JP2001291854A - Two-dimensional x ray sensor and method for manufacturing the same - Google Patents

Two-dimensional x ray sensor and method for manufacturing the same

Info

Publication number
JP2001291854A
JP2001291854A JP2000106014A JP2000106014A JP2001291854A JP 2001291854 A JP2001291854 A JP 2001291854A JP 2000106014 A JP2000106014 A JP 2000106014A JP 2000106014 A JP2000106014 A JP 2000106014A JP 2001291854 A JP2001291854 A JP 2001291854A
Authority
JP
Japan
Prior art keywords
pixel
dimensional
ray
photoconductive
charges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000106014A
Other languages
Japanese (ja)
Inventor
Yoshiteru Cho
吉輝 猪
Takayoshi Yutsu
隆義 遊津
Toshiyoshi Yamamoto
敏義 山本
Shinichi Nakahara
信一 中原
Yasuhiko Makaji
康彦 眞梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000106014A priority Critical patent/JP2001291854A/en
Publication of JP2001291854A publication Critical patent/JP2001291854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-dimensional X ray sensor capable of homogeneously forming an X ray photoelectric converting part requiring a formation temperature beyond the heat resistant temperature of a TFT, and a method for manufacturing the two-dimensional X ray sensor. SOLUTION: An X ray photoelectric converting part is formed between a substrate and a TFT so that an X ray charge converting part can be formed in a formation temperature beyond the heat resistant temperature of the TFT on a flat and homogeneous face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線強度の2次元
分布を検出する2次元X線センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional X-ray sensor for detecting a two-dimensional distribution of X-ray intensity.

【0002】[0002]

【従来の技術】X線画像撮影、とりわけ医療用X線画像
撮影の分野では、X線蛍光体を用いた増感紙と銀塩フィ
ルムを組み合わせたスクリーン/フィルム撮影法(以
下、S/F系と略記す)や、輝尽性蛍光体を用いたコン
ピューティッド・ラジオグラフィ(以下、CRと略記
す)、X線蛍光増倍管とTV撮像系を組み合わせたディ
ジタル・ラジオグラフィ(以下、DRと略記す)等が従
来から広く用いられてきた。これらの撮影方式にはそれ
ぞれ長所・短所があるが、臨床現場から出されている要
望(画像データのディジタル化・オンライン化への対
応、撮影画像の表示時間の短縮、S/F系に劣らぬ大面
積・高解像度、小型化など)に広く対応できる撮影方式
として、近年、X線光電変換手段とアモルファスシリコ
ン(以下、a−Siと略記す)薄膜トランジスタ(以
下、TFTと略記す)とを組み合わせた2次元X線セン
サを用いたX線撮像装置(以下、X線平面撮影装置と略
記す)が提案されており、そのX線光電変換手段の例と
しては、アモルファスセレン(以下a−Seと略記す)
膜のようにX線を直接電荷に変換する膜(以下、直接型
と称する)や、X線を光に変換する蛍光体(例えば沃化
セシウム)膜と光を電荷に変換するフォトダイオードア
レイを組み合わせたもの(以下、間接型と称する)が知
られている(例えば、特開平10−284713号公
報)。
2. Description of the Related Art In the field of X-ray imaging, particularly in the field of medical X-ray imaging, a screen / film imaging method (hereinafter referred to as an S / F system) combining an intensifying screen using an X-ray phosphor and a silver halide film. ), Computed radiography using a stimulable phosphor (hereinafter abbreviated as CR), digital radiography (hereinafter abbreviated as DR) combining an X-ray fluorescence intensifier and a TV imaging system. Has been widely used in the past. Each of these imaging methods has advantages and disadvantages, but requests from clinical sites (correspondence to digitization and onlineization of image data, reduction of the display time of captured images, and S / F systems) Recently, X-ray photoelectric conversion means and amorphous silicon (hereinafter abbreviated as a-Si) thin film transistors (hereinafter abbreviated as TFT) have been combined as an imaging method widely applicable to a large area, high resolution, and miniaturization. An X-ray imaging apparatus using a two-dimensional X-ray sensor (hereinafter abbreviated as X-ray planar imaging apparatus) has been proposed. As an example of the X-ray photoelectric conversion means, amorphous selenium (hereinafter a-Se and a-Se) is used. Abbreviated)
A film such as a film that directly converts X-rays into electric charges (hereinafter, referred to as a direct type), a phosphor (eg, cesium iodide) film that converts X-rays into light, and a photodiode array that converts light into electric charges are provided. A combination (hereinafter referred to as an indirect type) is known (for example, Japanese Patent Application Laid-Open No. 10-284713).

【0003】以下に従来のX線平面撮影装置に用いられ
ている直接型2次元X線センサについて説明する。
[0003] A direct type two-dimensional X-ray sensor used in a conventional X-ray planar imaging apparatus will be described below.

