JP2001289576A - High pressure aluminum brazed heat exchanger - Google Patents

High pressure aluminum brazed heat exchanger

Info

Publication number
JP2001289576A
JP2001289576A JP2000100882A JP2000100882A JP2001289576A JP 2001289576 A JP2001289576 A JP 2001289576A JP 2000100882 A JP2000100882 A JP 2000100882A JP 2000100882 A JP2000100882 A JP 2000100882A JP 2001289576 A JP2001289576 A JP 2001289576A
Authority
JP
Japan
Prior art keywords
thickness
heat exchanger
partition plate
header
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000100882A
Other languages
Japanese (ja)
Inventor
Koji Noisshiki
公二 野一色
Shiyuuhei Nata
修平 那谷
Susumu Terada
進 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000100882A priority Critical patent/JP2001289576A/en
Publication of JP2001289576A publication Critical patent/JP2001289576A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high pressure aluminum brazed heat exchanger which can be manufactured based on a rational design and exhibiting excellent safety and economy. SOLUTION: In the high pressure aluminum brazed heat exchanger, deformation due to shrinkage at a welded part accumulated at the time of manufacture based on design specifications and a deformation predicted to occur due to operational conditions are evaluated using an analytic method for experimentally verifying deformation due to thermal influence of the welded part and the inner pressure. Furthermore, a margin for preventing fracture of a baffle plate 6 is evaluated quantitatively and a heat exchanging unit is constituted using a head 2, a side bar 8 and a baffle plate 6 having selected thickness based on a design method for determining a combination of thickness at the welded part of the header 6 and of the side bar 8 and the baffle plate 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LNGプラント、
天然ガス処理プラント、ヘリウム液化冷凍装置、空気分
離装置等における高圧流体用の熱交換器として専ら用い
られる高圧用アルミろう付熱交換器に関する。
The present invention relates to an LNG plant,
The present invention relates to a high-pressure aluminum brazing heat exchanger exclusively used as a high-pressure fluid heat exchanger in a natural gas processing plant, a helium liquefaction refrigeration apparatus, an air separation apparatus, and the like.

【0002】[0002]

【従来の技術】プレートフィン式熱交換器で代表される
この種のアルミろう付熱交換器は、近年、プラントにお
ける高圧化の要求により、7.845MPa(≒80k
g/cm2 )G以上の比較的高圧で広く使用される圧力
容器であり、このような圧力容器では、内圧および形状
ならびに使用圧力によって各部材の必要とされる肉厚が
決定される。このことから、高圧用途では構成部材の肉
厚は厚くなる傾向にある。プレートフィン式熱交換器に
おいても、仕切板、フィン及びサイドバーならびにヘッ
ダなどの各部材の肉厚は、厚くすれば高圧用途でも問題
なく使用できる。しかし、部材の肉厚が厚くなるにつ
れ、実際の製作においては成形や成缶などが困難となる
場合がある。また、溶接部が大きくなり、部材に及ぼす
溶接変形が大きな問題となることが多々ある。
2. Description of the Related Art In recent years, this type of aluminum brazing heat exchanger represented by a plate fin type heat exchanger has been required to have a pressure of 7.845 MPa (≒ 80 k
g / cm 2 ) G is a pressure vessel widely used at a relatively high pressure of G or more. In such a pressure vessel, the required wall thickness of each member is determined by the internal pressure, shape, and operating pressure. For this reason, in high-pressure applications, the thickness of the components tends to be large. Also in the plate fin type heat exchanger, if the thickness of each member such as the partition plate, the fin, the side bar, and the header is made thicker, it can be used without problems even in a high-pressure application. However, as the thickness of the member increases, it may be difficult to form or mold in actual production. Further, the welded portion becomes large, and welding deformation exerted on the member often becomes a serious problem.

【0003】プレートフィン式熱交換器であるアルミろ
う付熱交換器のコアは、図2に示されるように仕切板
6、フィン7及びサイドバー8により形成されるサンド
イッチ積層構造となっているため、局所的な変形に対し
て比較的弱いものである。殊に、サイドバー8近傍の仕
切板6においては、サイドバー8に挟まれた状態下の薄
板であることから、サイドバー8の変形に基づく剪断応
力が発生し易くて仕切板6の破断が生じる場合があり、
同時にフィン7の破断が生じる場合がある。
The core of an aluminum brazing heat exchanger, which is a plate fin type heat exchanger, has a sandwich laminated structure formed by partition plates 6, fins 7 and side bars 8, as shown in FIG. , Relatively weak against local deformation. In particular, since the partition plate 6 in the vicinity of the side bar 8 is a thin plate sandwiched between the side bars 8, shear stress due to deformation of the side bar 8 is likely to be generated, and the break of the partition plate 6 is prevented. May occur,
At the same time, the fin 7 may be broken.

