JP2001276594A - Method for mixing fine particles with fluidized bed - Google Patents

Method for mixing fine particles with fluidized bed

Info

Publication number
JP2001276594A
JP2001276594A JP2000101781A JP2000101781A JP2001276594A JP 2001276594 A JP2001276594 A JP 2001276594A JP 2000101781 A JP2000101781 A JP 2000101781A JP 2000101781 A JP2000101781 A JP 2000101781A JP 2001276594 A JP2001276594 A JP 2001276594A
Authority
JP
Japan
Prior art keywords
particles
fine particles
fluidized bed
fine
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000101781A
Other languages
Japanese (ja)
Inventor
Kunio Kato
邦夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000101781A priority Critical patent/JP2001276594A/en
Publication of JP2001276594A publication Critical patent/JP2001276594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems with conventional mixing methods that, for example, when two or more kinds of fine particles of a submicron order are mixed, secondary particles are liable to be formed by strong cohesive force among the particles and can hardly be returned to primary particles and hence the secondary particles are mixed as they are without being cracked; there are lumps of the secondary particles localized in the resultant mixture; and homogeneous mixing at the level of primary particles is very difficult. SOLUTION: This mixing method comprises supplying air to a fluidized bed 12 comprising coarse particles P to fluidize particles P and supplying different kinds of fine particles p having cohesiveness to the fluidized bed 12 to thereby mix the different kinds of fine particles p while cracking secondary particles p' formed by the cohesion of particles p in fluidized bed 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、混合方法に関し、
更に詳しくは、流動層を用いて微粒子を混合する方法に
関する。
The present invention relates to a mixing method,
More specifically, the present invention relates to a method of mixing fine particles using a fluidized bed.

【0002】[0002]

【従来の技術】最近、電子材料、燃料電池、ファインセ
ラミックス等の技術領域ではサブミクロンから数ミクロ
ンのオーダーの微粒子状で物性の異なる材料を複数組み
合わせて混合し、この混合物に焼成等の処理を施すこと
により新たな物性を持った複合材料を作ることが多くな
ってきている。このような複合材料を作るには、物性の
異なる複数の微粒子素材を均質に混合することが極めて
重要な技術になっている。しかも、このような微粒子素
材は益々微粒子化が進み10数ミクロンからサブミクロ
ンオーダーに達するものも珍しいことではない。
2. Description of the Related Art Recently, in the technical fields of electronic materials, fuel cells, fine ceramics, etc., a plurality of materials having different physical properties in the form of fine particles of the order of submicron to several microns are mixed and mixed, and the mixture is subjected to a treatment such as firing. Application of such materials has increased the production of composite materials having new physical properties. In order to produce such a composite material, it has become a very important technique to uniformly mix a plurality of fine particle materials having different physical properties. In addition, it is not uncommon for such fine particle materials to be increasingly finely divided and reach the order of several tens of microns to submicron.

【0003】ところが、一般に、30〜40μm以下の
微粒子は付着、凝集性が強く、微粒子同士が互いに容易
に付着、凝集して二次粒子を形成したり、装置の壁面等
に簡単に付着するなどし、その取り扱いが極めて難し
い。例えば、1μmの微粒子は100万個凝集して10
0μm程度の粒子径の二次粒子を形成することも希なこ
とではない。
However, in general, fine particles having a size of 30 to 40 μm or less have strong adhesion and cohesive properties, and the fine particles easily adhere to each other and aggregate to form secondary particles, or easily adhere to the wall surface of an apparatus. And its handling is extremely difficult. For example, 1 million fine particles are
It is not unusual to form secondary particles having a particle size of about 0 μm.

【0004】ところで、従来の粉粒体の混合方式として
は、例えば、容器回転方式、機械撹拌方式、気流方式あ
るいはこれらを適宜組み合わせた複合方式が広く知られ
ている。これらの混合方式は、粒子径が比較的大きく粉
粒体同士が凝集しない場合には均質に混合することがで
きる。
By the way, as a conventional mixing method of powders and granules, for example, a container rotation method, a mechanical stirring method, an air flow method, or a combination method appropriately combining these is widely known. These mixing methods can be homogeneously mixed when the particles have a relatively large particle size and do not agglomerate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
混合方式を用いて前述のサブミクロンオーダーないし1
0数ミクロンオーダーの微粒子を複数種混合する場合に
は、前述のように互いの凝集力によって一次粒子が凝
集、付着して二次粒子を形成し易く、しかもこのような
塊は簡単には一次粒子レベルに戻らないため、二次粒子
の状態のまま混合され、混合物には二次粒子の塊として
局在し、一次粒子レベルで万遍なく均質に混合すること
は極めて難しいという課題があった。
However, using the conventional mixing method, the above-mentioned submicron order or 1-micron order is used.
When a plurality of types of fine particles of the order of 0 microns are mixed, as described above, the primary particles are easily aggregated and adhered to each other to form secondary particles due to the cohesive force of each other. Because it does not return to the particle level, it is mixed as it is in the form of secondary particles, it is localized as a mass of secondary particles in the mixture, and there is a problem that it is extremely difficult to mix uniformly at the primary particle level .

