JP2001292772A - Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus - Google Patents

Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus

Info

Publication number
JP2001292772A
JP2001292772A JP2000107855A JP2000107855A JP2001292772A JP 2001292772 A JP2001292772 A JP 2001292772A JP 2000107855 A JP2000107855 A JP 2000107855A JP 2000107855 A JP2000107855 A JP 2000107855A JP 2001292772 A JP2001292772 A JP 2001292772A
Authority
JP
Japan
Prior art keywords
ala
ser
val
gly
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000107855A
Other languages
Japanese (ja)
Inventor
Harumi Kamaike
晴美 蒲池
Yasushi Aoki
裕史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000107855A priority Critical patent/JP2001292772A/en
Priority to KR1020017008153A priority patent/KR100540991B1/en
Priority to AU79571/00A priority patent/AU7957100A/en
Priority to AT00970065T priority patent/ATE450607T1/en
Priority to CA2356741A priority patent/CA2356741C/en
Priority to CN00803733A priority patent/CN1340101A/en
Priority to PCT/JP2000/007464 priority patent/WO2001030994A1/en
Priority to DE60043424T priority patent/DE60043424D1/en
Priority to EP00970065A priority patent/EP1142997B1/en
Priority to US09/869,142 priority patent/US7118898B1/en
Priority to EA200100718A priority patent/EA200100718A1/en
Priority to US09/789,803 priority patent/US20010044141A1/en
Priority to NO20013209A priority patent/NO328690B1/en
Publication of JP2001292772A publication Critical patent/JP2001292772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a DNA sequence of a gene coding for nitrile hydratase which is a nitrile-decomposing enzyme derived from bacteria belonging to the genus Rhodococcus and exhibiting especially excellent position selectivity to nitriles and especially to a nitrile group in an aromatic polynitrile compound and a gene coding for amidase and to provide a method for producing an enzyme protein using the DNA sequence and further a method for producing amides and carboxylic acids using the enzyme. SOLUTION: This nitrile hydratase gene is composed of the DNA sequence coding for a specific amino acid sequence and derived from the bacteria belonging to the genus Rhodococcus and the amidase gene is composed of the DNA sequence coding for a specified amino acid sequence. The method for producing the amides and the carboxylic acids comprises transforming the nitrile group in the nitriles to an amide group and further a carboxy group by using a transformant transformed by a plasmid containing the nitrile hydratase and/or amidase gene DNA.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニトリル類、特に芳香
族ポリニトリル化合物のニトリル基に対し、特に優れた
位置選択性を示すロドコッカス属細菌由来のニトリル分
解系酵素であるニトリルヒドラターゼをコードする遺伝
子およびアミダーゼをコードする遺伝子のDNA配列、
それを用いた該酵素タンパク質の製造法、さらには該酵
素を用いたアミド類またはカルボン酸類の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention encodes nitrile hydratase, a nitrile-degrading enzyme derived from a Rhodococcus bacterium, which exhibits particularly excellent regioselectivity for nitriles, especially for nitrile groups of aromatic polynitrile compounds. DNA sequence of the gene and the gene encoding the amidase,
The present invention relates to a method for producing the enzyme protein using the same, and a method for producing amides or carboxylic acids using the enzyme.

【0002】[0002]

【従来の技術】ニトリルヒドラターゼおよびアミダーゼ
はそれぞれニトリル化合物をアミドに、アミドをカルボ
ン酸に変換する反応を触媒する酵素である。ニトリルヒ
ドラターゼおよびアミダーゼを用いることによってニト
リル化合物から、医農薬原料等に有用なアミドまたはカ
ルボン酸を得ることができる。ニトリル化合物をそれぞ
れ相当するアミドまたはカルボン酸に変換する方法が生
体触媒の利用によって開発され、このような触媒能をも
つ微生物が数多く報告されている(特公昭56−179
18号公報、特公昭59−37951号公報、特公昭6
1−162193号公報、特公昭61−21519号公
報、特公昭64−86889号公報、特公平4−197
189号公報、特開平2−470公報、EP04446
40など)。
2. Description of the Related Art Nitrile hydratase and amidase are enzymes that catalyze reactions for converting nitrile compounds to amides and amides to carboxylic acids, respectively. By using nitrile hydratase and amidase, an amide or carboxylic acid useful as a raw material for medical and agricultural chemicals can be obtained from a nitrile compound. Methods for converting nitrile compounds into the corresponding amides or carboxylic acids have been developed by utilizing biocatalysts, and many microorganisms having such catalytic ability have been reported (JP-B-56-179).
No. 18, JP-B-59-37951, JP-B-6
No. 1-162193, Japanese Patent Publication No. 61-21519, Japanese Patent Publication No. 64-86889, Japanese Patent Publication No. 4-197
189, JP-A-2-470, EP04446
40).

【0003】また、これらの微生物からはニトリルヒド
ラターゼやアミダーゼあるいはニトリラーゼが精製さ
れ、さらにはこれらの酵素の遺伝子工学的利用を計るた
め、その遺伝子が単離され一次構造が決定されている。
ニトリルヒドラターゼ遺伝子については、例えばロドコ
ッカス属細菌由来の遺伝子が米国特許番号第28402
53号やEP0445646(特開平4−211379
号公報)において、シュードモナス属細菌由来の遺伝子
が特開平3−251184号公報において、リゾビウム
属細菌由来の遺伝子が特開平6−25296号公報や特
開平6−303971号公報において、またアミダーゼ
遺伝子については、例えばブレビバクテリウム属細菌と
ロドコッカス属細菌由来の遺伝子がEP0433117
において開示されている。また、ロドコッカス・エリス
ロポリス由来の遺伝子がEur.J.Biochem.
217(1),327−336(1993)におい
て、シュードモナス属細菌由来の遺伝子がFEBS L
ett. 367,275−279(1995)におい
て報告されている。
[0003] Further, nitrile hydratase, amidase or nitrilase is purified from these microorganisms, and their genes have been isolated and their primary structures have been determined in order to utilize these enzymes for genetic engineering.
As for the nitrile hydratase gene, for example, a gene derived from a Rhodococcus bacterium is disclosed in US Pat.
No. 53 and EP 0445646 (Japanese Unexamined Patent Publication No.
JP-A-3-251184, a gene derived from Pseudomonas bacterium is disclosed in JP-A-6-251296 and JP-A-6-303971, and an amidase gene is disclosed in For example, a gene derived from a bacterium belonging to the genus Brevibacterium and a genus Rhodococcus is EP 0433117.
Are disclosed. Also, a gene derived from Rhodococcus erythropolis is Eur. J. Biochem.
217 (1), 327-336 (1993), a gene derived from Pseudomonas sp.
ett. 367, 275-279 (1995).

【0004】さらにロドコッカス属細菌由来のニトリル
ヒドラターゼ遺伝子およびアミダーゼ両遺伝子を含む組
換え体プラスミドに関する発明が特開平5−68566
号公報において開示されている。
Further, an invention relating to a recombinant plasmid containing both nitrile hydratase gene and amidase gene derived from a Rhodococcus bacterium was disclosed in Japanese Patent Application Laid-Open No. 5-68566.
No. 6,086,045.

【0005】近年、このような微生物がもつニトリル化
合物の変換能を応用する試みがなされている。特に付加
価値の高い化合物の製造に利用するために、立体選択性
や位置選択性に優れた酵素が望まれている。例えば、特
開平2−84198号公報には光学活性なα−置換有機
酸の製造に用いる微生物について、特開平4−3411
85号公報には光学活性な2−ヒドロキシカルボン酸の
製造に用いる微生物について、EP0433117には
光学活性なケトプロフェンの製造に用いる微生物につい
てそれぞれ開示されている。
In recent years, attempts have been made to apply the conversion capability of such microorganisms to nitrile compounds. In particular, an enzyme having excellent stereoselectivity and regioselectivity has been desired for use in producing a compound having high added value. For example, JP-A-2-84198 discloses a microorganism used for producing an optically active α-substituted organic acid.
No. 85 discloses a microorganism used for producing optically active 2-hydroxycarboxylic acid, and EP 0433117 discloses a microorganism used for producing optically active ketoprofen.

【0006】このような微生物のうち、ロドコッカス
エスピー(Rhodococcus sp.)ATCC3
9484株は複数のニトリル基を有する芳香族ポリニト
リル化合物に対し、優れた位置選択的加水分解能をもつ
ことが報告されている(US556625)。この選択
的なニトリル分解酵素系によって生成されるニトリル基
とアミド基、ニトリル基とカルボキシル基を分子内に持
つ化合物は医農薬製造の合成ブッロクとして極めて有効
であるが、本菌の持つニトリル変換活性は工業的に利用
するためには低く、反応を触媒する酵素の生産性を向上
させることが望まれていた。しかし、これらの改良に必
要不可欠な本菌の関連酵素遺伝子はニトリルヒドラター
ゼ、アミダーゼのいずれについても明らかにされていな
かった。
Among such microorganisms, Rhodococcus
SP ( Rhodococcus sp .) ATCC3
It has been reported that strain 9484 has an excellent regioselective hydrolytic ability for an aromatic polynitrile compound having a plurality of nitrile groups (US556625). Compounds having a nitrile group and an amide group, and a nitrile group and a carboxyl group in the molecule, which are generated by this selective nitrile-degrading enzyme system, are extremely effective as synthetic blocks for the manufacture of pharmaceuticals and agrochemicals. Is low for industrial use, and it has been desired to improve the productivity of enzymes that catalyze the reaction. However, the relevant enzyme genes of the bacterium essential for these improvements have not been clarified for any of nitrile hydratase and amidase.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的はロドコ
ッカス属細菌由来のニトリルヒドラターゼおよびアミダ
ーゼを、遺伝子工学的手法を用いて効率良く生産した
り、タンパク質工学的手法を用いて改良するために必要
なロドコッカス属細菌由来のニトリルヒドラターゼ遺伝
子、アミダーゼ遺伝子のDNA配列、該遺伝子を含む形
質転換体を用いた酵素の製造法、および該形質転換体あ
るいはそれらによって製造された酵素を用いたアミド類
またはカルボン酸類の製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently produce nitrile hydratase and amidase from a Rhodococcus bacterium using genetic engineering techniques or to improve them using protein engineering techniques. Necessary Rhodococcus genus nitrile hydratase gene, DNA sequence of amidase gene, method for producing enzyme using transformant containing said gene, and amides using said transformant or enzyme produced by them Another object of the present invention is to provide a method for producing carboxylic acids.

【0008】[0008]

【課題を解決するための手段】本発明は、下記(1)〜
(18)の構成を有する。 (1) 配列表の配列番号2または3で示されるアミノ
酸配列をコードするDNA配列からなるロドコッカス属
細菌由来のニトリルヒドラターゼ遺伝子。 (2) 配列表の配列番号5で示されるアミノ酸配列を
コードするDNA配列からなるロドコッカス属細菌由来
のアミダーゼ遺伝子。 (3) ロドコッカス属細菌がロドコッカス エスピー
Rhodococc us sp.)ATCC3948
4株である(1)に記載のニトリルヒドラターゼ遺伝
子。 (4) ロドコッカス属細菌がロドコッカス エスピー
Rhodococc us sp.)ATCC3948
4株である(2)に記載のアミダーゼ遺伝子。 (5) (1)または(3)に記載の遺伝子DNAを含
むプラスミド。 (6) (2)または(4)に記載の遺伝子DNAを含
むプラスミド。 (7) (1)または(3)に記載の遺伝子DNAと、
(2)または(4)に記載の遺伝子DNAの両方を含む
プラスミド。
Means for Solving the Problems The present invention provides the following (1) to
It has the configuration of (18). (1) A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence represented by SEQ ID NO: 2 or 3 in the sequence listing. (2) An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing. (3) bacteria of the genus Rhodococcus is Rhodococcus sp. (Rhodococc us sp.) ATCC3948
The nitrile hydratase gene according to (1), which is four strains. (4) bacteria of the genus Rhodococcus is Rhodococcus sp. (Rhodococc us sp.) ATCC3948
The amidase gene according to (2), which is four strains. (5) A plasmid containing the gene DNA according to (1) or (3). (6) A plasmid containing the gene DNA according to (2) or (4). (7) The gene DNA according to (1) or (3),
A plasmid containing both the gene DNA according to (2) or (4).

【0009】(8) (5)に記載のプラスミドで形質
転換された形質転換体。 (9) (6)に記載のプラスミドで形質転換された形
質転換体。 (10) (7)に記載のプラスミドで形質転換された
形質転換体。 (11) (8)または(10)に記載の形質転換体を
培地中で培養し、培養物からニトリルヒドラターゼを採
取することを特徴とするニトリルヒドラターゼの製造
法。 (12) (9)または(10)に記載の形質転換体を
培地中で培養し、培養物からアミダーゼを採取すること
を特徴とするアミダーゼの製造法。 (13) (8)に記載の形質転換体を用いてニトリル
類のニトリル基をアミド基に変換することを特徴とする
アミド類の製造法。
(8) A transformant transformed with the plasmid according to (5). (9) A transformant transformed with the plasmid according to (6). (10) A transformant transformed with the plasmid according to (7). (11) A method for producing nitrile hydratase, which comprises culturing the transformant according to (8) or (10) in a medium, and collecting nitrile hydratase from the culture. (12) A method for producing an amidase, comprising culturing the transformant according to (9) or (10) in a medium, and collecting the amidase from the culture. (13) A method for producing an amide, comprising converting the nitrile group of a nitrile into an amide group using the transformant according to (8).

【0010】(14) (9)に記載の形質転換体を用
いてアミド類のアミド基をカルボキシル基に変換するこ
とを特徴とするカルボン酸類の製造法。 (15) (10)に記載の形質転換体を用いてニトリ
ル類のニトリル基をカルボキシル基に変換することを特
徴とするカルボン酸類の製造法。 (16) ニトリル類が、オルソフタロニトリル、イソ
フタロニトリルまたはテレフタロニトリルであり、アミ
ド類が、対応するオルソシアノベンズアミド、メタシア
ノベンズアミドまたはパラシアノベンズアミドである
(13)に記載のアミド類の製造法。 (17) アミド類が、オルソシアノベンズアミド、メ
タシアノベンズアミドまたはパラシアノベンズアミド類
であり、カルボン酸類が、対応するオルソシアノ安息香
酸、メタシアノ安息香酸またはパラシアノ安息香酸であ
る(14)に記載のカルボン酸類の製造法。 (18) ニトリル類が、オルソフタロニトリル、イソ
フタロニトリルまたはテレフタロニトリルであり、カル
ボン酸類が、対応するオルソシアノ安息香酸、メタシア
ノ安息香酸またはパラシアノ安息香酸である請求項15
に記載のカルボン酸類の製造法。
(14) A method for producing carboxylic acids, comprising converting an amide group of an amide into a carboxyl group using the transformant according to (9). (15) A method for producing carboxylic acids, comprising converting a nitrile group of a nitrile into a carboxyl group using the transformant according to (10). (16) The production of the amide according to (13), wherein the nitrile is orthophthalonitrile, isophthalonitrile or terephthalonitrile, and the amide is a corresponding orthocyanobenzamide, metacyanobenzamide or paracyanobenzamide. Law. (17) The amide according to (14), wherein the amide is an orthocyanobenzamide, a metacyanobenzamide or a paracyanobenzamide, and the carboxylic acid is a corresponding orthocyanobenzoic acid, metacyanobenzoic acid or paracyanobenzoic acid. Manufacturing method. (18) The nitrile is orthophthalonitrile, isophthalonitrile or terephthalonitrile, and the carboxylic acid is the corresponding orthocyanobenzoic acid, metacyanobenzoic acid or paracyanobenzoic acid.
3. The method for producing carboxylic acids according to 1.).

