JP2001282182A - Method for driving ac type plasma display panel - Google Patents

Method for driving ac type plasma display panel

Info

Publication number
JP2001282182A
JP2001282182A JP2000093184A JP2000093184A JP2001282182A JP 2001282182 A JP2001282182 A JP 2001282182A JP 2000093184 A JP2000093184 A JP 2000093184A JP 2000093184 A JP2000093184 A JP 2000093184A JP 2001282182 A JP2001282182 A JP 2001282182A
Authority
JP
Japan
Prior art keywords
electrode
sustain
pulse
discharge
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093184A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
由雄 渡辺
Naotaka Kosugi
直貴 小杉
Hiroyuki Tachibana
弘之 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000093184A priority Critical patent/JP2001282182A/en
Publication of JP2001282182A publication Critical patent/JP2001282182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Gas Discharge Display Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase brightness and a light emitting efficiency in a panel where a distance between scanning electrodes and sustaining electrodes is enlarged. SOLUTION: In a sustained period, a negative-polarity sustaining pulse of is applied to the scanning electrodes and sustaining electrodes. A negative- polarity pulse same as the sustaining pulse is applied to data electrodes from a certain time before a time t1 (or t3) to start applying the sustaining pulse to the sustaining electrodes (or scanning electrodes) over a certain time during application of the sustaining pulse, and the negative-polarity pulse width is smaller than the sustaining pulse width.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はテレビジョン受像機
および情報表示端末等の画像表示に用いるAC型プラズ
マディスプレイパネルの駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving an AC type plasma display panel used for displaying an image on a television receiver or an information display terminal.

【0002】[0002]

【従来の技術】従来のAC型プラズマディスプレイパネ
ル(以下、パネルという)には、たとえば特開平11−
143425号公報に開示されたものがあり、これを図
4に示す。図4(b)は図4(a)のA−A断面図であ
る。
2. Description of the Related Art A conventional AC plasma display panel (hereinafter referred to as a panel) is disclosed in
There is one disclosed in Japanese Patent No. 143425, which is shown in FIG. FIG. 4B is a sectional view taken along line AA of FIG.

【0003】従来のパネル1は、図4に示すように、放
電空間2を挟んでガラス製の表面基板3およびガラス製
の背面基板4が対向して配置されている。表面基板3上
には、誘電体層5で覆われた対を成す帯状の走査電極7
と維持電極8とからなる電極群が平行配列されており、
誘電体層5上には保護膜6が形成されている。保護膜6
は2次電子放射係数が高い酸化マグネシウム(MgO)
などの材料が用いられ、放電の開始、維持を容易にして
いる。
As shown in FIG. 4, a conventional panel 1 has a front substrate 3 made of glass and a rear substrate 4 made of glass opposed to each other with a discharge space 2 interposed therebetween. A pair of strip-shaped scanning electrodes 7 covered with a dielectric layer 5 are provided on the front substrate 3.
And an electrode group consisting of the sustain electrodes 8 are arranged in parallel,
On the dielectric layer 5, a protective film 6 is formed. Protective film 6
Is magnesium oxide (MgO) with a high secondary electron emission coefficient
Such materials are used to facilitate the start and maintenance of the discharge.

【0004】背面基板4上には、走査電極7および維持
電極8と直交する方向に帯状のデータ電極9が互いに平
行配列されており、またこの各データ電極9を隔離し、
かつ放電空間2を形成するための帯状の隔壁10がデー
タ電極9の間に設けられている。また、データ電極9上
から隔壁10の側面にわたって蛍光体層11が形成され
ている。さらに、放電空間2にはネオンおよびキセノン
等の混合ガスが封入されている。
On the rear substrate 4, strip-shaped data electrodes 9 are arranged in parallel with each other in a direction orthogonal to the scanning electrodes 7 and the sustaining electrodes 8, and these data electrodes 9 are separated from each other.
In addition, a strip-shaped partition 10 for forming the discharge space 2 is provided between the data electrodes 9. Further, a phosphor layer 11 is formed from above the data electrode 9 to the side surface of the partition wall 10. Further, the discharge space 2 is filled with a mixed gas such as neon and xenon.

【0005】このパネル1は表面基板3側から画像表示
を見るようになっており、走査電極7および維持電極8
とデータ電極9との交差部に構成されるそれぞれの放電
セルにおいて、走査電極7と維持電極8との間の放電に
より発生する紫外線によって蛍光体層11を励起し、こ
の蛍光体層11からの可視光を表示発光に利用するもの
である。
[0005] The panel 1 is configured to view an image display from the front substrate 3 side, and includes a scan electrode 7 and a sustain electrode 8.
In each of the discharge cells formed at the intersection of the scan electrode 7 and the data electrode 9, the phosphor layer 11 is excited by ultraviolet rays generated by the discharge between the scan electrode 7 and the sustain electrode 8. Visible light is used for display light emission.