【0006】本発明は、上記課題を解決するためになさ
れたもので、凝集して二次粒子を形成し易いサブミクロ
ンオーダーの微粒子であっても複数種類の微粒子をそれ
ぞれ二次粒子から一次粒子へと解砕して一次粒子レベル
で均質に混合することができる微粒子の混合方法を提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a plurality of types of fine particles are each converted from a secondary particle to a primary particle even if the fine particles are on the order of submicrons that are likely to aggregate to form secondary particles. It is an object of the present invention to provide a method of mixing fine particles which can be crushed into fine particles and uniformly mixed at a primary particle level.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に記載
の微粒子の混合方法は、粗粒子からなる流動層へ気体を
供給して粗粒子を流動化し、その流動層へ凝集性のある
種類の異なる複数種の微粒子を供給し、凝集した各種の
微粒子を上記流動層において解砕しながら混合すること
を特徴とするものである。
According to a first aspect of the present invention, there is provided a method of mixing fine particles, wherein a gas is supplied to a fluidized bed composed of coarse particles to fluidize the coarse particles, and the fluidized bed has a cohesive property. A plurality of different types of fine particles are supplied, and the various types of aggregated fine particles are mixed while being crushed in the fluidized bed.

【0008】また、本発明の請求項2に記載の微粒子の
混合方法は、請求項1に記載の発明において、上記各微
粒子として0.1〜20μmの粒子径からなる微粒子を
供給することを特徴とするものである。
[0008] The method of mixing fine particles according to claim 2 of the present invention is characterized in that, in the invention according to claim 1, fine particles having a particle diameter of 0.1 to 20 µm are supplied as the respective fine particles. It is assumed that.

【0009】また、本発明の請求項3に記載の微粒子の
混合方法は、請求項1または請求項2に記載の発明にお
いて、上記粗粒子として300〜1500μmの粒子径
の粗粒子を用いることを特徴とするものである。
Further, the method for mixing fine particles according to claim 3 of the present invention is characterized in that, in the invention according to claim 1 or 2, coarse particles having a particle diameter of 300 to 1500 μm are used as the coarse particles. It is a feature.

【0010】また、本発明の請求項4に記載の微粒子の
混合方法は、請求項1〜請求項3のいずれか1項に記載
の発明において、上記粗粒子として一定の粒子径に揃っ
た粗粒子を用いることを特徴とするものである。
The method for mixing fine particles according to claim 4 of the present invention is the method according to any one of claims 1 to 3, wherein the coarse particles have a uniform particle diameter as the coarse particles. It is characterized by using particles.

【0011】また、本発明の請求項5に記載の微粒子の
混合方法は、請求項1〜請求項4のいずれか1項に記載
の発明において、上記分散板型流動層または噴流型流動
層を用いることを特徴とするものである。
The method for mixing fine particles according to claim 5 of the present invention is the method according to any one of claims 1 to 4, wherein the dispersion plate type fluidized bed or the jet fluidized bed is used. It is characterized in that it is used.

【0012】[0012]

【発明の実施の形態】以下、図1〜図4に示す実施形態
に基づいて本発明を説明する。尚、図1は本発明の混合
方法を実施する際に用いられる流動層の一例を示す模式
図、図2の(a)、(b)はそれぞれ流動層の粗粒子同
士が衝突、摩擦を繰り返して微粒子の二次粒子を一次粒
子に解砕する状況を説明するための説明図、図3は本発
明の混合方法を実施する際に用いられる流動層の他の一
例を示す模式図、図4は本発明の混合方法を検証するた
めの試験装置を示す模式図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in FIGS. FIG. 1 is a schematic view showing an example of a fluidized bed used when the mixing method of the present invention is carried out. FIGS. 2A and 2B are diagrams in which coarse particles of the fluidized bed repeatedly collide and friction. FIG. 3 is an explanatory view for explaining a situation in which secondary particles of fine particles are broken into primary particles by using the method. FIG. 3 is a schematic view showing another example of a fluidized bed used when performing the mixing method of the present invention, and FIG. FIG. 2 is a schematic view showing a test apparatus for verifying the mixing method of the present invention.

【0013】本発明の混合方法を実施する場合には例え
ば図1で模式的に示す分散板型の混合器、噴流型の混合
器が用いられる。図1に示す分散板型の混合器10は、
同図に示すように、主として直胴部11A及びコーン部
11Bからなる容器11と、この容器11内に粗粒子P
を充填して形成された流動層12とを備えている。容器
11の直胴部11Aとコーン部11Bの境界には分散板
13が介在し、この分散板13上に所定量の粗粒子Pが
充填されている。この分散板13には多数の孔13Aが
全面に分散して形成されている。孔13Aは流動層12
を形成する粗粒子Pが漏出しない大きさであれば良い。
また、コーン部11Bの下端には空気等の気体を流動層
12へ供給し流動層12を流動化するための給気口11
Cが形成されている。流動層12を形成する粗粒子Pは
給気口11Cから供給される気体によって流動化して直
胴部11A内を激しく動き廻り、互いに衝突、摩擦を繰
り返す。尚、図1では直胴部11Aの上端を開放してあ
るが、実際にはコーン状、ドーム状等の屋根が取り付け
られ、その一部に流出管が接続されている。
When the mixing method of the present invention is carried out, for example, a dispersion plate type mixer or a jet type mixer schematically shown in FIG. 1 is used. The dispersion plate type mixer 10 shown in FIG.
As shown in the figure, a container 11 mainly composed of a straight body 11A and a cone 11B, and coarse particles P
And a fluidized bed 12 formed by filling. A dispersion plate 13 is interposed at the boundary between the straight body 11A and the cone 11B of the container 11, and a predetermined amount of coarse particles P is filled on the dispersion plate 13. The dispersion plate 13 has a large number of holes 13A dispersed throughout the surface. The holes 13A are in the fluidized bed 12
Any size may be used as long as the coarse particles P forming the above do not leak.
An air supply port 11 for supplying gas such as air to the fluidized bed 12 and fluidizing the fluidized bed 12 is provided at a lower end of the cone portion 11B.
C is formed. The coarse particles P forming the fluidized bed 12 are fluidized by the gas supplied from the air supply port 11C, move violently in the straight body 11A, and repeatedly collide and friction with each other. Although the upper end of the straight body 11A is opened in FIG. 1, a cone-shaped or dome-shaped roof is actually attached, and an outflow pipe is connected to a part of the roof.