【0004】図4は従来の2次元X線センサの各画素の
断面図である。図4に示した各画素は、a−Se膜21
(光導電部)、画素電極2と補助電極9からなる画素容
量3、ゲート6・ソース7・ドレイン8などで構成され
るa−SiTFT4、ガラス基板5、共通電極10、保
護膜12で構成されている。
FIG. 4 is a sectional view of each pixel of a conventional two-dimensional X-ray sensor. Each pixel shown in FIG. 4 has an a-Se film 21.
(Photoconductive portion), a pixel capacitor 3 composed of a pixel electrode 2 and an auxiliary electrode 9, an a-Si TFT 4 composed of a gate 6, a source 7, a drain 8, etc., a glass substrate 5, a common electrode 10, and a protective film 12. ing.

【0005】以上のように構成された各画素を備えた2
次元X線センサについて、以下その動作について説明す
る。まず、共通電極10側より入射したX線はa−Se
膜21にて電荷に変換され、この電荷は印加電圧11に
より生じた電界により画素電極2に集められ、画素容量
3に蓄積される。そこで、TFT4を順次駆動してこの
電荷を外部へ信号として読み出すことで、入射したX線
強度に応じた電気信号が得られることとなる。ここで、
保護膜12は、集荷すべき電荷が画素電極2以外の箇所
に行かないよう絶縁する役割を果たしている。また、セ
ンサとしての感度・均一性は、a−Se膜21の膜質に
左右されることになる。
[0005] The 2 provided with each pixel configured as described above.
The operation of the dimensional X-ray sensor will be described below. First, X-rays incident from the common electrode 10 side are a-Se
The film 21 converts the charges into charges. The charges are collected by the pixel electrode 2 by the electric field generated by the applied voltage 11 and are stored in the pixel capacitor 3. Then, by sequentially driving the TFT 4 and reading out the electric charge as a signal to the outside, an electric signal corresponding to the incident X-ray intensity can be obtained. here,
The protective film 12 has a role of insulating the charge to be collected from going to a portion other than the pixel electrode 2. In addition, the sensitivity and uniformity of the sensor depend on the film quality of the a-Se film 21.

【0006】ここで、TFT4の材質としてはa−Si
が用いられている。これは、画素領域のTFT構造が、
液晶ディスプレイに用いられているTFTと同様な構造
のため、大画面液晶ディスプレイで良く用いられるTF
T構造に合わせることで、その製作が容易になるためで
ある。
Here, the material of the TFT 4 is a-Si
Is used. This is because the TFT structure in the pixel area is
Because of the same structure as the TFT used in liquid crystal displays, TFs often used in large-screen liquid crystal displays
This is because, by adjusting to the T structure, the manufacture becomes easy.

【0007】また、この2次元X線センサの形成は、次
のような順序で行なわれる。まず、ガラス基板5上にT
FT4および保護膜12が形成される。続いて、a−S
e膜21が蒸着により製膜され、アニール処理される。
その後、共通電極10が形成され、完成となる。
The formation of the two-dimensional X-ray sensor is performed in the following order. First, T
The FT 4 and the protective film 12 are formed. Then, a-S
The e-film 21 is formed by vapor deposition and annealed.
After that, the common electrode 10 is formed and completed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の2次元X線センサは、以下の問題点を有している。
However, the above-mentioned conventional two-dimensional X-ray sensor has the following problems.

【0009】まず第1に、光導電部(上記従来例ではa
−Se膜)の製膜工程の温度が、TFT4の耐熱性で制
限されるという問題点がある。TFT4の材質であるa
−Siは耐熱性に乏しいため、例えば250℃に温度が
上がってしまうと変質し、スイッチとして機能を失って
しまう。上記従来例のa−Se膜の場合は、200℃以
下で蒸着・アニールなどの製膜工程が実施できる。しか
し、X線光電変換物質として良く知られているCdTe
の場合、蒸着やスパッタリングなどの成膜工程が考えら
れるが、いずれの場合も成膜対象物が500℃以上にな
る工程が必要となり、またその後のアニールも500℃
以上で行なう必要があるため、TFT4を破壊すること
なくCdTe膜を形成することは困難である。a−Si
とCdTeを比較すると、X線電荷変換効率、発生電荷
の移動度および寿命、電荷を取り出すのに必要な電界強
度のいずれもCdTeの方が良好な特性を有している
が、工法上の問題でCdTeを採用することはできな
い。
First, a photoconductive portion (in the above conventional example, a
There is a problem that the temperature of the film formation process of (—Se film) is limited by the heat resistance of the TFT 4. A which is the material of TFT4
Since -Si has poor heat resistance, it changes quality when the temperature rises to, for example, 250 ° C, and loses its function as a switch. In the case of the conventional a-Se film, a film forming process such as vapor deposition and annealing can be performed at 200 ° C. or lower. However, CdTe which is well known as an X-ray photoelectric conversion material is used.
In this case, a film forming process such as vapor deposition or sputtering is conceivable. In any case, a process of forming a film forming object at 500 ° C. or more is required, and subsequent annealing is also performed at 500 ° C.
Since it is necessary to perform the above, it is difficult to form a CdTe film without destroying the TFT 4. a-Si
When CdTe is compared with CdTe, CdTe has better characteristics in all of X-ray charge conversion efficiency, mobility and lifetime of generated charges, and electric field strength required for extracting charges, Cannot adopt CdTe.

