JP2001283901A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JP2001283901A
JP2001283901A JP2000097194A JP2000097194A JP2001283901A JP 2001283901 A JP2001283901 A JP 2001283901A JP 2000097194 A JP2000097194 A JP 2000097194A JP 2000097194 A JP2000097194 A JP 2000097194A JP 2001283901 A JP2001283901 A JP 2001283901A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
negative electrode
storage battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097194A
Other languages
Japanese (ja)
Inventor
Hideyuki Asanuma
英之 浅沼
Takeo Hamamatsu
浜松太計男
Takashi Nagase
敬 長瀬
Masao Inoue
雅雄 井上
Eiji Enishi
英二 江西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000097194A priority Critical patent/JP2001283901A/en
Publication of JP2001283901A publication Critical patent/JP2001283901A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery that has an electrode plate structure, in which the utilization ratio of active material does not decrease, even if the filling density of the active material is increased and that the cycle characteristic, and to improve discharge capacity. SOLUTION: A positive electrode is composed of two sheets of electrode plates 11, 11, having a liquid-holding member 14 made of woven or unwoven cloth in-between. A negative electrode is composed of two hydrogen-storing alloy negative electrode plates 13, 13 connected by a joining portion 13a. A separator 16 is placed between these positive and negative electrode, and then the joining portion 13a of the two hydrogen-storing alloy negative electrode plate 13, 13 is folded back and made into a laminated structure. These laminated structures are piled in layers and made into an electrode plate group 10a. The alkaline battery comprises this electrode plate group 10a in a rectangular outer package can. Thereby, an electrolyte is immersed inside the positive electrode plate 11, 11 and promotes charging and discharging reactions in the positive electrode plate 11, 11, so that the utilization ratio of the active material is improved, and discharging capacity is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル−水素蓄電
池、ニッケル−カドミウム蓄電池などの正極板と負極板
とをセパレータを介して積層した極板群を備えたアルカ
リ蓄電池に係り、特に、これらの極板の高密度化構造お
よび補液構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery provided with an electrode group in which a positive electrode plate and a negative electrode plate, such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery, are laminated with a separator interposed therebetween. It relates to a densified structure and a rehydration structure of a plate.

【0002】[0002]

【従来の技術】近年、正極板と負極板をセパレータを介
して渦巻状に巻回した渦巻状極板群を備えた円筒型アル
カリ蓄電池に代わり、電池使用機器内での体積効率を高
めるために角型アルカリ蓄電池が開発されるようになっ
た。この種の角型アルカリ蓄電池においては、正極板と
負極板をセパレータを介して交互に積層した極板群を角
型の外装缶内に挿入し、正極板より延出する正極リード
を正極端子に接続し、負極板より延出する負極リードを
負極端子に接続した後、電解液を注入し、開口部を封口
体で封止して作製するようにしている。
2. Description of the Related Art In recent years, instead of a cylindrical alkaline storage battery having a spirally wound electrode plate group in which a positive electrode plate and a negative electrode plate are spirally wound with a separator interposed therebetween, in order to increase the volumetric efficiency in battery-powered equipment. Prismatic alkaline storage batteries have been developed. In this type of prismatic alkaline storage battery, a positive electrode plate and a negative electrode plate are alternately laminated via a separator, and an electrode plate group is inserted into a rectangular outer can, and a positive electrode lead extending from the positive electrode plate is connected to a positive electrode terminal. After connection, a negative electrode lead extending from the negative electrode plate is connected to the negative electrode terminal, an electrolytic solution is injected, and the opening is sealed with a sealing body.

【0003】この種の角型アルカリ蓄電池は携帯電話、
ノートブック型パーソナルコンピュータ等の携帯機器用
電源としての需要が急速に拡大し、これに伴って、角型
アルカリ蓄電池のさらなる高容量化、長寿命化が要求さ
れるようになった。このため、この種の角型アルカリ蓄
電池は、例えば、帯状の芯体を共通にしてその左右に2
つの負極板を形成した後、その中央部(連結部)をU字
状に折曲し、U字状に折曲された2つの負極板間にセパ
レータを介して正極板を挟持させた積層構造体の間にセ
パレータを介して正極板を積層して極板群とし、この極
板群を電解液とともに角型外装缶内に挿入して製造され
る。
[0003] This type of prismatic alkaline storage battery is used for mobile phones,
Demand for a power source for portable devices such as notebook personal computers has rapidly expanded, and accordingly, a higher capacity and longer life of a rectangular alkaline storage battery has been required. For this reason, this type of prismatic alkaline storage battery has, for example, a common band-shaped core and two
After forming two negative plates, the central part (connection part) is bent in a U-shape, and a positive plate is sandwiched between two U-shaped bent negative plates via a separator. A positive electrode plate is laminated with a separator interposed between the bodies to form an electrode plate group, and the electrode plate group is inserted into a rectangular outer can together with an electrolytic solution.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した角
型のアルカリ蓄電池のエネルギー密度をさらに増大させ
ようとした場合、電池の充放電反応に関与しないセパレ
ータを薄型にすれば、セパレータが薄くなった分だけ活
物質の充填量を増加させることが可能となって高エネル
ギー密度で高容量の電池が得られるようになる。しかし
ながら、セパレータを薄型にすればするほどセパレータ
の機械的強度が減少して、内部短絡が発生するようにな
るので、セパレータの薄型化には限界があった。
By the way, in order to further increase the energy density of the above-described prismatic alkaline storage battery, if the separator which does not participate in the charge / discharge reaction of the battery is made thinner, the separator becomes thinner. It is possible to increase the filling amount of the active material by the amount, so that a battery with high energy density and high capacity can be obtained. However, as the separator is made thinner, the mechanical strength of the separator is reduced and an internal short circuit occurs, so that there is a limit to the thickness of the separator.

【0005】ここで、例えば、図7に示すように、中央
の折曲部(連結部)22aでU字状に折曲された2つの
負極板22,22間にセパレータ23を介して正極板2
1を挟持させて積層構造体とし、これらの2つの積層構
造体の間にセパレータ23を介して正極板21を積層し
て極板群20とし、この極板群20を電解液とともに角
型外装缶内に挿入してアルカリ蓄電池を形成すると、セ
パレータ23は6枚が必要となる。
Here, as shown in FIG. 7, for example, a cathode plate is interposed between two anode plates 22, 22 bent in a U-shape at a central bent portion (connection portion) 22a with a separator 23 interposed therebetween. 2
1 is sandwiched between them to form a laminated structure, and a positive electrode plate 21 is laminated between these two laminated structures with a separator 23 interposed therebetween to form an electrode plate group 20. When an alkaline storage battery is formed by inserting it in a can, six separators 23 are required.