【0014】而して、上記粗粒子Pは略一定の粒子径を
有し、しかもその粒子径は例えば300〜1500μm
の範囲内にある。略一定の粒子径とは実質的に所定の粒
子径に揃っている状態で、厳密にはその粒子径から多少
はずれた粒子径が含まれている状態を云う。粒子径が3
00μm未満では粗粒子P自体が空気等の気体と一緒に
流出するため好ましくない。また、粒子径が1500μ
mを超えると流動層12の流動化に気体の流速を必要以
上の大きさに設定しなくてはならないため好ましくな
い。粗粒子Pに用いられる材料は、特に制限されるもの
ではないが、粗粒子Pの材料としては例えばセラミッ
ク、シラスバルーン、石灰石、シリカサンド、ガラスビ
ーズ等を挙げることができる。また、粗粒子Pの表面は
付着した微粒子pが剥離し離脱し易いものが好ましい。
The coarse particles P have a substantially constant particle size, and the particle size is, for example, 300 to 1500 μm.
Within the range. A substantially constant particle size refers to a state in which the particle diameter is substantially equal to a predetermined particle diameter, and strictly speaking, a state in which a particle diameter slightly deviating from the particle diameter is included. Particle size 3
If the thickness is less than 00 μm, the coarse particles P themselves flow out together with a gas such as air, which is not preferable. In addition, the particle diameter is 1500μ
If it exceeds m, the flow velocity of the gas must be set to a value larger than necessary for fluidizing the fluidized bed 12, which is not preferable. The material used for the coarse particles P is not particularly limited, but examples of the material for the coarse particles P include ceramic, shirasu balloon, limestone, silica sand, and glass beads. Further, it is preferable that the surface of the coarse particles P is such that the attached fine particles p are easily separated and separated.

【0015】また、上記混合器10には配管14を介し
て微粒子供給機15が接続されている。微粒子供給機1
5は複数種の微粒子pを所定の配合比で予備混合した複
数種の微粒子pをコンプレッサ等の給気手段(図示せ
ず)を用いて配管14内を気体輸送し混合器10へ供給
するものである。配管14は例えば混合器10のコーン
部11Bに接続され、コーン部11Bに供給される気体
を介して複数種の微粒子pを流動層12内へ供給するよ
うにしてある。微粒子供給機15において予備混合され
る複数種の微粒子pは、それぞれ例えば0.1〜20μ
mの粒子径を有している。そのため、各種の微粒子pは
一次粒子同士が互いに凝集して付着し、二次粒子を形成
している。二次粒子は微粒子供給機15での予備混合で
は殆ど解砕されず、そのまま混合器10へ供給される。
尚、以下では微粒子pのうち、凝集していない微粒子を
一次粒子pとして、また、凝集した微粒子を二次粒子
p’として説明する。
A fine particle feeder 15 is connected to the mixer 10 via a pipe 14. Particle feeder 1
Reference numeral 5 denotes a method in which a plurality of types of fine particles p obtained by pre-mixing a plurality of types of fine particles p at a predetermined mixing ratio are gas-transported in a pipe 14 using an air supply means (not shown) such as a compressor and supplied to the mixer 10. It is. The pipe 14 is connected to, for example, the cone portion 11B of the mixer 10 so that a plurality of types of fine particles p are supplied into the fluidized bed 12 via gas supplied to the cone portion 11B. The plurality of types of fine particles p that are premixed in the fine particle feeder 15 are each 0.1 to 20 μm, for example.
m. Therefore, the primary particles of the various fine particles p are aggregated and adhere to each other to form secondary particles. The secondary particles are hardly disintegrated by the preliminary mixing in the fine particle feeder 15 and are supplied to the mixer 10 as they are.
Hereinafter, among the fine particles p, the fine particles that are not aggregated will be described as primary particles p, and the aggregated fine particles will be described as secondary particles p ′.

【0016】上記微粒子pの粒子径は例えば上述のよう
に0.1〜20μmの範囲内のものが好ましい。そし
て、種類の異なる複数の微粒子pは、それぞれの粒子径
が同一であっても異なっていても良い。この範囲の粒子
径を有する微粒子pは、前述したように極めて凝集力が
強く簡単に二次粒子p’を形成し、しかも従来の混合方
式では簡単には一次粒子pに解砕することが極めて難し
い。粒子径が0.1μm未満の微粒子pは粗粒子Pに強
く付着し、解砕後の微粒子pの回収率が低下する虞があ
るため好ましくない。また、粒子径が20μmを超える
微粒子pは凝集性があっても従来の混合方式で一次粒子
pに解砕できる可能性があり、敢えて本発明方法を用い
ることもないため、好ましくない。また、微粒子pは特
定の材料に制限されるものではなく、無機化合物、有機
化合物のいずれであっても良い。例えば前述した電子材
料、燃料電池、ファインセラミックス等の技術領域で用
いられる微粒子素材に対して本発明方法を好適に用いる
ことができる。
The particle diameter of the fine particles p is preferably, for example, in the range of 0.1 to 20 μm as described above. The plurality of fine particles p of different types may have the same or different particle diameters. The fine particles p having a particle diameter in this range have a very strong cohesive force and easily form the secondary particles p ′ as described above, and can be easily disintegrated into the primary particles p by the conventional mixing method. difficult. The fine particles p having a particle diameter of less than 0.1 μm are not preferable because they may strongly adhere to the coarse particles P and the recovery rate of the fine particles p after crushing may decrease. Further, the fine particles p having a particle diameter of more than 20 μm are not preferable because they may be crushed into the primary particles p by a conventional mixing method even if they have a cohesive property, and the method of the present invention is not intentionally used. The fine particles p are not limited to a specific material, and may be any of an inorganic compound and an organic compound. For example, the method of the present invention can be suitably used for fine particle materials used in technical fields such as the above-mentioned electronic materials, fuel cells, fine ceramics, and the like.