【0004】この場合の局所的な変形を引き起こす重大
な要因としては、製作時における溶接による熱収縮に伴
う歪みが挙げられる。すなわち、この溶接部の熱収縮に
より仕切板が伸ばされるのが原因である。一般に溶接で
は、接合金属の溶融によって目的とする部材を接合する
ため、溶融時に高温から常温に冷却される際に熱収縮に
より歪みが発生することは避けられない。
[0004] In this case, as a significant factor causing local deformation, distortion due to heat shrinkage due to welding at the time of manufacturing can be cited. That is, the reason is that the partition plate is elongated by the heat shrinkage of the welded portion. In general, in welding, a target member is joined by melting a joining metal, and therefore, it is inevitable that distortion occurs due to thermal contraction when cooling from a high temperature to a normal temperature during melting.

【0005】よって、プレートフィン式熱交換器の高圧
用途に際しては、溶接部の厚みが増し、その部位での歪
み量が大きくなり、サイドバー近傍の仕切板で発生する
剪断力により破壊が生じる可能性が増す。さらに、高圧
用途では、低圧用途の場合にあまり考慮の必要がなかっ
た内圧によるヘッダ部の引張りに起因する仕切板の伸び
が問題となる。これまでは、これらの原因による破壊を
避けるため、(1) 製作実績を参考にする、(2) 溶接部の
歪み量を低減するためにヘッダの肉厚を薄くする、(3)
仕切板の厚さを増し伸び難くする、(4) 内圧による引張
り応力を低減するためにヘッダの内径を小さくする、な
どのことが行われてきた。
[0005] Therefore, when a plate fin type heat exchanger is used at high pressure, the thickness of the welded portion increases, the amount of distortion at that portion increases, and breakage can occur due to the shearing force generated at the partition plate near the side bar. The nature increases. Furthermore, in high-pressure applications, there is a problem of elongation of the partition plate due to tension of the header portion due to internal pressure, which did not need to be considered so much in low-pressure applications. Until now, in order to avoid destruction due to these causes, (1) refer to the production results, (2) reduce the thickness of the header to reduce the amount of distortion of the weld, (3)
Increasing the thickness of the partition plate to make it difficult to elongate, and (4) reducing the inner diameter of the header to reduce tensile stress due to internal pressure, etc., have been performed.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の破壊の
因子の定量化が今までは解明できていないため、実績の
範囲を超えて製作する場合は実際に製作するか、また、
過度の安全率を与えることや、ヘッダの内径を小さくす
るなどの、設計上での非合理的な制限を加える必要があ
った。そこで、本発明者等は実際にその応力挙動につい
て検討してきたが、それから得られた結果を設計に適用
するにはさらに解決しなければならない下記の検討課題
があることが判った。すなわち、実際の溶接に近い平
板とヘッダとの溶接による入熱量と溶接変形の関係を把
握し、解析により溶接変形を予測するための固有歪みを
決定すること、ヘッダ肉厚、仕切板の厚さ、サイドバ
ー厚さの変化による溶接時の仕切板に生じる溶接歪みへ
の影響を把握すること、ヘッダの肉厚および径、仕切
板の厚さ、サイドバー厚さの変化による内圧作用時の仕
切板に生じる歪みへの影響を把握すること、などの点を
解決する必要があることが判ったのである。
However, since the quantification of the above-mentioned factors of destruction has not been elucidated until now, in the case of manufacturing beyond the range of actual results, it is necessary to actually manufacture,
It was necessary to add irrational restrictions on the design, such as giving an excessive safety factor and reducing the inner diameter of the header. Thus, the present inventors have actually studied the stress behavior, but found that there are the following study issues that need to be further solved in order to apply the results obtained therefrom to the design. In other words, the relationship between the heat input and welding deformation due to welding of a flat plate and a header close to the actual welding is determined, and the inherent distortion for predicting the welding deformation by analysis is determined, the thickness of the header, the thickness of the partition plate , To understand the influence of the change in sidebar thickness on the welding distortion generated in the partition plate during welding, the thickness and diameter of the header, the thickness of the partition plate, and the partition when the internal pressure is applied due to the change in the sidebar thickness It was found that it was necessary to solve the problems such as grasping the influence on the distortion generated in the plate.