【0010】また、TFT4の形成は多層工程のため、
TFT4付近や画素電極端部などに数μmの段差が生じ
てしまう。一般に段差のある箇所へ成膜した場合、そこ
が欠陥や不連続部になりやすいということが知られてい
る。光電変換膜(本従来例ではa−Se膜)中の欠陥
は、生成電荷をトラップする原因となったり印加電圧に
対しショートする経路となったりするため、極力少なく
なるようにしなければならない。このように、欠陥の原
因となる段差があるという点が第2の問題点である。
Further, since the TFT 4 is formed in a multilayer process,
A step of several μm occurs near the TFT 4 or at the edge of the pixel electrode. It is generally known that when a film is formed on a stepped portion, the film is likely to be defective or discontinuous. Defects in the photoelectric conversion film (a-Se film in this conventional example) may cause generated electric charges to be trapped or cause a path to be short-circuited to an applied voltage, and thus must be minimized. As described above, the second problem is that there is a step that causes a defect.

【0011】さらに、a−Se膜を製膜する面には、画
素電極2と保護膜12の2種類の材質がある。基板と膜
の特定の組合せ(例えばパラジウム基板への金蒸着)時
に得られる単層成長の場合を除いて、一般の製膜におい
ては、基板上に生じた膜材料の核を起点に膜が成長して
いく。この核の生じやすさは、基板の材質や表面状態に
より大きく左右される。そのため、異種材料の境界でも
膜質を均一にするためには、材料の組合せや表面状態の
制御を十分検討しなければならない。このように、蒸着
面に異種材料が存在するという点が第3の問題点であ
る。
Further, there are two kinds of materials of the pixel electrode 2 and the protective film 12 on the surface on which the a-Se film is formed. Except in the case of monolayer growth obtained during a specific combination of a substrate and a film (for example, gold deposition on a palladium substrate), in general film formation, a film grows from a nucleus of a film material generated on a substrate. I will do it. The likelihood of this nucleation greatly depends on the material and surface condition of the substrate. Therefore, in order to make the film quality uniform even at the boundary between different kinds of materials, it is necessary to sufficiently consider the combination of materials and the control of the surface state. As described above, the third problem is that different materials exist on the deposition surface.

【0012】このように、従来のX線2次元センサで
は、光導電部の選択や、その特性・均一性の低下につな
がる幾つかの問題点が存在していた。
As described above, in the conventional X-ray two-dimensional sensor, there are some problems that lead to selection of the photoconductive portion and deterioration of its characteristics and uniformity.

【0013】本発明は上記従来の問題点を解決するもの
で、光導電部の選択や、その特性・均一性をより容易に
確保できる2次元X線センサ構造およびその製造方法を
提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a two-dimensional X-ray sensor structure and a method of manufacturing the two-dimensional X-ray sensor, which can more easily select a photoconductive portion and ensure its characteristics and uniformity. Aim.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の2次元X線センサでは、照射された
X線強度に応じて電荷を生成する光導電部と、前記光導
電部で発生した電荷を収集する2次元的に配列された画
素電極と、前記画素電極で収集された電荷を蓄積するた
めに前記画素電極ごとに設けられた画素容量と、外部か
らの信号に基づいて前記画素容量に蓄積された電荷を外
部へ読み出すため前記画素容量ごとに設けられた画素読
み出し手段と、これら各構成要素を一体に形成するため
の基板とを具備する2次元X線センサにおいて、前記基
板と前記画素電極の間に前記光導電部が形成されてい
る。
In order to achieve the above object, in a first two-dimensional X-ray sensor according to the present invention, a photoconductive portion for generating a charge in accordance with the intensity of irradiated X-rays; A two-dimensionally arranged pixel electrode for collecting charges generated in the conductive portion, a pixel capacitor provided for each pixel electrode for storing the charges collected by the pixel electrode, and a signal from the outside. A two-dimensional X-ray sensor comprising: a pixel readout unit provided for each of the pixel capacitances for reading out the charges accumulated in the pixel capacitances to the outside based on the pixel capacitances; and a substrate for integrally forming each of these components. The photoconductive portion is formed between the substrate and the pixel electrode.

【0015】また、本発明第2の2次元X線センサは、
第1の2次元Xセンサに加え、画素読み出し手段が薄膜
トランジスタであり、前記薄膜トランジスタを構成する
ゲートおよびソースの位置関係が、ゲートが光導電部側
に形成されている。
Further, the second two-dimensional X-ray sensor of the present invention comprises:
In addition to the first two-dimensional X sensor, the pixel readout means is a thin film transistor, and the gate and the source constituting the thin film transistor are located on the photoconductive portion side.

【0016】また、本発明第3の2次元X線センサは、
第1の2次元X線センサに加え画素読み出し手段が薄膜
トランジスタであり、前記薄膜トランジスタを構成する
ゲートおよびソースの位置関係が、ソースが光導電部側
に形成されている。
A third two-dimensional X-ray sensor according to the present invention comprises:
In addition to the first two-dimensional X-ray sensor, the pixel readout means is a thin film transistor, and the gate and the source forming the thin film transistor have a positional relationship in which the source is formed on the photoconductive portion side.