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
ロドコッカス エスピー(Rhodococcus
.)ATCC39484株染色体DNAは、例えばS
aitoらの方法(Biochem. Biophy
s. Acta. 72, 619(1963))を応
用して調製することができる。遺伝子のクローニングに
用いる染色体DNAライブラリーは、例えばpUC18
などのプラスミドベクターを用いて作成することができ
る。ニトリルヒドラターゼ遺伝子とアミダーゼ遺伝子の
クローニングは、例えばSaikiらのPolymer
ase Chain Reaction(PCR)法
(Science 230, 1350(1985))
を用いて得られた部分断片をプローブとしたコロニーハ
イブリダイゼーションにより行うことができる。この
時、使用するPCR用プライマーの一方は、ユニバーサ
ルプライマー(フォワードまたはリバース)とし、他方
は目的酵素タンパク質のN末端配列を解析し、それをコ
ードする配列から、適当な配列を選抜する。これらのプ
ライマーを組み合わせて、染色体DNAライブラリーを
鋳型としてアンカーPCRを行うことによって、目的酵
素のコード配列断片を得ることができる。このアンカー
PCR法で得たニトリルヒドラターゼコード配列あるい
はアミダーゼコード配列DNA断片を全遺伝子領域スク
リーニング用プローブとして使用することにより、ロド
コッカス エスピー(Rhodococcus
.)ATCC39484株の染色体DNAライブラリ
ーからニトリルヒドラターゼ遺伝子および/またはアミ
ダーゼ遺伝子を含む組換え体DNAを得ることができ
る。ニトリルヒドラターゼコード配列断片およびアミダ
ーゼコード配列断片のDNA配列は、Sangerらに
よるdideoxy法(Proc. Natl. Ac
ad. Sci. U.S.A. 74, 5463
(1997))など公知の手法を用いて決定することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Rhodococcus sp. (Rhodococcus s
p . ) The chromosomal DNA of the ATCC39484 strain is, for example, S
aito et al. (Biochem. Biophy).
s. Acta. 72, 619 (1963)). A chromosomal DNA library used for gene cloning is, for example, pUC18.
It can be prepared using a plasmid vector such as Cloning of the nitrile hydratase gene and the amidase gene can be performed, for example, by the method of Saiki et al.
as Chain Reaction (PCR) method (Science 230, 1350 (1985))
Can be performed by colony hybridization using the partial fragment obtained by using as a probe. At this time, one of the PCR primers to be used is a universal primer (forward or reverse), and the other is to analyze the N-terminal sequence of the target enzyme protein, and select an appropriate sequence from the sequence encoding the same. By combining these primers and performing anchor PCR using a chromosomal DNA library as a template, a coding sequence fragment of the target enzyme can be obtained. By using the nitrile hydratase encoding sequence or Amidazekodo sequence DNA fragment obtained by the anchor PCR method as the entire gene region probe for screening, Rhodococcus sp (Rhodococcus s
p . ) A recombinant DNA containing a nitrile hydratase gene and / or an amidase gene can be obtained from a chromosomal DNA library of ATCC39484 strain. The DNA sequences of the nitrile hydratase coding sequence fragment and the amidase coding sequence fragment were determined by the didoxy method by Sanger et al. (Proc. Natl. Ac).
ad. Sci. U. S. A. 74, 5463
(1997)).

【0012】得られた酵素構造遺伝子を用いて酵素を生
産するためには、酵素構造遺伝子を適当な発現ベクタ
ー、例えばpUC18のlacプロモーターの下流に接
続するなどして作成することができる。このようにして
作成したプラスミドを用いて、例えば大腸菌JM101
株(Eschericia coli JM101)な
どの宿主を形質転換する。この形質転換体を培養するこ
とにより、該ニトリルヒドラターゼおよび/またはアミ
ダーゼが宿主細胞内に著量生産される。この酵素は菌体
のまま変換反応に使用することもできるが、菌体を破砕
して無細胞抽出液として、あるいは精製酵素として使用
することもできる。
In order to produce an enzyme using the obtained enzyme structural gene, the enzyme structural gene can be prepared by connecting the gene to an appropriate expression vector, for example, downstream of the lac promoter of pUC18. Using the plasmid thus prepared, for example, E. coli JM101
A host such as a strain ( Eschericia coli JM101) is transformed. By culturing this transformant, the nitrile hydratase and / or amidase is produced in a significant amount in the host cell. This enzyme can be used for the conversion reaction as it is, but it can also be used as a cell-free extract or a purified enzyme by crushing the cells.

【0013】本発明のカルボン酸類またはアミド類の製
造法は、例えば原料となる化合物と、変換活性を有する
菌体、無細胞抽出液あるいは酵素を、リン酸緩衝液のご
とき希薄水溶液に加え、反応液pHを5〜10、望まし
くは6〜8に保ち、反応温度を15〜45℃、望ましく
は30〜42℃に保つことで行うことができる。反応液
中に生成した生産物は、反応液の上清を分離回収した
後、生産物の特性に応じて沈殿形成やカラムクロマトグ
ラフィーを用いて得ることができる。
In the method for producing carboxylic acids or amides of the present invention, for example, a compound serving as a raw material and a cell having a conversion activity, a cell-free extract or an enzyme are added to a dilute aqueous solution such as a phosphate buffer, and the reaction is carried out. The reaction can be carried out by maintaining the pH of the solution at 5 to 10, preferably 6 to 8, and the reaction temperature at 15 to 45 ° C, preferably 30 to 42 ° C. The product generated in the reaction solution can be obtained by separating and recovering the supernatant of the reaction solution, and then forming a precipitate or using column chromatography according to the characteristics of the product.

【0014】本発明のカルボン酸類またはアミド類の製
造法の原料に用いられるニトリル類は、1分子中に少な
くとも1個のニトリル基を有する脂肪族および芳香族の
化合物である。オルソフタロニトリル、イソフタロニト
リルおよびテレフタロニトリル等の芳香族ポリニトリル
化合物が好ましく例示される。
The nitriles used as a raw material in the method for producing carboxylic acids or amides of the present invention are aliphatic and aromatic compounds having at least one nitrile group in one molecule. Aromatic polynitrile compounds such as orthophthalonitrile, isophthalonitrile and terephthalonitrile are preferably exemplified.

【0015】本発明のカルボン酸類の製造法の原料に用
いられるアミド類は、アミド基を有する脂肪族および芳
香族の化合物である。オルソシアノベンズアミド、メタ
シアノベンズアミドまたはパラシアノベンズアミド等の
シアノ基を有する芳香族アミド化合物が好ましく例示さ
れる。
The amides used as a raw material in the method for producing carboxylic acids of the present invention are aliphatic and aromatic compounds having an amide group. Aromatic amide compounds having a cyano group such as orthocyanobenzamide, metacyanobenzamide or paracyanobenzamide are preferably exemplified.

【0016】[0016]

【実施例】以下実施例にて本発明を具体的に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0017】実施例1;染色体DNAの調製 栄養(Lブロス)寒天平板培地で一昼夜培養したR.
sp.ATCC39484株一白金耳を基本培地(KH
2PO4 1.5 g/l、Na2HPO4・2H 2
0.75 g/l、MgSO4/7H2O 0.2 g/
l、CaSO4/2H2O 10 mg/l、FeSO4
/7H2O 5 mg/l、酵母エキス 20 mg/
l)にグルコース5g/l、尿素2g/lを加えた培地
300mlで30℃、1日間培養した。培養後の菌体を
集菌し、5mMのEDTA溶液100mlで菌体を洗浄
した。この菌体を30mlの緩衝液(20mMトリス・
塩酸緩衝液(pH7.1))に懸濁し、60mgのリゾ
チームを加え37℃で2時間インキュベートした。この
懸濁液を遠心(5000rpm,7分間)して菌体を回
収し、11.34mlのTE Bufferに再懸濁
し、10%SDS0.6mlを加え、さらに100μg
/mlの濃度となるようにプロテナーゼK(メルク社
製)を加え、1時間、55℃でゆるやかに振盪した。こ
の溶液をフェノール抽出、エタノール沈殿することによ
って染色体DNAを調製した。
[0017]Example 1; Preparation of chromosomal DNA Cultured on nutrient (L broth) agar plate all day longR. 
sp. ATCC39484 strain One platinum loop is used as a base medium (KH
TwoPOFour 1.5 g / l, NaTwoHPOFour・ 2H TwoO
0.75 g / l, MgSOFour/ 7HTwoO 0.2 g /
1, CaSOFour/ 2HTwoO 10 mg / l, FeSOFour
/ 7HTwoO 5 mg / l, yeast extract 20 mg /
l) Medium supplemented with glucose 5 g / l and urea 2 g / l
The cells were cultured at 300 ° C. for 1 day in 300 ml. Cells after culture
Harvest cells and wash cells with 100 ml of 5 mM EDTA solution
did. The cells were added to 30 ml of buffer (20 mM Tris
Suspended in hydrochloric acid buffer (pH 7.1), and
The team was added and incubated at 37 ° C for 2 hours. this
The suspension is centrifuged (5000 rpm, 7 minutes) to recover the cells.
Collect and resuspend in 11.34 ml TE Buffer
Then, 0.6 ml of 10% SDS was added, and further 100 μg
Proteinase K (Merck)
Was added and shaken gently at 55 ° C. for 1 hour. This
The solution was extracted with phenol and precipitated with ethanol.
Thus, chromosomal DNA was prepared.

【0018】実施例2;染色体ライブラリーの作成 得られた染色体DNA20μgに対し制限酵素Sau3
AIを用いて部分消化を行った。即ち、染色体DNAを
4μgづつ5本のチューブにとり、100μlの反応容
器中で、制限酵素Sau3AI(宝酒造社製、4〜12
U/μl)を添加し37℃で反応させ、10秒毎にチュー
ブの一本を取り、終濃度20mMとなるようEDTAを
加え反応を停止させた。このようにして調製した染色体
DNAの部分消化断片溶液をアガロースゲル電気泳動に
供し、5〜10kbのDNA断片を沈殿抽出およびエタ
ノール沈殿にて回収し、30μlのTE溶液に溶解させ
た。この試料の9μlと1μgのBamHI消化後BA
P処理したpUC18(宝酒造社製、pUC18/Ba
mHI)とをT4DNAリガーゼ(宝酒造社製、ライゲ
ーションキット ver.2)を用いて20μlの計で
ライゲーションした後、大腸菌JM109株を形質転換
した。このライブラリーの増幅ライブラリーを作製する
ために、大腸菌形質転換体をアンピシリン50ppmを
含むLブロス(pH7.0)に植菌し、一昼夜培養した
菌体からアルカリ−SDS法によりプラスミドを抽出し
た。
Example 2 Preparation of Chromosome Library Restriction enzyme Sau3 was used for 20 μg of the obtained chromosomal DNA.
Partial digestion was performed using AI. That is, 4 μg of each chromosomal DNA is placed in five tubes, and a restriction enzyme Sau3AI (Takara Shuzo Co., Ltd., 4 to 12) is placed in a 100 μl reaction vessel.
(U / μl) was added and the reaction was carried out at 37 ° C., one tube was taken every 10 seconds, and EDTA was added to a final concentration of 20 mM to stop the reaction. The solution of the partially digested fragment of chromosomal DNA thus prepared was subjected to agarose gel electrophoresis, and a DNA fragment of 5 to 10 kb was recovered by precipitation extraction and ethanol precipitation, and dissolved in 30 μl of a TE solution. BA after digestion of 9 μl and 1 μg of this sample with BamHI
P-treated pUC18 (Takara Shuzo, pUC18 / Ba
mHI) using T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd., ligation kit ver. 2) in a total volume of 20 μl, followed by transformation of E. coli JM109 strain. In order to prepare an amplified library of this library, a transformant of E. coli was inoculated into L broth (pH 7.0) containing 50 ppm of ampicillin, and a plasmid was extracted from the cells cultured all day and night by the alkali-SDS method.

【0019】実施例3;ニトリルヒドラターゼおよびア
ミダーゼの精製 アンカーPCRに必要な酵素配列に由来する一方のプラ
イマーは、以下のようにして調製した酵素ペプチドのN
末端配列から、適当なTmを持つように配列を選択して
作成した。
Example 3 Nitrile hydratase and a
One primer derived from the enzyme sequence required for the midase purification anchor PCR is the N-terminal of the enzyme peptide prepared as follows.
From the terminal sequence, a sequence was selected and prepared so as to have an appropriate Tm.

【0020】ニトリルヒドラターゼ活性またはアミダー
ゼ活性は、それぞれベンゾニトリル10mMまたはベン
ズアミド10mM、リン酸カリウムバッファー(pH
7.0)30mM、および所定量の菌体抽出液を含む反
応混合液1mlについて、25℃で30分間反応を行わ
せてから、生成したベンズアミドあるいは安息香酸をH
PLCにより検出することにより定性的に行った(HP
LC分離条件は後述の実施例8と同様。)。
The nitrile hydratase activity or the amidase activity was measured using benzonitrile 10 mM or benzamide 10 mM, potassium phosphate buffer (pH
7.0) 1 ml of the reaction mixture containing 30 mM and a predetermined amount of the bacterial cell extract was reacted at 25 ° C. for 30 minutes, and the produced benzamide or benzoic acid was converted to H.
Performed qualitatively by detection by PLC (HP
LC separation conditions were the same as in Example 8 described later. ).

【0021】R. sp.ATCC39484株を実施
例1の基本培地に誘導基質として1g/lのベンゾニト
リルを添加したニトリル分解酵素群誘導培地600ml
に植菌し、30℃で振とう培養した。
R. sp . 600 ml of nitrile-degrading enzyme group induction medium obtained by adding 1 g / l of benzonitrile as an induction substrate to ATCC39484 strain as the induction medium in Example 1.
And cultured at 30 ° C. with shaking.

【0022】一昼夜培養した培養液を遠心(8000r
pm、15分間)に供して菌体を回収し、得られた菌体
湿質量3.2gを100mMリン酸カリウムバッファー
(pH7.0、1mMEDTAおよび2mMDDTを含
む)50mlで洗浄した後、同バッファー200mlに
懸濁した。これを超音波破砕機に供して菌体を破砕した
後、遠心(12,000rpm、20分間)して上清
(粗酵素抽出液)180mlを得た。
The culture solution cultured overnight is centrifuged (8000 rpm).
pm, 15 minutes) to collect the cells, and wash 3.2 g of the obtained wet cells with 50 ml of 100 mM potassium phosphate buffer (containing pH 7.0, 1 mM EDTA and 2 mM DDT), and then 200 ml of the buffer. Suspended in water. This was subjected to an ultrasonic homogenizer to disrupt the cells, and then centrifuged (12,000 rpm, 20 minutes) to obtain 180 ml of a supernatant (crude enzyme extract).

【0023】この無細胞抽出液に45%飽和濃度になる
よう硫酸アンモニウムを添加し、4℃で1時間撹拌後、
生成した沈殿を遠心分離によって除去した。分離した上
清にさらに硫酸アンモニウムを60%飽和濃度になるよ
う添加し、4℃で1時間撹拌した後、遠心分離により沈
殿を回収した。生成した沈殿にはニトリルヒドラターゼ
活性およびアミダーゼ活性が確認できた。得られた沈殿
を100mMリン酸カリウムバッファー(pH7.0、
1mMEDTAおよび2mMDDTを含む)10mlに
溶解し、同バッファーに対して透析を行なった。
Ammonium sulfate was added to the cell-free extract to a 45% saturation concentration, and the mixture was stirred at 4 ° C. for 1 hour.
The formed precipitate was removed by centrifugation. Ammonium sulfate was further added to the separated supernatant to a concentration of 60% saturation, and the mixture was stirred at 4 ° C. for 1 hour, and the precipitate was recovered by centrifugation. The resulting precipitate was confirmed to have nitrile hydratase activity and amidase activity. The obtained precipitate was washed with a 100 mM potassium phosphate buffer (pH 7.0,
The resulting solution was dissolved in 10 ml of the same buffer (containing 1 mM EDTA and 2 mM DDT) and dialyzed against the same buffer.

【0024】100mMリン酸カリウムバッファー(p
H7.0、1mMEDTAおよび2mMDDTを含む)
で平衡化したDEAE−Sephacelカラム(2c
m×20cm)に、透析した粗酵素溶液を供し、平衡化
バッファーで溶出液のUV280nmが低下するまで洗
浄した。続いて、0.1MKClを添加した同バッファ
ーで溶出液のUV280nmが低下するまで洗浄し、さ
らに0.2MにKCl濃度を上げたバッファーで同様に
溶出液のUV280nmが低下するまで洗浄した。その
後、0.3MにKCl濃度を上げた100mMリン酸カ
リウムバッファー(pH7.0、1mMEDTAおよび
2mMDDTを含む。)でニトリルヒドラターゼとアミ
ダーゼを溶出した。活性を示すフラクションを集め、限
外濾過膜(分子量30,000 cut)を用いて酵素
タンパク質を濃縮した。
A 100 mM potassium phosphate buffer (p
H7.0, including 1 mM EDTA and 2 mM DDT)
DEAE-Sephacel column (2c
m × 20 cm), the dialyzed crude enzyme solution was provided, and washed with the equilibration buffer until the UV 280 nm of the eluate was reduced. Subsequently, the eluate was washed with the same buffer to which 0.1 M KCl was added until the UV 280 nm of the eluate was reduced, and further washed with a buffer in which the KCl concentration was increased to 0.2 M until the UV 280 nm of the eluate was lowered. Thereafter, nitrile hydratase and amidase were eluted with a 100 mM potassium phosphate buffer (pH 7.0, containing 1 mM EDTA and 2 mM DDT) whose KCl concentration was increased to 0.3 M. The fractions showing activity were collected, and the enzyme protein was concentrated using an ultrafiltration membrane (molecular weight 30,000 cut).

