JP2001286753A - Adsorbent for sulfur compound in fuel gas and method for removing the same - Google Patents

Adsorbent for sulfur compound in fuel gas and method for removing the same

Info

Publication number
JP2001286753A
JP2001286753A JP2000232780A JP2000232780A JP2001286753A JP 2001286753 A JP2001286753 A JP 2001286753A JP 2000232780 A JP2000232780 A JP 2000232780A JP 2000232780 A JP2000232780 A JP 2000232780A JP 2001286753 A JP2001286753 A JP 2001286753A
Authority
JP
Japan
Prior art keywords
fuel gas
adsorbent
sulfur compound
gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232780A
Other languages
Japanese (ja)
Other versions
JP3742284B2 (en
Inventor
Yuji Kobayashi
裕司 小林
Shigeo Satokawa
重夫 里川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000232780A priority Critical patent/JP3742284B2/en
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to EP01102061A priority patent/EP1121977B1/en
Priority to DK01102061T priority patent/DK1121977T3/en
Priority to DE60128016T priority patent/DE60128016T2/en
Priority to AT01102061T priority patent/ATE360478T1/en
Priority to CA002332818A priority patent/CA2332818C/en
Priority to US09/774,966 priority patent/US20010014304A1/en
Priority to AU16772/01A priority patent/AU759217B2/en
Publication of JP2001286753A publication Critical patent/JP2001286753A/en
Priority to US10/429,913 priority patent/US6875410B2/en
Application granted granted Critical
Publication of JP3742284B2 publication Critical patent/JP3742284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent for sulfur compounds in fuel gas, formed by improving the adsorption character of the sulfur compounds in the fuel gas regardless of the moisture content of the fuel gas, and a method for removing the sulfur compounds in the fuel gas. SOLUTION: This adsorbent for the sulfur compounds in the fuel gas is formed in a way that one or more kinds of transition metals selected from Ag, Cu, Zn, Fe, Co, and Ni are carried by hydrophobic zeolite by ion exchange. In this method for removing the sulfur compounds, sulfur compound-containing fuel gas is made to pass through the adsorbent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガスやLPガ
スなどの燃料ガス中の硫黄化合物の吸着除去に用いる硫
黄化合物除去用吸着剤、及び、該硫黄化合物除去用吸着
剤による硫黄化合物含有燃料ガス中の硫黄化合物の除去
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfur compound-removing adsorbent used for adsorbing and removing sulfur compounds in fuel gas such as city gas and LP gas, and a sulfur compound-containing fuel by the sulfur compound-removing adsorbent. The present invention relates to a method for removing a sulfur compound in a gas.

【0002】[0002]

【従来の技術】メタン、エタン、エチレン、プロパン、
ブタン等の低級炭化水素ガス、あるいはこれらを含む天
然ガス、都市ガス、LPガス等のガスは、工業用や家庭
用などの燃料として用いられるほか、燃料電池用燃料や
雰囲気ガスなどとして利用される水素の製造用原料とし
ても使用される。水素の工業的製造方法の一つである水
蒸気改質法では、それらの低級炭化水素ガスを、Ni
系、Ru系等の触媒の存在下、水蒸気を加えて改質し、
水素を主成分とする改質ガスが生成される。
2. Description of the Related Art Methane, ethane, ethylene, propane,
Gases such as butane and other low-grade hydrocarbon gases, or natural gas, city gas, and LP gas containing them, are used as fuels for industrial and domestic uses, as well as fuels for fuel cells and atmosphere gases. It is also used as a raw material for producing hydrogen. In the steam reforming method, which is one of the industrial methods for producing hydrogen, the lower hydrocarbon gas is converted to Ni
System, reforming by adding steam in the presence of a catalyst such as Ru system,
A reformed gas containing hydrogen as a main component is generated.

【0003】都市ガスやLPガス等の燃料ガスには漏洩
保安を目的とする付臭剤として、サルファイド類やチオ
フェン類、あるいはメルカプタン類などの硫黄化合物が
含まれている。具体的には、サルファイド類としてジメ
チルサルファイド(本明細書中DMSと略称する)やエ
チルメチルサルファイドやジエチルサルファイド、チオ
フェン類としてテトラヒドロチオフェン(同じくTHT
と略称する)、メルカプタン類としてターシャリーブチ
ルメルカプタン(同じくTBMと略称する)やイソプロ
ピルメルカプタンやノルマルプロピルメルカプタンやタ
ーシャリーアミルメルカプタンやターシャリーヘプチル
メルカプタンやメチルメルカプタンやエチルメルカプタ
ンなどである。
[0003] Fuel gases such as city gas and LP gas contain sulfur compounds such as sulfides, thiophenes, and mercaptans as odorants for the purpose of leak protection. More specifically, sulfides such as dimethyl sulfide (abbreviated as DMS in the present specification), ethyl methyl sulfide and diethyl sulfide, and thiophenes such as tetrahydrothiophene (also THT)
Tertiary butyl mercaptan (also abbreviated as TBM), isopropyl mercaptan, normal propyl mercaptan, tertiary amyl mercaptan, tertiary heptyl mercaptan, methyl mercaptan, ethyl mercaptan, and the like.

【0004】一般に添加される付臭剤としてはDMS、
THT及びTBMが多く用いられ、その濃度はいずれも
数ppmである。とりわけ、都市ガスにおいてはDMS
及びTBMの両方を用いるケースがほとんどである。上
記のように水蒸気改質法で用いられる触媒は、これらの
硫黄化合物により被毒し、性能劣化を来たしてしまう。
このため燃料ガス中のそれらの硫黄化合物は、燃料ガス
から予め除去しておく必要がある。また、硫黄化合物を
除去した燃料ガス中に、たとえ残留硫黄化合物が少量含
まれていても、その残留硫黄化合物の量はできるだけ低
濃度であることが望ましい。
[0004] Commonly added odorants are DMS,
THT and TBM are often used, and their concentrations are several ppm. Especially in city gas, DMS
In most cases, both TBM and TBM are used. As described above, the catalyst used in the steam reforming method is poisoned by these sulfur compounds, resulting in performance deterioration.
For this reason, those sulfur compounds in the fuel gas need to be removed from the fuel gas in advance. Further, even if a small amount of the residual sulfur compound is contained in the fuel gas from which the sulfur compound has been removed, it is desirable that the amount of the residual sulfur compound be as low as possible.