【0006】従来のパネル1では、隔壁10の高さを
0.1mm程度とし、走査電極7とデータ電極9との間
で比較的低い電圧で安定に放電が開始するように、封入
ガス圧を最適化している。一方、走査電極7と維持電極
8との距離(以下、維持放電ギャップという)dpを
0.6mm程度とすることにより、現在まで多用されて
きている維持放電ギャップdpが0.1mm程度のパネ
ルに比べて、輝度と発光効率を改善することができると
いうものである。
In the conventional panel 1, the height of the partition wall 10 is set to about 0.1 mm, and the pressure of the charged gas is set so that the discharge between the scanning electrode 7 and the data electrode 9 can be stably started at a relatively low voltage. Optimized. On the other hand, by setting the distance dp between the scan electrode 7 and the sustain electrode 8 (hereinafter, referred to as a sustain discharge gap) to about 0.6 mm, a panel having a sustain discharge gap dp, which has been widely used up to now, about 0.1 mm can be obtained. In comparison, luminance and luminous efficiency can be improved.

【0007】このように維持放電ギャップdpを大きく
すると、それに伴ってそれら電極間の放電開始電圧が上
昇するため、従来のパネル1では図5に示すタイミング
図のように、維持期間においてデータ電極9にも正極性
のパルスを印加して、走査電極7または維持電極8とデ
ータ電極9との間に予備放電を行わせることにより、維
持放電の開始を容易にしている。
[0007] When the sustain discharge gap dp is increased as described above, the discharge starting voltage between the electrodes increases accordingly, and therefore, in the conventional panel 1, as shown in the timing chart of FIG. By applying a pulse of positive polarity also to cause a preliminary discharge between the scan electrode 7 or the sustain electrode 8 and the data electrode 9, the start of the sustain discharge is facilitated.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図5に
示したような従来の駆動方法では、維持放電ギャップd
pが0.1mm程度のパネルに比べて、パネルの輝度や
発光効率は期待したほど高くならないという課題があっ
た。
However, in the conventional driving method shown in FIG. 5, the sustain discharge gap d
There was a problem that the brightness and the luminous efficiency of the panel were not as high as expected compared to a panel having ap of about 0.1 mm.

【0009】本発明はこのような課題を解決するために
なされたものであり、走査電極と維持電極との距離を大
きくしたパネルにおいて、輝度や発光効率を高めること
を目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to increase luminance and luminous efficiency in a panel in which the distance between a scanning electrode and a sustain electrode is increased.

【0010】[0010]

【課題を解決するための手段】本発明のAC型プラズマ
ディスプレイパネルの駆動方法は、誘電体層で覆われた
走査電極および維持電極が互いに平行に形成された第1
の基板と、データ電極が前記走査電極と直交する方向に
形成されるとともにデータ電極上に蛍光体層が形成され
た第2の基板とが放電空間を挟んで対向配置され、前記
走査電極と前記維持電極との距離が前記放電空間の高さ
よりも大きく設定されたAC型プラズマディスプレイパ
ネルを駆動する方法であって、維持期間において、前記
走査電極と前記データ電極との間、および前記維持電極
と前記データ電極との間でそれぞれ発生する予備放電の
強度を弱めるように作用するパルスを、前記データ電極
に印加するものである。
According to the present invention, there is provided a method of driving an AC type plasma display panel, wherein a scan electrode and a sustain electrode covered with a dielectric layer are formed in parallel with each other.
And a second substrate on which a data electrode is formed in a direction orthogonal to the scan electrode and a phosphor layer is formed on the data electrode is disposed opposite to each other across a discharge space, and the scan electrode and the A method of driving an AC plasma display panel in which a distance from a sustain electrode is set to be greater than the height of the discharge space, wherein during a sustain period, between the scan electrode and the data electrode, and between the sustain electrode and the sustain electrode. A pulse acting to weaken the intensity of the preliminary discharge generated between the data electrode and the data electrode is applied to the data electrode.

【0011】従来の駆動方法では維持期間において予備
放電がかなり強くなってしまい、これが原因となって前
述したような課題が生じていることを見出し、本発明に
至ったものである。本発明の駆動方法により、維持期間
における予備放電を適正な強度に制御することができ
る。
In the conventional driving method, the preliminary discharge is considerably increased during the sustain period, and it has been found that this causes the above-mentioned problem, thereby leading to the present invention. According to the driving method of the present invention, the preliminary discharge in the sustain period can be controlled to an appropriate intensity.

【0012】[0012]