【0007】本発明は、このような検討課題の解決を図
るために成されたものであり、したがって、本発明の目
的は、高圧使用のアルミろう付熱交換器において、仕切
板の破断を発生させないための、ヘッダの溶接部での厚
さ、サイドバーの厚さおよび仕切板の厚さの適切な組合
せを解明して、安全性および経済性に優れた合理的な設
計に基づく製作を可能とする高圧用アルミろう付熱交換
器を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a high-pressure aluminum brazing heat exchanger which may cause breakage of a partition plate. Elucidate the appropriate combination of header thickness, sidebar thickness, and partition plate thickness to prevent the occurrence of a collision, enabling a safe and economical production based on a rational design. To provide a high-pressure aluminum brazing heat exchanger.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の目的を
達成するために以下に述べる構成としたものである。す
なわち、本発明に係る請求項1の発明は、仕切板、フィ
ンおよびサイドバーからなるコア単位を多層に重ねてろ
う付けにより一体化して形成されるコアに流体出入り口
用のヘッダを溶接により取付けて熱交換ユニットを構成
してなる高圧用アルミろう付熱交換器において、溶接部
の収縮ならびに内圧による変形を実験により検証した解
析手法を用いることによって、設計仕様に基づき製作時
に蓄積した溶接部の収縮による変形量と、さらに運転条
件によって発生することが予想される変形量とを評価
し、さらに、仕切板の破断を起こさせないための余裕度
を定量的に評価することによって、ヘッダの溶接部の厚
さ、サイドバーの厚さおよび仕切板の厚さの組合せを決
定する設計手法に基づいて、それぞれの厚さを選定して
なるヘッダ、サイドバーおよび仕切板により前記熱交換
ユニットが構成されてなることを特徴とする高圧用アル
ミろう付熱交換器である。
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 according to the present invention is characterized in that a header for a fluid inlet / outlet is attached to a core formed by laminating a core unit composed of a partition plate, a fin, and a side bar and integrating them by brazing. In the high-pressure aluminum brazing heat exchanger that constitutes the heat exchange unit, shrinkage of welds accumulated during manufacturing based on design specifications is achieved by using an analysis method that verifies the shrinkage of welds and deformation due to internal pressure through experiments. And the amount of deformation expected to occur depending on the operating conditions, and further, by quantitatively evaluating the margin for preventing the partition plate from breaking, the welded portion of the header is evaluated. A header and a size, each of which is selected based on a design method that determines the combination of thickness, sidebar thickness, and partition plate thickness. A bar and a partition plate for high pressure aluminum brazing heat exchanger wherein the heat exchange unit is constituted by.

【0009】また、本発明に係る請求項2の発明は、上
記請求項1記載の高圧用アルミろう付熱交換器におい
て、7.845MPaG以上の高圧域で使用される熱交
換器であり、半円樋形状のヘッダが内径200mm以
上、板厚30mm以上であり、仕切板が板厚1mm以
上、5mm以下である構成としたことを特徴とする。
According to a second aspect of the present invention, there is provided the high-pressure aluminum brazing heat exchanger according to the first aspect, wherein the heat exchanger is used in a high-pressure range of 7.845 MPaG or more. The gutter-shaped header has an inner diameter of at least 200 mm and a plate thickness of at least 30 mm, and the partition plate has a plate thickness of at least 1 mm and at most 5 mm.

【0010】また、本発明に係る請求項3の発明は、上
記請求項2記載の高圧用アルミろう付熱交換器におい
て、サイドバーが厚さ25mm以上、70mm以下であ
る構成としたことを特徴とする。
According to a third aspect of the present invention, in the high-pressure aluminum brazing heat exchanger according to the second aspect, the side bar has a thickness of 25 mm or more and 70 mm or less. And

【0011】このような本発明によれば、運転変動があ
るような特殊で苛酷な運転条件下においても、溶接部の
余裕度を定量的に評価できることによって安全性に富
み、かつ、最も経済的な設計に基づく熱交換器を提供で
きる。また、内圧によるヘッダ部の引張りの影響も定量
的に評価できることで、高圧下でのアルミろう付熱交換
器の使用を可能とし得る。さらに、この種の複雑な構造
の熱交換器において、仕切板、フィン、サイドバーおよ
びヘッダの組合せに関して運転条件を踏まえた最適かつ
合理的な設計が可能となるものである。
According to the present invention, even under special and severe operating conditions in which the operation varies, the margin of the welded portion can be quantitatively evaluated, whereby the safety is enhanced and the most economical operation is realized. Can provide a heat exchanger based on a simple design. Further, since the influence of the tension of the header portion due to the internal pressure can be quantitatively evaluated, it is possible to use the aluminum brazing heat exchanger under high pressure. Further, in a heat exchanger having such a complicated structure, an optimal and rational design of a combination of a partition plate, a fin, a side bar, and a header in consideration of operating conditions becomes possible.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施形態
を、添付図面を参照しながら具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

【0013】図1には、本発明の実施の形態に係るアル
ミろう付熱交換器(以下、熱交換器と略称する)1の外
観斜視図が示され、図2には、図1図示の熱交換器1に
おけるコア単位5の分離斜視図が示される。
FIG. 1 is an external perspective view of an aluminum brazing heat exchanger (hereinafter simply referred to as a heat exchanger) 1 according to an embodiment of the present invention, and FIG. A separated perspective view of the core unit 5 in the heat exchanger 1 is shown.

【0014】図1および図2を参照して、熱交換器1は
仕切板6、フィン7およびサイドバー8からなるコア単
位5を幾つもの層に重ね、ろう付けにより一体化して形
成されるコア4に、流体出入り口であるヘッダ2、ノズ
ル3を溶接により取付けて構成した熱交換ユニットから
なっており、伝熱はこの層間の温度差により行われ、仕
切板6、フィン7を介して多量の熱が伝達するものであ
って、フィン7は内圧に対するステーの役割を果たし、
熱交換ユニットに大きな耐圧力を与える部材である。
Referring to FIG. 1 and FIG. 2, a heat exchanger 1 has a core unit 5 composed of a partition plate 6, fins 7 and side bars 8 stacked on several layers and integrally formed by brazing. 4, a heat exchange unit constructed by mounting a header 2 and a nozzle 3 as fluid inlets and outlets by welding, and heat transfer is performed by a temperature difference between the layers, and a large amount of heat is transferred through a partition plate 6 and a fin 7. Heat is transmitted, and the fins 7 serve as stays for internal pressure,
This member gives a large pressure resistance to the heat exchange unit.