【0005】従来、燃料ガスに含まれる硫黄化合物の除
去方法としては、水添脱硫法や吸着剤による方法が知ら
れている。水添脱硫法は、燃料ガスに水素を添加し、C
oーMo系触媒等の触媒の存在下、硫黄化合物を硫化水
素に分解させ、分解生成物である硫化水素を酸化亜鉛、
酸化鉄等の脱硫剤に吸着させて脱硫する方法であり、こ
の場合水素の添加や加熱が必要である。一方、吸着剤に
よる方法は、活性炭、金属酸化物、あるいはゼオライト
等を主成分とする吸着剤に燃料ガスを通過させることに
より、硫黄化合物を吸着させて除去する方法である。こ
の吸着剤による方法では、加熱することで、吸着能力を
増加させる方法もあるが、常温で吸着させる方がシステ
ムがより簡易になるので望ましい。
Conventionally, as a method for removing a sulfur compound contained in a fuel gas, a hydrodesulfurization method and a method using an adsorbent are known. In the hydrodesulfurization method, hydrogen is added to fuel gas, and C
In the presence of a catalyst such as an o-Mo catalyst, a sulfur compound is decomposed into hydrogen sulfide, and hydrogen sulfide as a decomposition product is converted into zinc oxide,
This is a method of desulfurization by adsorption to a desulfurizing agent such as iron oxide. In this case, addition of hydrogen and heating are required. On the other hand, the method using an adsorbent is a method in which a sulfur gas is adsorbed and removed by passing a fuel gas through an adsorbent mainly composed of activated carbon, metal oxide, zeolite, or the like. In the method using the adsorbent, there is a method of increasing the adsorption capacity by heating, but it is preferable to perform adsorption at room temperature because the system becomes simpler.

【0006】吸着剤を用いて常温で硫黄化合物を除去す
る方法は、水添脱硫法や加熱吸着法のように熱や水素等
を必要としないため簡易な脱硫方法である。しかし、吸
着剤がこれに吸着された硫黄化合物で飽和してしまうと
ガス中の硫黄化合物を除去することができなくなるの
で、再生や交換が必要である。したがって、吸着剤の吸
着能力の大小により吸着剤の必要量、交換頻度が大きく
左右されることになるため、より高い吸着能力を有する
吸着剤が望まれる。吸着剤の場合、その性能は、特に硫
黄化合物の性質に左右される。付臭剤として使用される
ケースが多いDMS、TBMでは、特にDMSがより吸
着され難いため破過が早い。このためDMSの吸着量を
増加させることが重要となってくる。
[0006] The method of removing sulfur compounds at room temperature using an adsorbent is a simple desulfurization method which does not require heat, hydrogen or the like unlike the hydrodesulfurization method and the heat adsorption method. However, if the adsorbent is saturated with the sulfur compound adsorbed by the adsorbent, the sulfur compound in the gas cannot be removed, so that regeneration or replacement is required. Therefore, the required amount of the adsorbent and the frequency of replacement are greatly influenced by the magnitude of the adsorbing capacity of the adsorbent. Therefore, an adsorbent having a higher adsorbing capacity is desired. In the case of an adsorbent, its performance depends in particular on the nature of the sulfur compound. DMS and TBM, which are often used as odorants, break down quickly because DMS is particularly difficult to be adsorbed. Therefore, it is important to increase the amount of DMS adsorbed.

【0007】これまでガス中の硫黄化合物の吸着剤とし
ては各種吸着剤が提案されている。例えば特開平6ー3
06377号では、都市ガス、LPガス等の燃料ガスの
付臭成分であるメルカプタン類を無酸素雰囲気下、選択
的に、水素及び/又はアルカリ土類金属以外の多価金属
イオン交換ゼオライトにより除去するというもので、こ
こでの多価金属イオンとしてはMn、Fe、Co、N
i、Cu、Sn、Znが好ましいとされている。この技
術での吸着対象硫黄化合物は吸着の容易なメルカプタン
類だけであり、その吸着能の確認は、その実施例に記載
のとおり、上記ゼオライトを入れたサンプリングバッグ
に350ppmのTBM(都市ガスバランス)を導入す
ることで行われている。
Various adsorbents have been proposed as adsorbents for sulfur compounds in gas. For example, JP-A-6-3
No. 06377, mercaptans, which are odorous components of fuel gas such as city gas and LP gas, are selectively removed by a polyvalent metal ion-exchanged zeolite other than hydrogen and / or alkaline earth metal under an oxygen-free atmosphere. Thus, the polyvalent metal ions here are Mn, Fe, Co, N
i, Cu, Sn and Zn are preferred. Sulfur compounds to be adsorbed by this technique are only mercaptans which can be easily adsorbed, and the adsorption ability thereof is confirmed by the sampling bag containing zeolite having 350 ppm TBM (city gas balance) as described in the example. It is done by introducing.

【0008】本発明者等は、ゼオライト、活性炭、金属
化合物、活性アルミナ、シリカゲル、活性白土、粘土系
鉱物等の各種多孔質物質、各種金属酸化物など、市販の
数多くの吸着剤を用いて、燃料ガス中の硫黄化合物を除
去する実験を実施した。このうち、一部は表2に示して
いる。その結果、それらのうち特定の活性炭、特定の金
属酸化物(特公平5ー58768号)、特定のゼオライ
ト(特開平10ー237473号)だけが燃料ガス中の
硫黄化合物の吸着に有効であることを確認することがで
きた。
[0008] The present inventors have made use of a number of commercially available adsorbents such as various porous substances such as zeolite, activated carbon, metal compounds, activated alumina, silica gel, activated clay, clay minerals, and various metal oxides. An experiment was conducted to remove sulfur compounds in the fuel gas. Some of them are shown in Table 2. As a result, only specific activated carbon, specific metal oxides (Japanese Patent Publication No. 5-58768), and specific zeolites (Japanese Patent Application Laid-Open No. Hei 10-237473) are effective in adsorbing sulfur compounds in fuel gas. Could be confirmed.

【0009】ところで、燃料ガス中には、その製造過程
あるいは供給過程において、微量の水分が含まれている
ケースがある。特に、ゼオライトにより水分を含有した
燃料ガスを処理した場合、水分を選択的に吸着してしま
い、水分が含まれていないか、あるいはそれが極微量で
ある場合に比べ、硫黄化合物の吸着性能が大幅に低下し
てしまう。この理由は、吸湿剤としても利用されている
ゼオライトはそれ自身が親水性であり、極性分子である
水分を優先的に吸着するためであると推認される。この
ことからしても、硫黄化合物除去用の吸着剤は、燃料ガ
ス中の硫黄化合物のみを選択的に吸着する必要があり、
燃料ガス中の水分の有無に関わらず硫黄化合物を吸着す
る選択性が必要であるが、従来技術の吸着剤において
は、上記公報の吸着剤を含め、この点に関して何も配慮
されていない。
In some cases, a trace amount of water is contained in the fuel gas during its production or supply process. In particular, when a fuel gas containing water is treated with zeolite, water is selectively adsorbed, and the adsorption performance of sulfur compounds is lower than when water is not contained or the amount is very small. It will drop significantly. This is presumed to be because zeolite, which is also used as a hygroscopic agent, is itself hydrophilic and preferentially adsorbs water, which is a polar molecule. Even from this, the adsorbent for removing sulfur compounds needs to selectively adsorb only sulfur compounds in the fuel gas,
Selectivity for adsorbing sulfur compounds is required regardless of the presence or absence of moisture in the fuel gas, but no consideration is given to this point in the prior art adsorbents, including the adsorbents described in the above publications.