【発明の実施の形態】本発明に用いるパネル12は図2
に示すように、図4に示した従来のパネルと基本的に同
じ構成であり、走査電極7と維持電極8との距離(主放
電ギャップ)dは、データ電極9上における蛍光体層1
1の表面と保護膜6の表面との距離、すなわち放電空間
2の高さ(予備放電ギャップ)hよりも大きく設定され
ている。図2は図4(b)と同じ断面を示す図である。
また、データ電極9を覆って誘電体層が形成され、その
誘電体層上に蛍光体層11および隔壁10が形成されて
いてもよい。ここで、走査電極7と維持電極8との間の
放電空間を主放電空間13、走査電極7とデータ電極9
との間の放電空間を第1の副放電空間14、維持電極8
とデータ電極9との間の放電空間を第2の副放電空間1
5とする。次に、パネルに画像データを表示させる方法
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a panel 12 used in the present invention.
As shown in FIG. 4, the structure is basically the same as that of the conventional panel shown in FIG. 4, and the distance (main discharge gap) d between the scan electrode 7 and the sustain electrode 8 is different from that of the phosphor layer 1 on the data electrode 9.
1 is set larger than the distance between the surface of the protective film 6 and the height (preliminary discharge gap) h of the discharge space 2. FIG. 2 is a diagram showing the same cross section as FIG. 4 (b).
Further, a dielectric layer may be formed so as to cover the data electrode 9, and the phosphor layer 11 and the partition 10 may be formed on the dielectric layer. Here, a discharge space between scan electrode 7 and sustain electrode 8 is defined as main discharge space 13, scan electrode 7 and data electrode 9.
Between the first auxiliary discharge space 14 and the sustain electrode 8.
The discharge space between the data electrode 9 and the second sub-discharge space 1
5 is assumed. Next, a method for displaying image data on the panel will be described.

【0013】1フィールド期間を2進法に基づいた発光
期間の重みを持った複数のサブフィールドに分割し、発
光させるサブフィールドの組み合わせによって階調表示
を行う。各サブフィールドは初期化期間、アドレス期間
および維持期間を有し、各期間でそれぞれ異なる信号波
形を各電極に印加して画像データを表示する。
One field period is divided into a plurality of subfields having a weight of a light emission period based on a binary system, and gradation display is performed by a combination of subfields to emit light. Each subfield has an initialization period, an address period, and a sustain period. In each period, a different signal waveform is applied to each electrode to display image data.

【0014】初期化期間では、たとえば、すべての走査
電極7に、維持電極8およびデータ電極9に対して高い
正極性の初期化パルスを印加し、この初期化パルスが立
ち上がるときに走査電極7と維持電極8との間および走
査電極7とデータ電極9との間に強い放電が発生し、走
査電極7近傍の保護膜6上には負の壁電荷が、維持電極
8近傍の保護膜6上には正の壁電荷が、データ電極9近
傍の蛍光体層11上には正の壁電荷がそれぞれ蓄積され
て放電は停止する。以下では簡単のため、走査電極7上
に壁電荷が蓄積する、と表現した場合、走査電極7近傍
の保護膜6上に壁電荷が蓄積することを表すものとし、
他の電極についても同様とする。
In the initialization period, for example, an initialization pulse having a high positive polarity with respect to the sustain electrodes 8 and the data electrodes 9 is applied to all the scan electrodes 7, and when the initialization pulse rises, the scan electrodes 7 and A strong discharge is generated between the sustain electrode 8 and between the scan electrode 7 and the data electrode 9, and negative wall charges are formed on the protective film 6 near the scan electrode 7 and on the protective film 6 near the sustain electrode 8. , A positive wall charge is accumulated on the phosphor layer 11 near the data electrode 9, and the discharge stops. In the following, for simplicity, the expression that wall charges accumulate on the scanning electrode 7 means that wall charges accumulate on the protective film 6 near the scanning electrode 7,
The same applies to other electrodes.

【0015】次に、外部電圧がゼロになる時、すなわち
初期化パルスが立ち下がる時に、蓄積されていた壁電荷
が壁電荷自身による電界で放電を起こす、いわゆる自己
消去放電が発生する。この初期化パルスの印加によって
発生する初期化放電により、直前のサブフィールドでの
壁電荷の履歴を消去するとともに、アドレス期間での書
き込み放電を安定して行うために壁電荷の供給を行う。
Next, when the external voltage becomes zero, that is, when the initialization pulse falls, a so-called self-erasing discharge occurs in which the stored wall charges are discharged by the electric field of the wall charges themselves. The initialization discharge generated by the application of the initialization pulse erases the history of the wall charges in the immediately preceding subfield and supplies the wall charges to stably perform the writing discharge in the address period.

【0016】初期化期間に続くアドレス期間では、走査
電極7を順次走査し、表示データがある場合、走査電極
7を走査している間に、データ電極9に正極性のデータ
パルスを印加し、走査電極7とデータ電極9との間に放
電を起こす。この放電により発生したプライミング粒子
により、走査電極7と維持電極8との間で放電を起こ
し、次の維持期間で放電するように壁電荷が形成され
る。すなわち、走査電極7上には正の壁電荷が、維持電
極8上には負の壁電荷が形成される。
In the address period following the initialization period, the scan electrodes 7 are sequentially scanned, and when display data is present, a positive data pulse is applied to the data electrodes 9 while the scan electrodes 7 are being scanned. Discharge occurs between the scanning electrode 7 and the data electrode 9. The priming particles generated by this discharge cause a discharge between the scan electrode 7 and the sustain electrode 8, and form wall charges so as to discharge in the next sustain period. That is, positive wall charges are formed on the scan electrodes 7, and negative wall charges are formed on the sustain electrodes 8.