【0006】ところが、セパレータを薄型化する代わり
に電池内に配置するセパレータの枚数を減少させ、セパ
レータが減少した分だけ極板の厚みを増大させて活物質
の充填量を増加させると、図3に示すように、中央の折
曲部(連結部)13aでU字状に折曲された2つの負極
板13,13間にセパレータ16を介して厚みの厚い正
極板12を挟持させて積層構造体とし、これらの2つの
積層構造体を積層して極板群10xとして、この極板群
10xを電解液とともに外装缶内に挿入してアルカリ蓄
電池を形成すると、セパレータは4枚だけで済むように
なる。
However, instead of reducing the thickness of the separator, the number of separators arranged in the battery is reduced, and the thickness of the electrode plate is increased by the reduced number of separators to increase the filling amount of the active material. As shown in the figure, a thick positive electrode plate 12 is sandwiched between two negative plates 13 and 13 bent in a U-shape at a central bent portion (connecting portion) 13a with a separator 16 interposed therebetween. When these two laminated structures are laminated to form an electrode group 10x, and the electrode group 10x is inserted into an outer can together with an electrolytic solution to form an alkaline storage battery, only four separators are required. become.

【0007】このように、セパレータを薄型化する代わ
りに電池内に配置するセパレータの枚数を減少させれ
ば、セパレータの挿入枚数が減少した分だけ極板の厚み
を増加させて活物質の充填量を増加させることが可能と
なるので、高エネルギー密度で高容量の電池が得られる
ようになる。しかしながら、活物質を高密度に充填し
て、厚みが厚い極板を作製することは困難であるという
問題を生じた。また、極板芯体として、三次元網目構造
の多孔性基板(発泡ニッケルなど)を極板芯体として用
いた極板を製造する場合、極板芯体自体の厚みを厚くす
ることが困難であるという問題も生じた。
As described above, if the number of separators arranged in the battery is reduced instead of reducing the thickness of the separators, the thickness of the electrode plate is increased by the reduced number of inserted separators, thereby increasing the amount of the active material. Can be increased, so that a battery with high energy density and high capacity can be obtained. However, there has been a problem that it is difficult to fill the active material at a high density to produce a thick electrode plate. Further, when manufacturing an electrode plate using a porous substrate having a three-dimensional mesh structure (such as foamed nickel) as the electrode plate core, it is difficult to increase the thickness of the electrode plate itself. There was also a problem.

【0008】さらに、この種のアルカリ蓄電池は充放電
に伴って正極が膨張(膨潤)するため、正極での電解液
の保持率が低下するという、所謂、ドライアウト現象が
生じて、サイクル特性などの電池特性が低下するという
問題も生じた。また、活物質を高密度に充填するように
して、極板の厚みを厚くすると、極板の内部まで電解液
が侵入しにくくなって極板内部での反応性が低下し、活
物質利用率が低下して放電容量が低下するという問題も
生じた。そこで、本発明は上記問題点を解消するために
なされたものであって、活物質の充填密度を向上させて
も活物質利用率が低下しない極板構造として、サイクル
特性および放電容量が向上したアルカリ蓄電池を提供す
ることを目的とするものである。
Further, in this type of alkaline storage battery, since the positive electrode expands (swells) with charging and discharging, the so-called dry-out phenomenon occurs in which the retention rate of the electrolytic solution at the positive electrode is reduced, and the cycle characteristics and the like are increased. In addition, there was a problem that the battery characteristics of the battery deteriorated. In addition, when the thickness of the electrode plate is increased by filling the active material at a high density, it is difficult for the electrolyte solution to penetrate into the inside of the electrode plate, and the reactivity inside the electrode plate is reduced. And the discharge capacity is reduced. Therefore, the present invention has been made in order to solve the above problems, and as an electrode plate structure in which the active material utilization rate does not decrease even if the packing density of the active material is improved, cycle characteristics and discharge capacity have been improved. It is an object to provide an alkaline storage battery.

【0009】[0009]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するため、本発明のアルカリ蓄電池は、正
極あるいは負極の少なくとも一方は電解液を保持する保
液部材を備えるようにしている。このように、極板に電
解液を保持する保液部材を備えるようにすると、活物質
が膨潤しても電解液は保液部材から供給することができ
るので、電解液の保持率が低下することなく、ドライア
ウト現象の発生を防止することができる。これにより、
極板の内部まで電解液が侵入するため、極板内部におい
ても充放電反応が促進されて、活物質利用率が向上し、
放電容量が増大することとなる。
Means for Solving the Problems and Functions / Effects To attain the above object, the alkaline storage battery of the present invention has at least one of a positive electrode and a negative electrode provided with a liquid retaining member for holding an electrolytic solution. As described above, when the electrode plate is provided with the liquid retaining member that retains the electrolytic solution, even if the active material swells, the electrolytic solution can be supplied from the liquid retaining member, and the retention rate of the electrolytic solution decreases. Without this, the occurrence of the dryout phenomenon can be prevented. This allows
Since the electrolyte infiltrates the inside of the electrode plate, the charge / discharge reaction is promoted even inside the electrode plate, and the active material utilization rate is improved,
The discharge capacity will increase.

【0010】また、本発明のアルカリ蓄電池は、正極あ
るいは負極の少なくとも一方は複数の極板を積層して構
成されるとともに、この極板間に電解液を保持する保液
部材を備えるようにしている。このように、正極あるい
は負極の少なくとも一方を積層構造としてこれらの極板
間に電解液を保持する保液部材を備えると、積層される
極板の厚みを薄く形成できるので、これらの極板の活物
質の充填密度を高密度にすることが可能となる。これに
より、積層された極板の容量が増大するとともに、積層
された極板間に保液部材を備えているため、積層された
極板内部においても充放電反応が促進されて活物質利用
率が向上し、電解液の保持率が低下することなく、ドラ
イアウト現象の発生を防止することができるようにな
る。
In the alkaline storage battery of the present invention, at least one of the positive electrode and the negative electrode is formed by laminating a plurality of electrode plates, and has a liquid retaining member for holding an electrolytic solution between the electrode plates. I have. As described above, when at least one of the positive electrode and the negative electrode is provided in a laminated structure and the liquid retaining member that holds the electrolytic solution between these plates is provided, the thickness of the laminated plates can be reduced. It is possible to increase the packing density of the active material. As a result, the capacity of the stacked electrode plates is increased, and since a liquid retaining member is provided between the stacked electrode plates, the charge / discharge reaction is promoted even inside the stacked electrode plates, and the active material utilization rate is increased. And the dryout phenomenon can be prevented from occurring without lowering the retention rate of the electrolytic solution.

