform of the front focus detection sensor is shown in FIG.
As shown in (a), the contrast of the waveform is the highest at the position A where the projection stripe exists on the sensor surface, and the contrast decreases as the projection stripe moves away from the sensor surface from B to C. Conversely, the output waveform of the rear focus detection sensor is shown in FIG.
As shown in (b), the contrast is highest in the case of C and the lowest in the case of A.

【0027】図5に、前ピン検出センサと後ピン検出セ
ンサの、C=Σ|i−I|(ここで、iは投影縞の輝度
値、Iはその平均値)で計算されるコントラスト値と、
被測定面の焦点方向(Z方向)位置との関係を示す。図
5(a)は、前ピン検出センサコントラスト値特性曲線
41aと、後ピン検出センサコントラスト値特性曲線4
0aを示したものである。被測定物60の表面が合焦位
置のロにある時に、前ピン検出センサのコントラスト値
と後ピン検出センサのコントラスト値が一致するよう
に、予め両センサ位置を調整しておき、コントラスト値
の差を計算すると図5(b)に示すように、コントラス
ト値が零値を中心に対象となる特性曲線を得ることがで
きる。従って、前ピン検出センサ41と後ピン検出セン
サ40からそれぞれコントラスト値を計算し、その差を
計算することで、被測定物の表面が合焦位置からどれだ
け離れているかを計算することができる。
FIG. 5 shows a contrast value calculated by C = Σ | i−I | (where i is the luminance value of the projection fringes and I is the average value) of the front pin detection sensor and the rear pin detection sensor. When,
The relationship with the focal direction (Z direction) position of the measured surface is shown. FIG. 5A shows a front focus detection sensor contrast value characteristic curve 41 a and a rear focus detection sensor contrast value characteristic curve 4.
0a. When the surface of the device under test 60 is at the in-focus position b, the positions of the two sensors are adjusted in advance so that the contrast value of the front focus detection sensor and the contrast value of the rear focus detection sensor match. When the difference is calculated, as shown in FIG. 5 (b), a characteristic curve in which the contrast value is centered around the zero value can be obtained. Therefore, by calculating the contrast value from each of the front focus detection sensor 41 and the rear focus detection sensor 40 and calculating the difference, it is possible to calculate how far the surface of the measured object is away from the in-focus position. .

【0028】次に、干渉縞測定について説明する。前述
した基準からの傾きずれ量や焦点からのずれ量は、傾斜
角測定手段2及び合焦位置測定手段3からの検出情報を
もとに、制御手段で算出される。ずれ量が算出される
と、このずれ量をなくすようなステージ制御量が算出さ
れ、ステージの位置、姿勢制御手段に送られ、ステージ
の位置、姿勢が制御される。これにより、ステージに載
置された被測定物60の表面は、対物レンズ18の焦点
位置で、かつ光軸に対して垂直になるように修正され
る。
Next, the measurement of interference fringes will be described. The amount of inclination deviation from the reference and the amount of deviation from the focus are calculated by the control unit based on the detection information from the inclination angle measurement unit 2 and the focus position measurement unit 3. When the shift amount is calculated, a stage control amount that eliminates the shift amount is calculated, sent to the stage position / posture control means, and the stage position / posture is controlled. Thus, the surface of the DUT 60 mounted on the stage is corrected so as to be at the focal position of the objective lens 18 and perpendicular to the optical axis.

【0029】光源10及び光源30から照射された光に
よる被測定物60と参照ミラー21からの反射光は、干
渉現象をおこして干渉縞を形成するが、ハーフプリズム
19と参照ミラー21の間には干渉波長光(500n
m)だけを透過するバンドパスフィルタ20が配置され
ているので、干渉縞は干渉波長光のみで形成されてい
る。対物レンズ18及び結像レンズ45を透過した光
は、2次元センサ50上に結像されることになるが、途
中に設けた干渉波長光の光だけを透過させるバンドパス
フィルタ51により、他の傾斜角波長光や合焦判別波長
光はカットされ、2次元センサ50上には干渉縞だけが
結像されることになる。この干渉縞から、例えば位相シ
フト法などで距離画像に変換し、表面形状を計測するこ
とができる。
The light reflected from the DUT 60 and the reference mirror 21 by the light emitted from the light source 10 and the light source 30 causes an interference phenomenon to form an interference fringe. Is the interference wavelength light (500n
Since the bandpass filter 20 that transmits only m) is arranged, the interference fringes are formed only of the interference wavelength light. The light transmitted through the objective lens 18 and the imaging lens 45 forms an image on the two-dimensional sensor 50. However, other light is transmitted by the band-pass filter 51 provided on the way to transmit only the light of the interference wavelength light. The tilt angle wavelength light and the focus determination wavelength light are cut off, and only the interference fringes are imaged on the two-dimensional sensor 50. The interference fringes can be converted into a distance image by, for example, a phase shift method, and the surface shape can be measured.