【0017】次に、アドレス期間に続く維持期間での駆
動方法について、図1を用いて説明する。図1は、維持
期間において走査電極7、維持電極8およびデータ電極
9に印加するそれぞれの駆動波形を示している。図1に
示すように、本発明の一実施形態では、走査電極7およ
び維持電極8に負極性の維持パルスを印加している。ま
た、走査電極7および維持電極8のそれぞれに維持パル
スを印加し始めるより前の或る時間から、その維持パル
スの印加中の或る時間にかけて、維持パルスと同じ極性
である負極性のパルスをデータ電極9に印加しており、
そのパルスの幅は維持パルスの幅よりも小さくなってい
る。図1では走査電極7および維持電極8のそれぞれに
維持パルスを印加し始めるよりも前に、データ電極9に
パルスを印加し始めているが、走査電極7および維持電
極8のそれぞれに維持パルスを印加し始めるのと同時
に、データ電極9にパルスを印加し始めてもよい。
Next, a driving method in the sustain period following the address period will be described with reference to FIG. FIG. 1 shows respective drive waveforms applied to the scan electrode 7, the sustain electrode 8, and the data electrode 9 during the sustain period. As shown in FIG. 1, in one embodiment of the present invention, a negative sustain pulse is applied to the scan electrode 7 and the sustain electrode 8. Further, from a certain time before the start of applying the sustain pulse to each of the scan electrode 7 and the sustain electrode 8 to a certain time during the application of the sustain pulse, a negative pulse having the same polarity as the sustain pulse is applied. Applied to the data electrode 9,
The width of the pulse is smaller than the width of the sustain pulse. In FIG. 1, a pulse is started to be applied to the data electrode 9 before a sustain pulse is started to be applied to each of the scan electrode 7 and the sustain electrode 8, but a sustain pulse is applied to each of the scan electrode 7 and the sustain electrode 8. At the same time, the application of the pulse to the data electrode 9 may be started.

【0018】図1に示すように、時間t0では、走査電
極7および維持電極8にはともに外部電圧Vm(たとえ
ば300V)が印加されてHigh電位になっており、デー
タ電極9はゼロ電位に保たれている。また、走査電極7
上には正の壁電荷、維持電極8上には負の壁電荷、デー
タ電極9には正極性の壁電荷がそれぞれ蓄積されてい
る。
As shown in FIG. 1, at time t 0 , an external voltage Vm (for example, 300 V) is applied to both scan electrode 7 and sustain electrode 8 to have a high potential, and data electrode 9 has a zero potential. Is kept. The scanning electrode 7
A positive wall charge is stored on the upper side, a negative wall charge is stored on the sustain electrode 8, and a positive wall charge is stored on the data electrode 9.

【0019】このような状態から、仮にデータ電極9は
ゼロ電位のままで維持電極8をLow電位(ゼロ電位)に
すると、外部電圧Vmが取り除かれるために、外部電圧
Vmと蓄積された壁電荷による電圧(壁電圧)とのバラ
ンスが崩れる。たとえば、主放電空間13には外部電圧
Vmと壁電荷による電圧が重畳された電圧が加わる。し
かし、主放電ギャップd(たとえば0.5mm)が長い
ため主放電空間13に加わる電界は比較的に弱く、走査
電極7と維持電極8との間では絶縁破壊には至らない。
ところが、予備放電ギャップh(たとえば0.1mm)
は主放電ギャップdに比較して約1/5と短いため第2
の副放電空間15に加わる電界は非常に強い。そのた
め、第2の副放電空間15では容易に絶縁破壊して放電
に至り強い予備放電を引き起こす。このとき、第1の副
放電空間14に加わっている電圧は放電開始電圧に達し
ないため、第1の副放電空間14では放電は発生しな
い。第2の副放電空間15で予備放電が発生すると荷電
粒子や励起原子が多数発生し、これらの粒子が主放電空
間13に拡散して放電開始電圧が低下するため、これま
で放電に至らなかった長いギャップの主放電空間13で
も放電が開始する。
In this state, if the sustain electrode 8 is set to the low potential (zero potential) while the data electrode 9 is kept at the zero potential, the external voltage Vm is removed. The balance with the voltage (wall voltage) due to this is lost. For example, a voltage in which the external voltage Vm and the voltage due to the wall charges are superimposed is applied to the main discharge space 13. However, since the main discharge gap d (for example, 0.5 mm) is long, the electric field applied to the main discharge space 13 is relatively weak, and dielectric breakdown does not occur between the scan electrode 7 and the sustain electrode 8.
However, the preliminary discharge gap h (for example, 0.1 mm)
Is smaller than the main discharge gap d by about 1/5,
The electric field applied to the sub-discharge space 15 is very strong. Therefore, in the second sub-discharge space 15, dielectric breakdown easily occurs, which leads to discharge, which causes strong preliminary discharge. At this time, since the voltage applied to the first sub-discharge space 14 does not reach the discharge start voltage, no discharge occurs in the first sub-discharge space 14. When the preliminary discharge occurs in the second sub-discharge space 15, a large number of charged particles and excited atoms are generated, and these particles are diffused into the main discharge space 13 to lower the firing voltage. Discharge also starts in the main discharge space 13 having a long gap.