【0015】上記熱交換器1において、半円樋形状を成
すヘッダ2を溶接によりコア4の所定個所に取付ける場
合、ヘッダ2溶接部に固有歪みが生じるものであり、ま
た、ヘッダ2の溶接部が仕切板6およびサイドバー8の
端縁部に直接接触することから、溶接の際の高温度の影
響によって仕切板6およびサイドバー8の端部は、加熱
されるのとその後の冷却されるのとによる熱収縮に伴う
歪みが生じる。
In the heat exchanger 1, when the header 2 having a semicircular gutter shape is attached to a predetermined portion of the core 4 by welding, an inherent distortion occurs in the header 2 welded portion. Is in direct contact with the edges of the partition plate 6 and the side bars 8, and the ends of the partition plate 6 and the side bars 8 are heated and subsequently cooled by the influence of high temperature during welding. Distortion occurs due to heat shrinkage due to heat.

【0016】各部材のうちの仕切板6については、シー
ト状の部材であることから先の溶接により発生する歪み
による伸びの他に、高圧用途の場合に内圧によるヘッダ
ー部からの引張応力の影響による伸びがあり、即ち、仕
切板6の伸び(%)=溶接による歪み(%)+内圧によ
る歪み(%)で示される伸びがある。
Since the partition plate 6 of each member is a sheet-shaped member, in addition to elongation due to distortion generated by the previous welding, in addition to the effect of tensile stress from the header portion due to internal pressure in high-pressure applications. That is, there is an elongation represented by elongation (%) of the partition plate 6 = distortion (%) due to welding + distortion (%) due to internal pressure.

【0017】本発明では、熱交換器1の高圧用途におい
て、この仕切板6の伸び量に着目し、仕切板6の溶接の
歪みによる伸び量および内圧によるヘッダ部で生じる伸
び量を定量化し、仕切板6の破断を生じないために、ヘ
ッダ2の溶接部での厚さ、サイドバー8の厚さと仕切板
6の厚さの組合せを明らかにして、仕切板6の伸び
(%)が例えば、仕切板が破断する伸び値30%(主要
な材料規格に定められた値)の半分15%(安全率;
2)に達しないことを確認することとした。
In the present invention, in the high-pressure application of the heat exchanger 1, attention is paid to the amount of elongation of the partition plate 6, and the amount of elongation due to welding distortion of the partition plate 6 and the amount of elongation generated at the header portion due to internal pressure are quantified. In order to prevent the partition plate 6 from breaking, a combination of the thickness of the header 2 at the welded portion, the thickness of the side bar 8 and the thickness of the partition plate 6 is clarified, and the elongation (%) of the partition plate 6 is reduced, for example. 15% (safety factor; 30% of the elongation value at which the partition plate breaks (the value specified in major material standards))
It was decided that 2) was not reached.

【0018】(1) 溶接時の固有歪みの検討 a) T継手の溶接試験/解析 フランジF/ウエブWの板厚の組合せを変えたT継手の
溶接変形試験によって、溶接総入熱量と溶接部の変位角
および溶接固有歪みとの相関性を把握した。この場合の
T継手の供試体におけるウエブWと当て板Pの溶接の態
様は図8に、また、ウエブW/当て板PとフランジFの
仮止めおよびリブRの溶接の態様は図9にそれぞれ示さ
れ、上記供試体の溶接変形の態様は図10に示される通
りである。すなわち、板厚がW=20mm,F=18m
mにおいて、δ1 は、解析値が44.6mm、実績値が
38.7mmであって、約15%の違いはあるが、ほぼ
一致している。 b) ヘッダ/平板の溶接試験/解析 T継手よりも実機に類似する溶接構造である平板FPと
ヘッダHとの溶接試験によって溶接総入熱量と溶接部の
変位角との関係を把握し(図6、図7および図11参
照)、解析による溶接変形を予測する固有歪みを決定す
る。図11によると、板厚がH=20mm,F=18m
mにおいて、δ2 は、解析値が44.2mm、実績値が
45.0mmであって、約2%の違いであるところか
ら、ほぼ一致している。
(1) Investigation of inherent distortion during welding a) Welding test / analysis of T-joint The total heat input and the welded part of the T-joint were determined by the welding deformation test of the T-joint in which the combination of the thickness of the flange F / web W was changed. The correlation between the displacement angle of the steel and the inherent strain of the weld was determined. FIG. 8 shows the manner of welding the web W and the caul plate P in the T-joint specimen in this case, and FIG. 9 shows the manner of temporarily fixing the web W / caul plate P to the flange F and welding the rib R. The aspect of the welding deformation of the specimen is shown in FIG. That is, the plate thickness is W = 20 mm, F = 18 m
At m, δ1 has an analysis value of 44.6 mm and an actual value of 38.7 mm, which are almost the same although there is a difference of about 15%. b) Welding test / analysis of header / plate Welding test of flat plate FP and header H, which is a welding structure more similar to the actual machine than T joint, grasped the relationship between the total heat input and the displacement angle of the welded part (Fig. 6, see FIG. 7 and FIG. 11), and determine an intrinsic strain for predicting welding deformation by analysis. According to FIG. 11, the plate thickness is H = 20 mm, F = 18 m
At m, δ2 is almost the same because the analysis value is 44.2 mm and the actual value is 45.0 mm, which is a difference of about 2%.