【0017】次に、上記混合器10を用いた本発明の混
合方法について説明する。例えば空気をコーン部11B
の下端の給気口11Cから矢印A方向へ供給すると、空
気は分散板13の孔13Aを経由して直胴部11A内を
上昇流で通過する際に、この上昇流で流動層12の粗粒
子Pが流動化して直胴部11A内を縦横無尽に動き廻
る。この時、微粒子供給機15内において予備混合した
複数種(例えば三種類)の微粒子pを配管14を介して
混合器10のコーン部11Bへ供給する。微粒子供給機
15では三種類の微粒子pが予備混合されてもそれぞれ
の大部分を二次粒子p’のままコーン部11Bへ供給す
る。コーン部11Bでは各種の微粒子pは給気口11C
からの空気流に乗って直胴部11A内で流動化した流動
層12内へ流入する。
Next, the mixing method of the present invention using the mixer 10 will be described. For example, air is supplied to the cone 11B.
When air is supplied in the direction of arrow A from the air supply port 11C at the lower end of the fluidized bed, the air flows through the hole 13A of the dispersing plate 13 in the straight body 11A in an ascending flow. The particles P are fluidized and move around in the straight body 11A in all directions. At this time, plural kinds (for example, three kinds) of fine particles p preliminarily mixed in the fine particle feeder 15 are supplied to the cone portion 11B of the mixer 10 through the pipe 14. In the fine particle feeder 15, most of the three types of fine particles p are supplied to the cone portion 11B as the secondary particles p 'even if they are preliminarily mixed. In the cone portion 11B, various fine particles p are supplied to the air supply port 11C.
And flows into the fluidized bed 12 fluidized in the straight body portion 11A on the airflow from the air.

【0018】流動層12内では三種類の微粒子pの大部
分は図2の(a)に示すようにそれぞれ二次粒子p’の
まま個々の粗粒子P表面へ付着する。これらの粗粒子P
は直胴部11A内で縦横無尽に動き廻っているため、粗
粒子P同士が図2の(a)で示すように衝突、摩擦を繰
り返し、この間に同図に(b)で示すように各粗粒子P
に付着した二次粒子p’を一次粒子pまで解砕すると共
に、解砕された各種の一次粒子pは粗粒子Pから剥離し
て離脱する。離脱した微粒子pは上昇気流を介して流動
層12の空隙を縫って流動層12から浮上し、容器11
上端から図示しない流出管を経由してバグフィルタ(図
示せず)等の捕集手段に達して回収される。流動層12
から浮上した複数種の浮遊微粒子pは容器11からバグ
フィルタに達する間に空気を介して万遍なく混合され、
捕集手段で回収した段階では各種の微粒子pは一次粒子
レベルで均質に混合された混合物になっている。
In the fluidized bed 12, most of the three types of fine particles p adhere to the surfaces of the individual coarse particles P as secondary particles p 'as shown in FIG. 2A. These coarse particles P
Is moving around endlessly in the straight body 11A, so that the coarse particles P repeatedly collide and friction as shown in FIG. 2A, and during this time, as shown in FIG. Coarse particles P
The secondary particles p ′ adhered to the particles are crushed into primary particles p, and the crushed various primary particles p are separated from the coarse particles P and separated. The separated fine particles p rise through the fluidized bed 12 through the ascending airflow through the gaps of the fluidized bed 12 and rise to the container 11.
From the upper end, it reaches a collecting means such as a bag filter (not shown) via an outflow pipe (not shown) and is collected. Fluidized bed 12
Are mixed uniformly via air while reaching the bag filter from the container 11,
At the stage of recovery by the collecting means, the various fine particles p are in a homogeneously mixed mixture at the primary particle level.

【0019】以上説明したように本実施形態によれば、
粗粒子Pからなる流動層12へ空気を供給して粗粒子P
を流動化し、その流動層12へ凝集性のある三種類の微
粒子pを供給し、凝集した各種の微粒子pの二次粒子
p’を流動層12において解砕しながら混合するように
したため、三種類の微粒子pが凝集して二次粒子p’を
形成し易いサブミクロンオーダーの微粒子pであっても
それぞれの微粒子pを二次粒子p’から一次粒子pまで
解砕して一次粒子レベルで均質に混合することができ、
各微粒子pの特性を効果的に引き出し、安定した品質の
混合物を得ることができる。
As described above, according to the present embodiment,
Air is supplied to the fluidized bed 12 composed of coarse particles P
Is fluidized, and three types of fine particles p having cohesiveness are supplied to the fluidized bed 12, and secondary particles p ′ of the various types of aggregated fine particles p are mixed while being crushed in the fluidized bed 12. Even in the case of submicron-order fine particles p in which various kinds of fine particles p are easily aggregated to form secondary particles p ′, each fine particle p is disintegrated from the secondary particles p ′ to the primary particles p at the primary particle level. Can be mixed homogeneously,
The characteristics of each fine particle p can be effectively extracted, and a mixture of stable quality can be obtained.