【0010】前述のとおり、硫黄化合物を除去した燃料
ガス中に含まれる残留硫黄化合物濃度は、燃料ガスを水
蒸気改質などに使用する場合、出来るだけ低濃度である
ことが望ましい。これは、水蒸気改質触媒が硫黄により
被毒されるのを防ぐためである。これまで、ガス中の硫
黄化合物を極低濃度まで除去する吸着剤として銅系吸着
剤(特開平6ー256779号)が報告されている。し
かしながら、この吸着剤は、その性能を満足させるため
には、200〜250℃の加熱が必要である。これま
で、常温付近においてガス中の硫黄化合物を極低濃度ま
で除去する吸着剤は報告されていない。
As described above, the concentration of the residual sulfur compound contained in the fuel gas from which the sulfur compound has been removed is desirably as low as possible when the fuel gas is used for steam reforming or the like. This is to prevent the steam reforming catalyst from being poisoned by sulfur. A copper-based adsorbent (JP-A-6-256779) has been reported as an adsorbent for removing sulfur compounds in a gas to an extremely low concentration. However, this adsorbent requires heating at 200 to 250 ° C. to satisfy its performance. So far, no adsorbent has been reported that removes sulfur compounds in a gas to an extremely low concentration at around normal temperature.

【0011】そこで、本発明者等は、このような観点か
ら、燃料ガス中に水分が含まれていてもなお有効に機能
する吸着剤について追求し、ゼオライトのうちでも特に
疎水性ゼオライトに着目して各種検討、実験を続けたと
ころ、疎水性ゼオライトを用い、且つ、これに特定の遷
移金属をイオン交換により担持させてなる吸着剤が、燃
料ガス中に水分が含まれていても、有効な硫黄化合物の
吸着性能を有することを見い出し、本発明に到達するに
至ったものである。
In view of the above, the present inventors have pursued an adsorbent which functions effectively even when fuel gas contains moisture, and pay particular attention to hydrophobic zeolites among zeolites. As a result of various studies and experiments, the adsorbent using hydrophobic zeolite and carrying a specific transition metal by ion exchange was effective even if the fuel gas contained moisture. The inventors have found that they have the ability to adsorb sulfur compounds, and have reached the present invention.

【0012】[0012]

【発明が解決しようとする課題】本発明は、疎水性ゼオ
ライトに対して特定の遷移金属をイオン交換により担持
させることにより、燃料ガス中の水分濃度に関わらず、
硫黄化合物除去用として有効に機能する硫黄化合物除去
用吸着剤を提供することを目的とし、また本発明は、該
硫黄化合物除去用吸着剤による硫黄化合物含有燃料ガス
中の硫黄化合物の除去方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention provides a method for carrying a specific transition metal on a hydrophobic zeolite by ion exchange, regardless of the water concentration in the fuel gas.
It is an object of the present invention to provide a sulfur compound removal adsorbent that functions effectively for sulfur compound removal, and the present invention also provides a method for removing sulfur compounds in a sulfur compound-containing fuel gas by the sulfur compound removal adsorbent. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)燃料ガ
ス中の硫黄化合物除去用吸着剤であって、疎水性ゼオラ
イトにAg、Cu、Zn、Fe、Co及びNiから選ば
れた1種又は2種以上の遷移金属をイオン交換により担
持させてなることを特徴とする燃料ガス中の硫黄化合物
吸着剤を提供し、また、本発明は(2)硫黄化合物含有
燃料ガスを、疎水性ゼオライトにAg、Cu、Zn、F
e、Co及びNiから選ばれた1種又は2種以上の遷移
金属をイオン交換により担持させてなる硫黄化合物除去
用吸着剤に通すことを特徴とする硫黄化合物含有燃料ガ
ス中の硫黄化合物の除去方法を提供する。
The present invention provides (1) an adsorbent for removing sulfur compounds in fuel gas, wherein the hydrophobic zeolite is selected from Ag, Cu, Zn, Fe, Co and Ni. The present invention provides a sulfur compound adsorbent in a fuel gas characterized by carrying one or more kinds of transition metals by ion exchange. Ag, Cu, Zn, F in zeolite
e, one or more transition metals selected from Co and Ni are passed through a sulfur compound removal adsorbent carried by ion exchange to remove sulfur compounds in a sulfur compound-containing fuel gas. Provide a way.

【0014】[0014]

【発明の実施の形態】ゼオライトには各種数多くの種類
があるが、本発明においては特に疎水性のゼオライトを
使用することが重要である。本発明は、この点と合わせ
て、この疎水性ゼオライトに、Ag、Cu、Zn、F
e、Co及びNiから選ばれた1種又は2種以上の遷移
金属をイオン交換により担持させてなることが重要であ
る。こうしてなる本発明の吸着剤は、いずれも燃料ガス
中の水分濃度に関わらず、該燃料ガス中に含まれている
硫黄化合物を有効に除去することができる。それら遷移
金属の中でもAg又はCuを担持させた吸着剤が特に有
効である。
DETAILED DESCRIPTION OF THE INVENTION There are many types of zeolites. In the present invention, it is particularly important to use hydrophobic zeolites. The present invention, in conjunction with this point, provides the hydrophobic zeolite with Ag, Cu, Zn, F
It is important that one or more transition metals selected from e, Co and Ni are supported by ion exchange. The adsorbent of the present invention thus configured can effectively remove the sulfur compounds contained in the fuel gas regardless of the moisture concentration in the fuel gas. Among these transition metals, an adsorbent supporting Ag or Cu is particularly effective.

【0015】本発明の吸着剤を製造するには、先ず、上
記Ag、Cu、Zn、Fe、Co及びNiから選ばれた
各遷移金属を疎水性ゼオライトに対してイオン交換法に
より担持させる。具体的には、それら金属の化合物を水
に溶解して水溶液とする。各金属の化合物としては、疎
水性ゼオライトの陽イオンとイオン交換させる必要があ
るため、水に溶解し、その水溶液中、金属が金属イオン
として存在し得る金属化合物が用いられる。この水溶液
を疎水性ゼオライトと後述図2に示すような一撹拌
法、含浸法、流通法等により接触させることによ
り、疎水性ゼオライト中の陽イオンをこれら金属イオン
と交換させる。次いで、水等で洗浄した後、乾燥、焼成
することにより得られる。
In order to produce the adsorbent of the present invention, first, each transition metal selected from Ag, Cu, Zn, Fe, Co and Ni is supported on a hydrophobic zeolite by an ion exchange method. Specifically, these metal compounds are dissolved in water to form an aqueous solution. As the compound of each metal, a metal compound which can be dissolved in water and in which the metal exists as a metal ion in an aqueous solution is used because it is necessary to perform ion exchange with the cation of the hydrophobic zeolite. The aqueous solution is brought into contact with the hydrophobic zeolite by a stirring method, an impregnation method, a flow method or the like as shown in FIG. 2 to exchange cations in the hydrophobic zeolite with these metal ions. Next, it is obtained by washing with water or the like, followed by drying and baking.