【0017】また、本発明第4の2次元X線センサは、
照射されたX線強度に応じて電荷を生成する光導電部
と、前記光導電部で発生した電荷を収集する2次元的に
配列された画素電極と、前記画素電極で収集された電荷
を蓄積するために前記画素電極ごとに設けられた画素容
量と、外部からの信号に基づいて前記画素容量に蓄積さ
れた電荷を外部へ読み出すため前記画素容量ごとに設け
られた画素読み出し手段と、これら各構成要素を一体に
形成するための基板とを具備する2次元X線センサにお
いて、前記基板は前記光導伝部と前記画素読み出し手段
との間に設けられている。
Further, a fourth two-dimensional X-ray sensor according to the present invention comprises:
A photoconductive portion that generates electric charges in accordance with the intensity of the irradiated X-rays; a two-dimensionally arranged pixel electrode that collects the electric charges generated in the photoconductive portion; and an electric charge collected by the pixel electrodes A pixel capacitance provided for each of the pixel electrodes, and a pixel readout unit provided for each of the pixel capacitances for reading out the charges stored in the pixel capacitances based on an external signal. In a two-dimensional X-ray sensor including a substrate for integrally forming constituent elements, the substrate is provided between the photoconductive unit and the pixel readout unit.

【0018】また、本発明第5の2次元X線センサは、
第4の2次元X線センサに加え、光導伝部と画素電極と
の間に導伝体を有する。
A fifth two-dimensional X-ray sensor according to the present invention comprises:
In addition to the fourth two-dimensional X-ray sensor, a conductor is provided between the photoconductive portion and the pixel electrode.

【0019】また、本発明第1の2次元X線センサの製
造方法は、照射されたX線強度に応じて電荷を生成する
光導電部と、前記光導電部で発生した電荷を収集する2
次元的に配列された画素電極と、前記画素電極で収集さ
れた電荷を蓄積するために前記画素電極ごとに設けられ
た画素容量と、外部からの信号に基づいて前記画素容量
に蓄積された電荷を外部へ読み出すため前記画素容量ご
とに設けられた画素読み出し手段と、これら各構成要素
を一体に形成するための基板を構成要素として含んだ2
次元X線センサにおいて、前記光導電部を前記画素読み
出し手段より先に形成する。
Further, according to the first method for manufacturing a two-dimensional X-ray sensor of the present invention, there is provided a photoconductive section for generating electric charges in accordance with the intensity of the irradiated X-rays, and collecting the electric charges generated in the photoconductive section.
A pixel electrode arranged in a dimension, a pixel capacitance provided for each pixel electrode for accumulating electric charges collected by the pixel electrode, and electric charges accumulated in the pixel capacitance based on an external signal. A pixel reading means provided for each of the pixel capacitors for reading out to the outside, and a substrate for integrally forming these components as components.
In the dimensional X-ray sensor, the photoconductive portion is formed before the pixel readout unit.

【0020】[0020]

【発明の実施の形態】上記構成により、光導電部を形成
した後にTFTを形成できるため、TFT部の耐熱温度
を超える形成温度が必要な光導電部を使用した2次元X
線センサを実現できるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the above structure, since a TFT can be formed after a photoconductive portion is formed, a two-dimensional X-ray using a photoconductive portion which requires a formation temperature exceeding the heat resistant temperature of the TFT portion is required.
This has the function of realizing a line sensor.

【0021】また、平坦で単一物質でできた基板上に光
導電部を形成するため、光導電部の特性や均一性をより
容易に確保することができるという作用をも有する。
Further, since the photoconductive portion is formed on a flat substrate made of a single substance, it has an effect that the characteristics and uniformity of the photoconductive portion can be more easily ensured.

【0022】以下本発明の2次元X線センサの実施例に
ついて、図面を参照しながら説明する。
An embodiment of a two-dimensional X-ray sensor according to the present invention will be described below with reference to the drawings.

【0023】図1は本発明の第1の実施例の2次元X線
センサの各画素の断面図である。図1に示した各画素
は、CdTe膜1(光導電部)、画素電極2と補助電極
9からなる画素容量3、ゲート6・ソース7・ドレイン
8などで構成されるa−SiTFT4(画素読み出し手
段)、ガラス基板5(基板)、共通電極10、保護膜1
2、保護シール13で構成されている。
FIG. 1 is a sectional view of each pixel of the two-dimensional X-ray sensor according to the first embodiment of the present invention. Each pixel shown in FIG. 1 includes an a-Si TFT 4 (pixel readout) including a CdTe film 1 (photoconductive portion), a pixel capacitor 3 including a pixel electrode 2 and an auxiliary electrode 9, a gate 6, a source 7, a drain 8, and the like. Means), glass substrate 5 (substrate), common electrode 10, protective film 1
2. It is composed of a protective seal 13.