【0020】本実施形態では図1のように維持電極8を
Low電位にする直前に、データ電極9に負極性の電圧Vd
ata(たとえば100V)を印加し、第2の副放電空間
15に加わる電界を抑制している。すなわち、時間t0
において第2の副放電空間15では、データ電極9から
維持電極8に向けて壁電荷による強い電界(壁電界)が
作用しているが、データ電極9に印加される負極性の電
圧Vdataによる電界は壁電界とは逆方向に作用するの
で、全体的に電界を低下させることができる。したがっ
て、時間t1において維持電極8をLow電位にしたとき
に、第2の副放電空間15に発生する予備放電の強度
は、Vdata=0の場合に比べて弱くなる。このように、
データ電極9に印加する負極性の電圧により予備放電の
強度を制御することができる。
In the present embodiment, as shown in FIG.
Immediately before the low potential, the negative voltage Vd is applied to the data electrode 9.
Ata (for example, 100 V) is applied to suppress the electric field applied to the second sub-discharge space 15. That is, the time t 0
In the second sub-discharge space 15, a strong electric field (wall electric field) due to wall charges acts from the data electrode 9 toward the sustain electrode 8, but the electric field due to the negative voltage Vdata applied to the data electrode 9. Acts in a direction opposite to that of the wall electric field, so that the electric field can be reduced as a whole. Therefore, when the Low potential sustain electrode 8 at time t 1, the intensity of the preliminary discharge generated in the second sub-discharge space 15 becomes weaker than that of Vdata = 0. in this way,
The intensity of the preliminary discharge can be controlled by the negative voltage applied to the data electrode 9.

【0021】予備放電によって主放電空間13でも放電
(主放電)が起こると、データ電極9の電位をVdataか
らゼロにする。主放電が起こって放電電流が流れると、
各電極間には外部電圧を打ち消す方向に壁電荷が形成さ
れて主放電は停止する。すなわち、主放電空間13の走
査電極7上には負の壁電荷、維持電極8上には正の壁電
荷が形成される。また、はじめに予備放電を起こした第
2の副放電空間15では、維持電極8およびデータ電極
9はともにゼロ電位なので特に大きな壁電荷の形成はな
いが、第1の副放電空間14には外部電圧Vmが印加さ
れているので、この電圧を打ち消す方向に大きな壁電圧
が形成される。この第1の副放電空間14に蓄積される
壁電荷は次の維持放電のため予備放電を引き起こすとい
う重要な役割を果たす。主放電が停止した後、時間t2
において維持電極8をLow電位からHigh電位に引き上げ
る。
When a discharge (main discharge) occurs in the main discharge space 13 due to the preliminary discharge, the potential of the data electrode 9 is reduced from Vdata to zero. When the main discharge occurs and the discharge current flows,
Wall charges are formed between the electrodes in a direction to cancel the external voltage, and the main discharge stops. That is, negative wall charges are formed on the scan electrodes 7 in the main discharge space 13, and positive wall charges are formed on the sustain electrodes 8. In the second sub-discharge space 15 in which the preliminary discharge has occurred first, the sustain electrode 8 and the data electrode 9 are both at zero potential, so that no particularly large wall charge is formed. Since Vm is applied, a large wall voltage is formed in a direction to cancel this voltage. The wall charges accumulated in the first sub-discharge space 14 play an important role of causing a preliminary discharge for the next sustain discharge. After the main discharge stops, time t 2
, The sustain electrode 8 is pulled up from the low potential to the high potential.

【0022】時間t2における放電空間での壁電荷の状
態は、時間t0において走査電極7と維持電極8とを入
れ替えた状態と同じである。すなわち、時間t2では走
査電極7上に負の壁電荷、維持電極8上に正の壁電荷が
形成されているのに対し、時間t0では走査電極7上に
正の壁電荷、維持電極8上に負の壁電荷が形成されてお
り、時間t2から、走査電極7がLow電位からHigh電位に
かわる時間t4の間では、第1の副放電空間14で予備
放電が起こりそれによって主放電が発生する。したがっ
て、時間t2〜時間t4の間の動作は、時間t0〜時間t2
の間の動作において走査電極7と維持電極8とを入れ替
えた動作と同じであり、時間t4において時間t0と同じ
壁電荷状態に戻る。以降、維持パルスが続く限り同様の
放電が継続する。
The state of the wall charges in the discharge space at the time t 2 is the same as the state where the scan electrode 7 and the sustain electrode 8 are replaced at the time t 0 . That is, at time t 2 , a negative wall charge is formed on scan electrode 7 and a positive wall charge is formed on sustain electrode 8, whereas at time t 0 , a positive wall charge is formed on scan electrode 7 and sustain electrode 8 negative wall charges are formed on, from the time t 2, in between the scanning electrode 7 from Low potential time t 4 when alternative to High potential, the preliminary discharge occurs whereby the first sub-discharge space 14 Main discharge occurs. Therefore, the operation during the time t 2 ~ time t 4, the time t 0 ~ time t 2
The same in operation between the scanning electrode 7 and sustain electrode 8 and the operation interchanged, returns to the same wall charge state and the time t 0 at time t 4. Thereafter, the same discharge continues as long as the sustain pulse continues.