【0030】前述した傾斜角測定手段2の2次元センサ
34及び干渉縞発生手段1の2次元センサ50は、2次
元カメラやポジションセンサなどを用いるとよい。ま
た、合焦位置測定手段3の前ピン検出センサ41と後ピ
ン検出センサ40も、前記2次元カメラやポジションセ
ンサなど2次元センサを用いるとよいが、平行平板14
に形成するパターンが平行縞パターンの場合は、1次元
ラインセンサでもよい。
As the two-dimensional sensor 34 of the inclination angle measuring means 2 and the two-dimensional sensor 50 of the interference fringe generating means 1, it is preferable to use a two-dimensional camera or a position sensor. The front-pin detection sensor 41 and the rear-pin detection sensor 40 of the focus position measuring means 3 may be two-dimensional sensors such as the two-dimensional camera and the position sensor.
When the pattern to be formed is a parallel stripe pattern, a one-dimensional line sensor may be used.

【0031】本発明は、合焦位置測定手段と、傾斜角測
定手段と、干渉縞発生手段と、これらと電気的に接続さ
れた制御装置とを組合わせた装置としたことが最大の特
徴であり、実施の形態で説明した構成例に限定されるも
のではないことは言うまでもない。例えば、合焦位置測
定手段と、傾斜角測定手段と、干渉縞発生手段の操作は
同時に行なう必要はないことから、傾斜角測定手段2と
照明光学手段6を、鏡筒部5に対して交互移動できるよ
うに取り付け、ハーフプリズム17又は32のいずれか
を不要にした構成とするようにすることもできる。
The greatest feature of the present invention is that the apparatus is a combination of a focus position measuring means, a tilt angle measuring means, an interference fringe generating means, and a control device electrically connected thereto. Of course, it is needless to say that the present invention is not limited to the configuration example described in the embodiment. For example, since the operations of the focus position measuring means, the tilt angle measuring means, and the interference fringe generating means do not need to be performed simultaneously, the tilt angle measuring means 2 and the illumination optical means 6 are alternately moved with respect to the lens barrel 5. It is also possible to adopt a configuration in which it is mounted so as to be movable and one of the half prisms 17 and 32 is unnecessary.

【0032】[0032]

【発明の効果】以上説明したように、本発明は次のよう
な効果を有している。 1)ピント合せと傾き調整を行なった時点で干渉縞を発
生させることができるので、迅速に表面形状測定をする
ことができる。 2)自動的にピント合せと傾き調整を行うことができる
ので、寸法バラツキの大きい被測定物でも、能率的に干
渉縞を発生させることができる。 3)合焦判別用、傾斜角測定用、干渉縞発生用に、別々
の波長の光を用いて誤判別を防止する方式であるので、
光学素子を共用することができ、コンパクトな装置を実
現することができた。
As described above, the present invention has the following effects. 1) Since interference fringes can be generated when focusing and tilt adjustment are performed, the surface shape can be measured quickly. 2) Since the focusing and the tilt adjustment can be automatically performed, interference fringes can be efficiently generated even for an object to be measured having a large dimensional variation. 3) Since it is a method for preventing erroneous determination using lights of different wavelengths for focusing determination, tilt angle measurement, and interference fringe generation,
Optical elements could be shared, and a compact device could be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の干渉縞検出装置の一例を示す図FIG. 1 is a diagram showing an example of an interference fringe detection device of the present invention.

【図2】傾斜角測定方法を説明するための図FIG. 2 is a diagram for explaining a tilt angle measuring method.

【図3】合焦位置測定方法を説明するための図FIG. 3 is a diagram for explaining a focusing position measuring method;

【図4】投影縞の結像位置による合焦位置検出センサの
出力の違いを示す図
FIG. 4 is a diagram showing a difference in output of a focus position detection sensor depending on an image formation position of a projection fringe.

【図5】前ピン検出センサと後ピン検出センサのコント
ラスト値の違いを示す図
FIG. 5 is a diagram showing a difference in contrast value between a front focus detection sensor and a rear focus detection sensor.