【0024】以上のように構成された各画素を備えた2
次元X線センサについて、以下その動作について説明す
る。まず、ガラス基板5側より入射したX線はCdTe
膜1にて電荷に変換され、この電荷は印加電圧11によ
り生じた電界により画素電極2に集められ、画素容量3
に蓄積される。そこで、TFT4を順次駆動してこの電
荷を外部へ信号として読み出すことで、入射したX線強
度に応じた電気信号が得られることとなる。ここで、保
護膜12は、集荷すべき電荷が画素電極2以外の箇所に
行かないよう絶縁する役割を果たしている。また、保護
シール13は、TFT4や補助電極9などを周囲の雰囲
気と遮断し保護している。
The 2 provided with each pixel configured as described above
The operation of the dimensional X-ray sensor will be described below. First, X-rays incident from the glass substrate 5 side are CdTe
The charges are converted into charges in the film 1, and the charges are collected in the pixel electrode 2 by the electric field generated by the applied voltage 11, and
Is accumulated in Then, by sequentially driving the TFT 4 and reading out the electric charge as a signal to the outside, an electric signal corresponding to the incident X-ray intensity can be obtained. Here, the protective film 12 has a role of insulating the charge to be collected so as not to go to a portion other than the pixel electrode 2. In addition, the protective seal 13 protects the TFT 4, the auxiliary electrode 9, and the like from the surrounding atmosphere.

【0025】また、この2次元X線センサの形成は、次
のような順序で行なわれる。
The two-dimensional X-ray sensor is formed in the following order.

【0026】まず、ガラス基板5上に共通電極10が形
成される。続いて、CdTe膜1がスパッタにより形成
される。このとき、CdTe膜1は平坦で均質な共通電
極10の上で成長するため、均質な接合を容易に得るこ
とが出来る。但し、こうして得られたCdTe膜1は欠
陥を多く含んだ多結晶膜であり、400〜600℃でア
ニール処理を行なうことで膜質を改善する必要がある。
これは、結晶欠陥の緩和や粒径成長を行なわなければ、
結晶欠陥が発生電荷をトラップしたり、印加電圧11に
対し粒界に沿って電気的にショートして必要な電界が得
られないなど、発生電荷を画素電極2へ集めることが出
来なくなるからである。
First, a common electrode 10 is formed on a glass substrate 5. Subsequently, a CdTe film 1 is formed by sputtering. At this time, since the CdTe film 1 grows on the flat and uniform common electrode 10, a uniform junction can be easily obtained. However, the CdTe film 1 thus obtained is a polycrystalline film containing many defects, and it is necessary to improve the film quality by performing an annealing process at 400 to 600 ° C.
This is because if the crystal defects are not relaxed or the grain size is not increased,
This is because generated defects cannot be collected on the pixel electrode 2 such that a crystal defect traps generated charges or an electrical short is generated along the grain boundaries with respect to the applied voltage 11 so that a required electric field cannot be obtained. .

【0027】次に、このアニール処理したCdTe膜1
の上に、TFT4・画素容量3・保護膜12が形成され
る。ここで、画素容量3は画素電極2から補助電極9の
順に形成される。TFT4は、ソース7・ドレイン8の
面からゲート6の方向へと、前記従来例とは逆の順序で
あり、一般の液晶ディスプレイ用TFTの構造ではトッ
プゲート型と近くなる。これらを形成した後、最後に保
護シール13が形成され、完成する。
Next, this annealed CdTe film 1
The TFT 4, the pixel capacitor 3, and the protective film 12 are formed thereon. Here, the pixel capacitor 3 is formed in the order from the pixel electrode 2 to the auxiliary electrode 9. The order of the TFT 4 from the surface of the source 7 / drain 8 to the direction of the gate 6 is reverse to that of the conventional example, and the structure of a general liquid crystal display TFT is close to a top gate type. After these are formed, finally, the protective seal 13 is formed and completed.

【0028】以上のように本実施例によれば、CdTe
膜1をTFT4より先に、平坦で均一な面上に成膜する
ことができる。
As described above, according to the present embodiment, CdTe
The film 1 can be formed on a flat and uniform surface before the TFT 4.

【0029】次に、本発明の2次元X線センサの第2の
実施例につき図面を参照しながら説明する。
Next, a second embodiment of the two-dimensional X-ray sensor of the present invention will be described with reference to the drawings.

【0030】図2は本発明の第2の実施例の2次元X線
センサの各画素の断面図で、その構成・動作は、第1の
実施例と同一である。
FIG. 2 is a cross-sectional view of each pixel of the two-dimensional X-ray sensor according to the second embodiment of the present invention. The configuration and operation are the same as those of the first embodiment.

【0031】また、その形成においても、異なる点はT
FT4の形成がゲート6からソース7・ドレイン8の方
向へとなされる点である。これにより、最も複雑になる
TFT4部の形成工程が、従来の液晶ディスプレイに多
く用いられているボトムゲート型の工程とほぼ同じ順序
で行なえることから、その製作がより容易となる。
In the formation thereof, the difference is that T
The FT 4 is formed in the direction from the gate 6 to the source 7 and the drain 8. Accordingly, the most complicated step of forming the TFT 4 portion can be performed in substantially the same order as the bottom gate type process which is often used in the conventional liquid crystal display, so that the manufacturing thereof becomes easier.

【0032】次に、本発明の2次元X線センサの第3の
実施例につき図面を参照しながら説明する。
Next, a third embodiment of the two-dimensional X-ray sensor of the present invention will be described with reference to the drawings.