【0025】100mMリン酸カリウムバッファー(p
H7.0、10%飽和濃度の硫酸アンモニウムを含
む。)で平衡化したPhenyl?Sepharose
CL?4Bカラム(2cm×40cm)に、濃縮した
活性画分に10%飽和濃度の硫酸アンモニウムを添加し
たものを供し、酵素を吸着させた。平衡化バッファーで
溶出液のUV280nmが低下するまで洗浄した。その
後、溶出バッファー(100mMリン酸カリウムバッフ
ァー(pH7.0))でニトリルヒドラターゼおよびア
ミダーゼを溶出した。活性フラクションを集め、限外濾
過膜(分子量30,000cut)を用いて酵素タンパ
ク質を濃縮した。
A 100 mM potassium phosphate buffer (p
H7.0, with 10% saturated concentration of ammonium sulfate. Phenyl? Sepharose equilibrated in)
The concentrated active fraction to which a 10% saturated ammonium sulfate was added was supplied to a CL-4B column (2 cm × 40 cm) to adsorb the enzyme. The eluate was washed with the equilibration buffer until the UV 280 nm of the eluate was reduced. Thereafter, nitrile hydratase and amidase were eluted with an elution buffer (100 mM potassium phosphate buffer (pH 7.0)). The active fraction was collected and the enzyme protein was concentrated using an ultrafiltration membrane (molecular weight 30,000 cut).

【0026】この濃縮したニトリルヒドラターゼ活性画
分を100mMリン酸カリウムバッファー(pH7.
0、0.5M NaClを含む)で平衡化したSeph
acryl S−300 スーパーファインカラム(2
cm×60cm)に供し、同バッファーを用いて分離を
行い、溶出液を約0.5mlずつフラクションした。こ
の段階で、ニトリルヒドラターゼとアミダーゼ活性が最
も高いフラクションが分かれたため、それぞれ最も高い
活性およびその前後のフラクションをそれぞれ回収し
た。それぞれ約1.5mlのフラクションを限外濾過膜
(分子量30,000 cut)を用いて濃縮した。
The concentrated nitrile hydratase active fraction was subjected to a 100 mM potassium phosphate buffer (pH 7.0).
Seph equilibrated with 0, 0.5 M NaCl)
acryl S-300 super fine column (2
cm × 60 cm), separation was performed using the same buffer, and the eluate was fractionated by about 0.5 ml each. At this stage, since the fractions having the highest nitrile hydratase and amidase activities were separated, the highest activity and the fractions before and after the highest activity were collected. About 1.5 ml of each fraction was concentrated using an ultrafiltration membrane (molecular weight 30,000 cut).

【0027】実施例4;ペプチド末端配列の決定 得られたニトリルヒドラターゼおよびアミダーゼのN末
端配列の決定を試みたが、いずれの酵素についてもエド
マン分解におけるシグナル強度が低く、配列決定ができ
なかった。そこで酵素タンパク質を臭化シアン(BrC
N)法により加水分解し、生成したペプチドを以下の液
体クロマトグラフ条件で分離した。
Example 4 Determination of Peptide Terminal Sequences The determination of the N-terminal sequences of the obtained nitrile hydratase and amidase was attempted. However, for all the enzymes, the signal intensity in Edman degradation was low and the sequence could not be determined. . Therefore, the enzyme protein was converted to cyanogen bromide (BrC
Hydrolyzed by the method N), the produced peptide was separated under the following liquid chromatography conditions.

【0028】 本体;LC 9A(島津製作所) カラム;Asahipak ODP 50 6D(Sh
odex) カラム温度;25℃ 溶離液;アセトニトリル0〜80%(直線濃度勾配、6
0分間)、0.1%トリフルロ酢酸、流速0.5ml/
分 検出;SPD?6AV UV VIS Spectro
photometer(島津製作所)、215nm ニトリルヒドラターゼ活性画分から得られた複数のペプ
チドのうち、比較的分離の良いサンプルを選択し、再度
エドマン分解によるN末端配列分析を行ったところ、既
存のニトリルヒドラターゼの配列と相同性の高い以下の
配列が確認できた。 Glu(E)・Tyr(Y)・Arg(R)・Ser
(S)・Arg(R)・Val(V)・Val(V) この配列とRhodococcus属細菌のCodon
Usageを考慮して、ニトリルヒドラターゼ用プラ
イマーを作成した。 5’−GAG TAC CGG TCC CGA−3’
(およびその相補鎖) 同様に、アミダーゼ活性画分から得られた複数のペプチ
ドのうち、比較的分離の良いサンプルを選択し、エドマ
ン分解によるN末端配列分析を行ったところ、既存のア
ミダーゼの配列と相同性の高い以下の配列が確認でき
た。 Ala(A)・Val(V)・Gly(G)・Gly
(G)・Asp(D)・Gln(Q)・Gly(G) この配列とRhodococcus属細菌のCodon
Usageを考慮して、アミダーゼ用プライマーを作
成した。 5’−GCA GTC GGC GGC GAC−3’
(およびその相補鎖)
Main body: LC 9A (Shimadzu Corporation) Column: Asahipak ODP 506D (Sh
odex) Column temperature; 25 ° C. Eluent; 0 to 80% acetonitrile (linear concentration gradient, 6
0 min), 0.1% trifluoroacetic acid, flow rate 0.5 ml /
Minute detection; SPD-6AV UV VIS Spectro
A photometer (Shimadzu Corporation), a sample with relatively good separation was selected from a plurality of peptides obtained from a 215 nm nitrile hydratase active fraction, and N-terminal sequence analysis by Edman degradation was performed again. The following sequences highly homologous to the above sequence were confirmed. Glu (E) ・ Tyr (Y) ・ Arg (R) ・ Ser
(S) -Arg (R) -Val (V) -Val (V) This sequence and the Codon of the genus Rhodococcus
In consideration of Usage, a primer for nitrile hydratase was prepared. 5'-GAG TAC CGG TCC CGA-3 '
Similarly, among a plurality of peptides obtained from the amidase-active fraction, a sample with relatively good separation was selected, and N-terminal sequence analysis by Edman degradation was performed. The following sequences with high homology were confirmed. Ala (A) ・ Val (V) ・ Gly (G) ・ Gly
(G) · Asp (D) · Gln (Q) · Gly (G) This sequence and the Codon of the genus Rhodococcus
In consideration of Usage, primers for amidase were prepared. 5'-GCA GTC GGC GGC GAC-3 '
(And its complementary strand)

【0029】実施例5;アンカーPCR PCR法は以下の反応条件でおこなった。 Example 5 Anchor PCR The PCR was performed under the following reaction conditions.

【0030】 反応液組成: sp.ATCC39484染色体DNAライブラリー 1μg ユニバーサルプライマー 100pmol 酵素ペプチド末端プライマー 100pmol dNTP溶液 各1mM 10x反応バッファー 10μl ExTaqDNAポリメラーゼ(宝酒造社製) 2.5Unit 計50μl 反応条件: 熱変性 94℃、45秒 アニーリング 37〜60℃、60秒 伸張 72℃、60〜90秒 サイクル数 24回 このようにして行った反応のうち、特異的に増幅される
断片が見られた反応液を2%アガロースゲル電気泳動に
供し、断片を含む部分のゲルを切り出し、ESAYTR
AP ver.2(宝酒造社製)を用いて精製した。こ
のDNA断片について、dideoxy法によりDNA
配列を決定し、翻訳されたアミノ酸配列が既知のニトリ
ルヒドラターゼまたはアミダーゼと相同性があることを
確認した。その結果、得られた断片4、14中に、それ
ぞれ既知のニトリルヒドラターゼ、アミダーゼと相同性
の高い配列が含まれていることが分かった。断片4には
約500bpのニトリルヒドラターゼ相同配列が、断片
14には約900bpのアミダーゼ相同配列が含まれて
おり、いずれも次のコロニーハイブリダイゼーションに
用いるプローブとして十分な長さであった。
[0030] The composition of the reaction solution: R. sp . ATCC39484 chromosomal DNA library 1 μg Universal primer 100 pmol Enzyme peptide terminal primer 100 pmol dNTP solution 1 mM each 10 × reaction buffer 10 μl ExTaq DNA polymerase (manufactured by Takara Shuzo) 2.5 Unit Total 50 μl Reaction conditions: heat denaturation 94 ° C., 45 seconds annealing 37-60 ° C. 60 seconds extension 72 ° C., 60-90 seconds Number of cycles 24 times Among the reactions performed in this manner, the reaction solution in which a fragment to be specifically amplified was observed was subjected to 2% agarose gel electrophoresis to contain the fragment. Cut out part of the gel and use ESAYTR
AP ver. 2 (Takara Shuzo). This DNA fragment is subjected to the DNAoxy method by DNA method.
The sequence was determined and the translated amino acid sequence was confirmed to be homologous to a known nitrile hydratase or amidase. As a result, it was found that the obtained fragments 4 and 14 contained sequences highly homologous to the known nitrile hydratase and amidase, respectively. Fragment 4 contained an approximately 500 bp nitrile hydratase homologous sequence, and fragment 14 contained an approximately 900 bp amidase homologous sequence, all of which were sufficiently long as probes to be used for the next colony hybridization.

【0031】実施例6;コロニーハイブリダイゼーショ
実施例5で得られたニトリルヒドラターゼ遺伝子の一
部、およびアミダーゼ遺伝子の一部を含むPCR断片を
プローブとして、コロニーハイブリダイゼーション法に
より全遺伝子のクローニングを行った。実施例2の方法
に従ってSau3AIで分解した染色体DNAの部分消
化断片溶液を1%のアガロースゲル電気泳動に供し、4
〜8kbのDNA断片を泳動抽出およびエタノール沈殿
にて回収し、乾燥後30μlのTE溶液に溶解した。こ
の試料溶液の9μlと、1μlのBamHI消化後BA
P処理したpUC18(宝酒造社製、100ng)とを
T4DNAリガーゼ(宝酒造社製、ライゲーションキッ
ト ver.2)を用いてライゲーションした後、大腸
菌JM101株を形質転換し、イソプロピル−Β−D−
チオガラクトピラノシド(IPTG)0.1mM、5−
ブロモ−4−クロロ−3−インドリル−β−D−ガラク
トピラノシド(X−gal)0.004%、アンピシリ
ン50ppmを含むLブロスに2%の寒天を加えて平板
化した寒天平板培地に塗布して37℃で一昼夜培養し
た。
Example 6: Colony hybridization
Using the PCR fragment containing a part of the nitrile hydratase gene obtained in Example 5 and a part of the amidase gene as a probe, all genes were cloned by colony hybridization. The partially digested fragment solution of chromosomal DNA digested with Sau3AI according to the method of Example 2 was subjected to 1% agarose gel electrophoresis, and
The 88 kb DNA fragment was recovered by electrophoretic extraction and ethanol precipitation, dried and dissolved in 30 μl of TE solution. 9 μl of this sample solution and 1 μl of BamHI digested BA
P-treated pUC18 (Takara Shuzo Co., Ltd., 100 ng) was ligated using T4 DNA ligase (Takara Shuzo Co., Ltd., Ligation Kit ver. 2), and Escherichia coli JM101 strain was transformed with isopropyl-Β-D-.
Thiogalactopyranoside (IPTG) 0.1 mM, 5-
Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) was applied to an agar plate medium that had been flattened by adding 2% agar to L broth containing 0.004% and 50 ppm of ampicillin. Then, the cells were cultured at 37 ° C. overnight.

【0032】生じた白色コロニーを、アンピシリン50
ppmを含むLブロスに2%の寒天を加えて平板化した
寒天平板培地に釣菌し、37℃で一昼夜培養した。十分
生育した後、寒天平板培地を約2時間4℃に置き冷却し
た。乾いたナイロンメンブレン(アマシャム ファルマ
シア バイオテク社製、Hybond−N+)に上下左
右の印を鉛筆で付けた後冷却した平板培地の上に静かに
置き、メンブレンが全体に濡れてくるのを待って静かに
かつ一気にはがし、平板上のコロニーをメンブレンに移
し取った。移し取った菌体が少ない時は、メンブレンを
アンピシリン50ppmを含むLブロスに2%の寒天を
加えて平板化した寒天平板培地に置き、37℃で一昼夜
培養した。
The resulting white colonies were identified as ampicillin 50
2% agar was added to L-broth containing ppm, and the resulting mixture was picked up on an agar plate medium which had been flattened, and cultured at 37 ° C. for 24 hours. After sufficient growth, the agar plate medium was placed at 4 ° C. for about 2 hours and cooled. Mark up, down, left and right with a pencil on a dry nylon membrane (Amersham Pharmacia Biotech, Hybond-N + ), gently place it on a cooled plate medium, and wait gently until the membrane is completely wet. The colonies on the plate were transferred to a membrane. When the number of transferred cells was small, the membrane was placed on an agar plate medium obtained by adding 2% agar to L broth containing 50 ppm of ampicillin, and then culturing at 37 ° C. overnight.

【0033】菌体を移したメンブレンを3mlのアルカ
リ溶液(NaOH0.5M)上に浮かせ、菌体を溶解し
た。溶解した菌体の残査を、5×SSCで20分間×2
回洗浄して落とした。このメンブレンに対し、Ramd
om prime DNAlabelling and
detection system(アマシャムファ
ルマシア バイオテク社製)を用いてコロニーハイブリ
ダイゼーションを行った。ハイブリダイゼーション?検
出の手順は、同キット添付のマニュアルに従って標準的
な条件で行った。約8000コロニーに対して行ったハ
イブリダイゼーションの結果、各遺伝子について各1株
のポジティブクローンが得られた。
The membrane to which the cells were transferred was floated on 3 ml of an alkaline solution (0.5 M NaOH) to dissolve the cells. The residue of the lysed cells was washed with 5 × SSC for 20 minutes × 2.
Washed and dropped. For this membrane, Ramd
om prime DNAlabelling and
Colony hybridization was performed using a detection system (Amersham Pharmacia Biotech). Hybridization and detection procedures were performed under standard conditions according to the manual attached to the kit. As a result of hybridization performed on about 8,000 colonies, one positive clone of each strain was obtained for each gene.

【0034】これらのポジティブクローンからアルカリ
−SDS法によりプラスミドを抽出し、プローブ用部分
断片中にある制限酵素切断サイトの位置と、プラスミド
の制限酵素分解パターンとを比較して、挿入断片中の遺
伝子の位置と方向を推定した。その結果、ニトリルヒド
ラターゼのクローン株P11から調整したプラスミドp
UNH11は全ニトリルヒドラターゼ遺伝子を含んでい
ることが分かったが(図1)、アミダーゼのクローン株
P12から調製したプラスミドpUAMD12は制限酵
素処理パターンが複雑であり、遺伝子の位置方向を特定
することができなかった。そこでpUAMD12に関し
てのみさらに制限酵素処理したフラグメントに対するサ
ザンハイブリダイゼーションを行い、全構造遺伝子領域
を含んでいることを推定した(図1)。
Plasmids were extracted from these positive clones by the alkali-SDS method, and the positions of restriction enzyme cleavage sites in the probe partial fragment were compared with the restriction enzyme digestion pattern of the plasmid. The position and direction of were estimated. As a result, plasmid p prepared from nitrile hydratase clone strain P11
Although UNH11 was found to contain the entire nitrile hydratase gene (FIG. 1), the plasmid pUAMD12 prepared from the amidase clone strain P12 had a complicated restriction enzyme treatment pattern, and it was difficult to identify the gene orientation. could not. Thus, Southern hybridization was performed on the fragment further treated with restriction enzyme only for pUAMD12, and it was estimated that the fragment contained the entire structural gene region (FIG. 1).