【0023】次に本発明の重要なポイント、すなわち第
1および第2の副放電空間において発生する予備放電の
強さについて説明する。これまで説明したように、副放
電空間にかかる電圧によって予備放電が発生し、予備放
電が強くなるほど主放電空間13の放電開始電圧が低下
する。しかし、主放電空間13の放電開始電圧が低下す
ると発光効率および輝度が低下するので、予備放電は必
要以上に強くさせず、主放電が開始できる程度の適当な
強さに制御することにより、発光効率および輝度の低下
を抑制することができる。本発明では放電維持パルスが
立ち下がる直前にデータ電極9に負極性のパルスを印加
することにより、副放電空間にかかる電圧を調整し、予
備放電を適正な強度に制御している。
Next, an important point of the present invention, that is, the intensity of the preliminary discharge generated in the first and second sub-discharge spaces will be described. As described above, the pre-discharge occurs due to the voltage applied to the sub-discharge space, and the discharge start voltage in the main discharge space 13 decreases as the pre-discharge increases. However, when the discharge starting voltage in the main discharge space 13 is reduced, the luminous efficiency and the luminance are reduced. A decrease in efficiency and luminance can be suppressed. In the present invention, the voltage applied to the sub-discharge space is adjusted by applying a negative-polarity pulse to the data electrode 9 immediately before the fall of the sustaining pulse, thereby controlling the preliminary discharge to an appropriate intensity.

【0024】図3にデータ電極9に印加する負極性のパ
ルス状の電圧Vdataとパネルの輝度および発光効率との
関係を示す。ここで、t2−t1=t4−t3=2.5μ
s、t 3−t2=1μs、Vm=300V、Vdata=10
0Vとした。パネルの輝度は輝度計で測定し、その輝度
をパネルへの投入電力で割って発光効率を求めた。図3
に示すように、印加する電圧の絶対値を大きくするとパ
ネルの輝度および発光効率が向上することがわかる。
FIG. 3 shows a negative polarity pattern applied to the data electrode 9.
Of the luminance voltage and the luminous efficiency of the panel
Show the relationship. Where tTwo-T1= TFour-TThree= 2.5μ
s, t Three-TTwo= 1 μs, Vm = 300 V, Vdata = 10
0 V was applied. The luminance of the panel is measured with a luminance meter, and the luminance
Was divided by the input power to the panel to obtain the luminous efficiency. FIG.
As shown in the figure, increasing the absolute value of the applied voltage
It can be seen that the luminance and luminous efficiency of the tunnel are improved.

【0025】なお、データ電極9に印加するパルスは、
走査電極7または維持電極8に印加される駆動波形が立
ち下がるときに発生する自己消去放電に合わせて印加す
ればよい。そのパルス幅が0.1μs未満ならば予備放
電の強さを適正に制御することができない。また、パル
ス幅が1μsを超える場合には、走査電極7または維持
電極8とデータ電極9との間に働く電界により、この電
界を打ち消す方向に壁電荷が蓄積されてしまい、この壁
電荷は次の放電サイクルで予備放電を強くする方向に働
くので好ましくない。したがって、データ電極9に印加
するパルスの幅は0.1〜1μsが適している。
The pulse applied to the data electrode 9 is
It may be applied in accordance with the self-erasing discharge generated when the drive waveform applied to the scan electrode 7 or the sustain electrode 8 falls. If the pulse width is less than 0.1 μs, the intensity of the preliminary discharge cannot be properly controlled. If the pulse width exceeds 1 μs, an electric field acting between the scan electrode 7 or the sustain electrode 8 and the data electrode 9 causes wall charges to accumulate in a direction to cancel the electric field. It is not preferable because it works in the direction of strengthening the preliminary discharge in the discharge cycle. Therefore, the width of the pulse applied to the data electrode 9 is suitably 0.1 to 1 μs.

【0026】[0026]

【発明の効果】以上のように本発明によれば、維持期間
において走査電極または維持電極に維持パルスを印加し
始める時間に、データ電極に維持パルスと同じ極性のパ
ルスを印加しておくことにより、走査電極あるいは維持
電極とデータ電極間で発生する予備放電を適正な強度に
制御できるので、パネルの輝度および発光効率を高める
ことができる。
As described above, according to the present invention, a pulse having the same polarity as the sustain pulse is applied to the data electrode during the start of applying the sustain pulse to the scan electrode or the sustain electrode during the sustain period. Since the pre-discharge generated between the scan electrode or the sustain electrode and the data electrode can be controlled to an appropriate intensity, the luminance and luminous efficiency of the panel can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態のパネルの駆動波形を示す
FIG. 1 is a diagram showing a driving waveform of a panel according to an embodiment of the present invention.

【図2】本発明の一実施形態のパネルの断面図FIG. 2 is a sectional view of a panel according to an embodiment of the present invention.