【0033】図3は本発明の第3の実施例の2次元X線
センサの各画素の断面図である。なお、図1と同一符号
の構成要素についてはその構成・動作において前記第1
の実施例とほぼ同一であるが、CdTe膜1と画素電極
2やTFT4との間に基板5が存在する。図3に示した
各画素において、集荷電極14および基板5を貫通して
いる導電体15はCdTe膜1から画素電極2に負電荷
を運ぶために設けられている。
FIG. 3 is a sectional view of each pixel of the two-dimensional X-ray sensor according to the third embodiment of the present invention. Note that the components having the same reference numerals as those in FIG.
Although the embodiment is almost the same as that of the first embodiment, a substrate 5 exists between the CdTe film 1 and the pixel electrode 2 or the TFT 4. In each pixel shown in FIG. 3, a conductor 15 penetrating the collection electrode 14 and the substrate 5 is provided to carry negative charges from the CdTe film 1 to the pixel electrode 2.

【0034】以上のように構成された各画素を備えた2
次元X線センサについて、以下その動作について説明す
る。まず、共通電極10側より入射したX線はCdTe
膜1にて電荷に変換され、この電荷は印加電圧11によ
り生じた電界により集荷電極14に集められ、導電体1
5を通じて画素電極2に達し、画素容量3に蓄積され
る。そこで、TFT4を順次駆動してこの電荷を外部へ
信号として読み出すことで、入射したX線強度に応じた
電気信号が得られることとなる。ここで、保護シール1
3は、TFT4や補助電極9などを周囲の雰囲気と遮断
し保護している。
The 2 provided with each pixel configured as described above
The operation of the dimensional X-ray sensor will be described below. First, X-rays incident from the common electrode 10 side are CdTe
The film 1 converts the electric charges into electric charges. The electric charges are collected by the collection electrode 14 by the electric field generated by the applied voltage 11,
5 and reaches the pixel electrode 2 and is accumulated in the pixel capacitor 3. Then, by sequentially driving the TFT 4 and reading out the electric charge as a signal to the outside, an electric signal corresponding to the incident X-ray intensity can be obtained. Here, the protective seal 1
Numeral 3 protects the TFT 4, the auxiliary electrode 9, and the like by blocking them from the surrounding atmosphere.

【0035】また、この2次元X線センサの形成は、次
のような順序で行なわれる。
The formation of the two-dimensional X-ray sensor is performed in the following order.

【0036】まず、導電体15を備えた基板5上に集荷
電極14が形成される。この集荷電極は、周囲の画素
(図示せず)の集荷電極とは分離され、なおかつ可能な
限り広面積に設けられる。続いて、前記第1の実施例と
同様にCdTe膜1が形成され、さらに共通電極10が
形成される。なお、本実施例では前記従来例と同様、光
導電膜(本実施例ではCdTe膜1)の製膜面に段差お
よび複数の材質が存在している。しかし、段差について
は集荷電極14の厚みだけで従来例よりも小さくなって
いること、また異種材料の境界についても、従来例の画
素電極より格段に広い集荷電極14を設けることができ
ることで、電極面積に占める境界線の割合がかなり低減
できることから、これらの影響をより小さくすることが
出来る。
First, the collection electrode 14 is formed on the substrate 5 provided with the conductor 15. This collection electrode is separated from the collection electrodes of the surrounding pixels (not shown) and is provided as large as possible. Subsequently, a CdTe film 1 is formed in the same manner as in the first embodiment, and a common electrode 10 is formed. In this embodiment, like the conventional example, a step and a plurality of materials are present on the film formation surface of the photoconductive film (the CdTe film 1 in this embodiment). However, the step is smaller than that of the conventional example only by the thickness of the collection electrode 14, and the boundary between different materials can be provided with the collection electrode 14 which is much wider than the pixel electrode of the conventional example. These effects can be further reduced since the ratio of the boundary line to the area can be considerably reduced.

【0037】次に、この基板5のCdTe膜1とは反対
の面に、TFT4・画素容量3・保護シール13が形成
される。ここで、TFT4は、ゲート6からソース7・
ドレイン8の方向へと形成され、これは液晶ディスプレ
イによく用いられているボトムゲート型TFTと同一の
形成順序であるので、比較的容易に形成することができ
る。
Next, the TFT 4, the pixel capacitor 3, and the protective seal 13 are formed on the surface of the substrate 5 opposite to the CdTe film 1. Here, the TFT 4 is connected from the gate 6 to the source 7.
It is formed in the direction of the drain 8, which is formed in the same order as the bottom gate type TFT often used in liquid crystal displays, and thus can be formed relatively easily.

【0038】以上のように本実施例によれば、CdTe
膜1をTFT4より先に、従来実施例より欠陥の生じに
くい条件下で成膜することができる。
As described above, according to this embodiment, CdTe
The film 1 can be formed prior to the TFT 4 under conditions in which defects are less likely to occur than in the conventional example.

【0039】なお、前期実施例ではTFTの耐熱温度を
超える製膜工程が必要なCdTe膜を例にしたが、TF
Tの耐熱温度以下で製膜できる光導電膜についても、よ
り欠陥の生じにくい条件下で製膜できることは明らかで
ある。
In the first embodiment, a CdTe film which requires a film forming process exceeding the heat resistant temperature of the TFT is taken as an example.
It is clear that a photoconductive film that can be formed at a temperature equal to or lower than the heat resistance temperature of T can be formed under a condition in which defects are less likely to occur.