【0019】(2) ヘッダ溶接時において、熱交換器の仕
切板に生じる塑性歪みの把握 上記の固有歪みの決定方法を用いて種々の形状について
溶接時に生じる仕切板の塑性歪みを求め、ヘッダ厚さと
仕切板に生じる塑性歪みの関係を把握できる線図を作成
する。
(2) Grasping the plastic strain generated in the partition plate of the heat exchanger at the time of header welding The plastic strain of the partition plate generated at the time of welding is obtained for various shapes by using the above-described method of determining the inherent strain, and the header thickness is determined. Create a diagram that can grasp the relationship between and the plastic strain generated in the partition plate.

【0020】(3) 耐圧時の仕切板に生じる塑性歪みの把
握 仕切板には溶接時に過大な引張の塑性歪みが生じること
に加えて、耐圧時にもその個所には引張の塑性歪みが生
じるため、種々の形状に対して各圧力について弾塑性解
析で仕切板に生じる塑性歪みを求めて線図を作成する。
(3) Grasping of plastic strain generated in the partition plate at the time of pressure resistance In addition to the occurrence of excessive tensile plastic strain at the time of welding on the partition plate, plastic plastic strain of tensile strength also occurs at the place at the time of pressure resistance. For each of the various shapes, the plastic strain generated in the partition plate is determined by elasto-plastic analysis to create a diagram.

【0021】(4) 実機への適用 肉厚40mmのヘッダを溶接した実際のコアについて耐
圧試験を行い、溶接変形および耐圧時の解析で得た仕切
板に最も大きな約22%の塑性歪みが発生した部位にお
いて破損を生じたことから、本発明に係る解析手法の妥
当性を確認した。
(4) Application to actual machine A pressure test is performed on an actual core to which a header having a thickness of 40 mm has been welded, and the largest deformation of about 22% occurs in the partition plate obtained by welding deformation and pressure analysis. Since the breakage occurred in the part where it was performed, the validity of the analysis method according to the present invention was confirmed.

【0022】(5) 溶接および耐圧試験時の仕切板に生じ
る塑性歪みの評価 以上の解析および塑性歪みの把握結果から、次式により
許容塑性歪み以下となるようヘッダの溶接部の厚さ、サ
イドバーの厚さおよび仕切板の厚さを設計する。
(5) Evaluation of plastic strain generated in the partition plate at the time of welding and pressure test From the above analysis and the results of grasping the plastic strain, the thickness and side thickness of the welded portion of the header and the side are set so as to be less than the allowable plastic strain by the following equation. Design bar thickness and divider thickness.

【0023】[0023]

【数1】 ここで、 εwp :1回目の溶接により生じる塑性歪み(%) εpp :1回目の耐圧試験により生じる塑性歪み(%) Nw :溶接回数 Np :耐圧試験回数 εpaQ :許容塑性歪み(例:破断時歪みの1/2) α1 :溶接回数による補正係数 α2 :耐圧試験回数による補正係数(Equation 1) Here, ε wp : plastic strain (%) generated by the first welding ε pp : plastic strain (%) generated by the first pressure test N w : number of welding N p : number of pressure testing ε paQ : allowable plastic strain ( Example: 1/2 of strain at break) α 1 : Correction coefficient based on the number of weldings α 2 : Correction coefficient based on the number of pressure resistance tests

【0024】(6) 検討結果 溶接時に仕切板に生じる塑性歪みは溶接のパス数(総入
熱量)に大きく依存することから、その溶着断面積をで
きる限り小さくすることが重要であり、サイドバーの厚
さt2 (図2参照)、仕切板の厚さt1 (同じく図2参
照)を大とすることで、その歪みを小さくできることが
明らかとなった。基準的なものとして、ヘッダ取付位置
をエンド中央とし、ヘッダの径/肉厚、仕切板の厚さt
1 、サイドバーの厚さt2 を変化させた場合の解析を求
めたところ、1例として仕切板1.0mmの場合につい
てであるが、その結果から溶接時に生じる仕切板の歪み
(%)は、図4に示される通りとなった。一方、耐圧試
験により生じる仕切板の歪み(%)は、図5に示される
通りであり、また、耐圧試験の結果から必要とされるサ
イドバーの厚さt2 は、図3に示される通りであった。
(6) Examination Results Since the plastic strain generated in the partition plate during welding greatly depends on the number of welding passes (total heat input), it is important to minimize the welding cross-sectional area as much as possible. It is clear that the distortion can be reduced by increasing the thickness t2 (see FIG. 2) and the thickness t1 of the partition plate (see also FIG. 2). As a standard, the header mounting position is set at the center of the end, the diameter / thickness of the header, and the thickness t of the partition plate.
1. An analysis was performed when the thickness t2 of the side bar was changed. As an example, a case where the partition plate was 1.0 mm was used. From the result, the distortion (%) of the partition plate generated at the time of welding was calculated as follows. It was as shown in FIG. On the other hand, the distortion (%) of the partition plate caused by the pressure test is as shown in FIG. 5, and the thickness t2 of the side bar required from the result of the pressure test is as shown in FIG. there were.