【0035】実施例7;欠損変異株の作成と塩基配列の
決定 pUNH11およびpUAMD12はそれぞれ3kb?
4kbの挿入断片を含むプラスミドであり、そのままで
は塩基配列の決定が困難であった。そこでExonuc
leaseIIIを用いて末端から挿入断片を欠損させた
欠損変異体(deletion mutant)の作成
を試みた。変異体の作成にはkilo?sequenc
e用Deletion Kit(宝酒造社製)を用い
た。すなわち、pUNH11またはpUAMD12溶液
25マイクロリター(0.4mg/mlとして約16マ
イクログラム)をSse8387I、XbaIで完全分
解(37℃、24時間)し、フェノール抽出で精製後、
1/10容量の3M酢酸Naと2.5容量のエタノール
を加えて沈殿させた。遠心して沈殿を回収し、70%冷
エタノールで一回洗浄した後、真空乾燥沈殿を100マ
イクロリターのExoIII bufferに溶解した。
DNA溶液に1マイクロリターのExonucleas
eIIIを加え、ボルテックスで撹拌後、37℃でインキ
ュベートし、10秒および30秒後に各50マイクロリ
ターをサンプリングした(反応を停止するため、用意し
てあったMB nuclease buffer各50
マイクロリターと混合。)。
Example 7: Preparation of defective mutant and nucleotide sequence
Decisions pUNH11 and pUAMD12 are each 3 kb?
It was a plasmid containing a 4 kb insert, and it was difficult to determine the nucleotide sequence as it was. So Exonuc
An attempt was made to create a deletion mutant in which the inserted fragment was deleted from the end using releaseIII. To make mutants, use the KILO? Sequenc
e Deletion Kit for e (Takara Shuzo) was used. That is, 25 microliters of a pUNH11 or pUAMD12 solution (approximately 16 micrograms as 0.4 mg / ml) are completely decomposed with Sse8387I and XbaI (37 ° C., 24 hours), purified by phenol extraction, and then purified.
1/10 volume of 3M Na acetate and 2.5 volumes of ethanol were added for precipitation. The precipitate was collected by centrifugation, washed once with 70% cold ethanol, and then the vacuum-dried precipitate was dissolved in 100 microliters of ExoIII buffer.
1 microliter of Exoncleas in DNA solution
After eIII was added, the mixture was vortexed, incubated at 37 ° C., and after 10 seconds and 30 seconds, 50 microliters each were sampled (in order to stop the reaction, 50 MB each of the prepared MB nuclease buffer was used).
Mix with micro litter. ).

【0036】この反応液にMB nuclease 2
マイクロリターを添加し、37℃で20分間インキュベ
ートした。反応終了後、フェノール抽出して精製し、1
/10容量の3M酢酸Naと2.5容量のエタノールを
加えて沈殿させた。遠心して回収し、70%冷エタノー
ルで一回洗浄した後真空乾燥させた沈殿を50マイクロ
リターのklenow bufferに溶解し、kle
now fragment 1マイクロリターを加え3
7℃で15分間インキュベートした。この反応液をアガ
ロースゲル電気泳動に供し、3つの鎖長域に分画した
(ゲルよりそれぞれ切り出し、抽出回収。)。
The reaction mixture was added to MB nuclease 2
Microliter was added and incubated at 37 ° C for 20 minutes. After completion of the reaction, phenol was extracted and purified.
/ 10 volume of 3 M Na acetate and 2.5 volumes of ethanol were added for precipitation. The precipitate was collected by centrifugation, washed once with 70% cold ethanol, and dried in vacuo. The precipitate was dissolved in 50 microliters of klenow buffer,
now fragment 1 Add micro litter and add 3
Incubated at 7 ° C for 15 minutes. This reaction solution was subjected to agarose gel electrophoresis, and fractionated into three chain length regions (each cut out from the gel and extracted and recovered).

【0037】切り出した断片の回収液10マイクロリタ
ーを100マイクロリターのligation sol
ution Aと混合し、ligation solu
tion B 12マイクロリターを加え、ボルテック
スで撹拌後16℃で24時間反応させ、セルフライゲー
ションさせた。このプラスミドで大腸菌JM109株を
形質転換した。
[0037] A recovery solution of the excised fragments, 10 microliters of ligation sol of 100 microliters
Mix with Ution A, ligation solution
After adding tion B 12 microliters, the mixture was vortexed and reacted at 16 ° C. for 24 hours to allow self-ligation. Escherichia coli strain JM109 was transformed with this plasmid.

【0038】この操作により、pUNH11については
20種以上の欠損変異体が取得でき、この中から適当な
長さの挿入断片を含む変異体7種を選択し、配列決定に
用いることにした。しかし、pUAMD12に関しては
もとのプラスミドより大きなプラスミドや用いたベクタ
ーより小さなプラスミドが生成するなど、適当な欠損体
が取得できないことが判った。そこでpUAMD12に
関しては逐次プライマーを合成しながら配列を決定する
gene?walking法による配列決定を行うこと
にした。
By this operation, 20 or more deletion mutants of pUNH11 could be obtained. From these, seven mutants containing an insert fragment of an appropriate length were selected and used for sequencing. However, with respect to pUAMD12, it was found that a suitable deficient body could not be obtained, for example, a plasmid larger than the original plasmid or a plasmid smaller than the used vector was generated. Therefore, regarding pUAMD12, it was decided to perform sequence determination by the gene-walking method of determining the sequence while sequentially synthesizing primers.

【0039】塩基配列の決定はdideoxy法によ
り、pUNH11は挿入断片の全域に相当する約2.8
kbのDNA配列、pUAMD12は挿入断片の約2/
3に相当する約2.8kbのDNA配列を決定した。プ
ローブとして用いた部分断片配列と一致する部分を探索
したところ、pUNH11、pUAMD12それぞれの
挿入断片のEcoRIサイト側から約0.2kb、1.
1kb下流から、ニトリルヒドラターゼ遺伝子はlac
プロモーターに対して逆順に、アミダーゼ遺伝子は正の
方向に存在していることが分かった。この方向と位置
は、pUNH11に関しては制限酵素の切断断片生成パ
ターンから推定した遺伝子の位置と方向に、pUAMD
12に関しては制限酵素の切断パターンとサザンハイブ
リダイゼーションの結果から推定されたものと一致して
いた。これらの遺伝子配列から翻訳されたアミノ酸配列
は、既知のいずれのニトリルヒドラターゼ、アミダーゼ
のアミノ酸配列とも異なる新規なものであった。
The nucleotide sequence was determined by the didoxy method, and pUNH11 was about 2.8 corresponding to the entire region of the inserted fragment.
The kb DNA sequence, pUAMD12, is approximately 2 /
A DNA sequence of about 2.8 kb corresponding to 3 was determined. When a portion corresponding to the partial fragment sequence used as a probe was searched, about 0.2 kb from the EcoRI site side of each of the inserted fragments of pUNH11 and pUAMD12, and 1.
From 1 kb downstream, the nitrile hydratase gene is lac
The amidase gene was found to be present in the positive direction, in reverse order to the promoter. The direction and position of pUNH11 correspond to the position and direction of the gene estimated from the pattern
As for No. 12, it was consistent with the cleavage pattern of the restriction enzyme and that estimated from the results of Southern hybridization. The amino acid sequences translated from these gene sequences were novel and different from the amino acid sequences of any of the known nitrile hydratases and amidases.

【0040】実施例8;ニトリルヒドラターゼおよびア
ミダーゼ活性の測定 ニトリルヒドラターゼ活性は20mMリン酸緩衝液(p
H7.0)10mlにテレフタロニトリル(TPN)を
基質として1〜10質量%を懸濁した反応液に、菌体
(湿質量で1g前後)を加えて30℃で振とうしながら
反応を行い、一定時間毎に反応液中に生成したパラシア
ノ安息香酸アミドをHPLCで定量することによって測
定した。通常、反応液から固形物を遠心分離して除去し
た後、上清を溶離液で100倍希釈したものをHPLC
サンプルとして用いた。アミダーゼ活性は基質としてパ
ラシアノベンズアミドまたはベンズアミドを用い、同じ
条件で反応させ、生成したパラシアノ安息香酸または安
息香酸をHPLCで定量することによって測定した。
Example 8: Nitrile hydratase and a
Measurement of midase activity Nitrile hydratase activity was measured using a 20 mM phosphate buffer (p
H7.0) A reaction solution in which 1 to 10% by mass of terephthalonitrile (TPN) as a substrate was suspended in 10 ml of the reaction solution was added with cells (about 1 g in wet mass), and the reaction was carried out while shaking at 30 ° C. The paracyanobenzoic acid amide formed in the reaction solution at regular intervals was quantified by HPLC. Usually, solids are removed from the reaction solution by centrifugation, and the supernatant is diluted 100-fold with an eluent.
Used as a sample. Amidase activity was measured by reacting paracyanobenzamide or benzamide as a substrate under the same conditions, and quantifying the produced paracyanobenzoic acid or benzoic acid by HPLC.

【0041】各生成物の定量は、以下の装置・条件で行
った。 装置: ポンプ;DS-2 (Shodex) 検出器;SPD-6AV UV-VIS spectrophotometer (Shimadzu) サンプル導入;Autosampler Model23 (SIC) with 20 ul sample tube 記録;Chromatocoder 12 (SIC) カラム;ODSpak F-411 (Shodex), 4.6×150mm、40℃ 分離条件;AcCN/H2O=50:50, 0.1%TFA, 1ml/min. 活性は乾燥質量1gの菌体が1時間に1lの反応液中に
生成するパラシアノ安息香酸アミド、パラシアノ安息香
酸または安息香酸のg質量(g/l/hr/g乾燥菌体)
で表すことにした。
Quantification of each product was carried out using the following apparatus and conditions. Equipment: Pump; DS-2 (Shodex) detector; SPD-6AV UV-VIS spectrophotometer (Shimadzu) Sample introduction; Autosampler Model23 (SIC) with 20 ul sample tube recording; Chromatocoder 12 (SIC) column; ODSpak F-411 ( Shodex), 4.6 × 150 mm, 40 ° C. Separation conditions; AcCN / H2O = 50: 50, 0.1% TFA, 1 ml / min. The activity is paracyanobenzo which 1 g of dry cells produce in 1 liter of reaction solution per hour. G mass of acid amide, paracyanobenzoic acid or benzoic acid (g / l / hr / g dry cells)
I decided to represent it.

【0042】実施例9;高発現株の作成 実施例6で得たポジティブクローンP11またはP12
株をアンピシリン50ppmを含むLブロスで培養する
と、イソプロピル−Β−D−チオガラクトピラノシド
(IPTG)の存在の如何に関わらず弱いニトリルヒド
ラターゼ活性が確認できた。しかしこの活性はドナーで
あるロドコッカス属細菌の数十分の一という低いもので
あった。他方のP12株にはアミダーゼ活性はまったく
認められなかった。
Example 9: Preparation of a high expression strain Positive clone P11 or P12 obtained in Example 6
When the strain was cultured in L-broth containing 50 ppm of ampicillin, weak nitrile hydratase activity was confirmed regardless of the presence of isopropyl-Β-D-thiogalactopyranoside (IPTG). However, this activity was as low as one-tenth of the donor Rhodococcus. No amidase activity was observed in the other strain P12.

【0043】そこで酵素生産量を増やすため、それぞれ
の酵素構造遺伝子部分のみの断片をPCRで作成し、p
UC18のlacプロモーター直後につないだプラスミ
ドpUNHE1およびpUAMDE1を作成した。さら
にこの両断片を同じプラスミド上に乗せたプラスミドp
UNHAMDE1を作成した。
Therefore, in order to increase the amount of enzyme production, a fragment of only each enzyme structural gene is prepared by PCR, and p
Plasmids pUNHE1 and pUAMDE1 ligated immediately after the lac promoter of UC18 were created. Furthermore, plasmid p obtained by placing both fragments on the same plasmid
UNHAMDE1 was created.

【0044】PCR断片作成に用いたプライマーおよび
反応条件は以下の通り。 pUNHE1 (フォワード) 5'・acc atg gat ggt atc cac
gac・3' (βサブユニット開始コドン)( NcoIサイト) (リバース) 5'・cc aag ctt tca tac gat
cac ttc・3' (αサブユニット終止コドン)(HindIIIサイ
ト) pUAMDE1 (フォワード) 5'・acc atg gct tcg ttg act
cc・3' (NcoIサイト、アミノ酸3番目Ser→Alaに変
異) (リバース) 5'・cc aag ctt tca gga cgg
cac cga・3' (HindIIIサイト) 反応液組成: プラスミドDNA 0.8〜1μg プライマー 各100pmol dNTP溶液 各1mM 10x反応バッファー 10μl ExTaqDNAポリメラーゼ(宝酒造社製) 2.5U 計50μl 反応条件: 熱変性 94℃、60秒 アニーリング 55℃、60秒 伸長 72℃、120秒 サイクル数 24回 ニトリルヒドラターゼ遺伝子、アミダーゼ遺伝子共に、
生成した断片をアガロースゲル電気泳動し、抽出・回収
した後、断片を制限酵素NcoIとHindIIIで切
断し、EcoRINcoIリンカーとライゲーション
後、EcoRI?HindIIIカットしたpUC18
とライゲーションした(図2)。
The primers and reaction conditions used for preparing the PCR fragment are as follows. pUNHE1 (forward) 5 '· acc atg gt ggt atc cac
gac · 3 ′ (β subunit initiation codon) (NcoI site) (reverse) 5 ′ · cc aag ctt tcat tac gat
cac ttc · 3 ′ (α subunit termination codon) (HindIII site) pUAMDE1 (forward) 5 ′ · acc atg gct tcg ttg act
cc.3 '(NcoI site, amino acid third Ser → Ala mutated) (reverse) 5'.cc aag ctt tca gga cgg
cac cga · 3 ′ (HindIII site) Reaction solution composition: Plasmid DNA 0.8-1 μg Primer 100 pmol dNTP solution 1 mM each 10 × reaction buffer 10 μl ExTaq DNA polymerase (Takara Shuzo) 2.5 U Total 50 μl Reaction conditions: heat denaturation 94 ° C. , 60 seconds Annealing 55 ° C, 60 seconds Extension 72 ° C, 120 seconds Cycle number 24 times Both nitrile hydratase gene and amidase gene,
The resulting fragment was subjected to agarose gel electrophoresis, extracted and recovered, and the fragment was cut with restriction enzymes NcoI and HindIII, ligated with EcoRINcoI linker, and EcoRI-HindIII-cut pUC18.
(Fig. 2).

【0045】ニトリルヒドラターゼ遺伝子とアミダーゼ
遺伝子を同じプラスミド上に乗せたプラスミドは、まず
ニトリルヒドラターゼ断片を制限酵素NcoIとHin
dIIIで切断し、EcoRINcoIリンカー、Hi
ndIII-NcoIリンカーの順でライゲーション
後、NcoIとHindIIIで切断したアミダーゼ断
片とライゲーションし、最後にEcoRI?HindI
IIカットしたpUC18とこの断片をライゲーション
した(図3)。
The plasmid having the nitrile hydratase gene and the amidase gene on the same plasmid was prepared by first converting the nitrile hydratase fragment to the restriction enzymes NcoI and Hin.
Cleavage with dIII, EcoRINcoI linker, Hi
After ligation in the order of ndIII-NcoI linker, ligation was performed with NcoI and an amidase fragment digested with HindIII, and finally EcoRI? HindI.
This fragment was ligated to the II-cut pUC18 (FIG. 3).

【0046】これらのプラスミドで大腸菌JM109株
を形質転換し、得られた形質転換体をアンピシリン50
ppmを含むLブロスで一昼夜培養した後、イソプロピ
ル−Β−D−チオガラクトピラノシド(IPTG)を
0.1mMになるよう培養液に加えてさらに2時間培養
した。得られた形質転換体のニトリル変換活性を実施例
8に示した方法により測定したところ、いずれのプラス
ミドで形質転換した形質転換体も、ドナーであるロドコ
ッカス属細菌より高い活性が確認できた。両方の遺伝子
を乗せたプラスミドで形質転換したもののみは、ドナー
と同等の活性を示した。
Escherichia coli JM109 strain was transformed with these plasmids, and the resulting transformant was transformed into ampicillin 50.
After culturing overnight in L broth containing ppm, isopropyl-Β-D-thiogalactopyranoside (IPTG) was added to the culture solution to a concentration of 0.1 mM, and the cells were further cultured for 2 hours. When the nitrile conversion activity of the obtained transformant was measured by the method shown in Example 8, it was confirmed that the transformants transformed with any of the plasmids had higher activities than the donor Rhodococcus bacteria. Only those transformed with the plasmid carrying both genes showed the same activity as the donor.

【0047】[0047]

【表1】 [Table 1]

【0048】活性単位:g/l/hr/g乾燥菌体1) ドナーの活性はアミドの生成速度のみ(酸の生成速度
はニトリラーゼの影響のため正確に測定不能)2) pUNHAMDE1はニトリル→酸生成速度を測定
Activity unit: g / l / hr / g dried cells 1) The activity of the donor is only the amide formation rate (the acid formation rate cannot be measured accurately due to the effect of nitrilase). 2) pUNHAMDE1 is nitrile → acid Measures production rate

【0049】[0049]

【発明の効果】本発明は複数のニトリル基を有する芳香
族ポリニトリル化合物に対し、優れた位置選択的加水分
解能をもつロドコッカス属細菌のニトリルヒドラターゼ
およびアミダーゼ遺伝子を提供するものである。これら
のDNA配列は、ニトリルヒドラターゼ、アミダーゼの
遺伝子工学的手法を用いた効率的生産やタンパク質工学
的手法を用いた酵素の改良などに不可欠なものであり、
このようにして得た酵素は有用化合物の工業的生産への
応用に期待できる。
The present invention provides a nitrile hydratase and an amidase gene of a Rhodococcus bacterium having an excellent regioselective hydrolysis ability to an aromatic polynitrile compound having a plurality of nitrile groups. These DNA sequences are indispensable for efficient production of nitrile hydratase and amidase using genetic engineering techniques and improvement of enzymes using protein engineering techniques,
The enzyme thus obtained can be expected to be applied to industrial production of useful compounds.