【0011】そして、保液部材としては、電解液の保持
性が良好な織布あるいは不織布とすることが好ましく、
また、アルカリ電解液中で使用されるため、耐アルカリ
性の材質を用いる必要がある。また、保液材は極板内に
備えられるので、短絡防止するための機械的強度は必要
ではなく、単に保液性が良好な材質であればよい。この
ことから、短絡防止機能を有するセパレータよりも保液
率が大きい材質により形成し、特に、親水性処理が施さ
れているものが望ましい。
[0011] The liquid retaining member is preferably a woven or non-woven fabric having good retention of the electrolyte.
Further, since it is used in an alkaline electrolyte, it is necessary to use an alkali-resistant material. Further, since the liquid retaining material is provided in the electrode plate, it is not necessary to have a mechanical strength for preventing a short circuit, and it is sufficient if the liquid retaining material is simply a material having a good liquid retaining property. For this reason, it is desirable that the separator be formed of a material having a higher liquid retention rate than that of the separator having the function of preventing short-circuit, and be subjected to a hydrophilic treatment.

【0012】また、アルカリ蓄電池の正極活物質は充放
電に伴って膨潤しやすくなる性質がある。このため、正
極に保液部材を備えると、保液部材の効果を発揮するこ
とができるようになる。また、本発明のような保液部材
を備えた極板を用いる場合は、四角柱状に形成された極
板群を角型(四角柱状)に形成された外装缶内に挿入さ
れる電池に適用することが効果的である。そして、この
ような角型電池としては、ニッケル正極と水素吸蔵合金
負極を用いたニッケル−水素蓄電池とすることが望まし
い。
Further, the positive electrode active material of the alkaline storage battery has a property of easily swelling as it is charged and discharged. Therefore, when the positive electrode is provided with a liquid retaining member, the effect of the liquid retaining member can be exhibited. When an electrode plate provided with a liquid retaining member as in the present invention is used, a group of electrode plates formed in a quadrangular prism shape is applied to a battery inserted in an outer can formed in a square shape (rectangular prism shape). It is effective to do. As such a prismatic battery, a nickel-hydrogen storage battery using a nickel positive electrode and a hydrogen storage alloy negative electrode is desirable.

【0013】[0013]

【発明の実施の形態】以下に、本発明をニッケル−水素
蓄電池に適用した場合の実施形態を図に基づいて説明す
る。なお、図1は2枚の正極板の間に保液部材を備えた
正極と2枚の負極板が連結された負極の間にセパレータ
を介在させて積層した実施例1の極板群を模式的に示す
断面図である。図2は2枚の正極板の間に親水処理され
た保液部材を備えた正極と2枚の負極板が連結された負
極の間にセパレータを介在させて積層した実施例2の極
板群を模式的に示す断面図である。図3は厚みの厚い1
枚の正極板からなる正極と2枚の負極板が連結された負
極の間にセパレータを介在させて積層した比較例の極板
群を模式的に示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a nickel-hydrogen storage battery will be described below with reference to the drawings. FIG. 1 schematically illustrates the electrode group of Example 1 in which a separator is interposed between a positive electrode including a liquid retaining member between two positive electrode plates and a negative electrode in which two negative electrode plates are connected, with a separator interposed therebetween. FIG. FIG. 2 schematically illustrates a group of electrode plates of Example 2 in which a separator is interposed between a positive electrode having a liquid retaining member subjected to hydrophilic treatment between two positive electrode plates and a negative electrode in which two negative electrode plates are connected, with a separator interposed therebetween. FIG. FIG. 3 shows a thick 1
It is sectional drawing which shows typically the electrode group of the comparative example which laminated | stacked with the separator interposed between the positive electrode which consists of one positive electrode plate, and the negative electrode which two negative electrode plates were connected.

【0014】1.正極板の作製 (1)実施例 発泡ニッケルなどの三次元的に連続する空間を有する金
属多孔体(例えば、厚みが1.2mmのもの)からなる
芯体に水酸化ニッケルを主成分とする活物質スラリーを
充填し、乾燥した後、所定の厚み(例えば、0.63m
m)になるように圧延してニッケル正極板11を作製し
た。なお、水酸化ニッケルを主成分とする活物質スラリ
ーとしては、例えば、共沈成分として亜鉛2.5質量%
とコバルト1質量%を含有する水酸化ニッケル粉末10
質量部と、酸化亜鉛粉末3質量部との混合粉末に、ヒド
ロキシプロピルセルロースの0.2質量%水溶液を加え
て撹拌、混合したものを使用した。
1. Manufacture of Positive Electrode (1) Example An active material containing nickel hydroxide as a main component was formed on a core made of a porous metal body (for example, having a thickness of 1.2 mm) having a three-dimensionally continuous space such as foamed nickel. After filling and drying the substance slurry, a predetermined thickness (for example, 0.63 m
m) to produce a nickel positive electrode plate 11. In addition, as an active material slurry containing nickel hydroxide as a main component, for example, zinc 2.5% by mass as a coprecipitating component is used.
And nickel hydroxide powder 10 containing 1% by mass of cobalt
A 0.2 mass% aqueous solution of hydroxypropylcellulose was added to a mixed powder of 3 parts by mass of zinc oxide powder and stirred and mixed, and used.

【0015】(2)比較例 発泡ニッケル等などの三次元的に連続する空間を有する
金属多孔体(例えば、厚みが2.28mmのもの)から
なる芯体に、上述した実施例と同様の水酸化ニッケルを
主成分とする活物質スラリーを充填し、乾燥した後、所
定の厚み(例えば、1.38mm)になるように圧延し
てニッケル正極板12を作製した。なお、ニッケル正極
板12の厚みは、上述した実施例のニッケル正極板11
の2枚分の厚みと、後述する保液部材14,15の厚み
の和と等しくなるように調整した。
(2) Comparative Example A core made of a porous metal body (for example, having a thickness of 2.28 mm) having a three-dimensionally continuous space such as foamed nickel or the like is provided with the same water as in the above-described embodiment. An active material slurry containing nickel oxide as a main component was filled therein, dried, and then rolled to have a predetermined thickness (for example, 1.38 mm) to produce a nickel positive electrode plate 12. The thickness of the nickel positive electrode plate 12 is the same as that of the nickel positive electrode plate 11 of the above-described embodiment.
Was adjusted to be equal to the sum of the thicknesses of the two liquid retaining members 14 and 15 described later.

【0016】2.負極板の作製 Ti−Ni系あるいはLa(もしくはMm)−Ni系の
多元合金、例えば、MmNi3.4Co0.8Al0.2Mn0.6
合金よりなる水素吸蔵合金粉末に結着剤としてポリテト
ラフルオロエチレン(PTFE)粉末を水素吸蔵合金粉
末に対して5質量%を加えて混練して、負極活物質ペー
ストを作製した。この負極活物質ペーストを、パンチン
グメタル等からなる金属芯体にその中央部(連結部)1
3aが露出するように左右両側に塗着した後、両面から
加圧して中央部(連結部)13aで接続された2個の水
素吸蔵合金負極板13,13を作製した。なお、上述し
た実施例および比較例で作製した正極板11,12と負
極板13の容量比が同一となるように、負極活物質ペー
ストの充填量を調整した。
2. Preparation Ti-Ni-based or La (or Mm) -Ni system multi-alloy negative electrode plates, for example, MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6
A negative electrode active material paste was prepared by adding a polytetrafluoroethylene (PTFE) powder as a binder to a hydrogen storage alloy powder made of an alloy and adding 5% by mass to the hydrogen storage alloy powder and kneading the mixture. This negative electrode active material paste is applied to a central portion (connection portion) 1 of a metal core made of punching metal or the like.
After application to both left and right sides so that 3a was exposed, pressure was applied from both sides to produce two hydrogen storage alloy negative electrode plates 13, 13 connected at a central portion (connection portion) 13a. In addition, the filling amount of the negative electrode active material paste was adjusted so that the capacity ratio of the positive electrode plates 11 and 12 and the negative electrode plate 13 manufactured in the above-described Examples and Comparative Examples was the same.