【0040】[0040]

【発明の効果】以上の説明から明かなように、本発明の
2次元X線センサは、TFTの耐熱温度を超える形成温
度が必要な光導電部を使用でき、またその特性や均一性
をより容易に確保できるという優れた構造を有してい
る。
As is clear from the above description, the two-dimensional X-ray sensor of the present invention can use a photoconductive portion which requires a forming temperature exceeding the heat-resistant temperature of the TFT, and further improves its characteristics and uniformity. It has an excellent structure that can be easily secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における2次元X線
センサの画素の断面図
FIG. 1 is a sectional view of a pixel of a two-dimensional X-ray sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における2次元X線
センサの画素の断面図
FIG. 2 is a sectional view of a pixel of a two-dimensional X-ray sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態における2次元X線
センサの画素の断面図
FIG. 3 is a sectional view of a pixel of a two-dimensional X-ray sensor according to a third embodiment of the present invention.

【図4】従来の2次元X線センサにおける各画素の断面
FIG. 4 is a cross-sectional view of each pixel in a conventional two-dimensional X-ray sensor.

【符号の説明】[Explanation of symbols]

1 CdTe膜(光導電部) 2 画素電極 3 画素容量 4 TFT(画素読み出し手段) 5 ガラス基板(基板) DESCRIPTION OF SYMBOLS 1 CdTe film (photoconductive part) 2 Pixel electrode 3 Pixel capacitance 4 TFT (pixel reading means) 5 Glass substrate (substrate)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 5/32 (72)発明者 山本 敏義 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中原 信一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 眞梶 康彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4M118 AA10 AB01 BA05 CA14 CA32 CB05 EA01 EA14 FB13 FB16 GA02 GA10 5C024 AX11 CY47 EX55 GX07 5F088 AA11 AB09 BA18 BB03 BB07 CB11 DA05 EA04 EA08 KA03 LA08 5F110 AA26 BB09 CC01 CC07 DD02 GG02 GG15 QQ10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04N 5/32 (72) Inventor Toshiyoshi Yamamoto 1006 Oojidoma, Kadoma, Osaka Matsushita Electric Industrial Co., Ltd. (72 ) Inventor Shinichi Nakahara 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. BA05 CA14 CA32 CB05 EA01 EA14 FB13 FB16 GA02 GA10 5C024 AX11 CY47 EX55 GX07 5F088 AA11 AB09 BA18 BB03 BB07 CB11 DA05 EA04 EA08 KA03 LA08 5F110 AA26 BB09 CC01 CC07 DD02 GG02 GG15 QQ10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 照射されたX線強度に応じて電荷を生成
する光導電部と、前記光導電部で発生した電荷を収集す
る2次元的に配列された画素電極と、前記画素電極で収
集された電荷を蓄積するために前記画素電極ごとに設け
られた画素容量と、外部からの信号に基づいて前記画素
容量に蓄積された電荷を外部へ読み出すため前記画素容
量ごとに設けられた画素読み出し手段と、これら各構成
要素を一体に形成するための基板とを具備する2次元X
線センサにおいて、前記基板と前記画素電極の間に前記
光導電部が形成されていることを特徴とする2次元X線
センサ。
1. A photoconductive unit that generates electric charge in accordance with the intensity of an irradiated X-ray, a two-dimensionally arranged pixel electrode that collects electric charge generated in the photoconductive unit, and a collection by the pixel electrode. A pixel capacitor provided for each of the pixel electrodes for storing the stored charges, and a pixel readout provided for each of the pixel capacitors for reading out the charges stored in the pixel capacitors based on an external signal. Means and a substrate for integrally forming each of these components.
A two-dimensional X-ray sensor, wherein the photoconductive portion is formed between the substrate and the pixel electrode.
【請求項2】 画素読み出し手段が薄膜トランジスタで
あり、前記薄膜トランジスタを構成するゲートおよびソ
ースの位置関係が、ゲートが光導電部側に形成されてい
ることを特徴とした請求項1記載の2次元X線センサ。
2. The two-dimensional X-ray imaging system according to claim 1, wherein the pixel readout means is a thin film transistor, and a positional relationship between a gate and a source constituting the thin film transistor is such that the gate is formed on the photoconductive portion side. Line sensor.
【請求項3】 画素読み出し手段が薄膜トランジスタで
あり、前記薄膜トランジスタを構成するゲートおよびソ
ースの位置関係が、ソースが光導電部側に形成されてい
ることを特徴とした請求項1記載の2次元X線センサ。
3. The two-dimensional X-ray imaging device according to claim 1, wherein the pixel readout means is a thin film transistor, and a positional relationship between a gate and a source constituting the thin film transistor is such that a source is formed on a photoconductive portion side. Line sensor.
【請求項4】 照射されたX線強度に応じて電荷を生成
する光導電部と、前記光導電部で発生した電荷を収集す
る2次元的に配列された画素電極と、前記画素電極で収
集された電荷を蓄積するために前記画素電極ごとに設け
られた画素容量と、外部からの信号に基づいて前記画素
容量に蓄積された電荷を外部へ読み出すため前記画素容
量ごとに設けられた画素読み出し手段と、これら各構成
要素を一体に形成するための基板とを具備する2次元X
線センサにおいて、前記基板は前記光導伝部と前記画素
読み出し手段との間に設けられた2次元X線センサ。
4. A photoconductive portion for generating electric charge in accordance with the intensity of the irradiated X-ray, a two-dimensionally arranged pixel electrode for collecting the electric charge generated in the photoconductive portion, and a collection by the pixel electrode. A pixel capacitor provided for each of the pixel electrodes for storing the stored charges, and a pixel readout provided for each of the pixel capacitors for reading out the charges stored in the pixel capacitors based on an external signal. Means and a substrate for integrally forming each of these components.
In the line sensor, the substrate is a two-dimensional X-ray sensor provided between the photoconductive unit and the pixel readout unit.
【請求項5】 光導伝部と画素電極との間に導伝体を有
する請求項4記載の2次元X線センサ。
5. The two-dimensional X-ray sensor according to claim 4, further comprising a conductor between the light conducting portion and the pixel electrode.
【請求項6】 照射されたX線強度に応じて電荷を生成
する光導電部と、前記光導電部で発生した電荷を収集す
る2次元的に配列された画素電極と、前記画素電極で収
集された電荷を蓄積するために前記画素電極ごとに設け
られた画素容量と、外部からの信号に基づいて前記画素
容量に蓄積された電荷を外部へ読み出すため前記画素容
量ごとに設けられた画素読み出し手段と、これら各構成
要素を一体に形成するための基板を構成要素として含ん
だ2次元X線センサにおいて、前記光導電部を前記画素
読み出し手段より先に形成することを特徴とする2次元
X線センサの製造方法。
6. A photoconductive portion for generating electric charges according to the intensity of the irradiated X-rays, a two-dimensionally arranged pixel electrode for collecting electric charges generated in the photoconductive portion, and a collection of the pixel electrodes. A pixel capacitor provided for each of the pixel electrodes for storing the stored charges, and a pixel readout provided for each of the pixel capacitors for reading out the charges stored in the pixel capacitors based on an external signal. Means and a substrate for integrally forming each of these components as a component, wherein the photoconductive portion is formed prior to the pixel readout means. A method for manufacturing a line sensor.
JP2000106014A 2000-04-07 2000-04-07 Two-dimensional x ray sensor and method for manufacturing the same Pending JP2001291854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106014A JP2001291854A (en) 2000-04-07 2000-04-07 Two-dimensional x ray sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106014A JP2001291854A (en) 2000-04-07 2000-04-07 Two-dimensional x ray sensor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001291854A true JP2001291854A (en) 2001-10-19