【0050】[0050]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 クローン株から調製したプラスミドの構造。FIG. 1 shows the structure of a plasmid prepared from a clone strain.

【図2】 発現用プラスミドの構築(1)。FIG. 2 shows construction of an expression plasmid (1).

【図3】 発現用プラスミドの構築(2)。FIG. 3 shows construction of an expression plasmid (2).

【0051】[0051]

【配列表】 SEQUENCE LISTING <110> SHOWA DENKO K.K. <120> Rhodococcus sp. ATCC39484 genes for nitrile hydratase and amidase. <130> 11H120068 <140> <141> <160> 5 <170> PatentIn Ver. 2.0 <210> 1 <211> 2822 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1379)..(2068) <223> nitrile hydratase beta subunit <220> <221> CDS <222> (2082)..(2693) <223> nitrile hydratase alfa subunit <400> 1 ctagaggatc tcggtcatcg cgataccatc gttgcggacg atgatgtcca atacgtacca 60 ctggtccgcg gtcaacttct cttgatcgac cacgttatgg attctacgac tcagggaccg 120 gctcacggct tccagggcgc ctccgaccaa aggtgatcga acgacatttc cggattcagc 180 caccgcttcc gactcgatca ttcctgtccc tccccgtcca cgcgcagttg atcttacctc 240 ctcatcaaga ggatatccac tgaacgaatt atttcaagtg gaagtacttg gagtcgatcc 300 tacacgtgag tggacgatgc ctgggcgcta gtcggatgtg caacccaccc accccctcct 360 cccgcctacg ccgaagaccg gaaccggcgt cgtccctgcc tgccgtctct ggcaactgtt 420 gtgaacgccc gagcggccct cacggctctt cagttggcgc ggatcgccat ggcggacgtc 480 gcccacggcg ggacctacgc atcttcggcc ggaaggcagc cgcggtcacg aacacctagc 540 ggcagtcgag cacctgagac gaaggccgcc ggcgtcctgt cccggaaatc cgcagcccag 600 ccgtgacagc caacagtcgt ggcggttccc tcccctccta gggtctttga ctcggcgcca 660 acgcctgcga gggcgctcgt cgcggaccac ttgtcgaggt cggtgccgca cgtcaccgag 720 cgcacccttc ttcgtgctct gcgcatcggc ccggaccgcg accgcggcaa cactacgacg 780 tctgacaatg ctgatcccct gccgccgccg ttggacgacc acagttgcta cgagcatgcg 840 gagccaacca taggcatcat gcgatcgccg gagtcttcat cctattttgg gatgcgcagg 900 attaacacat ctacacattg acatccgttc cgatgtgaag taaaaattgt cacgtagggc 960 ggcaggcgaa gtctgcagct cgaacatcga agggtgggag ccgagagatc ggagacgcag 1020 acacccggag ggaacttagc ctcccggacc gatgcgtgtc ctggcaacgc ctcaagattc 1080 agcgcaagcg attcaatctt gttacttcca gaaccgaatc acgtccccgt agtgtgcggg 1140 gagagcgccc gaacgcaggg atggtatcca tgcgcccctt ctcttttcga acgagaaccg 1200 gccggtacag tcaatccgga cacattgtga cgccgttcaa cgattgttgt gctgtgaagg 1260 attcactcaa gccaactgat atcgccattc cgttgccgga acatttgacg ccttctccct 1320 acgagtagaa gccagctgga ccctctttga gcccagctcc gatgaaagga atgaggaa 1378 atg gat ggt atc cac gac aca ggc ggc atg acc gga tac gga ccg gtc 1426 Met Asp Gly Ile His Asp Thr Gly Gly Met Thr Gly Tyr Gly Pro Val 1 5 10 15 ccc tat cag aag gac gag ccc ttc ttc cac tac gag tgg gag ggt cga 1474 Pro Tyr Gln Lys Asp Glu Pro Phe Phe His Tyr Glu Trp Glu Gly Arg 20 25 30 acc ctg tcg att ctg acc tgg atg cat ctc aag ggc atg tcg tgg tgg 1522 Thr Leu Ser Ile Leu Thr Trp Met His Leu Lys Gly Met Ser Trp Trp 35 40 45 gac aag tcg cgg ttc ttc cgg gag tcg atg ggg aac gaa aac tac gtc 1570 Asp Lys Ser Arg Phe Phe Arg Glu Ser Met Gly Asn Glu Asn Tyr Val 50 55 60 aac gag att cgc aac tcg tac tac acc cac tgg ctg agt gcg gcg gaa 1618 Asn Glu Ile Arg Asn Ser Tyr Tyr Thr His Trp Leu Ser Ala Ala Glu 65 70 75 80 cgt atc ctc gtc gcc gac aag atc atc acc gaa gaa gag cga aag cac 1666 Arg Ile Leu Val Ala Asp Lys Ile Ile Thr Glu Glu Glu Arg Lys His 85 90 95 cgc gtg cag gag atc ctc gag ggt cgg tac acg gac agg aac ccg tcg 1714 Arg Val Gln Glu Ile Leu Glu Gly Arg Tyr Thr Asp Arg Asn Pro Ser 100 105 110 cgg aag ttc gat ccg gcc gag atc gag aag gcg atc gag agg ctt cac 1762 Arg Lys Phe Asp Pro Ala Glu Ile Glu Lys Ala Ile Glu Arg Leu His 115 120 125 gag ccc cac tcc cta gtg ctt cca gga gcg gag ccg agt ttc tcc ctc 1810 Glu Pro His Ser Leu Val Leu Pro Gly Ala Glu Pro Ser Phe Ser Leu 130 135 140 ggt gac aag gtc aaa gtg aag aac atg aac ccg ctg gga cac aca cgg 1858 Gly Asp Lys Val Lys Val Lys Asn Met Asn Pro Leu Gly His Thr Arg 145 150 155 160 tgc ccg aag tat gtg cgg aac aga atc ggg gaa atc gtc acc tcc cac 1906 Cys Pro Lys Tyr Val Arg Asn Arg Ile Gly Glu Ile Val Thr Ser His 165 170 175 ggg tgc cag atc tat ccc gag agc agc tcc gcc ggc ctc ggc gac gat 1954 Gly Cys Gln Ile Tyr Pro Glu Ser Ser Ser Ala Gly Leu Gly Asp Asp 180 185 190 ccc cgc ccg ctc tac acg gtc gcg ttt tcc gcc cag gaa ctg tgg ggc 2002 Pro Arg Pro Leu Tyr Thr Val Ala Phe Ser Ala Gln Glu Leu Trp Gly 195 200 205 gac gac gga aac ggg aaa gac gta gtg tgc gtc gat ctc tgg gaa ccg 2050 Asp Asp Gly Asn Gly Lys Asp Val Val Cys Val Asp Leu Trp Glu Pro 210 215 220 tac ctg atc tct gcg tga aaggaatacg ata gtg agc gag cac gtc aat 2099 Tyr Leu Ile Ser Ala Val Ser Glu His Val Asn 225 230 5 aag tac acg gag tac gag gca cgt acc aag gca atc gaa acc ttg ctg 2147 Lys Tyr Thr Glu Tyr Glu Ala Arg Thr Lys Ala Ile Glu Thr Leu Leu 10 15 20 tac gag cga ggg ctc atc acg ccc gcc gcg gtc gac cga gtc gtt tcg 2195 Tyr Glu Arg Gly Leu Ile Thr Pro Ala Ala Val Asp Arg Val Val Ser 25 30 35 tac tac gag aac gag atc ggc ccg atg ggc ggt gcc aag gtc gtg gcc 2243 Tyr Tyr Glu Asn Glu Ile Gly Pro Met Gly Gly Ala Lys Val Val Ala 40 45 50 aag tcc tgg gtg gac cct gag tac cgc aag tgg ctc gaa gaa gac gcg 2291 Lys Ser Trp Val Asp Pro Glu Tyr Arg Lys Trp Leu Glu Glu Asp Ala 55 60 65 70 acg gcc gcg atg gcg tca ttg ggc tat gcc ggc gag cag gca cac cag 2339 Thr Ala Ala Met Ala Ser Leu Gly Tyr Ala Gly Glu Gln Ala His Gln 75 80 85 atc tcg gcc gtc ttc aac gac tcc caa aca cat cac gta gtg gtg tgc 2387 Ile Ser Ala Val Phe Asn Asp Ser Gln Thr His His Val Val Val Cys 90 95 100 act ctg tgt tcg tgc tat ccg tgg ccg gtg ctt ggc ctc ccg ccc gcc 2435 Thr Leu Cys Ser Cys Tyr Pro Trp Pro Val Leu Gly Leu Pro Pro Ala 105 110 115 tgg tac aag agc atg gag tac cgg tcc cga gtg gta gca gac cct cgt 2483 Trp Tyr Lys Ser Met Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg 120 125 130 gga gta ctc aag cgc gat ttc ggg ttc gac atc ccc gat gag gtg gag 2531 Gly Val Leu Lys Arg Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu 135 140 145 150 gtc agg gtt tgg gac agc agc tcc gaa atc cgc tac atc gtc atc ccg 2579 Val Arg Val Trp Asp Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro 155 160 165 gaa cgg ccg gcc ggc acc gac ggt tgg tcc gag gac gag ctg gcg aag 2627 Glu Arg Pro Ala Gly Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys 170 175 180 ctg gtg agt cgg gac tcg atg atc ggt gtc agt aat gcg ctc aca ccg 2675 Leu Val Ser Arg Asp Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro 185 190 195 cag gaa gtg atc gta tga gtgaagacac actcactgat cggctcccgg 2723 Gln Glu Val Ile Val 200 cgactgggac cgccgcaccg ccccgcgaca atggcgagct tgtattcacc gagccttggg 2783 aagcaacggc attcggggtc gccatcgcgc tttcggatc 2822 <210> 2 <211> 229 <212> PRT <213> Rhodococcus sp. <400> 2 Met Asp Gly Ile His Asp Thr Gly Gly Met Thr Gly Tyr Gly Pro Val 1 5 10 15 Pro Tyr Gln Lys Asp Glu Pro Phe Phe His Tyr Glu Trp Glu Gly Arg 20 25 30 Thr Leu Ser Ile Leu Thr Trp Met His Leu Lys Gly Met Ser Trp Trp 35 40 45 Asp Lys Ser Arg Phe Phe Arg Glu Ser Met Gly Asn Glu Asn Tyr Val 50 55 60 Asn Glu Ile Arg Asn Ser Tyr Tyr Thr His Trp Leu Ser Ala Ala Glu 65 70 75 80 Arg Ile Leu Val Ala Asp Lys Ile Ile Thr Glu Glu Glu Arg Lys His 85 90 95 Arg Val Gln Glu Ile Leu Glu Gly Arg Tyr Thr Asp Arg Asn Pro Ser 100 105 110 Arg Lys Phe Asp Pro Ala Glu Ile Glu Lys Ala Ile Glu Arg Leu His 115 120 125 Glu Pro His Ser Leu Val Leu Pro Gly Ala Glu Pro Ser Phe Ser Leu 130 135 140 Gly Asp Lys Val Lys Val Lys Asn Met Asn Pro Leu Gly His Thr Arg 145 150 155 160 Cys Pro Lys Tyr Val Arg Asn Arg Ile Gly Glu Ile Val Thr Ser His 165 170 175 Gly Cys Gln Ile Tyr Pro Glu Ser Ser Ser Ala Gly Leu Gly Asp Asp 180 185 190 Pro Arg Pro Leu Tyr Thr Val Ala Phe Ser Ala Gln Glu Leu Trp Gly 195 200 205 Asp Asp Gly Asn Gly Lys Asp Val Val Cys Val Asp Leu Trp Glu Pro 210 215 220 Tyr Leu Ile Ser Ala 225 <210> 3 <211> 203 <212> PRT <213> Rhodococcus sp. <400> 3 Val Ser Glu His Val Asn Lys Tyr Thr Glu Tyr Glu Ala Arg Thr 1 5 10 15 Lys Ala Ile Glu Thr Leu Leu Tyr Glu Arg Gly Leu Ile Thr Pro Ala 20 25 30 Ala Val Asp Arg Val Val Ser Tyr Tyr Glu Asn Glu Ile Gly Pro Met 35 40 45 Gly Gly Ala Lys Val Val Ala Lys Ser Trp Val Asp Pro Glu Tyr Arg 50 55 60 Lys Trp Leu Glu Glu Asp Ala Thr Ala Ala Met Ala Ser Leu Gly Tyr 65 70 75 Ala Gly Glu Gln Ala His Gln Ile Ser Ala Val Phe Asn Asp Ser Gln 80 85 90 95 Thr His His Val Val Val Cys Thr Leu Cys Ser Cys Tyr Pro Trp Pro 100 105 110 Val Leu Gly Leu Pro Pro Ala Trp Tyr Lys Ser Met Glu Tyr Arg Ser 115 120 125 Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg Asp Phe Gly Phe 130 135 140 Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp Ser Ser Ser Glu 145 150 155 Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly Thr Asp Gly Trp 60 165 170 175 Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp Ser Met Ile Gly 180 185 190 Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 195 200 <210> 4 <211> 2822 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1094)..(2491) <223> amidase <400> 4 tgattacgaa ttcgagctcg gtacccgggg atcacttcgg ccagagggtg acggcgaaat 60 cgggcctcga tctccgcgtc cacggcgttg atacgtgtgt cgaggtcgat caccgcctgc 120 gccaattcgg cgaccagttc ggcagcgaca tcttcccccg gcaaccgcac ggtctgcgcc 180 ttcgcggcgg tgactgcggc ccgggcgatc gattcggcgt ggcgcacccc ggccccggtg 240 agcattgcgg ccagtcgggc cgccccgacg cggcggatcg ctttcggtcg ctggtagcgg 300 gccagcagca ccacccagcc ccggtccgag gagatctgcg cgacgcgttc gagtccgggg 360 cagatcgcga cgagttgctg acgcagccgg ttgatggtcc gggtacggtc ggcgaccaga 420 tcggtgcggt ggccggtgag catctgcagc tcacggatca actcgtcgtc gggacgcaga 480 acgggcaggt ccgaccgcat ccgggactga tcggcgatca cccgggcgtc gcgggcgtcg 540 gtcttggctt cgccgncgcg gtagaccgac gatgcctgcc acaccgaacg tncggacagg 600 tagcgcaccg gtttcccggc gtcggccagc acagtcagca acaaggtgac gtaggcggtg 660 gtcagatcca ccgtccacga caccgtctcg gtgagtgcgt cgatctcggt gatcaccgca 720 cggatcgttg cttcgtcgtt gtcacatcgc cgcgacagca ccaccgtccc ggaggtgtcg 780 agtacgcata tccagtggtg ttctttgccg acgtcgactc ctgcccacag ttgcgaaccg 840 gtcatcggat ttcctcgttt tcgcttgtgt tccggcctgg ccccgatgga cgcctncgcc 900 ggcatttcct taaacaagcg atcatgcgca gatctcaatc agcggtccag aggtgtccag 960 acaggtcggg tggccagtcc tttcaagccc cactcgagag tgggcaaacc ttatgcagcc 1020 tcgccggcct gcccgggtta cagctcaacg taactctcac gaagtaactg cacctacgaa 1080 cttaaggaac ctc atg tct tcg ttg act ccc ccc aat tcc aac caa atg 1129 Met Ser Ser Leu Thr Pro Pro Asn Ser Asn Gln Met 1 5 10 tcg gcc ctg aac aac cac ttc cga ttc gga ctg acg acg ccg gaa ctc 1177 Ser Ala Leu Asn Asn His Phe Arg Phe Gly Leu Thr Thr Pro Glu Leu 15 20 25 gaa gag ttc gca ccg gcc ctc gaa gcg acg ctc gcg tcc tcc gaa acc 1225 Glu Glu Phe Ala Pro Ala Leu Glu Ala Thr Leu Ala Ser Ser Glu Thr 30 35 40 gtc gaa cgc ctc tac gag cgc acc gcg ccc gag ccg cct cag cgg tca 1273 Val Glu Arg Leu Tyr Glu Arg Thr Ala Pro Glu Pro Pro Gln Arg Ser 45 50 55 60 tgg acc tca ccc acg gcg gac gag aac ccg ctg agc gcc tgg tac gtc 1321 Trp Thr Ser Pro Thr Ala Asp Glu Asn Pro Leu Ser Ala Trp Tyr Val 65 70 75 acc acc tcg atc agc gaa acc gac gaa ggc ccc ctc gcc ggg cga acg 1369 Thr Thr Ser Ile Ser Glu Thr Asp Glu Gly Pro Leu Ala Gly Arg Thr 80 85 90 gtc gcc gtg aaa gac aac gtc gca gtc gcc ggc gtg ccg atg atg aac 1417 Val Ala Val Lys Asp Asn Val Ala Val Ala Gly Val Pro Met Met Asn 95 100 105 ggc tcc cga acc gtc gag ggc ttc acc ccc cgc tac gac gcc acc gtc 1465 Gly Ser Arg Thr Val Glu Gly Phe Thr Pro Arg Tyr Asp Ala Thr Val 110 115 120 gta cgc cga ctg ctc gac gcc ggc gca acc atc acc ggc aaa gcg gtg 1513 Val Arg Arg Leu Leu Asp Ala Gly Ala Thr Ile Thr Gly Lys Ala Val 125 130 135 140 tgc gaa gat ctc tgc ttc tcc ggc gcc agc ttc act tcc cac ccc cag 1561 Cys Glu Asp Leu Cys Phe Ser Gly Ala Ser Phe Thr Ser His Pro Gln 145 150 155 ccg gtc cgc aac ccc tgg gac gaa agc cgc atc acc ggc ggc tcg tcc 1609 Pro Val Arg Asn Pro Trp Asp Glu Ser Arg Ile Thr Gly Gly Ser Ser 160 165 170 agc ggc agc ggc gcc ctg gtc gcc agc ggc cag gtg gat atg gca gtc 1657 Ser Gly Ser Gly Ala Leu Val Ala Ser Gly Gln Val Asp Met Ala Val 175 180 185 ggc ggc gac cag ggc ggt tcg atc cgc atc ccc gcc gcg ttc tgc ggc 1705 Gly Gly Asp Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe Cys Gly 190 195 200 atc gtc gga cac aaa ccc acc cac gga ctg gtc ccc tat acg gga gca 1753 Ile Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr Gly Ala 205 210 215 220 ttt ccc atc gaa cga acc atc gac cac ctc ggt ccg atg acg cgc acg 1801 Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr Arg Thr 225 230 235 gtc agc gac gcc gcc gca atg ctc acc gtc ctc gcc ggc acc gac ggc 1849 Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr Asp Gly 240 245 250 ctc gat ccc cga cag acc cac cgg atc gaa ccg gtg gac tac ctc gcg 1897 Leu Asp Pro Arg Gln Thr His Arg Ile Glu Pro Val Asp Tyr Leu Ala 255 260 265 gcg ctg gcc gaa ccc gca tcg ggt ctg cgc gtg ggt gtg gtc acc gaa 1945 Ala Leu Ala Glu Pro Ala Ser Gly Leu Arg Val Gly Val Val Thr Glu 270 275 280 ggc ttc gac acc cct gtc tcc gac gct gcc gtc gac aat gcc gtg cgc 1993 Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala Val Arg 285 290 295 300 acc gcc atc ggc gta ctg cgc tcg gcc gga ctt acc gtc gaa gag gtc 2041 Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu Glu Val 305 310 315 tcg atc ccc tgg cac ctc gat gcg atg gcc gtc tgg aac gtg atc gac 2089 Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val Ile Asp 320 325 330 cgg gcc gac gac gaa ttc gaa gcc ttc ctg ctg cag gtg ctc gac gag 2137 Arg Ala Asp Asp Glu Phe Glu Ala Phe Leu Leu Gln Val Leu Asp Glu 335 340 345 aac gcc gtc acc atc ccc gaa ctc gga cag gtg cgg gcg cag acg ccg 2185 Asn Ala Val Thr Ile Pro Glu Leu Gly Gln Val Arg Ala Gln Thr Pro 350 355 360 cgc tcg tgg tgc tca cct cga acc gca ccc gcg agg tgc acg acg ccc 2233 Arg Ser Trp Cys Ser Pro Arg Thr Ala Pro Ala Arg Cys Thr Thr Pro 365 370 375 380 tca aac gcc gct gcc tgt acc act ggc tcg aac acc ccg acc tcg cgc 2281 Ser Asn Ala Ala Ala Cys Thr Thr Gly Ser Asn Thr Pro Thr Ser Arg 385 390 395 ggg aag tgg aga tcc tgc gcc gcc gca tcc cgg gca tcg acg aac acc 2329 Gly Lys Trp Arg Ser Cys Ala Ala Ala Ser Arg Ala Ser Thr Asn Thr 400 405 410 tcg cgg cgc agg tcg ccc acg ccg tgc agg cca tgc gcg gga tgg acc 2377 Ser Arg Arg Arg Ser Pro Thr Pro Cys Arg Pro Cys Ala Gly Trp Thr 415 420 425 tgc tca aac cac ccg ggg tcg cgg agt cgc tgg act ggg cac gag cgc 2425 Cys Ser Asn His Pro Gly Ser Arg Ser Arg Trp Thr Gly His Glu Arg 430 435 440 tgc ggg aac tcg acc gcg acg tgc tcg acg cga cga ccg cgg ccg cga 2473 Cys Gly Asn Ser Thr Ala Thr Cys Ser Thr Arg Arg Pro Arg Pro Arg 445 450 455 460 ccc tcg gtg ccg tcc tga agtaccggga ggacctcgac cgagtggtcc 2521 Pro Ser Val Pro Ser 465 gcaccgggct cgaccggctc ctgacggggt gacagcggcg atgacgacga ccaccgacgc 2581 cgggggttcc ctcgtcggac tcaccggctt cacccgcgcc ctcgccgcgg ccggcctgtc 2641 cgtcgcctcg gacgccaccg tggcctacct gcgcgccctg cgcgagatcg acctcggcga 2701 ccgccgtcag gtgtactggg ccgggcgcgc caccctgtgc cacgaccccg acgacatccc 2761 ccgctacgac ctcgcgttcg agagctggtt cggcggaacg gcacccgacg tgacgtcgcc 2821 g 2822 <210> 5 <211> 465 <212> PRT <213> Rhodococcus sp. <400> 5 Met Ser Ser Leu Thr Pro Pro Asn Ser Asn Gln Met Ser Ala Leu Asn 1 5 10 15 Asn His Phe Arg Phe Gly Leu Thr Thr Pro Glu Leu Glu Glu Phe Ala 20 25 30 Pro Ala Leu Glu Ala Thr Leu Ala Ser Ser Glu Thr Val Glu Arg Leu 35 40 45 Tyr Glu Arg Thr Ala Pro Glu Pro Pro Gln Arg Ser Trp Thr Ser Pro 50 55 60 Thr Ala Asp Glu Asn Pro Leu Ser Ala Trp Tyr Val Thr Thr Ser Ile 65 70 75 80 Ser Glu Thr Asp Glu Gly Pro Leu Ala Gly Arg Thr Val Ala Val Lys 85 90 95 Asp Asn Val Ala Val Ala Gly Val Pro Met Met Asn Gly Ser Arg Thr 100 105 110 Val Glu Gly Phe Thr Pro Arg Tyr Asp Ala Thr Val Val Arg Arg Leu 115 120 125 Leu Asp Ala Gly Ala Thr Ile Thr Gly Lys Ala Val Cys Glu Asp Leu 130 135 140 Cys Phe Ser Gly Ala Ser Phe Thr Ser His Pro Gln Pro Val Arg Asn 145 150 155 160 Pro Trp Asp Glu Ser Arg Ile Thr Gly Gly Ser Ser Ser Gly Ser Gly 165 170 175 Ala Leu Val Ala Ser Gly Gln Val Asp Met Ala Val Gly Gly Asp Gln 180 185 190 Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe Cys Gly Ile Val Gly His 195 200 205 Lys Pro Thr His Gly Leu Val Pro Tyr Thr Gly Ala Phe Pro Ile Glu 210 215 220 Arg Thr Ile Asp His Leu Gly Pro Met Thr Arg Thr Val Ser Asp Ala 225 230 235 240 Ala Ala Met Leu Thr Val Leu Ala Gly Thr Asp Gly Leu Asp Pro Arg 245 250 255 Gln Thr His Arg Ile Glu Pro Val Asp Tyr Leu Ala Ala Leu Ala Glu 260 265 270 Pro Ala Ser Gly Leu Arg Val Gly Val Val Thr Glu Gly Phe Asp Thr 275 280 285 Pro Val Ser Asp Ala Ala Val Asp Asn Ala Val Arg Thr Ala Ile Gly 290 295 300 Val Leu Arg Ser Ala Gly Leu Thr Val Glu Glu Val Ser Ile Pro Trp 305 310 315 320 His Leu Asp Ala Met Ala Val Trp Asn Val Ile Asp Arg Ala Asp Asp 325 330 335 Glu Phe Glu Ala Phe Leu Leu Gln Val Leu Asp Glu Asn Ala Val Thr 340 345 350 Ile Pro Glu Leu Gly Gln Val Arg Ala Gln Thr Pro Arg Ser Trp Cys 355 360 365 Ser Pro Arg Thr Ala Pro Ala Arg Cys Thr Thr Pro Ser Asn Ala Ala 370 375 380 Ala Cys Thr Thr Gly Ser Asn Thr Pro Thr Ser Arg Gly Lys Trp Arg 385 390 395 400 Ser Cys Ala Ala Ala Ser Arg Ala Ser Thr Asn Thr Ser Arg Arg