【0020】また、本実施形態によれば、微粒子pとし
て0.1〜20μmの粒子径からなる微粒子pを供給す
るようにしたため、凝集性の強い微粒子pの大部分を一
次粒子レベルで均質に混合することができる。また、流
動層12の粗粒子Pとして300〜1500μmの粒子
径の粗粒子を用いるようにしたため、微粒子pを粗粒子
Pから確実に分離して均質に混合することができる。ま
た、粗粒子Pとして一定の粒子径に揃った粗粒子Pを用
いるようにしたため、圧力損失が略一定し安定した混合
操作を行うことができる。更に、流動層12として分散
板型の流動層を用いたため、既存の流動層を利用して微
粒子pの混合操作を行うことができる。
Further, according to the present embodiment, since the fine particles p having a particle diameter of 0.1 to 20 μm are supplied as the fine particles p, most of the finely-aggregated fine particles p can be uniformly dispersed at the primary particle level. Can be mixed. In addition, since coarse particles having a particle diameter of 300 to 1500 μm are used as the coarse particles P of the fluidized bed 12, the fine particles p can be surely separated from the coarse particles P and uniformly mixed. Further, since the coarse particles P having a uniform particle diameter are used as the coarse particles P, the pressure loss is substantially constant, and a stable mixing operation can be performed. Furthermore, since a fluidized bed of a dispersion plate type is used as the fluidized bed 12, the mixing operation of the fine particles p can be performed using an existing fluidized bed.

【0021】また、図3は噴流型の混合器20を模式的
に示す図である。この混合器20の容器21は直胴部2
1Aとコーン部21Bとからなり、その内部に粗粒子P
が充填されて流動層22を形成している。コーン部21
B下端の給気口21Cから空気等の気体を供給するよう
になっている。また、コーン部21Bの下方には配管2
4を介して微粒子供給機25が接続されている。
FIG. 3 is a view schematically showing a jet-type mixer 20. As shown in FIG. The container 21 of the mixer 20 has a straight body 2
1A and a cone portion 21B, in which coarse particles P
Are filled to form the fluidized bed 22. Cone part 21
A gas such as air is supplied from an air supply port 21C at the lower end of B. A pipe 2 is provided below the cone 21B.
The fine particle feeder 25 is connected to the control unit 4 via the control unit 4.

【0022】従って、例えば給気口21Cから空気を矢
印A方向へ供給すると、空気はコーン部21Bの出口を
塞いでいる流動層22の下端から吹き上げて流動層22
の上面から噴出する。空気が流動層22の下端からその
上方へ噴出する時に流動層22の粗粒子Pを流動化す
る。一方、微粒子供給機25から配管24を介して微粒
子pを空気輸送すると、微粒子pは給気口21Cからの
空気の上昇流に乗って流動化した流動層22内へ噴出す
る。この際、微粒子pの一次粒子及び二次粒子が粗粒子
Pに付着し、微粒子pが付着した粗粒子P同士が衝突、
摩擦を繰り返し、粗粒子P表面の二次粒子が解砕され、
一次粒子となって粗粒子Pから剥離し、粗粒子Pの空隙
を縫って流動層22上へ浮上する。その後、容器20か
ら図示しない流出管を介してバグフィルタ等の捕集手段
へ達する。容器20から捕集手段へ到達する間にも微粒
子pは混合作用を受け、捕集手段に達した時点で均質な
混合物になる。本実施形態においても上記実施形態と同
様の作用効果を期することができる。●は微粒子pが付
着した粗粒子Pを示している。
Therefore, for example, when air is supplied from the air supply port 21C in the direction of arrow A, the air blows up from the lower end of the fluidized bed 22 closing the outlet of the cone portion 21B, and
Erupts from the upper surface. When air is blown upward from the lower end of the fluidized bed 22, the coarse particles P of the fluidized bed 22 are fluidized. On the other hand, when the fine particles p are pneumatically transported from the fine particle feeder 25 via the pipe 24, the fine particles p are jetted into the fluidized fluidized bed 22 on the upward flow of air from the air supply port 21C. At this time, the primary particles and the secondary particles of the fine particles p adhere to the coarse particles P, and the coarse particles P to which the fine particles p adhere collide with each other,
The friction is repeated, and the secondary particles on the surface of the coarse particles P are crushed,
The particles become primary particles and are separated from the coarse particles P, and float on the fluidized bed 22 through the voids of the coarse particles P. Thereafter, the water reaches the collecting means such as a bag filter from the container 20 via an outflow pipe (not shown). The fine particles p are also subjected to the mixing action while reaching the collecting means from the container 20, and become a homogeneous mixture when reaching the collecting means. In this embodiment, the same operation and effect as those in the above embodiment can be expected. ● indicates coarse particles P to which fine particles p adhered.

【0023】次に、本発明の混合方法を検証するための
試験装置について図4を参照しながら説明する。本試験
装置は、図4に示すように、空気供給装置41と、微粒
子供給機42と、微粒子の混合器43と、バグフィルタ
ー44とを備えている。
Next, a test apparatus for verifying the mixing method of the present invention will be described with reference to FIG. As shown in FIG. 4, the test apparatus includes an air supply device 41, a fine particle supply device 42, a fine particle mixer 43, and a bag filter 44.