【0017】なお、上述のようにして作製された実施例
および比較例の正極板厚み、正極活物質密度、正極活物
質量(実施例は正極板2枚)、負極活物質量および正極
基体目付(三次元的に連続する空間を有する金属多孔体
の基体目付)を測定し、比較例の正極板(負極板につい
ては、実施例と比較例は同じである)の数値を100と
してその比率を求めると、下記の表1に示すような結果
となった。
The thickness of the positive electrode plate, the density of the positive electrode active material, the amount of the positive electrode active material (two positive plates in the example), the amount of the negative electrode active material, and the weight of the positive electrode substrate of the examples and the comparative examples produced as described above. (Base weight of a porous metal body having a three-dimensionally continuous space) was measured, and the ratio of the positive electrode plate of the comparative example (the negative electrode plate is the same as that of the embodiment and the comparative example) was set to 100, and the ratio was set to 100. As a result, the results shown in Table 1 below were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】上記表1において、実施例と比較例の正極
活物質密度を比較すると、実施例の正極活物質密度が大
きいことが分かる。これは、実施例の正極板のように、
正極板の厚みを薄くすると活物質充填後の圧延が均一に
行えるため、正極活物質の高密度化が可能となる。これ
に対して、比較例の正極板にあっては、正極板の厚みが
厚くなると、活物質充填後の圧延が均一に行えなくなっ
て高密度化ができなくなるためである。なお、一般的
に、活物質の充填、圧延後に集電タブ(集電リード)を
溶接するために、集電タブが溶接される部分の活物質を
除去する必要があるが、正極板の厚みが厚くなると集電
タブの溶接部分に充填された活物質を完全に除去するこ
とが困難になるが、正極板の厚みを薄くすると、この活
物質の除去が容易になるというメリットも生じる。
In Table 1 above, comparing the positive electrode active material densities of the example and the comparative example, it can be seen that the positive electrode active material density of the example is large. This is, like the positive electrode plate of the example,
When the thickness of the positive electrode plate is reduced, the rolling after filling the active material can be performed uniformly, so that the density of the positive electrode active material can be increased. On the other hand, in the positive electrode plate of the comparative example, when the thickness of the positive electrode plate is large, rolling after filling the active material cannot be performed uniformly, and the density cannot be increased. Generally, in order to weld a current collecting tab (current collecting lead) after filling and rolling of the active material, it is necessary to remove the active material at a portion where the current collecting tab is welded. When the thickness of the positive electrode plate increases, it becomes difficult to completely remove the active material filled in the welded portion of the current collecting tab. However, when the thickness of the positive electrode plate is reduced, there is a merit that the removal of the active material is facilitated.

【0020】3.極板群の作製 (1)実施例1 上述のように作製した実施例の正極板11を2枚用い、
これらの2枚の正極板11,11の間に、厚みが0.1
2mmのポリプロピレン製の織布あるいは不織布からな
る保液部材14を介在させて正極とした。一方、上述の
ように作製した中央部(連結部)13aで接続された2
個の水素吸蔵合金負極板13,13を用いて負極とし
た。ついで、これらの正極と負極との間に厚みが0.1
2mmのポリプロピレン製のセパレータ16を介在させ
た後、2枚の水素吸蔵合金負極板13,13の中央部
(連結部)13aを折り曲げて積層構造体とした。これ
らの積層構造体を2組用いて積層して、図1に示すよう
な実施例1の極板群10aとした。
3. Production of Electrode Plate Group (1) Example 1 Using two positive electrode plates 11 of the example produced as described above,
The thickness between the two positive plates 11 is 0.1
A positive electrode was formed by interposing a liquid retaining member 14 made of a 2 mm polypropylene woven or nonwoven fabric. On the other hand, 2 connected at the central portion (connection portion) 13a manufactured as described above.
A negative electrode was formed using the hydrogen storage alloy negative electrode plates 13, 13. Next, the thickness between the positive electrode and the negative electrode was 0.1
After interposing a 2 mm polypropylene separator 16, the central portion (connection portion) 13 a of the two hydrogen storage alloy negative electrode plates 13, 13 was bent to form a laminated structure. Two sets of these laminated structures were laminated to form an electrode group 10a of Example 1 as shown in FIG.

【0021】(2)実施例2 上述のように作製した実施例の正極板11を2枚用い、
これらの2枚の正極板11,11の間に、厚みが0.1
2mmで、スルホン化処理によって親水処理を施したポ
リプロピレン製の織布あるいは不織布からなる保液部材
15を介在させて正極とした。一方、上述のように作製
した中央部(連結部)13aで接続された2個の水素吸
蔵合金負極板13,13を用いて負極とした。ついで、
これらの正極と負極との間に厚みが0.12mmのポリ
プロピレン製のセパレータ16を介在させた後、2枚の
水素吸蔵合金負極板13,13の中央部(連結部)13
aを折り曲げて積層構造体とした。これらの積層構造体
を2組用いて積層して、図2に示すような実施例2の極
板群10bとした。
(2) Embodiment 2 Using two positive plates 11 of the embodiment manufactured as described above,
The thickness between the two positive plates 11 is 0.1
The positive electrode was formed by interposing a liquid retaining member 15 made of a woven or nonwoven fabric made of polypropylene and having been subjected to hydrophilic treatment by sulfonation at 2 mm. On the other hand, a negative electrode was formed by using two hydrogen storage alloy negative electrode plates 13 and 13 connected at the central portion (connection portion) 13a produced as described above. Then
After interposing a polypropylene separator 16 having a thickness of 0.12 mm between the positive electrode and the negative electrode, the central part (connecting part) 13 of the two hydrogen-absorbing alloy negative electrodes 13, 13 is formed.
a was bent to obtain a laminated structure. Two sets of these stacked structures were stacked to form an electrode group 10b of Example 2 as shown in FIG.