Arg 405 410 415 Ser Pro Thr Pro Cys Arg Pro Cys Ala Gly Trp Thr Cys Ser Asn His 420 425 430 Pro Gly Ser Arg Ser Arg Trp Thr Gly His Glu Arg Cys Gly Asn Ser 435 440 445 Thr Ala Thr Cys Ser Thr Arg Arg Pro Arg Pro Arg Pro Ser Val Pro 450 455 460 Ser 465 [Sequence List] SEQUENCE LISTING <110> SHOWA DENKO KK <120> Rhodococcus sp. ATCC39484 genes for nitrile hydratase and amidase. <130> 11H120068 <140> <141> <160> 5 <170> PatentIn Ver. 2.0 <210> 1 <211> 2822 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1379) .. (2068) <223> nitrile hydratase beta subunit <220> <221> CDS <222> (2082) .. (2693) <223> nitrile hydratase alfa subunit <400> 1 ctagaggatc tcggtcatcg cgataccatc gttgcggacg atgatgtcca atacgtacca 60 ctggtccgcg gtcaacttct cttgatcgac cacgttatgg attctacgac tcagggaccg 120 gctcacggct tccagggcgc ctccgaccaa aggtgatcga acgacatttc cggattcagc 180 caccgcttcc gactcgatca ttcctgtccc tccccgtcca cgcgcagttg atcttacctc 240 ctcatcaaga ggatatccac tgaacgaatt atttcaagtg gaagtacttg gagtcgatcc 300 tacacgtgag tggacgatgc ctgggcgcta gtcggatgtg caacccaccc accccctcct 360 cccgcctacg ccgaagaccg gaaccggcgt cgtccctgcc tgccgtctct ggcaactgtt 420 gtgaacgccc gagcggccct cacggctctt cagttggcgc ggatcgccat ggcggacgtc 480 gcccacggcg ggacctacgc atcttcggcc ggaaggcagc cgcggtcacg aacacctagc 540 ggcagtcgag cacctgagac gaaggccgcc ggcgtcctgt cccggaaatc cgcagcccag 600 ccgtgacagc caacagtcgt ggcggttccc tcccctccta gggtctttga ctcggcgcca 660 acgcctgcga gggcgctcgt cgcggaccac ttgtcgaggt cggtgccgca cgtcaccgag 720 cgcacccttc ttcgtgctct gcgcatcggc ccggaccgcg accgcggcaa cactacgacg 780 tctgacaatg ctgatcccct gccgccgccg ttggacgacc acagttgcta cgagcatgcg 840 gagccaacca taggcatcat gcgatcgccg gagtcttcat cctattttgg gatgcgcagg 900 attaacacat ctacacattg acatccgttc cgatgtgaag taaaaattgt cacgtagggc 960 ggcaggcgaa gtctgcagct cgaacatcga agggtgggag ccgagagatc ggagacgcag 1020 acacccggag ggaacttagc ctcccggacc gatgcgtgtc ctggcaacgc ctcaagattc 1080 agcgcaagcg attcaatctt gttacttcca gaaccgaatc acgtccccgt agtgtgcggg 1140 gagagcgccc gaacgcaggg atggtatcca tgcgcccctt ctcttttcga acgagaaccg 1200 gccggtacag tcaatccgga cacattgtga cgccgttcaa cgattgttgt gctgtgaagg 1260 attcactcaa gccaactgat atcgccattc cgttgccgga acatttgacg ccttctccct 1320 acgagtagaa gccagctgga ccctctttga gcccagctcc gatgaaagga atg aggaa 1378 atg gat ggt atc cac gac aca ggc ggc atg acc gga tac gga ccg gtc 1426 Met Asp Gly Ile His Asp Thr Gly Gly Met Thr Gly Tyr Gly Pro Val 1 5 10 15 ccc tat cag aag gac gag ccc ttc ttc cac tac gag tgg gag ggt cga 1474 Pro Tyr Gln Lys Asp Glu Pro Phe Phe His Tyr Glu Trp Glu Gly Arg 20 25 30 acc ctg tcg att ctg acc tgg atg cat ctc aag ggc atg tcg tgg tgg 1522 Thr Leu Ser Ile Leu Thr Trp Met His Leu Lys Gly Met Ser Trp Trp 35 40 45 gac aag tcg cgg ttc ttc cgg gag tcg atg ggg aac gaa aac tac gtc 1570 Asp Lys Ser Arg Phe Phe Arg Glu Ser Met Gly Asn Glu Asn Tyr Val 50 55 60 aac gag att cgc aac tcg tac tac acc cac tgg ctg agt gcg gcg gaa 1618 Asn Glu Ile Arg Asn Ser Tyr Tyr Thr His Trp Leu Ser Ala Ala Glu 65 70 75 80 cgt atc ctc gtc gcc gac aag atc atc acc gaa gaa gag cag ag 1666 Arg Ile Leu Val Ala Asp Lys Ile Ile Thr Glu Glu Glu Arg Lys His 85 90 95 cgc gtg cag gag atc ctc gag ggt cgg tac acg gac agg aac ccg tcg 1714 Arg Val Gln Glu Ile Leu Glu Gly Arg Tyr Thr Asp Arg Asn Pro Ser 100 105 110 cgg aag ttc gat ccg gcc gag atc gag aag gcg atc gag agg ctt cac 1762 Arg Lys Phe Asp Pro Ala Glu Ile Glu Lys Ala Ile Glu Arg Leu His 115 120 125 gag ccc cac tcc cta gtg ctt cca gga gcgag ccg agt ttc tcc ctc 1810 Glu Pro His Ser Leu Val Leu Pro Gly Ala Glu Pro Ser Phe Ser Leu 130 135 140 ggt gac aag gtc aaa gtg aag aac atg aac ccg ctg gga cac aca cgg 1858 Gly Asp Lys Val Lys Val Lys Asn Met Asn Pro Leu Gly His Thr Arg 145 150 155 160 tgc ccg aag tat gtg cgg aac aga atc ggg gaa atc gtc acc tcc cac 1906 Cys Pro Lys Tyr Val Arg Asn Arg Ile Gly Glu Ile Val Thr Ser His 165 170 175 ggg tgc cag atc tat ccc gag agc agc tcc gcc ggc ctc ggc gac gat 1954 Gly Cys Gln Ile Tyr Pro Glu Ser Ser Ser Ala Gly Leu Gly Asp Asp 180 185 190 ccc cgc ccg ctc tac acg gtc gcg ttt tcc gcc cag gag 2002 Pro Arg Pro Leu Tyr Thr Val Ala Phe Ser Ala Gln Glu Leu Trp Gly 195 200 205 gac gac gga aac ggg aaa gac gta gtg tgc gtc gat ctc tgg gaa ccg 2050 Asp Asp Asp Gly Asn Gly Lys Asp Val Val Cys Val Asp Leu Trp Glu Pro 210 215 220 tac ctg atc tct gcg tga aaggaatacg ata gtg agc gag cac gtc aat 2099 Tyr Leu Ile Ser Ala Val Ser Glu His Val Asn 225 230 5 aag tac acg gag tac gag gca cgt acc aag gca atc ga acc ttg ctg 2147 Lys Tyr Thr Glu Tyr Glu Ala Arg Thr Lys Ala Ile Glu Thr Leu Leu 10 15 20 tac gag cga ggg ctc atc acg ccc gcc gcg gtc gac cga gtc gtt tcg 2195 Tyr Glu Arg Gly Leu Ile Thr Ala Ala Ala Val Asp Arg Val Val Ser 25 30 35 tac tac gag aac gag atc ggc ccg atg ggc ggt gcc aag gtc gtg gcc 2243 Tyr Tyr Glu Asn Glu Ile Gly Pro Met Gly Gly Ala Lys Val Val Ala 40 45 50 aag tcc tgg gtg gac cct gag tac cgc aag tgg ctc gaa gaa gac gcg 2291 Lys Ser Trp Val Asp Pro Glu Tyr Arg Lys Trp Leu Glu Glu Asp Ala 55 60 65 70 acg gcc gcg atg gcg tca ttg ggc tat gcc ggc gag cag gca caca Ala Ala Met Ala Ser Leu Gly Tyr Ala Gly Glu Gln Ala His Gln 75 80 85 atc tcg gcc gtc ttc aac gac tcc caa aca cat cac gta gtg gtg tgc 2387 Ile Ser Ala Val Phe Asn Asp Ser Gln Thr His His Val Val Val Cys 90 95 100 act ctg tgt tcg tgc tat ccg tgg ccg gtg ctt ggc ctc ccg ccc gcc 2435 Thr Leu Cys Ser Cys Tyr Pro Trp Pro Val Leu Gly Leu Pro Pro Ala 105 110 115 tgg tac aag agc atg gag tac cgg tcc cgagt gta gca gac cct cgt 2483 Trp Tyr Lys Ser Met Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg 120 125 130 gga gta ctc aag cgc gat ttc ggg ttc gac atc ccc gat gag gtg gag 2531 Gly Val Leu Lys Arg Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu 135 140 145 150 gtc agg gtt tgg gac agc agc tcc gaa atc cgc tac atc gtc atc ccg 2579 Val Arg Val Trp Asp Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro 155 160 165 gaa cgg ccg gcc ggc acc gac ggt tgg tcc gag gac gag ctg gcg aag 2627 Glu Arg Pro Ala Gly Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys 170 175 180 ctg gtg agt cgg gac tcg atg atc ggt gtc agt aat gcg 2675 Leu Val Ser Arg Asp Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro 185 190 195 cag gaa gtg atc gta tga gtgaagacac actcactgat cggctcccgg 2723 Gln Glu Val Ile Val 200 cgactgggac cgccgcaccg ccccgc gaca atggcgagct tgtattcacc gagccttggg 2783 aagcaacggc attcggggtc gccatcgcgc tttcggatc 2822 <210> 2 <211> 229 <212> PRT <213> Rhodococcus sp. <400> 2 Met Asp Gly Ile His Asp Thr Gly Gly Gly Mly Thr 10 15 Pro Tyr Gln Lys Asp Glu Pro Phe Phe His Tyr Glu Trp Glu Gly Arg 20 25 30 Thr Leu Ser Ile Leu Thr Trp Met His Leu Lys Gly Met Ser Trp Trp 35 40 45 Asp Lys Ser Arg Phe Phe Arg Glu Ser Met Gly Asn Glu Asn Tyr Val 50 55 60 Asn Glu Ile Arg Asn Ser Tyr Tyr Thr His Trp Leu Ser Ala Ala Glu 65 70 75 80 Arg Ile Leu Val Ala Asp Lys Ile Ile Ile Thr Glu Glu Glu Arg Lys His 85 90 95 Arg Val Gln Glu Ile Leu Glu Gly Arg Tyr Thr Asp Arg Asn Pro Ser 100 105 110 Arg Lys Phe Asp Pro Ala Glu Ile Glu Lys Ala Ile Glu Arg Leu His 115 120 125 Glu Pro His Ser Leu Val Leu Pro Gly Ala Glu Pro Ser Phe Ser Leu 130 135 140 Gly Asp Lys Val Lys Val Lys Asn Met Asn Pro Leu Gly His Thr Arg 145 150 155 160 Cys Pro Lys Tyr Val Arg Asn Arg Ile Gly Glu Ile Val Thr Ser His 165 170 175 Gly Cys Gln Ile Tyr Pro G lu Ser Ser Ser Ala Gly Leu Gly Asp Asp 180 185 190 Pro Arg Pro Leu Tyr Thr Val Ala Phe Ser Ala Gln Glu Leu Trp Gly 195 200 205 Asp Asp Gly Asn Gly Lys Asp Val Val Cys Val Asp Leu Trp Glu Pro 210 215 220 Tyr Leu Ile Ser Ala 225 <210> 3 <211> 203 <212> PRT <213> Rhodococcus sp. <400> 3 Val Ser Glu His Val Asn Lys Tyr Thr Glu Tyr Glu Ala Arg Thr 1 5 10 15 Lys Ala Ile Glu Thr Leu Leu Tyr Glu Arg Gly Leu Ile Thr Pro Ala 20 25 30 Ala Val Asp Arg Val Val Ser Tyr Tyr Glu Asn Glu Ile Gly Pro Met 35 40 45 Gly Gly Ala Lys Val Val Ala Lys Ser Trp Val Asp Pro Glu Tyr Arg 50 55 60 Lys Trp Leu Glu Glu Asp Ala Thr Ala Ala Met Ala Ser Leu Gly Tyr 65 70 75 Ala Gly Glu Gln Ala His Gln Ile Ser Ala Val Phe Asn Asp Ser Gln 80 85 90 95 Thr His His Val Val Val Cys Thr Leu Cys Ser Cys Tyr Pro Trp Pro 100 105 110 Val Leu Gly Leu Pro Pro Ala Trp Tyr Lys Ser Met Glu Tyr Arg Ser 115 120 125 Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg Asp Phe Gly Phe 130 135 140 Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp Ser Ser Ser Glu 145 150 155 Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly Thr Asp Gly Trp 60 165 170 175 Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp Ser Met Ile Gly 180 185 190 Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 195 200 <210> 4 <211> 2822 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1094) .. (2491) <223> amidase <400> 4 tgattacgaa ttcgagctcg gtacccgggg atcacttcgg ccagagggtg acggcgaaat 60 cgggcctcga tctccgcgtc cacggcgttg atacgtgtgt cgaggtcgat caccgcctgc 120 gccaattcgg cgaccagttc ggcagcgaca tcttcccccg gcaaccgcac ggtctgcgcc 180 ttcgcggcgg tgactgcggc ccgggcgatc gattcggcgt ggcgcacccc ggccccggtg 240 agcattgcgg ccagtcgggc cgccccgacg cggcggatcg ctttcggtcg ctggtagcgg 300 gccagcagca ccacccagcc ccggtccgag gagatctgcg cgacgcgttc gagtccgggg 360 cagatcgcga cgagttgctg acgcagccgg ttgatggtcc gggtacggtc ggcgaccaga 420 tcggtgcggt ggccggtgag catctgcagc tcacggatca actcgtcgtc gggacgcaga 480 acgggcaggt ccgaccgcat ccgggactga tcggcgatca cccgggcgtc gcgcgtcg ggcgtcg ggcgtcg 540g gtagaccgac gatgcctgcc acaccgaacg tncggacagg 600 tagcgcaccg gtttcccggc gtcggccagc acagtcagca acaaggtgac gtaggcggtg 660 gtcagatcca ccgtccacga caccgtctcg gtgagtgcgt cgatctcggt gatcaccgca 720 cggatcgttg cttcgtcgtt gtcacatcgc cgcgacagca ccaccgtccc ggaggtgtcg 780 agtacgcata tccagtggtg ttctttgccg acgtcgactc ctgcccacag ttgcgaaccg 840 gtcatcggat ttcctcgttt tcgcttgtgt tccggcctgg ccccgatgga cgcctncgcc 900 ggcatttcct taaacaagcg atcatgcgca gatctcaatc agcggtccag aggtgtccag 960 acaggtcggg tggccagtcc tttcaagccc cactcgagag tgggcaaacc ttatgcagcc 1020 tcgccggcct gcccgggtta cagctcaacg taactctcac gaagtaactg cacctacgaa 1080 cttaaggaac ctc atg tct tcg ttg act ccc ccc aat tcc aac caa atg 1129 Met Serc Serc Rec Serc Serc Serc Serg gga ctg acg acg ccg gaa ctc 1177 Ser Ala Leu Asn Asn His Phe Arg Phe Gly Leu Thr Thr Pro Glu Leu 15 20 25 gaa gag ttc gca ccg gcc ctc gaa gcg acg ctc gcg tcc tcc gaa acc 1225 Gla Glu Plu Leu Glu Ala Thr Leu Ala Ser Ser Glu Thr 30 35 40 gtc gaa cgc ctc tac gag cgc acc gcg ccc gag ccg cct cag cgg tca 1273 Val Glu Arg Leu Tyr Glu Arg Thr Ala Pro Glu Pro Pro Gln Arg Ser 45 50 55 60 tgg acc tca ccc acg gcg gac gag aac ccg ctg agc gcc tgg tac gtc 1321 Trp Thr Ser Pro Thr Ala Asp Glu Asn Pro Leu Ser Ala Trp Tyr Val 65 70 75 acc acc tcg atc agc gaa acc gac gaa ggc ccc ctc gcc ggg cga acg 1369 Thr Thr Ser Ile Ser Glu Thr Asp Glu Gly Pro Leu Ala Gly Arg Thr 80 85 90 gtc gcc gtg aaa gac aac gtc gca gtc gcc ggc gtg ccg atg atg aac 1417 Val Ala Val Lys Asp Asn Val Ala Val Ala Gly Val Pro Met Met Asn 95 100 105 ggc tcc cga acc gtc gag ggc ttc acc ccc cgc tac gac gcc acc gtc 1465 Gly Ser Arg Thr Val Glu Gly Phe Thr Pro Arg Tyr Asp Ala Thr Val 110 115 120 gta cgc cga ctg ctc gac gcc ggc gca acc atc acc ggc aaa gcg gtg 1513 Val Arg Arg Leu Leu Asp Ala Gly Ala Thr Ile Thr Gly Lys Ala Val 125 130 135 140 tgc gaa gat ctc tgc ttc tcc ggc gcc agc ttc act tcc cac ccc cag 1561 Cys Glu Asp Leu Cys Phe Ser Gly Phe Th r Ser His Pro Gln 145 150 155 ccg gtc cgc aac ccc tgg gac gaa agc cgc atc acc ggc ggc tcg tcc 1609 Pro Val Arg Asn Pro Trp Asp Glu Ser Arg Ile Thr Gly Gly Ser Ser 160 165 170 agc ggc agc ggc gcc gtc gcc agc ggc cag gtg gat atg gca gtc 1657 Ser Gly Ser Gly Ala Leu Val Ala Ser Gly Gln Val Asp Met Ala Val 175 180 185 ggc ggc gac cag ggc ggt tcg atc cgc atc ccc gcc gcg ttc Tgc ggc ttc gc gg Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe Cys Gly 190 195 200 atc gtc gga cac aaa ccc acc cac gga ctg gtc ccc tat acg gga gca 1753 Ile Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr Gly Ala 205 210 215 220 ttt ccc atc gaa cga acc atc gac cac ctc ggt ccg atg acg cgc acg 1801 Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr Arg Thr 225 230 235 gtc agc gac gcc gcc gca atg ctc acc gtc ctc gcc ggc acc gac ggc 1849 Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr Asp Gly 240 245 250 ctc gat ccc cga cag acc cac cgg atc gaa ccg gtg gac tac ctc gcg 1897 Leu Asp Pro Arg Gln Thr Hi s Arg Ile Glu Pro Val Asp Tyr Leu Ala 255 260 265 gcg ctg gcc gaa ccc gca tcg ggt ctg cgc gtg ggt gtg gtc acc gaa 1945 Ala Leu Ala Glu Pro Ala Ser Gly Leu Arg Val Gly Val Val Thr Glu 270c 270 280 ttc gac acc cct gtc tcc gac gct gcc gtc gac aat gcc gtg cgc 1993 Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala Val Arg 285 290 295 295 300 acc gcc atc ggc gta ctg cgc tcg gcc gga ctt acc gt gag gtc 2041 Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu Glu Val 305 310 315 tcg atc ccc tgg cac ctc gat gcg atg gcc gtc tgg aac gtg atc gac 2089 Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val Ile Asp 320 325 330 cgg gcc gac gac gaa ttc gaa gcc ttc ctg ctg cag gtg ctc gac gag 2137 Arg Ala Asp Asp Glu Phe Glu Ala Phe Leu Leu Gln Val Leu Asp Glu 335 340 345 aac gcc gt gaa ctc gga cag gtg cgg gcg cag acg ccg 2185 Asn Ala Val Thr Ile Pro Glu Leu Gly Gln Val Arg Ala Gln Thr Pro 350 355 360 cgc tcg tgg tgc tca cct cga acc gca ccc gcg agg tgc acg acg ccc 2233 Arg Trp Cys Ser Pro Arg Thr Ala Pro Ala Arg Cys Thr Thr Pro 365 370 375 380 tca aac gcc gct gcc tgt acc act ggc tcg aac acc ccg acc tcg cgc 2281 Ser Asn Ala Ala Ala Cys Thr Thr Gly Ser Asn Thr Pro Thr Ser Arg 385 390 395 ggg aag tgg aga tcc tgc gcc gcc gca tcc cgg gca tcg acg aac acc 2329 Gly Lys Trp Arg Ser Cys Ala Ala Ala Ser Arg Ala Ser Thr Asn Thr 400 405 410 tcg cgg cgc agg tcg ccc ag ggg tg cca tgc gcg gga tgg acc 2377 Ser Arg Arg Arg Ser Pro Thr Pro Cys Arg Pro Cys Ala Gly Trp Thr 415 420 425 tgc tca aac cac ccg ggg tcg cgg agt cgc tgg act ggg cac gag cgc 2425 Cys Ser Asn His Pro Gly Ser Arg Ser Arg Trp Thr Gly His Glu Arg 430 435 440 tgc ggg aac tcg acc gcg acg tgc tcg acg cga cga ccg cgg ccg cga 2473 Cys Gly Asn Ser Thr Ala Thr Cys Ser Thr Arg Arg Pro Arg Pro Arg 445 450 455 460 ccc tcg gtg ccg tcc tga agtaccggga ggacctcgac cgagtggtcc 2521 Pro Ser Val Pro Ser 465 gcaccgggct cgaccggctc ctgacggggt gacagcggcg atgacgacga ccaccgacgc 2581 cgggggttcc ctcgtcggccgcc gcc ctcgccgcgg ccggcctgtc 2641 cgtcgcctcg gacgccaccg tggcctacct gcgcgccctg cgcgagatcg acctcggcga 2701 ccgccgtcag gtgtactggg ccgggcgcgc caccctgtgc cacgaccccg acgacatccc 2761 ccgctacgac ctcgcgttcg agagctggtt cggcggaacg gcacccgacg tgacgtcgcc 2821 g 2822 <210> 5 <211> 465 <212> PRT <213> Rhodococcus sp. <400> 5 Met Ser Ser Leu Thr Pro Pro Asn Ser Asn Gln Met Ser Ala Leu Asn 1 5 10 15 Asn His Phe Arg Phe Gly Leu Thr Thr Pro Glu Leu Glu Glu Phe Ala 20 25 30 Pro Ala Leu Glu Ala Thr Leu Ala Ser Ser Glu Thr Val Glu Arg Leu 35 40 45 Tyr Glu Arg Thr Ala Pro Glu Pro Pro Gln Arg Ser Trp Thr Ser Pro 50 55 60 Thr Ala Asp Glu Asn Pro Leu Ser Ala Trp Tyr Val Thr Thr Ser Ile 65 70 75 80 Ser Glu Thr Asp Glu Gly Pro Leu Ala Gly Arg Thr Val Ala Val Lys 85 90 95 Asp Asn Val Ala Val Ala Gly Val Pro Met Met Asn Gly Ser Arg Thr 100 105 110 Val Glu Gly Phe Thr Pro Arg Tyr Asp Ala Thr Val Val Arg Arg Leu 115 120 125 Leu Asp Ala Gly Ala Thr Ile Thr Gly Lys Ala Val Cys Glu Asp Leu 130 135 140 Cys Phe Ser Gly Ala S er Phe Thr Ser His Pro Gln Pro Val Arg Asn 145 150 155 160 Pro Trp Asp Glu Ser Arg Ile Thr Gly Gly Ser Ser Ser Gly Ser Gly 165 170 175 Ala Leu Val Ala Ser Gly Gln Val Asp Met Ala Val Gly Gly Asp Gln 180 185 190 Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe Cys Gly Ile Val Gly His 195 200 205 Lys Pro Thr His Gly Leu Val Pro Tyr Thr Gly Ala Phe Pro Ile Glu 210 215 220 Arg Thr Ile Asp His Leu Gly Pro Met Thr Arg Thr Val Ser Asp Ala 225 230 235 240 Ala Ala Met Leu Thr Val Leu Ala Gly Thr Asp Gly Leu Asp Pro Arg 245 250 255 Gln Thr His Arg Ile Glu Pro Val Asp Tyr Leu Ala Ala Leu Ala Glu 260 265 270 Pro Ala Ser Gly Leu Arg Val Gly Val Val Thr Glu Gly Phe Asp Thr 275 280 285 Pro Val Ser Asp Ala Ala Val Asp Asn Ala Val Arg Thr Ala Ile Gly 290 295 300 Val Leu Arg Ser Ala Gly Leu Thr Val Glu Glu Val Ser Ile Pro Trp 305 310 315 320 His Leu Asp Ala Met Ala Val Trp Asn Val Ile Asp Arg Ala Asp Asp 325 330 335 Glu Phe Glu Ala Phe Leu Leu Gln Val Leu Asp Glu Asn Ala Val Thr 340 345 350 Ile Pro Glu Leu GlyGln Val Arg Ala Gln Thr Pro Arg Ser Trp Cys 355 360 365 Ser Pro Arg Thr Ala Pro Ala Arg Cys Thr Thr Pro Ser Asn Ala Ala 370 375 380 Ala Cys Thr Gly Ser Asn Thr Pro Thr Ser Arg Gly Lys Trp Arg 385 390 395 400 Ser Cys Ala Ala Ala Ser Arg Ala Ser Thr Asn Thr Ser Arg Arg Arg 405 410 415 Ser Pro Thr Pro Cys Arg Pro Cys Ala Gly Trp Thr Cys Ser Asn His 420 425 430 Pro Gly Ser Arg Ser Arg Trp Thr Gly His Glu Arg Cys Gly Asn Ser 435 440 445 Thr Ala Thr Cys Ser Thr Arg Arg Pro Arg Pro Arg Pro Ser Val Pro 450 455 460 Ser 465