【0025】図4に示される結果から明らかなように、
ヘッダの厚さが30mmでサイドバーの厚さを変えた場
合、1mm厚さの仕切板の歪み(%)は、サイドバーの
厚さ10mmのときで10%に達し、一方、図5から明
らかなように、7.845MPaGの比較的高圧の使用
条件下でヘッダの内径を変えた場合、1mm厚さの仕切
板の歪み(%)は、ヘッダ内径200mm以上で5%を
超える値となり、従って、サイドバーの厚さが10mm
以上70mm以下において7.845MPaG以上の高
圧域で使用される熱交換器の場合、半円樋形状のヘッダ
が内径200mm以上、厚さ30mm以上であり、仕切
板が厚さ1mm以上であれば、仕切板の伸びを15%以
下とすることが可能で、安全率2を保持させることがで
きる。なお、仕切板の厚さの上限は、5mmとすること
が好ましい。これは、仕切板の厚みを増せば塑性歪みの
発生量は低下するが、厚くすれば伝熱性能に余り寄与し
ない仕切板の重量が増すだけで、熱交換器の重量の割り
に性能の向上が得られず経済性が劣るためである。
As is clear from the results shown in FIG.
When the thickness of the header is 30 mm and the thickness of the side bar is changed, the distortion (%) of the partition plate having a thickness of 1 mm reaches 10% when the thickness of the side bar is 10 mm, while it is apparent from FIG. As described above, when the inner diameter of the header is changed under the use condition of a relatively high pressure of 7.845 MPaG, the distortion (%) of the partition plate having a thickness of 1 mm becomes a value exceeding 5% when the inner diameter of the header is 200 mm or more. , Sidebar thickness is 10mm
In the case of a heat exchanger used in a high pressure region of 7.845 MPaG or more at 70 mm or less, the semicircular gutter-shaped header has an inner diameter of 200 mm or more, a thickness of 30 mm or more, and a partition plate of 1 mm or more, The elongation of the partition plate can be reduced to 15% or less, and the safety factor 2 can be maintained. The upper limit of the thickness of the partition plate is preferably set to 5 mm. This is because increasing the thickness of the partition plate reduces the amount of plastic strain, but increasing the thickness only increases the weight of the partition plate, which does not significantly contribute to the heat transfer performance, and improves the performance in proportion to the weight of the heat exchanger Is not obtained and the economic efficiency is inferior.

【0026】また、図3に示される結果から明らかなよ
うに、幅w(図2参照)9.5mmのサイドバーの場
合、内圧を7.845MPaGの比較的高圧としたとき
のサイドバーの厚さt2 の必要値は約6mmであるが、
図4の結果からすると、ヘッダの厚さが30mm、仕切
板の厚さが1mmの場合では、サイドバーの厚さt2 が
6mmでは、溶接時に仕切板が10%超過に伸ばされる
こととなって好ましくなく、溶接時の伸びを3%程度以
下に抑えるには、サイドバーの厚さt2 を25mm以上
とすることが必要であって、この条件とすることによっ
て、法規上定められた数値によらず、比較的高圧におい
て仕切板の伸び量を低減し得て、安全性の高い熱交換器
を提供することができる。なお、サイドバーの厚さの上
限は、70mmとすることが好ましい。これは、サイド
バーの幅を増すと流体が流れる流路の断面積が低下し圧
力損失が上昇することと、余り厚くすると寸法精度が悪
くなってろう付け性能が低下するという製造上の問題か
らである。
As is apparent from the results shown in FIG. 3, in the case of a side bar having a width w (see FIG. 2) of 9.5 mm, the thickness of the side bar when the internal pressure is set at a relatively high pressure of 7.845 MPaG is obtained. The required value of t2 is about 6 mm,
According to the results of FIG. 4, when the thickness of the header is 30 mm and the thickness of the partition plate is 1 mm, when the thickness t2 of the side bar is 6 mm, the partition plate is stretched to exceed 10% at the time of welding. In order to suppress the elongation at the time of welding to about 3% or less, it is necessary to make the thickness t2 of the side bar 25 mm or more. In addition, the amount of elongation of the partition plate can be reduced at a relatively high pressure, and a highly safe heat exchanger can be provided. Note that the upper limit of the thickness of the side bar is preferably set to 70 mm. This is due to the manufacturing problem that increasing the width of the sidebar decreases the cross-sectional area of the flow path through which the fluid flows, increasing the pressure loss, and increasing the thickness too much reduces the dimensional accuracy and reduces the brazing performance. It is.