【0022】(3)比較例 上述のように作製した比較例の正極板12を用いるとと
もに、上述のように作製した中央部(連結部)13aで
接続された2個の水素吸蔵合金負極板13,13を用い
て、これらの正極と負極との間に厚みが0.12mmの
ポリプロピレン製のセパレータ16を介在させた後、2
枚の水素吸蔵合金負極板13,13の中央部(連結部)
13aを折り曲げて積層構造体とした。これらの積層構
造体を2組用いて積層して、図3に示すような比較例の
極板群10xとした。
(3) Comparative Example While using the positive electrode plate 12 of the comparative example manufactured as described above, the two hydrogen-absorbing alloy negative electrode plates 13 connected at the central portion (connection portion) 13a manufactured as described above. , 13, a polypropylene separator 16 having a thickness of 0.12 mm is interposed between the positive electrode and the negative electrode.
Central part (connection part) of two hydrogen storage alloy negative electrode plates 13, 13
13a was bent to form a laminated structure. Two sets of these laminated structures were laminated to form a group of electrode plates 10x of a comparative example as shown in FIG.

【0023】4.ニッケル−水素蓄電池の作製 上述のように作製した各極板群10a,10b,10x
をそれぞれ有底四角柱状(角型)の金属外装缶内に挿入
し、各極板群10a,10b,10xの両端部の水素吸
蔵合金負極板13と金属外装缶の内側面とを緊密に接触
させるとともに、金属芯体が露出した中央部(連結部)
13aが金属外装缶の内底面に緊密に接触させる。つい
で、正極端子を有する各封口板と正極板11(12)の
上端部に溶接された正極集電タブとをそれぞれ溶接し
た。この後、これらの各金属外装缶内にそれぞれ30質
量%の水酸化カリウム(KOH)水溶液よりなる電解液
を注液した。
4. Production of Nickel-Hydrogen Storage Battery Each electrode group 10a, 10b, 10x produced as described above
Is inserted into the bottomed square pillar-shaped (square) metal outer can, and the hydrogen storage alloy negative electrode plate 13 at both ends of each of the electrode groups 10a, 10b, 10x is brought into close contact with the inner surface of the metal outer can. And the central part (connecting part) where the metal core is exposed
13a makes close contact with the inner bottom surface of the metal outer can. Next, each sealing plate having a positive electrode terminal and the positive electrode current collecting tab welded to the upper end of the positive electrode plate 11 (12) were welded. Thereafter, an electrolyte composed of a 30% by mass aqueous solution of potassium hydroxide (KOH) was injected into each of the metal outer cans.

【0024】ついで、各封口板を各金属外装缶の開口部
に載置して、その接合部をレーザー溶接して、600m
Ah(幅16.4mm、高さ35.0mm、厚み5.6
mm)のニッケル−水素蓄電池A,B,Xをそれぞれ作
製した。なお、実施例1の極板群10aを用いたニッケ
ル−水素蓄電池を実施例1の電池Aとし、実施例2の極
板群10bを用いたニッケル−水素蓄電池を実施例2の
電池Bとし、比較例の極板群10xを用いたニッケル−
水素蓄電池を比較例の電池Xとした。
Next, each sealing plate was placed on the opening of each metal outer can, and the joint was laser-welded to 600 m.
Ah (width 16.4 mm, height 35.0 mm, thickness 5.6
mm) nickel-hydrogen storage batteries A, B, and X, respectively. The nickel-hydrogen storage battery using the electrode group 10a of the first embodiment is referred to as a battery A of the first embodiment, and the nickel-hydrogen storage battery using the electrode group 10b of the second embodiment is referred to as a battery B of the second embodiment. Nickel using electrode group 10x of Comparative Example
The hydrogen storage battery was designated as Battery X of Comparative Example.

【0025】5.試験 (1)放電容量 上述のように作製した各電池A,B,Xを用いて、室温
(25℃)で0.1C(60mA)の充電々流で16時
間充電し、1時間休止させた後、0.2C(120m
A)の放電々流で終止電圧が1.0Vになるまで放電さ
せ、1時間休止させるという充放電サイクルを5回繰り
返して、各ニッケル−水素蓄電池A,B,Xを活性化し
た。なお、5サイクル後の放電容量を初期容量として測
定した。
[5] Test (1) Discharge capacity Using each of the batteries A, B, and X prepared as described above, the batteries were charged at room temperature (25 ° C.) with a charge current of 0.1 C (60 mA) for 16 hours, and left for 1 hour. After that, 0.2C (120m
Each of the nickel-hydrogen storage batteries A, B, and X was activated by repeating the charge / discharge cycle of discharging the battery until the final voltage reached 1.0 V with the discharge current of A) and suspending for 1 hour five times. The discharge capacity after 5 cycles was measured as the initial capacity.

【0026】ついで、上述のように活性化した各ニッケ
ル−水素蓄電池A,B,Xを、0.1C(60mA)の
充電々流で16時間充電した後、1時間休止させた後、
0.2C(120mA)の放電々流で終止電圧が1.0
Vになるまで放電させたときの放電時間より放電容量を
求め、比較例の電池Xの放電容量を100とした場合の
容量比を求めると、下記の表2に示すような結果が得ら
れた。
Next, the nickel-hydrogen storage batteries A, B, and X activated as described above were charged for 16 hours at a charge current of 0.1 C (60 mA), and then suspended for 1 hour.
1.0V at 0.2C (120mA) discharge current
When the discharge capacity was calculated from the discharge time when the battery was discharged to V and the capacity ratio when the discharge capacity of the battery X of the comparative example was set to 100, the results shown in Table 2 below were obtained. .

【0027】[0027]

【表2】 [Table 2]

【0028】上記表2より明らかなように、実施例1の
電池Aおよび実施例2の電池Bと比較例の電池Xとを比
較すると、実施例1の電池Aおよび実施例2の電池Bは
正極活物質量が比較例の電池Xよりも2.9%も少ない
のに関わらず、それらの放電容量が等しくなっているこ
とが分かる。これは、実施例1の電池Aおよび実施例2
の電池Bにあっては、正極板11を2枚とし、これらの
2枚の正極板11,11の間に保液部材14または15
が配置されているため、各正極板11,11の内部まで
電解液が浸透して活物質利用率が向上したためと考えら
れる。
As is apparent from Table 2 above, when the battery A of Example 1 and the battery B of Example 2 are compared with the battery X of Comparative Example, the batteries A of Example 1 and the battery B of Example 2 are compared. It can be seen that their discharge capacities are equal regardless of the amount of the positive electrode active material being 2.9% less than that of the battery X of the comparative example. This is because the battery A of Example 1 and the battery of Example 2
In the battery B, the number of the positive electrode plates 11 is two, and the liquid retaining member 14 or 15 is provided between the two positive electrode plates 11 and 11.
This is probably because the electrolyte solution penetrated into the inside of each of the positive electrodes 11 and 11 and the active material utilization was improved.