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/80 C12P 13/00 9/88 13/02 C12P 13/00 C12R 1:01) 13/02 (C12N 9/80 //(C12N 15/09 ZNA C12R 1:01) C12R 1:01) (C12N 9/88 (C12N 9/80 C12R 1:01) C12R 1:01) C12N 15/00 ZNAA (C12N 9/88 5/00 A C12R 1:01) C12R 1:01) Fターム(参考) 4B024 BA07 BA11 BA80 CA03 DA06 EA04 FA02 GA11 HA03 HA19 4B050 CC04 DD02 LL05 4B064 AE01 AE02 AG01 CA02 CA03 CA19 CC24 DA20 4B065 AA26X AA45Y AB01 AC14 BA02 CA27 CA31 CA60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C12N 9/80 C12P 13/00 9/88 13/02 C12P 13/00 C12R 1:01) 13/02 ( C12N 9/80 // (C12N 15/09 ZNA C12R 1:01) C12R 1:01) (C12N 9/88 (C12N 9/80 C12R 1:01) C12R 1:01) C12N 15/00 ZNAA (C12N 9 / 88 5/00 A C12R 1:01) C12R 1:01) F-term (reference) 4B024 BA07 BA11 BA80 CA03 DA06 EA04 FA02 GA11 HA03 HA19 4B050 CC04 DD02 LL05 4B064 AE01 AE02 AG01 CA02 CA03 CA19 CC24 DA20 4B065 AA26X AA45Y AB14 BA02 CA27 CA31 CA60