【0024】上記空気供給装置41は、図4に示すよう
に、空気を圧送するコンプレッサ45と、このコンプレ
ッサ45から圧送される空気から油分を除去するオイル
フィルタ46と、このフィルタ46を経由した空気を徐
湿する徐湿器(シリカゲル塔)47と、このシリカゲル
塔47からの徐湿空気の圧力を調整する圧力調整弁48
とを備え、これらの各機器は配管49によって連結され
ている。この配管49は圧力調整弁48の下流側で三方
に分岐している。
As shown in FIG. 4, the air supply device 41 includes a compressor 45 for supplying air, an oil filter 46 for removing oil from the air supplied from the compressor 45, and an air filter passing through the filter 46. (Silica gel tower) 47 for humidifying the air, and a pressure regulating valve 48 for adjusting the pressure of the humidified air from the silica gel tower 47.
And these devices are connected by a pipe 49. This pipe 49 branches off in three directions downstream of the pressure regulating valve 48.

【0025】第1分岐管49Aには上流側から下流側へ
流量計(オリフィス)50及び微粒子供給機42がこの
順序で配設され、第1分岐管49Aの下流端に混合器4
3が接続されている。第2分岐管49Bには上流側から
下流側へ流量計50及び調湿器51がこの順序で配設さ
れ、第3分岐管49Cには流量計50が配設され、第
2、第3分岐管49B、49Cは調湿器51の下流側で
合流している。第2、第3分岐管49B、49Cの合流
管49Dの下流端には混合器43が接続されている。更
に、混合器43は配管49を介してバグフィルタ44に
接続されている。混合器43内には300〜1500μ
mの粒子が流動層43Aとして充填されている。
A flow meter (orifice) 50 and a fine particle feeder 42 are arranged in this order from the upstream side to the downstream side in the first branch pipe 49A, and the mixer 4 is provided at the downstream end of the first branch pipe 49A.
3 are connected. A flow meter 50 and a humidity controller 51 are provided in this order from the upstream side to the downstream side in the second branch pipe 49B, and a flow meter 50 is provided in the third branch pipe 49C. The pipes 49B and 49C join on the downstream side of the humidity controller 51. The mixer 43 is connected to the downstream end of the merging pipe 49D of the second and third branch pipes 49B and 49C. Further, the mixer 43 is connected to a bag filter 44 via a pipe 49. 300-1500μ in the mixer 43
m particles are packed as a fluidized bed 43A.

【0026】従って、第2、第3分岐管49B、49C
から調湿後の空気を混合器43へ供給し、その内部の流
動層43Aを流動化すると共に微粒子供給機42から複
数種の微粒子pの予備混合物を連続的に空気輸送する
と、各微粒子pは混合器43に達する。各微粒子pは一
次粒子と二次粒子が混じった状態で調湿後の空気流に乗
って流動化した流動層43A内に入り、粗粒子Pの表面
に付着た後、粗粒子P同士の衝突、摩擦により二次粒子
は一次粒子となって混合器43から流出してバグフィル
タ44で各微粒子pの均質な混合物として回収される。
Therefore, the second and third branch pipes 49B, 49C
Is supplied to the mixer 43 to fluidize the fluidized bed 43A therein and continuously pneumatically transport a premix of a plurality of types of fine particles p from the fine particle feeder 42. The mixture reaches the mixer 43. Each of the fine particles p enters the fluidized bed 43A fluidized by the air flow after humidity control in a state where the primary particles and the secondary particles are mixed, and adheres to the surface of the coarse particles P, and then the coarse particles P collide with each other. The secondary particles become primary particles due to friction, flow out of the mixer 43, and are collected by the bag filter 44 as a homogeneous mixture of the fine particles p.

【0027】次に、図4に示す試験装置を用いた本発明
の混合方法の試験例について説明する。 [試験例1]本試験例では調湿器51から調湿後の空気
を下記条件でガラスビーズを流動層43Aとする混合器
43へ供給して流動層43Aを流動化する一方、微粒子
供給機42から二種類の微粒子pの混合物を下記条件で
混合器43へ供給し、混合器43において二種類の微粒
子pを混合した後、混合物をバグフィルタ44で回収し
た。そして、バグフィルタ44で回収された混合物を目
視観察したところ、アルミナと石灰石が一次粒子レベル
で均質に混合していることが判った。 混合器(塩化ビニル製円筒):内径10cm、高さ100cm ガラスビーズ(粗粒子) :600μm ガラスビーズの充填量 :2000g 静止層高 :17cm 流動化空気速度 :0.8m/秒 微粒子 :1μmのアルミナ、1μmの石灰石 アルミナの供給速度 :26g/分 石灰石の供給速度 :26g/分
Next, a test example of the mixing method of the present invention using the test apparatus shown in FIG. 4 will be described. Test Example 1 In this test example, air after humidity control was supplied from a humidity controller 51 to a mixer 43 having glass beads as a fluidized bed 43A under the following conditions to fluidize the fluidized bed 43A, while a fine particle feeder was used. A mixture of two types of fine particles p was supplied from 42 to a mixer 43 under the following conditions. After mixing the two types of fine particles p in the mixer 43, the mixture was collected by a bag filter 44. When the mixture collected by the bag filter 44 was visually observed, it was found that alumina and limestone were homogeneously mixed at the primary particle level. Mixer (vinyl chloride cylinder): inner diameter 10 cm, height 100 cm Glass beads (coarse particles): 600 μm Filling amount of glass beads: 2000 g Stationary bed height: 17 cm Fluidized air velocity: 0.8 m / sec Fine particles: 1 μm alumina 1 μm limestone Alumina feed rate: 26 g / min Limestone feed rate: 26 g / min