【0027】[0027]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。即ち、
本発明によれば、製作時の溶接部の収縮および内圧によ
る変形量を把握し、運転条件を踏まえた最適な余裕度を
定量的に評価する手段をアルミろう付熱交換器の製造の
面において確立し得たものであって、運転変動のあるよ
うな特殊な運転条件下においても、この種の熱交換器の
溶接部の変形を抑え、かつ、強度を保持し得る。
The present invention is embodied in the form described above and has the following effects. That is,
According to the present invention, a means for grasping the amount of deformation due to shrinkage and internal pressure of the welded portion during manufacturing and quantitatively evaluating the optimum margin based on the operating conditions is provided in terms of manufacturing an aluminum brazed heat exchanger. It can be established and can suppress the deformation of the welded portion of this type of heat exchanger and maintain its strength even under special operating conditions with operating fluctuations.

【0028】また、低圧のプロセスでは問題視されなか
った内圧によるヘッダ部の引張りの変形量を定量的に評
価できて、高圧におけるアルミろう付熱交換器の使用を
安全性に優れ、かつ高信頼性の下で可能とするものであ
る。更に、複雑な構造のアルミろう付熱交換器に対し
て、実験と解析の結果に基づき、運転条件を踏まえた仕
切板、フィン、サイドバーおよびヘッダの組合せにおい
て最適な、しかも経済的な設計が可能となる。
Also, the amount of tensile deformation of the header portion due to internal pressure, which was not regarded as a problem in the low-pressure process, can be quantitatively evaluated, and the use of the aluminum brazing heat exchanger at high pressure is excellent in safety and highly reliable. It is possible under the gender. Furthermore, based on the results of experiments and analyses, an optimal and economical design of a combination of partition plates, fins, sidebars, and headers for an aluminum brazed heat exchanger with a complex structure, based on the results of experiments and analysis, was made. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るアルミろう付熱交換
器の外観斜視図である。
FIG. 1 is an external perspective view of an aluminum brazing heat exchanger according to an embodiment of the present invention.

【図2】図1図示のアルミろう付熱交換器におけるコア
単位の分離斜視図である。
FIG. 2 is an exploded perspective view of a core unit in the aluminum brazing heat exchanger shown in FIG. 1;

【図3】内圧に対応するサイドバーの必要厚さ(mm)
を表す線図である。
FIG. 3 Required thickness of the side bar corresponding to the internal pressure (mm)
FIG.

【図4】溶接により発生する仕切板の伸び(%)を表す
線図である。
FIG. 4 is a diagram showing elongation (%) of a partition plate generated by welding.

【図5】内圧により発生する仕切板の伸び(%)を表す
線図である。
FIG. 5 is a diagram showing elongation (%) of a partition plate generated by internal pressure.

【図6】ヘッダのコアとの溶接部の溶接変形評価図であ
る。
FIG. 6 is an evaluation diagram of welding deformation of a welded portion between a header and a core.

【図7】ヘッダのコアとの溶接部の溶接変形評価図であ
る。
FIG. 7 is an evaluation diagram of welding deformation of a welded portion between a header and a core.

【図8】T継手供試体におけるウエブ/当板の溶接部の
態様を示す図である。
FIG. 8 is a diagram showing an embodiment of a web / contact plate welded portion in a T-joint specimen.

【図9】T継手供試体におけるウエブ/当板とリブの溶
接部の態様を示す図である。
FIG. 9 is a view showing an aspect of a welded portion between a web / contact plate and a rib in a T-joint specimen.

【図10】T継手供試体の溶接変形評価図である。FIG. 10 is an evaluation diagram of welding deformation of a T-joint specimen.

【図11】ヘッダ/コア供試体の溶接変形評価図であ
る。
FIG. 11 is an evaluation diagram of welding deformation of a header / core specimen.

【符号の説明】[Explanation of symbols]

1…熱交換器 2…ヘッダ 3
…ノズル 4…コア 5…コア単位 6
…仕切板 7…フィン 8…サイドバー
1. Heat exchanger 2. Header 3.
… Nozzle 4… Core 5… Core unit 6
… Partition plate 7… Fin 8… Sidebar

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 進 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 3L103 AA11 AA27 BB29 BB30 DD15 DD22 DD53 DD55  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Susumu Terada 2-3-1, Shinhama, Arai-machi, Takasago-shi, Hyogo F-term in Kobe Steel, Ltd. Takasago Works (reference) 3L103 AA11 AA27 BB29 BB30 DD15 DD22 DD53 DD55