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号2または3で示される
アミノ酸配列をコードするDNA配列を含むロドコッカ
ス属細菌由来のニトリルヒドラターゼ遺伝子。
1. A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence represented by SEQ ID NO: 2 or 3 in the sequence listing.
【請求項2】 配列表の配列番号5で示されるアミノ酸
配列をコードするDNA配列を含むロドコッカス属細菌
由来のアミダーゼ遺伝子。
2. An amidase gene derived from a bacterium of the genus Rhodococcus, comprising a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing.
【請求項3】 ロドコッカス属細菌がロドコッカス エ
スピー(Rhodococcus sp.)ATCC3
9484株である請求項に1記載のニトリルヒドラター
ゼ遺伝子。
3. The bacterium belonging to the genus Rhodococcus sp . ( Rhodococcus sp .) ATCC3.
The nitrile hydratase gene according to claim 1, which is strain 9484.
【請求項4】 ロドコッカス属細菌がロドコッカス エ
スピー(Rhodococcus sp.)ATCC3
9484株である請求項2に記載のアミダーゼ遺伝子。
4. The Rhodococcus sp . ( Rhodococcus sp .) ATCC3.
The amidase gene according to claim 2, which is 9484 strains.
【請求項5】 請求項1または3に記載の遺伝子DNA
を含むプラスミド。
5. The gene DNA according to claim 1 or 3.
A plasmid containing
【請求項6】 請求項2または4に記載の遺伝子DNA
を含むプラスミド。
6. The gene DNA according to claim 2 or 4.
A plasmid containing
【請求項7】 請求項1または3に記載の遺伝子DNA
と、請求項2または4に記載の遺伝子DNAの両方を含
むプラスミド。
7. The gene DNA according to claim 1 or 3.
And a plasmid containing both the gene DNA according to claim 2 and 4.
【請求項8】 請求項5に記載のプラスミドで形質転換
された形質転換体。
8. A transformant transformed with the plasmid according to claim 5.
【請求項9】 請求項6に記載のプラスミドで形質転換
された形質転換体。
9. A transformant transformed with the plasmid according to claim 6.
【請求項10】 請求項7に記載のプラスミドで形質転
換された形質転換体。
10. A transformant transformed with the plasmid according to claim 7.
【請求項11】 請求項8または10に記載の形質転換
体を培地中で培養し、培養物からニトリルヒドラターゼ
を採取することを特徴とするニトリルヒドラターゼの製
造法。
11. A method for producing nitrile hydratase, comprising culturing the transformant according to claim 8 or 10 in a medium, and collecting nitrile hydratase from the culture.
【請求項12】 請求項9または10に記載の形質転換
体を培地中で培養し、培養物からアミダーゼを採取する
ことを特徴とするアミダーゼの製造法。
12. A method for producing an amidase, comprising culturing the transformant according to claim 9 or 10 in a medium, and collecting the amidase from the culture.
【請求項13】 請求項8に記載の形質転換体を用いて
ニトリル類のニトリル基をアミド基に変換することを特
徴とするアミド類の製造法。
13. A method for producing amides, comprising converting a nitrile group of a nitrile into an amide group using the transformant according to claim 8.
【請求項14】 請求項9に記載の形質転換体を用いて
アミド類のアミド基をカルボキシル基に変換することを
特徴とするカルボン酸類の製造法。
14. A method for producing carboxylic acids, which comprises converting an amide group of an amide into a carboxyl group using the transformant according to claim 9.
【請求項15】 請求項10に記載の形質転換体を用い
てニトリル類のニトリル基をカルボキシル基に変換する
ことを特徴とするカルボン酸類の製造法。
15. A method for producing a carboxylic acid, comprising converting a nitrile group of a nitrile into a carboxyl group using the transformant according to claim 10.
【請求項16】 ニトリル類が、オルソフタロニトリ
ル、イソフタロニトリルまたはテレフタロニトリルであ
り、アミド類が、対応するオルソシアノベンズアミド、
メタシアノベンズアミドまたはパラシアノベンズアミド
である請求項13に記載のアミド類の製造法。
16. The nitrile is orthophthalonitrile, isophthalonitrile or terephthalonitrile, and the amide is a corresponding orthocyanobenzamide,
14. The method for producing an amide according to claim 13, which is metacyanobenzamide or paracyanobenzamide.
【請求項17】 アミド類が、オルソシアノベンズアミ
ド、メタシアノベンズアミドまたはパラシアノベンズア
ミド類であり、カルボン酸類が、対応するオルソシアノ
安息香酸、メタシアノ安息香酸またはパラシアノ安息香
酸である請求項14に記載のカルボン酸類の製造法。
17. The carboxylic acid according to claim 14, wherein the amide is orthocyanobenzamide, metacyanobenzamide or paracyanobenzamide, and the carboxylic acid is the corresponding orthocyanobenzoic acid, metacyanobenzoic acid or paracyanobenzoic acid. Method for producing acids.
【請求項18】 ニトリル類が、オルソフタロニトリ
ル、イソフタロニトリルまたはテレフタロニトリルであ
り、カルボン酸類が、対応するオルソシアノ安息香酸、
メタシアノ安息香酸またはパラシアノ安息香酸である請
求項15に記載のカルボン酸類の製造法。
18. The nitrile is orthophthalonitrile, isophthalonitrile or terephthalonitrile, and the carboxylic acid is a corresponding orthocyanobenzoic acid,
The method for producing a carboxylic acid according to claim 15, which is metacyanobenzoic acid or paracyanobenzoic acid.
JP2000107855A 1999-10-26 2000-04-10 Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus Pending JP2001292772A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2000107855A JP2001292772A (en) 2000-04-10 2000-04-10 Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus
KR1020017008153A KR100540991B1 (en) 1999-10-26 2000-10-25 Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
AU79571/00A AU7957100A (en) 1999-10-26 2000-10-25 Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
AT00970065T ATE450607T1 (en) 1999-10-26 2000-10-25 RHODOCOCCUS STRAIN, NITRILASE GENE FROM RHODOCOCCUS, NITRILHYDRATAS GENE AND AMIDASE GENE AND METHOD FOR PRODUCING CARBOXYLIC ACIDS USING SAME
CA2356741A CA2356741C (en) 1999-10-26 2000-10-25 Novel rhodococcus bacterium, nitrilase gene, nitryl hydratase gene and amidase gene from rhodococcus bacterium, and process for producing carboxylic acids using them
CN00803733A CN1340101A (en) 1999-10-26 2000-10-25 Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
PCT/JP2000/007464 WO2001030994A1 (en) 1999-10-26 2000-10-25 Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
DE60043424T DE60043424D1 (en) 1999-10-26 2000-10-25 RHODOCOCCUS STRAIN, NITRILASE GENES FROM RHODOCOCCUS, NITRILHYDRATAS GENE AND AMIDASE GENE AND METHOD FOR THE PRODUCTION OF CARBOXYLIC ACIDS UNDER USE
EP00970065A EP1142997B1 (en) 1999-10-26 2000-10-25 Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
US09/869,142 US7118898B1 (en) 1999-10-26 2000-10-25 Rhodococcus bacterium, nitrilase gene, nitrylhydratase gene and amidase gene from Rhondococcus bacterium, and process for producing carboxylic acids by using them
EA200100718A EA200100718A1 (en) 1999-10-26 2000-10-25 NEW BACTERIA RHODOCOCCUS, NITRILASE GENES, NITRILHYDRATASE GENES AND AMHODAS GENES OF RHODOCOCCUS BACTERIA AND METHOD FOR PRODUCING CARBONIC ACIDS WITH THEIR USE
US09/789,803 US20010044141A1 (en) 2000-02-22 2001-02-22 Novel Rhodococcus bacterium, nitrilase gene, nitryl hydratase gene and amidase gene from Rhodococcus bacterium, and process for producing carboxylic acids using them
NO20013209A NO328690B1 (en) 1999-10-26 2001-06-26 Variant microorganism as well as process for producing a carboxylic acid using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107855A JP2001292772A (en) 2000-04-10 2000-04-10 Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus

Publications (1)

Publication Number Publication Date
JP2001292772A true JP2001292772A (en) 2001-10-23

Family

ID=18620795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107855A Pending JP2001292772A (en) 1999-10-26 2000-04-10 Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus

Country Status (1)

Country Link
JP (1) JP2001292772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142997A4 (en) * 1999-10-26 2004-03-24 Showa Denko Kk Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
EP1767624A1 (en) * 2004-05-26 2007-03-28 Mitsubishi Rayon Engineering Co., Ltd. Improved nitrile hydratase
KR100847984B1 (en) 2006-10-10 2008-07-22 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
WO2012164933A1 (en) 2011-05-31 2012-12-06 ダイヤニトリックス株式会社 Improved nitrile hydratase
WO2012169203A1 (en) 2011-06-07 2012-12-13 ダイヤニトリックス株式会社 Improved nitrile hydratase

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118898B1 (en) 1999-10-26 2006-10-10 Showa Denko K.K. Rhodococcus bacterium, nitrilase gene, nitrylhydratase gene and amidase gene from Rhondococcus bacterium, and process for producing carboxylic acids by using them
EP1142997A4 (en) * 1999-10-26 2004-03-24 Showa Denko Kk Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
CN1961072B (en) * 2004-05-26 2013-04-24 Dia-Nitrix株式会社 Improved nitrile hydratase
EP1767624A1 (en) * 2004-05-26 2007-03-28 Mitsubishi Rayon Engineering Co., Ltd. Improved nitrile hydratase
EP1767624A4 (en) * 2004-05-26 2007-07-11 Mitsubishi Rayon Eng Improved nitrile hydratase
JPWO2005116206A1 (en) * 2004-05-26 2008-04-03 三菱レイヨン株式会社 Improved nitrile hydratase
US7645605B2 (en) 2004-05-26 2010-01-12 Mitsubishi Rayon Co., Ltd Heat-resistant nitrile hydratase
US7803578B2 (en) 2004-05-26 2010-09-28 Mitsubishi Rayon Co., Ltd. Heat-resistant nitrile hydratase
KR100847984B1 (en) 2006-10-10 2008-07-22 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
WO2012164933A1 (en) 2011-05-31 2012-12-06 ダイヤニトリックス株式会社 Improved nitrile hydratase
US9382528B2 (en) 2011-05-31 2016-07-05 Mitsubishi Rayon Co., Ltd. Nitrile hydratase
US9388403B2 (en) 2011-05-31 2016-07-12 Mitsubishi Rayon Co., Ltd. Nitrile hydratase
WO2012169203A1 (en) 2011-06-07 2012-12-13 ダイヤニトリックス株式会社 Improved nitrile hydratase
EP2811021A2 (en) 2011-06-07 2014-12-10 Mitsubishi Rayon Co., Ltd. Improved nitrile hydratase
US9193966B2 (en) 2011-06-07 2015-11-24 Mitsubishi Rayon Co., Ltd. Nitrile hydratase
US9738885B2 (en) 2011-06-07 2017-08-22 Mitsubishi Chemical Corporation Nitrile hydratase
US10066225B2 (en) 2011-06-07 2018-09-04 Mitsubishi Chemical Corporation Nitrile hydratase
US10221410B2 (en) 2011-06-07 2019-03-05 Mitsubishi Chemical Corporation Nitrile hydratase
US10487320B2 (en) 2011-06-07 2019-11-26 Mitsubishi Chemical Corporation Nitrile hydratase

Similar Documents

Publication Publication Date Title
EP0445646B1 (en) DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the DNA fragment and a process for the production of amides using the transformant
SI20642A (en) Novel carbonyl reductase, gene thereof and method of using the same
KR100540991B1 (en) Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
US6251650B1 (en) Pseudomonas putida amidase polypeptide useful for the production of chiral amides and acids
KR20190080948A (en) A nucleic acid encoding the mutant nitrile hydratase, an expression vector containing the nucleic acid, and a transformant, a method for producing the mutant nitrile hydratase, and a method for producing an amide compound Way
CN115717137B (en) Lysyl specific endonuclease mutant and preparation method and application thereof
JP3150335B2 (en) Novel polypeptide, DNA sequence enabling its expression, preparation method and use thereof
JP3408737B2 (en) Protein involved in nitrile hydratase activation and gene encoding the same
US6531308B2 (en) Ketoreductase gene and protein from yeast
JP2001292772A (en) Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus
JPH10337185A (en) New protein having aspartase activity and genetic dna encoding the same
JPH08504599A (en) Enzymes having nitrile hydratase activity, genetic tools and host microorganisms for their production, and hydrolysis processes using said enzymes
JP2020522999A (en) Glucose oxidase CnGODA and its gene and use
JPH08196281A (en) Dna coding water-formation type nadh oxidase
JP4118687B2 (en) D-carbamoylase derived from Arthrobacter crystallopoietes DSM20117 strain
EP0579907A1 (en) Novel nitrile hydratase, the gene encoding it and its use for producing amides from nitriles
JP2001069978A (en) Nitrile hydratase gene and amidase gene which are derived from phodococcus
JP4676627B2 (en) Modified amino acid amidase and method for producing D-amino acid using the same
JP2990280B1 (en) Aminopeptidase and its precursor gene, vector containing the gene, and transformant
US6403357B1 (en) Thermostable D-hydantoinase and the application thereof
JP2001136977A (en) Nitrilase gene derived from rhodococcus bacterium
JPH09275982A (en) Esterase gene and production of esterase using the same
JP4274767B2 (en) (R) -Amidase gene that selectively hydrolyzes amide bond and its use
JPH11313683A (en) New xylosidase gene, vector, transformant using the same and its use
JP3030457B1 (en) Enzyme gene for processing aminopeptidase precursor, vector containing the gene, and transformant