【0016】本発明に係る硫黄化合物除去用吸着剤は、
各種燃料ガス中の前述サルファイド類、チオフェン類及
びメルカプタン類のうちの1種又は2種以上の硫黄化合
物を吸着除去するのに適用できるが、特に都市ガスやL
Pガス等の燃料ガスからそれら硫黄化合物を吸着除去す
るのに好適に適用することができる。
The adsorbent for removing sulfur compounds according to the present invention comprises:
The present invention can be applied to adsorb and remove one or more sulfur compounds of the above-mentioned sulfides, thiophenes and mercaptans in various fuel gases.
The present invention can be suitably applied to adsorptive removal of such sulfur compounds from fuel gas such as P gas.

【0017】また、本発明に係る硫黄化合物除去用吸着
剤による硫黄化合物を含む燃料ガスの処理は、該吸着剤
に硫黄化合物含有燃料ガスを接触させることにより行う
が、従来の吸着剤によるガス処理と同様にして行うこと
ができる。図1は本発明を実施する装置の一態様例を示
す図である。図1中、1は硫黄化合物含有燃料ガス導入
管、2は硫黄化合物吸着剤充填層(反応管)、3は処理
済み燃料ガス導出管である。導入管1から導入される硫
黄化合物含有燃料ガス中の硫黄化合物は、吸着剤充填層
2で吸着除去され、処理済み燃料ガスとして導出管3か
ら排出される。
The treatment of the fuel gas containing a sulfur compound with the adsorbent for removing a sulfur compound according to the present invention is performed by bringing the fuel gas containing the sulfur compound into contact with the adsorbent. Can be performed in the same manner as described above. FIG. 1 is a diagram showing an example of an embodiment of an apparatus for implementing the present invention. In FIG. 1, reference numeral 1 denotes a sulfur compound-containing fuel gas inlet tube, 2 denotes a sulfur compound adsorbent packed bed (reaction tube), and 3 denotes a treated fuel gas outlet tube. Sulfur compounds in the sulfur compound-containing fuel gas introduced from the introduction pipe 1 are adsorbed and removed in the adsorbent packed bed 2 and discharged from the discharge pipe 3 as a treated fuel gas.

【0018】[0018]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例により制限されない
ことは勿論である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited by these Examples.

【0019】〈供試吸着剤の調製〉ゼオライトとして、
市販のβ型ゼオライト(東ソー社製、商品名:HSZー
930HOD1A)を用いた。このゼオライトの化学組
成はNa2O=0.03wt%、SiO2/Al23=2
7.4(モル比)であり、バインダーとしてアルミナ2
0wt%を用いて円柱形のペレット(直径1.5mm、
長さ=3〜4mm)に成形したものである。一方、塩化
ナトリウム、硝酸銀、酢酸銅、硫酸亜鉛、硫酸鉄、酢酸
コバルト、酢酸ニッケルの各金属塩を蒸留水に溶解し
て、これら各金属塩の水溶液を得た。
<Preparation of sample adsorbent> As zeolite,
A commercially available β-type zeolite (trade name: HSZ-930HOD1A, manufactured by Tosoh Corporation) was used. The chemical composition of this zeolite is Na 2 O = 0.03 wt%, SiO 2 / Al 2 O 3 = 2
7.4 (molar ratio) and alumina 2 as a binder.
Using 0 wt%, a cylindrical pellet (1.5 mm in diameter,
(Length = 3-4 mm). On the other hand, each metal salt of sodium chloride, silver nitrate, copper acetate, zinc sulfate, iron sulfate, cobalt acetate, and nickel acetate was dissolved in distilled water to obtain an aqueous solution of each of these metal salts.

【0020】これら各金属塩水溶液を用いて、図2に示
す各種イオン交換方法により、上記ゼオライト中の水素
イオンをこれら金属イオンと交換させた後、100ml
蒸留水(図2中DIW)にて5回洗浄し、次いで乾燥、
焼成した。表1にこれに用いた各条件等をまとめて示し
ている(表1中、吸着剤名の欄には略号「元素記号(C
u等)ーβ」で示しているが、同欄中、例えば「Cuー
β」とはβ型ゼオライトにCuをイオン交換により担持
させたものの意味であり、この点表2についても同じで
ある)。なお、乾燥及び焼成条件は各吸着剤とも共通で
あり、乾燥は空気中において100℃で1日行い、また
焼成は乾燥窒素中において400℃で2時間行った。こ
うして、上記ゼオライトに各金属Na、Ag、Cu、Z
n、Fe、Co、Niをイオン交換により担持させた各
供試吸着剤を得た。
The hydrogen ions in the zeolite were exchanged with these metal ions by various ion exchange methods shown in FIG.
Wash 5 times with distilled water (DIW in FIG. 2), then dry,
Fired. Table 1 summarizes the conditions and the like used for this (in the column of adsorbent name in Table 1, the abbreviation "element symbol (C
u, etc.)-β ”, for example, in the same column,“ Cu-β ”means that β-type zeolite carries Cu by ion exchange, and the same applies to this point table 2. ). The drying and firing conditions were the same for each adsorbent. Drying was performed in air at 100 ° C. for 1 day, and firing was performed in dry nitrogen at 400 ° C. for 2 hours. Thus, each of the metals Na, Ag, Cu, Z is added to the zeolite.
Each sample adsorbent in which n, Fe, Co, and Ni were supported by ion exchange was obtained.

【0021】[0021]

【表 1】 [Table 1]

【0022】〈硫黄化合物の吸着試験1〉図3に示す試
験装置を用いて硫黄化合物の吸着試験を実施した。図3
中、4が充填塔(円筒反応管)であり、これに上記で得
た各供試吸着剤を充填し、それぞれについて硫黄化合物
の吸着試験を実施した。各供試吸着剤による硫黄化合物
の吸着量は充填塔の出口から経時的にサンプリングし、
GCーFPD(炎光光度検出器付きのガスクロマトグラ
フ)により連続的に測定して濃度を求めた。この測定
は、供試吸着剤による硫黄化合物除去性能を破過試験
(breakーthroughーtest)によって調
べた。
<Sulfur Compound Adsorption Test 1> A sulfur compound adsorption test was carried out using the test apparatus shown in FIG. FIG.
Among them, reference numeral 4 denotes a packed tower (cylindrical reaction tube), which was filled with each of the test adsorbents obtained above, and subjected to a sulfur compound adsorption test for each. The amount of sulfur compounds adsorbed by each test adsorbent was sampled over time from the outlet of the packed tower,
The concentration was determined by continuous measurement using a GC-FPD (gas chromatograph equipped with a flame photometric detector). In this measurement, the ability of the test adsorbent to remove sulfur compounds was examined by a break-through test.