Family

ID=18619258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106014A Pending JP2001291854A (en) 2000-04-07 2000-04-07 Two-dimensional x ray sensor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001291854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139069A (en) * 2009-12-30 2011-07-14 Commissariat A L'energie Atomique & Aux Energies Alternatives Integrated diamond transduction pixelized imaging device and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058808A (en) * 1998-08-07 2000-02-25 Sharp Corp Two-dimensional image detector
JP2000340777A (en) * 1999-05-26 2000-12-08 Minolta Co Ltd Light receiving element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058808A (en) * 1998-08-07 2000-02-25 Sharp Corp Two-dimensional image detector
JP2000340777A (en) * 1999-05-26 2000-12-08 Minolta Co Ltd Light receiving element and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139069A (en) * 2009-12-30 2011-07-14 Commissariat A L'energie Atomique & Aux Energies Alternatives Integrated diamond transduction pixelized imaging device and method of manufacturing the same
JP2017120266A (en) * 2009-12-30 2017-07-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Integrated diamond conversion pixelated imaging device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5043373B2 (en) Conversion device, radiation detection device, and radiation detection system
JP5043374B2 (en) Conversion device, radiation detection device, and radiation detection system
JP3457676B2 (en) Radiation imaging panel
KR100764977B1 (en) Solid­state image pickup device and radiation image pickup device
US7468531B2 (en) Imaging apparatus and radiation imaging apparatus
EP2696367A2 (en) Image detector and radiation detecting system
JP4908947B2 (en) Conversion device, radiation detection device, and radiation detection system
JP2010056570A (en) Radiation ray detection apparatus and driving method of the same, and photoelectric conversion device
JP2002148342A (en) Radiation imaging device
US7566878B2 (en) Radiation image detector
CN102593164A (en) Radiation imaging device, radiation imaging display system, and transistor
TWI643323B (en) Radiation camera and radiographic display system
JP2001284628A (en) X-ray detector
JP2005327817A (en) Radiation detector
JP2003218339A (en) Radiation detector
KR20010090708A (en) Direct radiographic imaging panel having a dielectric layer with an adjusted time constant
EP1780800A2 (en) Photoconductive layer forming radiation image taking panel and radiation image taking panel
JP2001291854A (en) Two-dimensional x ray sensor and method for manufacturing the same
JP2005033002A (en) Radiation detector and its manufacturing method
JP2006128644A (en) Imaging apparatus, radiation imaging apparatus, and radiation imaging system
JP2001249183A (en) X-ray equipment
JP2007103846A (en) Radiation detector
JP4653579B2 (en) X-ray flat panel detector
JP2003333427A (en) Radiation detecting device and its driving method
JPH11274444A (en) X-ray imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712