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仕切板、フィンおよびサイドバーからな
るコア単位を多層に重ねてろう付けにより一体化して形
成されるコアに流体出入り口用のヘッダを溶接により取
付けて熱交換ユニットを構成してなる高圧用アルミろう
付熱交換器において、溶接部の収縮ならびに内圧による
変形を実験により検証した解析手法を用いることによっ
て、設計仕様に基づき製作時に蓄積した溶接部の収縮に
よる変形量と、さらに運転条件によって発生することが
予想される変形量とを評価し、さらに、仕切板の破断を
起こさせないための余裕度を定量的に評価することによ
って、ヘッダの溶接部の厚さ、サイドバーの厚さおよび
仕切板の厚さの組合せを決定する設計手法に基づいて、
それぞれの厚さを選定してなるヘッダ、サイドバーおよ
び仕切板により前記熱交換ユニットが構成されてなるこ
とを特徴とする高圧用アルミろう付熱交換器。
A heat exchange unit is constructed by attaching a header for a fluid inlet / outlet by welding to a core formed by laminating a core unit composed of a partition plate, fins, and side bars and integrating them by brazing. In the high-pressure aluminum brazing heat exchanger, the amount of deformation due to the shrinkage of the weld accumulated during manufacturing based on the design specifications and the operating conditions were further determined by using an analysis method that verified the shrinkage of the weld and deformation due to internal pressure through experiments. By evaluating the amount of deformation expected to occur due to the thickness of the welded portion of the header and the thickness of the side bar by quantitatively evaluating the margin for preventing the partition plate from breaking, And the design method to determine the combination of the thickness of the partition plate,
A high-pressure aluminum brazing heat exchanger characterized in that the heat exchange unit is constituted by a header, a side bar and a partition plate each having a selected thickness.
【請求項2】 7.845MPaG以上の高圧域で使用
される熱交換器であり、半円樋形状のヘッダが内径20
0mm以上、板厚30mm以上であり、仕切板が板厚1
mm以上、5mm以下である請求項1記載の高圧用アル
ミろう付熱交換器。
2. A heat exchanger used in a high pressure range of 7.845 MPaG or more, wherein a semi-circular gutter-shaped header has an inner diameter of 20 mm.
0 mm or more, plate thickness 30 mm or more, and the partition plate
The high-pressure aluminum brazing heat exchanger according to claim 1, which is not less than 5 mm and not more than 5 mm.
【請求項3】 サイドバーが厚さ25mm以上、70m
m以下である請求項2記載の高圧用アルミろう付熱交換
器。
3. The side bar has a thickness of 25 mm or more and 70 m or more.
3. The high-pressure aluminum brazing heat exchanger according to claim 2, which is not more than m.
JP2000100882A 2000-04-03 2000-04-03 High pressure aluminum brazed heat exchanger Pending JP2001289576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100882A JP2001289576A (en) 2000-04-03 2000-04-03 High pressure aluminum brazed heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100882A JP2001289576A (en) 2000-04-03 2000-04-03 High pressure aluminum brazed heat exchanger

Publications (1)

Publication Number Publication Date
JP2001289576A true JP2001289576A (en) 2001-10-19

Family

ID=18615027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100882A Pending JP2001289576A (en) 2000-04-03 2000-04-03 High pressure aluminum brazed heat exchanger

Country Status (1)

Country Link
JP (1) JP2001289576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997248B2 (en) 2004-05-19 2006-02-14 Outokumpu Oyj High pressure high temperature charge air cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997248B2 (en) 2004-05-19 2006-02-14 Outokumpu Oyj High pressure high temperature charge air cooler

Similar Documents

Publication Publication Date Title
JP5944009B2 (en) Double tube heat exchanger and refrigeration cycle equipment
US20140131025A1 (en) Heat transfer plate for a plate-and-shell heat exchanger
KR102018675B1 (en) Fluid circulation tube and a heat exchanger comprising such tubes
JP5737837B2 (en) HEAT EXCHANGER AND VEHICLE AIR CONDITIONER INCLUDING THE SAME
JP5043930B2 (en) Plate heat exchanger including a reinforcing plate provided outside the outermost heat transfer plate
US20070261820A1 (en) Self-breaking radiator side plates
JP5527169B2 (en) Tube for heat exchanger
US20160356555A1 (en) Tube for heat exchanger
EP2604962B1 (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
JP2001355992A (en) Plate type heat exchanger
WO2008082015A1 (en) Multipass butt-welded joint having excellent brittle crack propagation resistance, and welded structure
JP2001289576A (en) High pressure aluminum brazed heat exchanger
US20090288811A1 (en) Aluminum plate-fin heat exchanger utilizing titanium separator plates
WO2019234847A1 (en) Heat exchanger
JP2001174168A (en) Duplicated heat exchanger
JPS6064104A (en) Heat exchanger, particularly, steam or evaporating gas generated
US9587892B2 (en) Heat exchanger
JP2009198132A (en) Tube for heat exchanger
JP2003302188A (en) Heat exchanger
US6237678B1 (en) Heat exchanger
JP5187047B2 (en) Tube for heat exchanger
US20120298344A1 (en) Header for heat exchanger
JP2009229024A (en) Tube for heat exchanger
KR102050139B1 (en) Primary Surface Heat Exchanger having Improved Internal Pressure and Manufacturing Method Thereof and Heat Exchange System
JP2018017488A (en) Core support