【0028】[試験例2]本試験例では粗粒子Pの条
件、微粒子pの条件及び流動化空気速度を変えて下記の
二種類の微粒子pを混合し、バグフィルタ44で回収さ
れた混合物を目視観察したところ、アルミナと酸化チタ
ンが一次粒子レベルで均質に混合していることが判っ
た。 混合器(塩化ビニル製円筒):内径10cm、高さ100cm シリカサンド(粗粒子) :500μm ガラスビーズの充填量 :1500g 静止層高 :13cm 流動化空気速度 :0.6m/秒 微粒子 :1μmのアルミナ、0.5μmの酸化チタン アルミナの供給速度 :25g/分 酸化チタンの供給速度 :15g/分
Test Example 2 In this test example, the following two kinds of fine particles p were mixed by changing the conditions of the coarse particles P, the conditions of the fine particles p, and the fluidizing air velocity, and the mixture recovered by the bag filter 44 was used. Visual observation revealed that alumina and titanium oxide were homogeneously mixed at the primary particle level. Mixer (vinyl chloride cylinder): Inner diameter 10 cm, height 100 cm Silica sand (coarse particles): 500 μm Filling amount of glass beads: 1500 g Stationary bed height: 13 cm Fluidizing air velocity: 0.6 m / sec Fine particles: 1 μm alumina 0.5 μm titanium oxide Alumina supply rate: 25 g / min Titanium oxide supply rate: 15 g / min

【0029】尚、本発明は上記各実施形態に何等制限さ
れるものではない。例えば、上記各実施形態では無機物
からなる微粒子pを混合する場合について説明したが、
有機物(例えば、合成樹脂等の微粒子)に対しても適用
できることは云うまでもない。また、上記各実施形態で
は微粒子供給機15、25から配管14、24を介して
混合器10、20のコーン部11B、21Bを経由させ
て直胴部11A、21Aへ微粒子pを供給する場合につ
いて説明したが、配管14、24を混合器10、20の
直胴部11A、21Aへ接続し、微粒子供給機15、2
5から直胴部11A、21Aへ微粒子pを直接供給する
ようにしても良い。
The present invention is not limited to the above embodiments. For example, in each of the embodiments described above, the case where the fine particles p made of an inorganic substance are mixed is described.
It is needless to say that the present invention can be applied to organic substances (for example, fine particles such as synthetic resin). In each of the above embodiments, the fine particles p are supplied from the fine particle feeders 15 and 25 to the straight body portions 11A and 21A via the pipes 14 and 24 and the cone portions 11B and 21B of the mixers 10 and 20. As described above, the pipes 14 and 24 are connected to the straight body portions 11A and 21A of the mixers 10 and 20, and the fine particle feeders 15 and 2 are connected.
Alternatively, the fine particles p may be directly supplied to the straight body portions 11A and 21A from the portion 5.

【0030】[0030]

【発明の効果】以上説明したように本発明の請求項1〜
5に記載の発明によれば、凝集して二次粒子を形成し易
いサブミクロンオーダーの微粒子であっても複数種類の
微粒子をそれぞれ二次粒子から一次粒子へと解砕して一
次粒子レベルで均質に混合することができる微粒子の混
合方法を提供することができる。
According to the present invention, as described above,
According to the invention described in 5, even sub-micron-order fine particles that are easily aggregated to form secondary particles, a plurality of types of fine particles are each crushed from secondary particles to primary particles, and at the primary particle level. It is possible to provide a method of mixing fine particles which can be mixed homogeneously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の混合方法を実施する際に用いられる流
動層の一例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a fluidized bed used when performing a mixing method of the present invention.

【図2】(a)、(b)はそれぞれ流動層の粗粒子同士
が衝突、摩擦を繰り返して微粒子の二次粒子を一次粒子
に解砕する状況を説明するための説明図である。
FIGS. 2 (a) and 2 (b) are explanatory diagrams for explaining a situation in which coarse particles of a fluidized bed repeatedly collide and rub each other to break up secondary particles of fine particles into primary particles.

【図3】本発明の混合方法を実施する際に用いられる流
動層の他の一例を示す模式図である。
FIG. 3 is a schematic diagram showing another example of a fluidized bed used when performing the mixing method of the present invention.

【図4】本発明の混合方法を検証するための試験装置を
示す模式図である。
FIG. 4 is a schematic diagram showing a test apparatus for verifying the mixing method of the present invention.