【0029】(2)サイクル特性 ついで、周囲温度が25℃(室温)の雰囲気で、600
mA(1C)の充電電流で、正極が完全に充填された後
に生じる電池電圧の低下(−ΔV)が10mVになるま
で充電した後、1時間休止し、600mA(1C)の放
電電流で終止電圧が1.0Vに達するまで放電させた
後、1時間休止するという充放電サイクル試験を行い、
各サイクルの終了後に放電容量と内部抵抗の測定を行っ
た。この放電容量の測定結果に基づいて、初期容量に対
する比率を容量維持率(%)として求めると、図4に示
すような結果となった。また、各サイクル毎の内部抵抗
は図5に示すような結果となった。
(2) Cycle Characteristics Next, at an ambient temperature of 25 ° C. (room temperature),
At a charging current of mA (1C), the battery was charged until the decrease in battery voltage (−ΔV) that occurred after the positive electrode was completely filled became 10 mV, then paused for 1 hour, and terminated at a discharging current of 600 mA (1C). Is discharged until the voltage reaches 1.0 V, and then a charge / discharge cycle test of pausing for 1 hour is performed.
After each cycle, the discharge capacity and the internal resistance were measured. When the ratio to the initial capacity was obtained as a capacity retention ratio (%) based on the measurement result of the discharge capacity, the result was as shown in FIG. Further, the internal resistance in each cycle was as shown in FIG.

【0030】図4から明らかなように、比較例の電池X
(図4の黒丸印)は充放電サイクルの進行に伴って容量
維持率が低下し、特に、300サイクルを越えると急激
に容量維持率が低下している。一方、実施例1の電池A
(図4の黒三角印)および実施例2の電池B(図4の黒
四角印)は充放電サイクルの進行に伴って多少は容量維
持率が低下するが、500サイクルを経過しても初期容
量に対して90%程度の容量を維持している。これは、
実施例1の電池Aおよび実施例2の電池Bにあっては、
正極板11を2枚とし、これらの2枚の正極板11,1
1の間に保液部材14または15が配置されているた
め、充放電サイクルを繰り返しても常に各正極板11,
11の内部まで電解液が供給されて、ドライアウトが生
じなかったためと考えられる。
As is clear from FIG. 4, the battery X of the comparative example
In FIG. 4 (black circles), the capacity retention rate decreases as the charge / discharge cycle progresses, and particularly, the capacity retention rate sharply decreases after 300 cycles. On the other hand, battery A of Example 1
(Black triangles in FIG. 4) and the battery B of Example 2 (black squares in FIG. 4) show a slight decrease in capacity retention with the progress of the charge / discharge cycle, but the initial capacity after 500 cycles has passed. About 90% of the capacity is maintained. this is,
In the battery A of Example 1 and the battery B of Example 2,
The number of the positive electrode plates 11 is two, and these two positive electrode plates 11, 1
1, the liquid retaining members 14 or 15 are arranged between the positive electrode plates 11 and 11, even if the charge / discharge cycle is repeated.
It is considered that the electrolyte solution was supplied to the inside of No. 11 and no dryout occurred.

【0031】また、図5から明らかなように、比較例の
電池X(図5の黒丸印)は充放電サイクルの進行に伴っ
て内部抵抗が増大し、特に、400サイクルを越えると
急激に内部抵抗が増大している。一方、実施例1の電池
A(図5の黒三角印)および実施例2の電池B(図5の
黒四角印)は充放電サイクルの進行に伴って内部抵抗が
増大するが、比較例の電池Xのようには増大していな
い。これは、実施例1の電池Aおよび実施例2の電池B
にあっては、正極板11を2枚とし、これらの2枚の正
極板11,11の間に保液部材14または15が配置さ
れているため、充放電サイクルを繰り返しても常に各正
極板11,11の内部まで電解液が供給されて、ドライ
アウトが生じなかったためと考えられる。
As is clear from FIG. 5, the internal resistance of the battery X of the comparative example (shown by a black circle in FIG. 5) increases as the charge / discharge cycle progresses. Resistance is increasing. On the other hand, the internal resistance of the battery A of Example 1 (black triangle in FIG. 5) and the battery B of Example 2 (black square in FIG. 5) increase with the progress of the charge / discharge cycle. It is not increasing like the battery X. This corresponds to the battery A of Example 1 and the battery B of Example 2.
In this case, since the number of the positive electrode plates 11 is two, and the liquid retaining member 14 or 15 is disposed between the two positive electrode plates 11, 11, each of the positive electrode plates It is considered that the electrolyte solution was supplied to the insides of 11 and 11, and no dryout occurred.

【0032】(3)放電率特性 ついで、各ニッケル−水素蓄電池A,B,Xを、0.1
C(60mA)の充電々流で16時間充電した後、1時
間休止させる。その後、0.2C(120mA)、1C
(600mA)、2C(1200mA)、4C(240
0mA)の放電々流で終止電圧が1.0Vになるまで放
電させたときの放電時間より各放電電流での各放電容量
を求めて、初期容量に対する比率(対初期比)即ち、放
電率特性をそれぞれ求めると図6に示すような結果が得
られた。
(3) Discharge Rate Characteristics Next, each nickel-hydrogen storage battery A, B, X
After charging for 16 hours with a charging current of C (60 mA), the system is paused for 1 hour. Then, 0.2C (120mA), 1C
(600 mA), 2C (1200 mA), 4C (240
The discharge capacity at each discharge current is determined from the discharge time when the discharge is performed at a discharge current of 0 mA) until the final voltage reaches 1.0 V, and the ratio to the initial capacity (to the initial capacity), that is, the discharge rate characteristic Were obtained, the results shown in FIG. 6 were obtained.

【0033】図6から明らかなように、比較例の電池X
(図6の黒丸印)は高率放電に伴って初期容量に対する
比率(対初期比)が低下し、特に、2Cを越えると急激
に対初期比が低下している。一方、実施例1の電池A
(図6の黒三角印)および実施例2の電池B(図6の黒
四角印)は高率放電を行ってもそれほど対初期比は低下
せず、4Cという高率放電においても80%程度の初期
比を維持している。これは、実施例1の電池Aおよび実
施例2の電池Bにあっては、正極板11を2枚とし、こ
れらの2枚の正極板11,11の間に保液部材14また
は15が配置されているため、充放電サイクルを繰り返
しても常に各正極板11,11の内部まで電解液が浸透
して活物質利用率が向上したためと考えられる。
As is clear from FIG. 6, the battery X of the comparative example
In FIG. 6 (black circles), the ratio to the initial capacity (ratio to the initial capacity) decreases with the high-rate discharge, and particularly, the ratio to the initial capacity sharply decreases when the ratio exceeds 2C. On the other hand, battery A of Example 1
(The black triangle in FIG. 6) and the battery B of Example 2 (the black square in FIG. 6) did not significantly decrease the initial ratio even when high-rate discharge was performed, and was about 80% even at a high-rate discharge of 4C. Maintain the initial ratio. This is because, in the battery A of Example 1 and the battery B of Example 2, the number of the positive electrode plates 11 is two, and the liquid retaining member 14 or 15 is disposed between the two positive electrodes 11. Therefore, it is considered that even if the charge / discharge cycle is repeated, the electrolytic solution always penetrates into the inside of each of the positive electrode plates 11, 11 and the active material utilization rate is improved.