【符号の説明】[Explanation of symbols]

1…干渉縞発生手段、 2…傾斜角測定手段、 3…合
焦位置測定手段、5…鏡筒部、 6…照明光学部、 7
…ステージ、 8…第1の鏡筒、9…第2の鏡筒、 1
0、30…光源、 14…パターンを有する平行平板、
16…投影レンズ、 18…対物レンズ、 21…参照
ミラー、45…結像レンズ、 60…被測定物、17、
19、31、32、42、44…ハーフプリズム、2
0、33、51…バンドパスフィルタ、 43シャープ
カットフィルタ、34、50…2次元センサ、 40…
後ピン検出センサ、41…前ピン検出センサ、
DESCRIPTION OF SYMBOLS 1 ... Interference fringe generation means, 2 ... Inclination angle measurement means, 3 ... In-focus position measurement means, 5 ... Barrel part, 6 ... Illumination optical part, 7
... stage, 8 ... first lens barrel, 9 ... second lens barrel, 1
0, 30 ... light source, 14 ... parallel plate with pattern,
Reference numeral 16: Projection lens, 18: Objective lens, 21: Reference mirror, 45: Imaging lens, 60: Object to be measured, 17,
19, 31, 32, 42, 44: half prism, 2
0, 33, 51 ... band pass filter, 43 sharp cut filter, 34, 50 ... two-dimensional sensor, 40 ...
Rear pin detection sensor, 41 ... front pin detection sensor,

フロントページの続き Fターム(参考) 2F064 AA09 CC04 FF00 GG12 GG13 GG22 GG42 GG58 HH03 JJ01 KK04 2F065 AA54 BB02 DD03 DD09 FF51 FF65 FF67 GG01 HH04 HH13 JJ03 JJ09 JJ26 LL00 LL12 LL22 LL30 MM02 PP12 QQ21 QQ29 QQ32 2H051 AA11 AA15 BA45 BA49 BA53 BA72 CB05 CB13 CB22 CC03 CC14 EB20 2H052 AA04 AD09 AF04 Continued on the front page F-term (reference) 2F064 AA09 CC04 FF00 GG12 GG13 GG22 GG42 GG58 HH03 JJ01 KK04 2F065 AA54 BB02 DD03 DD09 FF51 FF65 FF67 GG01 HH04 HH13 JJ03 JJ09 JJ26 LL00 QA12Q12 LL12 LL12 BA72 CB05 CB13 CB22 CC03 CC14 EB20 2H052 AA04 AD09 AF04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源から発した光を被測定物表面と参照
面に分岐し、各々から反射してきた光を重ねて干渉縞を
発生させ、第1の特定の波長の光で形成された干渉縞を
検出する干渉縞発生手段と、 被測定物表面に照射した光束の反射光の内、第2の特定
の波長成分を検出して被測定物表面と対物レンズ光軸と
の傾きに係わる情報を得る傾斜角測定手段と、 被測定物表面に投影したパターンの反射光の内、パター
ンを透過する第3の特定の波長成分を検出して、対物レ
ンズ焦点からのずれ量に係わる情報を得る合焦位置測定
手段と、 傾斜角測定手段や合焦位置測定手段からの検出情報をも
とに、所定角度からの傾きずれ量や焦点からの位置ずれ
量を算出し、被測定物の姿勢や位置を制御するような指
令を出力する制御手段と、 を有していることを特徴とする干渉縞検出装置。
A light emitted from a light source is split into a surface of an object to be measured and a reference surface, and light reflected from each is superimposed to generate an interference fringe, and an interference formed by light of a first specific wavelength is generated. Interference fringe generating means for detecting fringes; information relating to the inclination between the surface of the object to be measured and the optical axis of the objective lens by detecting a second specific wavelength component of the reflected light of the light beam irradiated on the surface of the object to be measured And a third specific wavelength component transmitted through the pattern from among the reflected light of the pattern projected on the surface of the object to be obtained to obtain information relating to the amount of deviation from the objective lens focal point. Based on the focus position measurement means and the detection information from the tilt angle measurement means and the focus position measurement means, calculate the amount of tilt deviation from a predetermined angle and the amount of position deviation from the focal point, Control means for outputting a command for controlling the position. Fringe detection apparatus according to claim.
【請求項2】 前記干渉縞検出装置において、 干渉縞発生手段は、干渉縞を検出するセンサと、このセ
ンサの前面に装着した第1の特定の波長の光を透過する
フィルタと、被測定物表面を光軸方向と光軸に垂直方向
面の位置と傾きを制御できる被測定物を載置するステー
ジとを備え、 傾斜角測定手段は、傾斜角測定用光束照射手段と、被測
定物表面に照射された傾斜角測定用光束の反射光位置を
検出するセンサと、このセンサの前面に装着した第1の
特定の波長とは異なる第2の特定の波長を透過するフィ
ルタとを備え、 合焦位置測定手段は、第1、第2の特定の波長とは異な
る第3の特定の波長を透過する部分を有するパターンが
投影された被測定物表面からの光を異なる位置で検出す
るセンサと、このセンサの前面に装着した第3の特定の
波長を透過するフィルタとを備えた請求項1記載の干渉
縞検出装置。
2. The interference fringe detecting device, wherein the interference fringe generating means includes a sensor for detecting the interference fringe, a filter mounted on a front surface of the sensor and transmitting light of a first specific wavelength, and an object to be measured. A stage for mounting an object to be measured, the surface of which can control the position and inclination of the surface in the direction of the optical axis and the direction perpendicular to the optical axis; the inclination angle measuring means; A sensor for detecting the reflected light position of the light beam for measuring the tilt angle applied to the sensor, and a filter mounted on the front surface of the sensor and transmitting a second specific wavelength different from the first specific wavelength. A focus position measuring means for detecting, at different positions, light from the surface of the DUT onto which a pattern having a portion transmitting a third specific wavelength different from the first and second specific wavelengths is projected; , A third identification attached to the front of this sensor 2. The interference fringe detecting device according to claim 1, further comprising: a filter that transmits the wavelength.
JP2000110734A 2000-04-12 2000-04-12 Interference fringe detecting apparatus Pending JP2001296104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110734A JP2001296104A (en) 2000-04-12 2000-04-12 Interference fringe detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110734A JP2001296104A (en) 2000-04-12 2000-04-12 Interference fringe detecting apparatus