【0023】試験条件は以下のとおりとした。充填塔:
28.4mm(直径)×63.2mm(高さ)、試験ガ
ス:都市ガス(13A)、試験ガス中の硫黄化合物濃
度:4.4mgーSNm3(DMS=50wt%、TB
M=50wt%、これはDMS=1.8ppm、TBM
=1.2ppmに相当する)、ガス流量:340L/
h、LV(ガスの線速度)=15cm/sec、SV
(空間速度)=8500h-1、試験ガス中の水分濃度:
露点−30℃(≒376ppm:水分量)、温度:室
温、圧力:常圧。本吸着試験は比較例を含めてすべて同
一装置、同一条件で実施した。
The test conditions were as follows. Packing tower:
28.4 mm (diameter) × 63.2 mm (height), test gas: city gas (13 A), sulfur compound concentration in test gas: 4.4 mg-SNm 3 (DMS = 50 wt%, TB
M = 50 wt%, which is DMS = 1.8 ppm, TBM
= 1.2 ppm), gas flow rate: 340 L /
h, LV (linear velocity of gas) = 15 cm / sec, SV
(Space velocity) = 8500 h −1 , moisture concentration in test gas:
Dew point -30 ° C (≒ 376 ppm: water content), temperature: room temperature, pressure: normal pressure. This adsorption test was performed under the same apparatus and under the same conditions, including the comparative examples.

【0024】表2は上記吸着試験の結果である。表2に
は、各供試吸着剤及び市販のβ型ゼオライト自体(H
型、比較例1)のほか、比較例として、市販の各種吸着
剤及び吸着作用を有すると思われる各種多孔質材料につ
いて、上記と同じく吸着試験を行った結果も示してい
る。表2中の硫黄吸着容量(硫黄化合物吸着量)は、吸
着塔出口における各硫黄化合物濃度が0.1ppmに達
した時点までの吸着量を示し、式〔吸着量(wt%)=
吸着した硫黄化合物中の硫黄量(g)/吸着剤の重量
(g)×100〕により算出したものである。
Table 2 shows the results of the above adsorption test. Table 2 shows each test adsorbent and commercially available β-type zeolite itself (H
In addition to the mold and Comparative Example 1), as a comparative example, the results of the same adsorption test performed on various commercially available adsorbents and various porous materials that are considered to have an adsorption action are also shown. The sulfur adsorption capacity (sulfur compound adsorption amount) in Table 2 indicates the adsorption amount up to the time when each sulfur compound concentration at the outlet of the adsorption tower reaches 0.1 ppm, and is expressed by the formula [Adsorption amount (wt%) =
The amount of sulfur in the adsorbed sulfur compound (g) / the weight of the adsorbent (g) × 100].

【0025】[0025]

【表 2】 [Table 2]

【0026】表2のとおり、β型ゼオライトは疎水性の
ゼオライトの一種であるが、イオン種がHである基本形
(比較例2)では、硫黄化合物吸着量は0.054wt
%であるに過ぎない。このようにゼオライトが疎水性で
あるだけでは、水分を含む燃料ガス中の硫黄化合物を除
去できないことを示している。イオン種がアルカリ金属
のNaである比較例1ではさらに劣っており、水分を含
む燃料ガス中の硫黄化合物用の吸着剤としては有用でな
いことを示している。
As shown in Table 2, the β-type zeolite is a kind of hydrophobic zeolite, but in the basic form in which the ionic species is H (Comparative Example 2), the adsorption amount of the sulfur compound is 0.054 wt.
It is only a percentage. Thus, the fact that zeolite is merely hydrophobic cannot remove sulfur compounds in fuel gas containing water. Comparative Example 1, in which the ionic species is alkali metal Na, is even worse, indicating that it is not useful as an adsorbent for sulfur compounds in fuel gas containing water.

【0027】これに対して、β型ゼオライトに対してC
uをイオン交換担持した場合(実施例1)の硫黄化合物
吸着量は1.1wt%、同じくAgをイオン交換により
担持させた場合(実施例2)の硫黄化合物吸着量は1.
7wt%であり、格段に改善されていることが分かる。
またβ型ゼオライトに対してZnをイオン交換担持した
場合(実施例3)の硫黄化合物吸着量は0.24wt
%、同じくFe、Ni、Coをイオン交換担持した場合
(実施例4〜6)の硫黄化合物吸着量は0.14〜0.
13wt%であり、Ag、Cuの場合に比べれば少ない
が、硫黄化合物吸着能がそれぞれ有効改善されているこ
とが分かる。
On the other hand, for β-zeolite, C
The amount of sulfur compound adsorbed when u was supported by ion exchange (Example 1) was 1.1 wt%, and the amount of sulfur compound adsorbed when Ag was supported by ion exchange (Example 2) was 1.
It is 7 wt%, which indicates that it is significantly improved.
When Zn was ion-exchanged and supported on β-zeolite (Example 3), the amount of sulfur compound adsorbed was 0.24 wt.
%, And when Fe, Ni, and Co are ion-exchanged and supported (Examples 4 to 6), the sulfur compound adsorption amount is 0.14 to 0.1%.
It is 13 wt%, which is smaller than that of Ag and Cu, but it can be seen that the sulfur compound adsorption ability is effectively improved.

【0028】表2中、比較例3〜10はβ型以外のゼオ
ライト、比較例11〜18はゼオライト以外の吸着剤種
を用いた例であるが、いずれにおいても0.1wt%以
下の硫黄化合物吸着量に過ぎない。以上のとおり、本発
明に係る吸着剤における優れた硫黄化合物の吸着効果は
明らかである。
In Table 2, Comparative Examples 3 to 10 are examples using zeolite other than β-type, and Comparative Examples 11 to 18 are examples using adsorbents other than zeolite. It is only the amount of adsorption. As described above, the excellent sulfur compound adsorption effect of the adsorbent according to the present invention is apparent.

【0029】〈硫黄化合物の吸着試験2:実施例7〉硫
黄化合物の吸着試験1は試験ガスに水分を含む条件での
試験であるが、本吸着試験2では、β型ゼオライトに対
してCuをイオン交換担持した吸着剤(実施例1)につ
いて、試験ガス中の水分濃度を異ならせて試験した。試
験条件は、試験ガス中の水分濃度:露点−60℃(≒1
0ppm:水分量)とした以外は、吸着試験1と同じ条
件で試験した。表3はその結果である。対比のため実施
例1を併記している。表3のとおり、硫黄化合物吸着量
は1.6wt%であり、露点−60℃、すなわちドライ
条件下での硫黄化合物吸着量はさらに優れていることが
分かる。実施例1の硫黄化合物吸着量は1.1wt%で
あり、水分を含む条件でも格段に改善されているが、ド
ライ条件下での硫黄化合物吸着量は、水分を含む条件下
である実施例1に比べて約4割の性能向上である。
<Sulfur Compound Adsorption Test 2: Example 7> Sulfur compound adsorption test 1 is a test under the condition that the test gas contains moisture. In this adsorption test 2, Cu was added to β-type zeolite. The ion-exchanged adsorbent (Example 1) was tested with different moisture concentrations in the test gas. The test conditions were as follows: moisture concentration in test gas: dew point −60 ° C. ($ 1
The test was performed under the same conditions as in the adsorption test 1 except that the amount was 0 ppm: water content). Table 3 shows the results. Example 1 is also shown for comparison. As shown in Table 3, the sulfur compound adsorption amount is 1.6 wt%, and it is understood that the sulfur compound adsorption amount under the dew point of -60 ° C, that is, the dry condition, is further excellent. The adsorption amount of the sulfur compound in Example 1 was 1.1 wt%, which was remarkably improved even under the condition including water. However, the adsorption amount of the sulfur compound under the dry condition was the condition under the condition including water. Approximately 40% of the performance is improved.