【0034】また、図4〜図6の容量維持率、サイクル
特性、放電率特性を示す図から明らかなように、実施例
1の電池A(図4、図5、図6の黒三角印)と実施例2
の電池B(図4、図5、図6の黒四角印)とを比較する
と、容量維持率、サイクル特性、放電率特性のいずれの
特性においても実施例2の電池Bの方が向上しているこ
とが分かる。これは、実施例2の電池Bにあっては、保
液部材15としてスルホン化処理によって親水性が付与
されているため、各正極板11,11の内部までより電
解液が浸透しやすくなって、活物質利用率がさらに向上
し、ドライアウト現象もさらに低下したためと考えられ
る。
Further, as is apparent from the graphs of FIG. 4 to FIG. 6 showing the capacity retention ratio, cycle characteristics, and discharge rate characteristics, the battery A of Example 1 (black triangles in FIG. 4, FIG. 5, FIG. 6) And Example 2
In comparison with the battery B (black squares in FIGS. 4, 5, and 6), the battery B of Example 2 was improved in any of the capacity retention ratio, cycle characteristics, and discharge rate characteristics. You can see that there is. This is because, in the battery B of the second embodiment, since the liquid retaining member 15 is provided with hydrophilicity by the sulfonation treatment, the electrolytic solution permeates more easily into the inside of each of the positive electrodes 11. It is considered that the active material utilization rate was further improved and the dryout phenomenon was further reduced.

【0035】上述したように、本発明においては、各正
極板11,11の間に電解液を保持する保液部材14
(15)を配置しているので、活物質が膨潤しても電解
液は保液部材14(15)から供給することができるよ
うになって、ドライアウト現象の発生を防止することが
できるとともに、各正極板11,11の内部まで電解液
が侵入するため、各正極板11,11の内部においても
充放電反応が促進されて、活物質利用率が向上し、放電
容量が増大する。
As described above, in the present invention, the liquid retaining member 14 for holding the electrolytic solution between the respective positive electrode plates 11, 11 is provided.
Since (15) is provided, even if the active material swells, the electrolyte can be supplied from the liquid retaining member 14 (15), and the occurrence of the dryout phenomenon can be prevented. Since the electrolytic solution penetrates into the inside of each of the positive plates 11, 11, the charge / discharge reaction is also promoted inside each of the positive plates 11, 11, the active material utilization rate is improved, and the discharge capacity is increased.

【0036】なお、上述した実施形態においては、保液
部材15への親水性処理としてスルホン化処理を行う例
について説明したが、スルホン化処理以外に、グラフト
重合処理、コロナ放電処理による親水性処理を施しても
同様な効果が得られる。また、上述した実施形態におい
ては、本発明をニッケル−水素蓄電池に適用する例につ
いて説明したが、ニッケル−水素蓄電池に限らず、ニッ
ケル−カドミウム蓄電池などの他のアルカリ蓄電池に本
発明を適用しても同様な効果が得られる。
In the above-described embodiment, an example in which a sulfonation treatment is performed as a hydrophilic treatment on the liquid retaining member 15 has been described. However, in addition to the sulfonation treatment, a graft polymerization treatment and a hydrophilic treatment by corona discharge treatment are performed. The same effect can be obtained by applying. In the above-described embodiment, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, the present invention is not limited to a nickel-hydrogen storage battery, but may be applied to another alkaline storage battery such as a nickel-cadmium storage battery. Has the same effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 2枚の正極板の間に保液部材を備えた正極と
2枚の負極板が連結された負極の間にセパレータを介在
させて積層した実施例1の極板群を模式的に示す断面図
である。
FIG. 1 schematically shows an electrode plate group of Example 1 in which a separator is interposed between a positive electrode provided with a liquid retaining member between two positive electrode plates and a negative electrode in which two negative electrode plates are connected, with a separator interposed therebetween. It is sectional drawing.

【図2】 2枚の正極板の間に親水処理された保液部材
を備えた正極と2枚の負極板が連結された負極の間にセ
パレータを介在させて積層した実施例2の極板群を模式
的に示す断面図である。
FIG. 2 shows an electrode plate group of Example 2 in which a separator is interposed between a positive electrode having a liquid retaining member subjected to hydrophilic treatment between two positive electrode plates and a negative electrode in which two negative electrode plates are connected, with a separator interposed therebetween. It is sectional drawing which shows typically.

【図3】 厚みの厚い1枚の正極板からなる正極と2枚
の負極板が連結された負極の間にセパレータを介在させ
て積層した比較例の極板群を模式的に示す断面図であ
る。
FIG. 3 is a cross-sectional view schematically showing an electrode plate group of a comparative example in which a separator is interposed between a positive electrode made of one thick positive electrode plate and a negative electrode in which two negative electrode plates are connected with a separator interposed therebetween. is there.

【図4】 充放電サイクル数に対する容量維持率の関係
を示す図である。
FIG. 4 is a diagram showing the relationship between the number of charge / discharge cycles and the capacity retention ratio.

【図5】 充放電サイクル数に対する抵抗値の関係を示
す図である。
FIG. 5 is a diagram showing the relationship between the number of charge / discharge cycles and the resistance value.

【図6】 放電率に対する初期容量の比率(対初期比)
を示す図である。
FIG. 6: Ratio of initial capacity to discharge rate (vs. initial ratio)
FIG.

【図7】 正極板と2枚の負極板が連結された負極の間
にセパレータを介在させて積層した従来例の極板群を模
式的に示す断面図である。
FIG. 7 is a cross-sectional view schematically illustrating a conventional electrode plate group in which a separator is interposed between a positive electrode plate and a negative electrode in which two negative electrode plates are connected, with a separator interposed therebetween.

【符号の説明】[Explanation of symbols]

10a,10b,10x…極板群、11…実施例の正極
板、12…比較例の正極板、13…負極板、13a…連
結部、14…保液部材、15…親水処理した保液部材、
16…セパレータ
10a, 10b, 10x ... electrode plate group, 11 ... positive electrode plate of example, 12 ... positive electrode plate of comparative example, 13 ... negative electrode plate, 13a ... connecting portion, 14 ... liquid retaining member, 15 ... liquid retaining member subjected to hydrophilic treatment ,
16 ... Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長瀬 敬 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 井上 雅雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 江西 英二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H028 AA06 AA08 BB10 CC08 CC11 EE06 FF02 FF10 5H050 AA08 BA14 CA03 CB16 DA02 DA03 DA17 DA19 FA02 FA16 GA21  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Nagase 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Masao Inoue 2--5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Eiji Enishi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H028 AA06 AA08 BB10 CC08 CC11 EE06 FF02 FF10 5H050 AA08 BA14 CA03 CB16 DA02 DA03 DA17 DA19 FA02 FA16 GA21