【図3】本発明の一実施形態のパネルの輝度と効率を示
す図
FIG. 3 is a diagram showing luminance and efficiency of a panel according to an embodiment of the present invention.

【図4】従来のパネルの断面図FIG. 4 is a sectional view of a conventional panel.

【図5】従来のパネルの駆動波形を示す図FIG. 5 is a diagram showing a driving waveform of a conventional panel.

【符号の説明】[Explanation of symbols]

2 放電空間 3 表面基板 4 背面基板 5 誘電体層 6 保護膜 7 走査電極 8 維持電極 9 データ電極 10 隔壁 11 蛍光体層 12 パネル 13 主放電空間 14 第1の副放電空間 15 第2の副放電空間 2 Discharge space 3 Front substrate 4 Back substrate 5 Dielectric layer 6 Protective film 7 Scan electrode 8 Sustain electrode 9 Data electrode 10 Partition wall 11 Phosphor layer 12 Panel 13 Main discharge space 14 First sub-discharge space 15 Second sub-discharge space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘 弘之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5C058 AA11 AB08 BA02 BA05 BA35 BB25 5C080 AA05 BB05 DD03 DD30 EE29 FF12 GG12 JJ04 JJ05 JJ06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroyuki Tachibana 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F term (reference) 5C058 AA11 AB08 BA02 BA05 BA35 BB25 5C080 AA05 BB05 DD03 DD30 EE29 FF12 GG12 JJ04 JJ04 JJ05 JJ06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体層で覆われた走査電極および維持
電極が互いに平行に形成された第1の基板と、データ電
極が前記走査電極と直交する方向に形成されるとともに
データ電極上に蛍光体層が形成された第2の基板とが放
電空間を挟んで対向配置され、前記走査電極と前記維持
電極との距離が前記放電空間の高さよりも大きく設定さ
れたAC型プラズマディスプレイパネルを駆動する方法
であって、維持期間において、前記走査電極と前記デー
タ電極との間、および前記維持電極と前記データ電極と
の間でそれぞれ発生する予備放電の強度を弱めるように
作用するパルスを、前記データ電極に印加するAC型プ
ラズマディスプレイパネルの駆動方法。
A first substrate on which a scan electrode and a sustain electrode covered with a dielectric layer are formed parallel to each other; a data electrode formed in a direction perpendicular to the scan electrode; A second substrate on which a body layer is formed is disposed opposite to the discharge space, and drives an AC plasma display panel in which a distance between the scan electrode and the sustain electrode is set to be greater than a height of the discharge space. In the sustaining period, during the sustaining period, between the scan electrode and the data electrode, and between the sustaining electrode and the data electrode, a pulse that acts to weaken the intensity of the pre-discharge generated respectively, the pulse, A method for driving an AC-type plasma display panel applied to data electrodes.
【請求項2】 前記維持期間において、前記走査電極お
よび前記維持電極のそれぞれに維持パルスを印加し始め
るより前の或る時間から、その維持パルスの印加中の或
る時間にかけて、前記維持パルスと同じ極性であり、か
つ前記維持パルスの幅より小さい幅のパルスを前記デー
タ電極に印加する請求項1に記載のAC型プラズマディ
スプレイパネルの駆動方法。
2. In the sustain period, the sustain pulse and the sustain electrode are applied to the scan electrode and the sustain electrode from a certain time before the start of applying the sustain pulse to a certain time during the application of the sustain pulse. 2. The method according to claim 1, wherein a pulse having the same polarity and a width smaller than the width of the sustain pulse is applied to the data electrode.
【請求項3】 前記維持期間において、前記走査電極お
よび前記維持電極のそれぞれに維持パルスを印加し始め
る時間から、その維持パルスの印加中の或る時間にかけ
て、前記維持パルスと同じ極性のパルスを前記データ電
極に印加する請求項1に記載のAC型プラズマディスプ
レイパネルの駆動方法。
3. In the sustain period, a pulse having the same polarity as the sustain pulse is applied from a time when the sustain pulse is applied to each of the scan electrode and the sustain electrode to a certain time during the application of the sustain pulse. The method of driving an AC plasma display panel according to claim 1, wherein the voltage is applied to the data electrode.
【請求項4】 前記データ電極に印加するパルスの幅を
0.1μs〜1μsに設定した請求項1ないし3のいず
れかに記載のAC型プラズマディスプレイパネルの駆動
方法。
4. The method of driving an AC plasma display panel according to claim 1, wherein a width of a pulse applied to the data electrode is set to 0.1 μs to 1 μs.
【請求項5】 前記データ電極に印加するパルスは負極
性である請求項1ないし4のいずれかに記載のAC型プ
ラズマディスプレイパネルの駆動方法。
5. The driving method of an AC plasma display panel according to claim 1, wherein the pulse applied to the data electrode has a negative polarity.
JP2000093184A 2000-03-30 2000-03-30 Method for driving ac type plasma display panel Pending JP2001282182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093184A JP2001282182A (en) 2000-03-30 2000-03-30 Method for driving ac type plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093184A JP2001282182A (en) 2000-03-30 2000-03-30 Method for driving ac type plasma display panel