【0030】[0030]

【表 3】 [Table 3]

【0031】〈硫黄化合物の吸着試験3:実施例8〉硫
黄化合物の吸着試験1〜2は硫黄成分としてDMS(サ
ルファイド類)とTBM(メルカプタン類)を含む試験
ガスについての試験であるが、本吸着試験3では、β型
ゼオライトに対してCuをイオン交換担持した吸着剤
(実施例1)について、試験ガス中の硫黄成分を異なら
せ、THT(チオフェン類)を含む試験ガスについて試
験した。試験条件は以下のとおりとした。充填塔:15
mm(直径)×66mm(高さ)、試験ガス:都市ガス
(13A)、試験ガス中の硫黄化合物濃度:10mgー
SNm3(これはTHT=7.0ppmに相当する)、
ガス流量:65L/h、LV(ガスの線速度)=10c
m/sec、SV(空間速度)=5500h-1、試験ガ
ス中の水分濃度:露点−60℃(≒10ppm:水分
量)、温度:室温、圧力:常圧。表4はその結果であ
る。対比のため実施例7を併記している。表4のとお
り、硫黄化合物(THT)吸着量は2.2wt%であ
り、本発明の吸着剤はTHT吸着能にも優れていること
が分かる。これはDMS+TBM吸着量よりさらに優れ
た性能である。
<Sulfur Compound Adsorption Test 3: Example 8> Sulfur compound adsorption tests 1 and 2 are tests on test gases containing DMS (sulfides) and TBM (mercaptans) as sulfur components. In the adsorption test 3, the adsorbent (Example 1) in which Cu was ion-exchanged and supported on β-type zeolite was tested with a test gas containing THT (thiophenes) with different sulfur components in the test gas. The test conditions were as follows. Packing tower: 15
mm (diameter) × 66 mm (height), test gas: city gas (13 A), sulfur compound concentration in test gas: 10 mg-SNm 3 (this corresponds to THT = 7.0 ppm),
Gas flow rate: 65 L / h, LV (linear velocity of gas) = 10 c
m / sec, SV (space velocity) = 5500 h -1 , moisture concentration in test gas: dew point −60 ° C. (≒ 10 ppm: moisture content), temperature: room temperature, pressure: normal pressure. Table 4 shows the results. Example 7 is also shown for comparison. As shown in Table 4, the amount of sulfur compound (THT) adsorbed was 2.2 wt%, and it can be seen that the adsorbent of the present invention is also excellent in THT adsorption ability. This is a performance superior to the DMS + TBM adsorption amount.

【0032】[0032]

【表 4】 [Table 4]

【0033】〈硫黄化合物の吸着試験4:実施例9〉硫
黄化合物の吸着試験1〜3は、吸着剤充填塔出口から経
時的にサンプリングをし、GCーFPD(炎光光度検出
器付きのガスクロマトグラフ)により分析してその吸着
性能を評価したが、本吸着試験4では、β型ゼオライト
に対してCuをイオン交換担持した吸着剤(実施例1:
実施例7も同じ)について、より高感度で極低硫黄濃度
分析が可能なGCーSCD(硫黄化学発光検出器付きの
ガスクロマトグラフ)により吸着剤充填塔出口ガスの分
析を行った。試験条件は吸着試験2と同じ条件で試験し
た。表5はその結果である。対比のためGCーFPDを
用いた実施例7における対応値を併記している。
<Sulfur Compound Adsorption Test 4: Example 9> In the sulfur compound adsorption tests 1 to 3, the GC-FPD (gas chromatograph equipped with a flame photometric detector) was used for sampling over time from the outlet of the adsorbent packed tower. The adsorption performance was evaluated by analyzing the adsorbent by using an adsorbent obtained by ion-exchange-supporting Cu on β-zeolite (Example 1:
For Example 7), the gas at the outlet of the adsorbent-packed tower was analyzed by GC-SCD (gas chromatograph equipped with a sulfur chemiluminescence detector), which is capable of higher sensitivity and extremely low sulfur concentration analysis. The test conditions were the same as those in the adsorption test 2. Table 5 shows the results. For comparison, corresponding values in Example 7 using GC-FPD are also shown.

【0034】[0034]

【表 5】 [Table 5]

【0035】前記のとおり、硫黄化合物を除去した燃料
ガス中に含まれている残留硫黄化合物濃度は、できるだ
け低濃度であることが望ましいが、表5から明らかなと
おり、本発明の吸着剤によれば、都市ガス中の硫黄成分
は7ppb以下という極低濃度まで吸着除去されている
ことが分かる。
As described above, it is desirable that the concentration of the residual sulfur compound contained in the fuel gas from which the sulfur compound has been removed be as low as possible. From this, it can be seen that the sulfur component in the city gas has been adsorbed and removed to an extremely low concentration of 7 ppb or less.

【0036】[0036]

【発明の効果】本発明によれば、疎水性ゼオライトに特
定の金属をイオン交換により担持させることにより、燃
料ガス中の水分濃度に関わらず、燃料ガス中における硫
黄化合物の吸着特性を格段に改善することができる。こ
れにより、吸着剤の必要量を少なくできるだけでなく、
再生頻度、交換頻度を少なくでき、DMS等の硫黄化合
物を含む燃料ガスから硫黄化合物を有効に除去すること
ができる。
According to the present invention, by adsorbing a specific metal on a hydrophobic zeolite by ion exchange, the adsorption characteristics of sulfur compounds in the fuel gas are remarkably improved regardless of the water concentration in the fuel gas. can do. This not only reduces the amount of adsorbent needed,
The frequency of regeneration and replacement can be reduced, and sulfur compounds can be effectively removed from fuel gas containing sulfur compounds such as DMS.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置の一態様例を示す図。FIG. 1 is a diagram showing an example of an embodiment of an apparatus for implementing the present invention.

【図2】実施例でイオン交換に使用した撹拌法、含
浸法及び流通法の三法の概略を示す図。
FIG. 2 is a diagram schematically illustrating three methods of a stirring method, an impregnation method, and a distribution method used for ion exchange in Examples.

【図3】実施例で使用した試験装置の概略を示す図。FIG. 3 is a diagram schematically illustrating a test apparatus used in the examples.