Publications (1)

Publication Number Publication Date
JP2001296104A true JP2001296104A (en) 2001-10-26

Family

ID=18623198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110734A Pending JP2001296104A (en) 2000-04-12 2000-04-12 Interference fringe detecting apparatus

Country Status (1)

Country Link
JP (1) JP2001296104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191036A (en) * 2007-02-06 2008-08-21 Topcon Corp Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2010175758A (en) * 2009-01-29 2010-08-12 Hitachi High-Technologies Corp Total reflection fluorescent observation device and method of compensating displacement of substrate
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
CN109716056A (en) * 2016-07-20 2019-05-03 卡尔蔡司Smt有限责任公司 Interfere the measuring device for determining the shape of optical surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191036A (en) * 2007-02-06 2008-08-21 Topcon Corp Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
US9127929B2 (en) 2007-09-14 2015-09-08 Leica Geosystems Ag Method and measuring device for gauging surfaces
JP2010175758A (en) * 2009-01-29 2010-08-12 Hitachi High-Technologies Corp Total reflection fluorescent observation device and method of compensating displacement of substrate
CN109716056A (en) * 2016-07-20 2019-05-03 卡尔蔡司Smt有限责任公司 Interfere the measuring device for determining the shape of optical surface
CN109716056B (en) * 2016-07-20 2021-05-25 卡尔蔡司Smt有限责任公司 Measuring device for the interferometric determination of the shape of an optical surface

Similar Documents

Publication Publication Date Title
JP6284629B2 (en) Apparatus and method for determining the focal position of a high energy beam
JP4166083B2 (en) Ranging device
US4395117A (en) Printing apparatus having an in-focus detector
US5288987A (en) Autofocusing arrangement for a stereomicroscope which permits automatic focusing on objects on which reflections occur
JP2000002506A (en) Method and apparatus for optical coherence tomography with coherent dynamic focus
JPH09512922A (en) Method and apparatus for locating a target detail with respect to a surgical microscope
US20100157282A1 (en) Range finder
JP2007147299A (en) Apparatus and method for measuring displacement
US9170471B2 (en) Optical system having integrated illumination and imaging optical systems, and 3D image acquisition apparatus including the optical system
CN104285125A (en) Measuring apparatus comprising an interferometer and an absorption medium defining a dense line spectrum
JP4500097B2 (en) Optical measuring device and distance calculating method in optical measuring device
JPH08240408A (en) Displacement sensor
JP3921004B2 (en) Displacement tilt measuring device
JP7411682B2 (en) Light sheet microscopy and methods for determining the refractive index of objects in the sample space
JP2001296104A (en) Interference fringe detecting apparatus
JPH0533366B2 (en)
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
US5276497A (en) Measuring apparatus of mirror surface
US6897421B2 (en) Optical inspection system having an internal rangefinder
JPH04236307A (en) Detecting device of three-dimensional shape of pattern
JP2005017257A (en) Optical measuring device
JPH06265773A (en) Autofocusing device for microscope
JPS63241407A (en) Method and device for measuring depth of fine recessed part
US20220350110A1 (en) Focus system and method for operating a focus system
JP4323230B2 (en) Optical system eccentricity measuring apparatus and optical system eccentricity measuring method