Publications (1)

Publication Number Publication Date
JP2001282182A true JP2001282182A (en) 2001-10-12

Family

ID=18608403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093184A Pending JP2001282182A (en) 2000-03-30 2000-03-30 Method for driving ac type plasma display panel

Country Status (1)

Country Link
JP (1) JP2001282182A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321921A2 (en) * 2001-12-21 2003-06-25 Hitachi Ltd. Plasma display device and a method of driving the same
KR20030089869A (en) * 2002-05-20 2003-11-28 주식회사옌트 Method for improvement of color gamut using auxiliary negative pulse in ac pdp
EP1455332A2 (en) 2003-03-04 2004-09-08 LG Electronics, Inc. Plasma display panel with improved discharge stability and efficiency and method of driving the same
JP2004341531A (en) * 2003-05-16 2004-12-02 Thomson Plasma Method for driving plasma display by matrix triggering of sustained discharge
WO2004114270A1 (en) * 2003-06-23 2004-12-29 Matsushita Electric Industrial Co.,Ltd. Plasma display panel apparatus and method for driving the same
JP2005010398A (en) * 2003-06-18 2005-01-13 Hitachi Ltd Plasma display device
JP2005142161A (en) * 2003-11-07 2005-06-02 Thomson Plasma Plasma display panel with small gap accompanied by narrow and long coplanar electric discharge
WO2005119637A1 (en) * 2004-06-02 2005-12-15 Matsushita Electric Industrial Co., Ltd. Plasma display panel driving apparatus and plasma display

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321921A3 (en) * 2001-12-21 2006-03-15 Hitachi Ltd. Plasma display device and a method of driving the same
EP1321921A2 (en) * 2001-12-21 2003-06-25 Hitachi Ltd. Plasma display device and a method of driving the same
KR100826060B1 (en) * 2001-12-21 2008-04-29 가부시키가이샤 히타치세이사쿠쇼 Plasma display device and a method of driving the same
KR20030089869A (en) * 2002-05-20 2003-11-28 주식회사옌트 Method for improvement of color gamut using auxiliary negative pulse in ac pdp
EP1455332A2 (en) 2003-03-04 2004-09-08 LG Electronics, Inc. Plasma display panel with improved discharge stability and efficiency and method of driving the same
EP1455332A3 (en) * 2003-03-04 2006-08-23 LG Electronics, Inc. Plasma display panel with improved discharge stability and efficiency and method of driving the same
JP2004341531A (en) * 2003-05-16 2004-12-02 Thomson Plasma Method for driving plasma display by matrix triggering of sustained discharge
KR101077627B1 (en) * 2003-05-16 2011-10-27 톰슨 프라즈마 Method for driving a plasma display by matrix triggering of the sustain discharges
JP2005010398A (en) * 2003-06-18 2005-01-13 Hitachi Ltd Plasma display device
US7746295B2 (en) 2003-06-18 2010-06-29 Hitachi, Ltd. Plasma display device having improved luminous efficacy
WO2004114270A1 (en) * 2003-06-23 2004-12-29 Matsushita Electric Industrial Co.,Ltd. Plasma display panel apparatus and method for driving the same
JP2005142161A (en) * 2003-11-07 2005-06-02 Thomson Plasma Plasma display panel with small gap accompanied by narrow and long coplanar electric discharge
WO2005119637A1 (en) * 2004-06-02 2005-12-15 Matsushita Electric Industrial Co., Ltd. Plasma display panel driving apparatus and plasma display

Similar Documents

Publication Publication Date Title
US7659870B2 (en) Method of driving plasma display panel
JPH1165515A (en) Drive method for ac type pdp
US7446734B2 (en) Method of driving plasma display panel
US20080048937A1 (en) Method of Driving Plasma Display Panel
WO2005114626A1 (en) Plasma display panel driving method
JPH11143425A (en) Driving method of ac type pdp
JP2004170446A (en) Method for driving plasma display panel
US7342558B2 (en) Plasma display panel drive method
JP2003323150A (en) Driving method of plasma display device
US6906689B2 (en) Plasma display panel and driving method thereof
JP2001282182A (en) Method for driving ac type plasma display panel
JP4956911B2 (en) Driving method of plasma display panel
JP3111949B2 (en) Surface discharge type plasma display panel and driving method thereof
JP2001282185A (en) Ac-type plasma display panel and driving method therefor
JP4496703B2 (en) Driving method of plasma display panel
US20050200570A1 (en) Drive method for plasma display panel
KR100739549B1 (en) Mehtod of Driving Plasma Display Panel with Trigger-sustain Electrodes Structure
KR100525736B1 (en) Method and apparatus for plasma display panel
EP1505564A1 (en) Drive method for plasma display panel
JP2004288514A (en) Plasma display panel
JP2000305516A (en) Ac plasma display panel and its driving method
JP2000294151A (en) Ac plasma display device
JP2002366090A (en) Driving method of plasma display
JP4639579B2 (en) Driving method of plasma display panel
KR100295109B1 (en) High frequency plasma display panel and its driving device and method