【符号の説明】[Explanation of symbols]

1 付臭剤含有ガス導入管 2 吸着剤充填層(反応管) 3 処理済みガス導出管 4 充填塔(円筒反応管) 1 Odorant-containing gas introduction tube 2 Adsorbent packed bed (reaction tube) 3 Treated gas outlet tube 4 Packing tower (cylindrical reaction tube)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D012 BA02 CA07 CB12 CE03 CG01 CG03 4G066 AA61B AA62B CA25 DA04 FA11 FA22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D012 BA02 CA07 CB12 CE03 CG01 CG03 4G066 AA61B AA62B CA25 DA04 FA11 FA22

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】燃料ガス中の硫黄化合物除去用吸着剤であ
って、疎水性ゼオライトにAg、Cu、Zn、Fe、C
o及びNiから選ばれた1種又は2種以上の遷移金属を
イオン交換により担持させてなることを特徴とする燃料
ガス中の硫黄化合物除去用吸着剤。
1. An adsorbent for removing sulfur compounds in fuel gas, wherein Ag, Cu, Zn, Fe, C are added to a hydrophobic zeolite.
An adsorbent for removing sulfur compounds in a fuel gas, wherein one or more transition metals selected from o and Ni are supported by ion exchange.
【請求項2】上記疎水性ゼオライトがβ型ゼオライトで
あることを特徴とする請求項1に記載の燃料ガス中の硫
黄化合物除去用吸着剤。
2. The adsorbent for removing sulfur compounds in fuel gas according to claim 1, wherein the hydrophobic zeolite is a β-type zeolite.
【請求項3】上記燃料ガスが都市ガス又はLPガスであ
る請求項1〜2のいずれかに記載の燃料ガス中の硫黄化
合物除去用吸着剤。
3. The adsorbent for removing sulfur compounds in fuel gas according to claim 1, wherein the fuel gas is city gas or LP gas.
【請求項4】上記燃料ガス中の硫黄化合物がサルファイ
ド類、チオフェン類及びメルカプタン類のうちの1種又
は2種以上の硫黄化合物である請求項1〜3のいずれか
に記載の燃料ガス中の硫黄化合物除去用吸着剤。
4. The fuel gas according to claim 1, wherein the sulfur compound in the fuel gas is one or more of a sulfide, a thiophene and a mercaptan. Adsorbent for removing sulfur compounds.
【請求項5】上記燃料ガス中の硫黄化合物を除去したガ
ス中の残留硫黄化合物濃度が数ppb以下であることを
特徴とする請求項1〜4のいずれかに記載の燃料ガス中
の硫黄化合物除去用吸着剤。
5. The sulfur compound in a fuel gas according to claim 1, wherein the concentration of the residual sulfur compound in the gas from which the sulfur compound in the fuel gas has been removed is several ppb or less. Adsorbent for removal.
【請求項6】硫黄化合物含有燃料ガスを、疎水性ゼオラ
イトにAg、Cu、Zn、Fe、Co及びNiから選ば
れた1種又は2種以上の遷移金属をイオン交換により担
持させてなる硫黄化合物除去用吸着剤に通すことを特徴
とする硫黄化合物含有燃料ガス中の硫黄化合物の除去方
法。
6. A sulfur compound comprising a sulfur compound-containing fuel gas and one or more transition metals selected from Ag, Cu, Zn, Fe, Co and Ni supported on a hydrophobic zeolite by ion exchange. A method for removing a sulfur compound from a sulfur compound-containing fuel gas, wherein the sulfur compound is passed through a removal adsorbent.
【請求項7】上記疎水性ゼオライトがβ型ゼオライトで
あることを特徴とする請求項6に記載の硫黄化合物含有
燃料ガス中の硫黄化合物の除去方法。
7. A method according to claim 6, wherein said hydrophobic zeolite is a β-type zeolite.
【請求項8】上記燃料ガス中の硫黄化合物がサルファイ
ド類、チオフェン類及びメルカプタン類のうちの1種又
は2種以上の硫黄化合物である請求項6〜7のいずれか
に記載の硫黄化合物含有燃料ガス中の硫黄化合物の除去
方法。
8. A sulfur compound-containing fuel according to claim 6, wherein the sulfur compound in the fuel gas is one or more of a sulfur compound, a thiophene and a mercaptan. A method for removing sulfur compounds in a gas.
【請求項9】上記燃料ガス中の硫黄化合物を除去したガ
ス中の残留硫黄化合物濃度が数ppb以下であることを
特徴とする請求項6〜8のいずれかに記載の硫黄化合物
含有燃料ガス中の硫黄化合物の除去方法。
9. The sulfur compound-containing fuel gas according to claim 6, wherein the concentration of the residual sulfur compound in the gas from which the sulfur compound in the fuel gas has been removed is several ppb or less. Method for removing sulfur compounds.
JP2000232780A 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same Expired - Lifetime JP3742284B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000232780A JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same
DK01102061T DK1121977T3 (en) 2000-02-01 2001-01-30 Procedure for Removing Sulfur Compounds from Combustible Gases
DE60128016T DE60128016T2 (en) 2000-02-01 2001-01-30 Process for the removal of sulfur compounds from fuel gases
AT01102061T ATE360478T1 (en) 2000-02-01 2001-01-30 METHOD FOR REMOVAL OF SULFUR COMPOUNDS FROM FUEL GASES
EP01102061A EP1121977B1 (en) 2000-02-01 2001-01-30 Method for removing sulfur compound from fuel gases
CA002332818A CA2332818C (en) 2000-02-01 2001-01-31 Adsorbent for removing sulfur compounds from fuel gases and removal method
US09/774,966 US20010014304A1 (en) 2000-02-01 2001-01-31 Adsorbent for removing sulfur compouns from fuel gases and removal method
AU16772/01A AU759217B2 (en) 2000-02-01 2001-02-01 Adsorbent for removing sulfur compounds from fuel gases and removal method
US10/429,913 US6875410B2 (en) 2000-02-01 2003-05-05 Adsorbent for removing sulfur compounds from fuel gases and removal method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000023955 2000-02-01
JP2000-23955 2000-02-01
JP2000232780A JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same

Publications (2)

Publication Number Publication Date
JP2001286753A true JP2001286753A (en) 2001-10-16
JP3742284B2 JP3742284B2 (en) 2006-02-01

Family

ID=26584637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232780A Expired - Lifetime JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same

Country Status (1)