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極の一対の極板間にセパレータ
を介在させて積層した極板群を備えたアルカリ蓄電池で
あって、 前記正極あるいは負極の少なくとも一方の極板は電解液
を保持する保液部材を備えるようにしたことを特徴とす
るアルカリ蓄電池。
1. An alkaline storage battery comprising an electrode group stacked with a separator interposed between a pair of positive and negative electrode plates, wherein at least one of the positive electrode and the negative electrode holds an electrolyte. An alkaline storage battery comprising a liquid retaining member.
【請求項2】 正極と負極の一対の極板間にセパレータ
を介在させて積層した極板群を備えたアルカリ蓄電池で
あって、 前記正極あるいは負極の少なくとも一方の極板は複数の
極板を積層して構成されるとともに、これらの極板間に
電解液を保持する保液部材を備えるようにしたことを特
徴とするアルカリ蓄電池。
2. An alkaline storage battery comprising an electrode group stacked with a separator interposed between a pair of positive and negative electrode plates, wherein at least one of the positive electrode and the negative electrode has a plurality of electrode plates. An alkaline storage battery comprising a laminated structure and a liquid retaining member for retaining an electrolytic solution between these electrode plates.
【請求項3】 前記保液部材は耐アルカリ性の織布ある
いは不織布であることを特徴とする請求項1または請求
項2に記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the liquid retaining member is an alkali-resistant woven or nonwoven fabric.
【請求項4】 前記織布あるいは不織布は前記セパレー
タよりも保液率が大きい材質により形成されていること
を特徴とする請求項3に記載のアルカリ蓄電池。
4. The alkaline storage battery according to claim 3, wherein the woven or nonwoven fabric is formed of a material having a higher liquid retention rate than the separator.
【請求項5】 前記織布あるいは不織布は親水性処理が
施されて前記セパレータよりも保液率を大くしたことを
特徴とする請求項4に記載のアルカリ蓄電池。
5. The alkaline storage battery according to claim 4, wherein the woven or nonwoven fabric has been subjected to a hydrophilic treatment so as to have a higher liquid retention than the separator.
【請求項6】 前記保液部材を備える極板は充放電に伴
って膨潤する正極であることを特徴とする請求項1から
請求項5のいずれかに記載のアルカリ蓄電池。
6. The alkaline storage battery according to claim 1, wherein the electrode plate provided with the liquid retaining member is a positive electrode that swells with charge and discharge.
【請求項7】 前記極板群は四角柱状に形成されて、四
角柱状に形成された外装缶内に備えるようにしたことを
特徴とする請求項1から請求項6のいずれかに記載のア
ルカリ蓄電池。
7. The alkali according to claim 1, wherein said electrode plate group is formed in a quadrangular prism shape, and is provided in an outer can formed in a quadrangular prism shape. Storage battery.
【請求項8】 前記正極は水酸化ニッケルを主活物質と
するニッケル正極とし、前記負極は水素吸蔵合金を活物
質とする水素吸蔵合金負極としたことを特徴とする請求
項1から請求項7のいずれかに記載のアルカリ蓄電池。
8. The positive electrode according to claim 1, wherein the positive electrode is a nickel positive electrode using nickel hydroxide as a main active material, and the negative electrode is a hydrogen storage alloy negative electrode using a hydrogen storage alloy as an active material. The alkaline storage battery according to any one of the above.
JP2000097194A 2000-03-31 2000-03-31 Alkaline battery Pending JP2001283901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097194A JP2001283901A (en) 2000-03-31 2000-03-31 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097194A JP2001283901A (en) 2000-03-31 2000-03-31 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2001283901A true JP2001283901A (en) 2001-10-12

Family

ID=18611847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097194A Pending JP2001283901A (en) 2000-03-31 2000-03-31 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2001283901A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590078A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Ni-zn battery
JPS6225465U (en) * 1985-07-30 1987-02-16
JPH01211857A (en) * 1988-02-18 1989-08-25 Hitachi Chem Co Ltd Nickel electrode for alkaline storage battery
JPH04349348A (en) * 1990-11-30 1992-12-03 Matsushita Electric Ind Co Ltd Metal oxide-hydrogen storage battery
JPH0536436A (en) * 1991-07-30 1993-02-12 Shin Kobe Electric Mach Co Ltd Electrode plate group for storage battery and manufacture thereof
JPH06267587A (en) * 1993-03-15 1994-09-22 Yuasa Corp Sealed alkali-zinc secondary battery
JPH06333568A (en) * 1993-05-24 1994-12-02 Matsushita Electric Ind Co Ltd Sealed metal oxide-hydrogen battery, and its manufacture
JPH09180753A (en) * 1995-12-22 1997-07-11 Japan Storage Battery Co Ltd Nickel-metal hydride battery
JPH09283133A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Nickel electrodefor alkaline storage battery and manufacture thereof
JPH11339839A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Square or thin secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590078A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Ni-zn battery
JPS6225465U (en) * 1985-07-30 1987-02-16
JPH01211857A (en) * 1988-02-18 1989-08-25 Hitachi Chem Co Ltd Nickel electrode for alkaline storage battery
JPH04349348A (en) * 1990-11-30 1992-12-03 Matsushita Electric Ind Co Ltd Metal oxide-hydrogen storage battery
JPH0536436A (en) * 1991-07-30 1993-02-12 Shin Kobe Electric Mach Co Ltd Electrode plate group for storage battery and manufacture thereof
JPH06267587A (en) * 1993-03-15 1994-09-22 Yuasa Corp Sealed alkali-zinc secondary battery
JPH06333568A (en) * 1993-05-24 1994-12-02 Matsushita Electric Ind Co Ltd Sealed metal oxide-hydrogen battery, and its manufacture
JPH09180753A (en) * 1995-12-22 1997-07-11 Japan Storage Battery Co Ltd Nickel-metal hydride battery
JPH09283133A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Nickel electrodefor alkaline storage battery and manufacture thereof
JPH11339839A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Square or thin secondary battery

Similar Documents

Publication Publication Date Title
KR102166391B1 (en) Secondary zinc-manganese dioxide batteries for high power applications
JP3959749B2 (en) Metal hydride secondary battery with solid polymer electrolyte
JP2002134161A (en) Spiral electrode group for battery and battery
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JPH07254431A (en) Secondary battery containing electrolytic aqueous solution of which maintenance is unnecessary
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
EP1062707B1 (en) Prismatic electrochemical cell
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
US6653023B1 (en) Rectangular battery
EP0336102A2 (en) Secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JP2001283901A (en) Alkaline battery
JP3625731B2 (en) Square battery
JP3523775B2 (en) Manufacturing method of alkaline secondary battery
JP3695868B2 (en) Square alkaline storage battery
JP2001143712A5 (en)
JP2003229133A (en) Non-aqueous electrolyte battery
JP3339327B2 (en) Storage battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JPS63264863A (en) Sealed nickel-cadmium storage battery and its manufacture
JP2002025548A (en) Square alkaline storage battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2003257472A (en) Inside-out type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106