【符号の説明】[Explanation of symbols]

10、20 混合器 11、21 容器 12、22 流動層 13 分散板 P 粗粒子 p 微粒子(一次粒子) p’ 微粒子(二次粒子) 10, 20 Mixer 11, 21 Container 12, 22 Fluidized bed 13 Dispersion plate P Coarse particle p Fine particle (primary particle) p 'Fine particle (secondary particle)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粗粒子からなる流動層へ気体を供給して
粗粒子を流動化し、その流動層へ凝集性のある種類の異
なる複数種の微粒子を供給し、凝集した各種の微粒子を
上記流動層において解砕しながら混合することを特徴と
する微粒子の混合方法。
1. A method comprising: supplying a gas to a fluidized bed composed of coarse particles to fluidize the coarse particles; supplying a plurality of types of fine particles having different types of cohesiveness to the fluidized bed; A method for mixing fine particles, wherein mixing is performed while crushing in a layer.
【請求項2】 上記各微粒子として0.1〜20μmの
粒子径からなる微粒子を供給することを特徴とする請求
項1に記載の微粒子の混合方法。
2. The method for mixing fine particles according to claim 1, wherein fine particles having a particle diameter of 0.1 to 20 μm are supplied as each of the fine particles.
【請求項3】 上記粗粒子として300〜1500μm
の粒子径の粗粒子を用いることを特徴とする請求項1ま
たは請求項2に記載の微粒子の混合方法。
3. The particle size of the coarse particles is 300 to 1500 μm.
The method for mixing fine particles according to claim 1 or 2, wherein coarse particles having a particle diameter of (1) are used.
【請求項4】 上記粗粒子として一定の粒子径に揃った
粗粒子を用いることを特徴とする請求項1〜請求項3の
いずれか1項に記載の微粒子の混合方法。
4. The method for mixing fine particles according to claim 1, wherein coarse particles having a uniform particle diameter are used as the coarse particles.
【請求項5】 上記分散板型流動層または噴流型流動層
を用いることを特徴とする請求項1〜請求項4のいずれ
か1項に記載の微粒子の混合方法。
5. The method for mixing fine particles according to claim 1, wherein the dispersion plate type fluidized bed or the spouted fluidized bed is used.
JP2000101781A 2000-04-04 2000-04-04 Method for mixing fine particles with fluidized bed Pending JP2001276594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101781A JP2001276594A (en) 2000-04-04 2000-04-04 Method for mixing fine particles with fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101781A JP2001276594A (en) 2000-04-04 2000-04-04 Method for mixing fine particles with fluidized bed

Publications (1)

Publication Number Publication Date
JP2001276594A true JP2001276594A (en) 2001-10-09

Family

ID=18615764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101781A Pending JP2001276594A (en) 2000-04-04 2000-04-04 Method for mixing fine particles with fluidized bed

Country Status (1)

Country Link
JP (1) JP2001276594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614801A (en) * 2012-03-14 2012-08-01 东南大学 Ultrafine particle mixing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488873A (en) * 1977-12-27 1979-07-14 Kaderiusu Kk Fluidized bed apparatus
JPS56155624A (en) * 1980-02-11 1981-12-01 Gen Electric Method and device for adding cohesive powder by fluid bed blender
JPS5864123A (en) * 1981-10-09 1983-04-16 バツテル・デイベロプメント・コ−ポレ−シヨン Jet stream stirring method
JPS61209032A (en) * 1985-03-12 1986-09-17 Res Dev Corp Of Japan Method and apparatus for mixing ultra-fine particles
JPS63283728A (en) * 1987-05-14 1988-11-21 Chuo Kakoki Kk Powder material dispersing and mixing device
JPH0268151A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Medium stirring type pulverizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488873A (en) * 1977-12-27 1979-07-14 Kaderiusu Kk Fluidized bed apparatus
JPS56155624A (en) * 1980-02-11 1981-12-01 Gen Electric Method and device for adding cohesive powder by fluid bed blender
JPS5864123A (en) * 1981-10-09 1983-04-16 バツテル・デイベロプメント・コ−ポレ−シヨン Jet stream stirring method
JPS61209032A (en) * 1985-03-12 1986-09-17 Res Dev Corp Of Japan Method and apparatus for mixing ultra-fine particles
JPS63283728A (en) * 1987-05-14 1988-11-21 Chuo Kakoki Kk Powder material dispersing and mixing device
JPH0268151A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Medium stirring type pulverizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614801A (en) * 2012-03-14 2012-08-01 东南大学 Ultrafine particle mixing device

Similar Documents

Publication Publication Date Title
US7878430B2 (en) Method and apparatus for uniformly dispersing additive particles in fine powders
US7621668B2 (en) Methods and apparatus for handling or treating particulate material
US7635218B1 (en) Method for dust-free low pressure mixing
KR20090108004A (en) Fluidized bed systems and methods including secondary gas flow
US5816509A (en) Apparatus for continuously supplying fine powder in minute and quantitative amounts
US8557336B2 (en) Methods for coating particulate material
US6004626A (en) High pressure/volume process for wet shotcreting a refractory castable
JP2001276594A (en) Method for mixing fine particles with fluidized bed
JPS6126413B2 (en)
CN107555178A (en) A kind of powder conveying apparatus and its application
JP2742541B2 (en) Powder dispersing machine
RU2793896C1 (en) Device for dispersing liquid materials
CN111001362B (en) Surface modifying device
JPS61249532A (en) Dispersing method for powdery granular particles
US20100271902A1 (en) Apparatus and method for premixing lost circulation material
US5511728A (en) Dual fluid atomizer for high solids soil paste containing pebbles or agglomerates
CN114713501B (en) Particle size grading device for high-temperature hydrolysis nanometer material
Littman et al. Methods for Coating Particulate Material
Pietsch Size Enlargement by
Bradley et al. Powder Flow in the AM Process: Understanding its impact and potential problems
WO2000024517A1 (en) Powder dispersion-treating method and device therefor and powder treating device
CN105032330B (en) A kind of preparation facilitiess of nano composite material
Littman et al. Coated Aerogel Beads
EP1955759B1 (en) Method and apparatus for moisturizing dusting material
JPH03217258A (en) Classification of powder and production of composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406