Country Link
JP (1) JP3742284B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305123A (en) * 2000-04-25 2001-10-31 Tokyo Gas Co Ltd Method for judging life of sulfur compound adsorbent in combustion gas
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
JP2005294089A (en) * 2004-04-01 2005-10-20 Idemitsu Kosan Co Ltd Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell and fuel cell system using it
JP2006036616A (en) * 2004-07-30 2006-02-09 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
WO2006068135A1 (en) * 2004-12-24 2006-06-29 Idemitsu Kosan Co., Ltd. Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
KR100635960B1 (en) * 2003-12-08 2006-10-19 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 A purification material for purifying impure hydride gases, a method of making the same, a method for purifying the hydride gases and purified hydride gases produced by the purification method
JP2007146051A (en) * 2005-11-29 2007-06-14 Nippon Oil Corp Method for desulfurizing hydrocarbon-based fuel
WO2008149587A1 (en) 2007-03-07 2008-12-11 Nippon Oil Corporation Desulfurization system for hydrocarbon fuel
JP2010248288A (en) * 2009-04-10 2010-11-04 Idemitsu Kosan Co Ltd Apparatus and method for producing low-sulfur gasoline substrate
JP2011144296A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Odorant removing adsorbent in fuel gas under high dew point condition and method of removing odorant
JP2011201975A (en) * 2010-03-24 2011-10-13 Tokyo Gas Co Ltd Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point
CN102292138A (en) * 2009-01-22 2011-12-21 通用电气公司 Fluidized bed system for removing multiple pollutants from a fuel gas stream
WO2014200101A1 (en) * 2013-06-14 2014-12-18 日本化学工業株式会社 Mn+-substituted beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide
WO2015080093A1 (en) * 2013-11-27 2015-06-04 Jx日鉱日石エネルギー株式会社 Desulfurizing agent, desulfurizer and method for manufacturing desulfurizer
WO2018216555A1 (en) 2017-05-25 2018-11-29 大阪瓦斯株式会社 Desulfurizing agent for gases, and gas desulfurization method
WO2020153225A1 (en) 2019-01-23 2020-07-30 大阪瓦斯株式会社 Desulfurizing agent for gas and desulfurization method for gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157039A (en) * 1988-12-08 1990-06-15 Tosoh Corp Deodorant
JPH06306377A (en) * 1993-04-23 1994-11-01 Nippon Steel Corp Removal of odorant from odorized gas
JPH119673A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Sulfur compound adsorbent and sulfur compound removing method
JPH11309371A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Sulfur compound adsorber and removal of sulfur compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157039A (en) * 1988-12-08 1990-06-15 Tosoh Corp Deodorant
JPH06306377A (en) * 1993-04-23 1994-11-01 Nippon Steel Corp Removal of odorant from odorized gas
JPH119673A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Sulfur compound adsorbent and sulfur compound removing method
JPH11309371A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Sulfur compound adsorber and removal of sulfur compound

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305123A (en) * 2000-04-25 2001-10-31 Tokyo Gas Co Ltd Method for judging life of sulfur compound adsorbent in combustion gas
JP4676690B2 (en) * 2002-11-05 2011-04-27 出光興産株式会社 METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
KR100635960B1 (en) * 2003-12-08 2006-10-19 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 A purification material for purifying impure hydride gases, a method of making the same, a method for purifying the hydride gases and purified hydride gases produced by the purification method
JP2005294089A (en) * 2004-04-01 2005-10-20 Idemitsu Kosan Co Ltd Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell and fuel cell system using it
JP2006036616A (en) * 2004-07-30 2006-02-09 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
WO2006068135A1 (en) * 2004-12-24 2006-06-29 Idemitsu Kosan Co., Ltd. Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
JP2007146051A (en) * 2005-11-29 2007-06-14 Nippon Oil Corp Method for desulfurizing hydrocarbon-based fuel
US8043989B2 (en) 2007-03-07 2011-10-25 Nippon Oil Corporation Desulfurization system for hydrocarbon fuel
WO2008149587A1 (en) 2007-03-07 2008-12-11 Nippon Oil Corporation Desulfurization system for hydrocarbon fuel
CN102292138A (en) * 2009-01-22 2011-12-21 通用电气公司 Fluidized bed system for removing multiple pollutants from a fuel gas stream
JP2010248288A (en) * 2009-04-10 2010-11-04 Idemitsu Kosan Co Ltd Apparatus and method for producing low-sulfur gasoline substrate
JP2011144296A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Odorant removing adsorbent in fuel gas under high dew point condition and method of removing odorant
JP2011201975A (en) * 2010-03-24 2011-10-13 Tokyo Gas Co Ltd Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point
WO2014200101A1 (en) * 2013-06-14 2014-12-18 日本化学工業株式会社 Mn+-substituted beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide
JP2015000828A (en) * 2013-06-14 2015-01-05 ユニゼオ株式会社 (+n)-VALENT M SUBSTITUTED BETA ZEOLITE, GAS ADSORPTION AGENT INCLUDING THE SAME AND PRODUCTION METHOD OF THE SAME, AS WELL AS REMOVAL METHOD OF NITROGEN MONOXIDE
US9968909B2 (en) 2013-06-14 2018-05-15 Mitsui Mining & Smelting Co., Ltd. Mn+-exchanged beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide
WO2015080093A1 (en) * 2013-11-27 2015-06-04 Jx日鉱日石エネルギー株式会社 Desulfurizing agent, desulfurizer and method for manufacturing desulfurizer
WO2018216555A1 (en) 2017-05-25 2018-11-29 大阪瓦斯株式会社 Desulfurizing agent for gases, and gas desulfurization method
US10814312B2 (en) 2017-05-25 2020-10-27 Osaka Gas Co., Ltd. Desulfurizing agent for gases and gas desulfurization method
WO2020153225A1 (en) 2019-01-23 2020-07-30 大阪瓦斯株式会社 Desulfurizing agent for gas and desulfurization method for gas

Also Published As

Publication number Publication date
JP3742284B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3895134B2 (en) Fuel gas desulfurization apparatus and desulfurization method
EP1121977B1 (en) Method for removing sulfur compound from fuel gases
JP3742284B2 (en) Adsorbent for sulfur compounds in fuel gas and method for removing the same
US7901486B2 (en) Removal of heavy metals from hydrocarbon gases
US20020009404A1 (en) Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
JPH0147216B2 (en)
US6875410B2 (en) Adsorbent for removing sulfur compounds from fuel gases and removal method
US20080197051A1 (en) Desulfurizing Agent for Removing Organic Sulfur Compounds, Preparation Method thereof and Method for Removing Organic Sulfur Compounds Using the Same
SA98190366B1 (en) Process for removing contaminant compounds containing one or more sulfur, nitrogen and/or oxygen heterogeneous atoms from a hydrocarbon
WO2008021968A2 (en) Process for removal of mercury from gas stream
JP4026700B2 (en) Adsorbent for removing sulfur compounds in fuel gas
JP3483827B2 (en) Lifetime determination method for sulfur compound adsorbent in fuel gas
JP5032992B2 (en) Hydrocarbon oil desulfurization agent and desulfurization method
JP2008511725A (en) Desulfurization system and fuel stream desulfurization method
WO2004060840A2 (en) Multicomponent sorption bed for the desulfurization of hydrocarbons
JP3808416B2 (en) Apparatus and method for removing sulfur compounds in fuel gas at room temperature
JPH04265121A (en) Method for removing arsenic from gaseous material
JP2004277747A (en) Method of removing sulfur compound in fuel gas
JP5588181B2 (en) Adsorbent for removing odorant in fuel gas under high dew point condition and method for removing odorant
JP2003238977A (en) Apparatus for removing sulfur compound and fuel cell
JP2011201975A (en) Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point
JP2010037480A (en) Device for removing odorant in fuel gas
JP4454054B2 (en) Sulfur compound adsorbent and sulfur compound removal method
JPH04214794A (en) Removal of mercury in liquid hydrocarbon
JP2010209223A (en) Method for decomposing tertiary butyl mercaptan

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Ref document number: 3742284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term