JP2001272001A - Boiler equipment - Google Patents

Boiler equipment

Info

Publication number
JP2001272001A
JP2001272001A JP2000091723A JP2000091723A JP2001272001A JP 2001272001 A JP2001272001 A JP 2001272001A JP 2000091723 A JP2000091723 A JP 2000091723A JP 2000091723 A JP2000091723 A JP 2000091723A JP 2001272001 A JP2001272001 A JP 2001272001A
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
duct
gas duct
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000091723A
Other languages
Japanese (ja)
Inventor
Yoshirou Inatsune
芳郎 稲恒
Ikuo Kotaka
生男 高鷹
Hiroyuki Kako
宏行 加来
Noboru Shinozuka
昇 篠塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000091723A priority Critical patent/JP2001272001A/en
Publication of JP2001272001A publication Critical patent/JP2001272001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiler equipment in which turbulent or a pressure loss is not caused in a gas flow in an exhaust gas duct, operation efficiency is high, operation cost can be reduced, and the space for its installation can be saved. SOLUTION: Exhaust gas GS discharged from a boiler 1 is passed through an exhaust gas duct 15. The diameter of the duct 15 is made equal in every vertical part to simplify the structure of the duct 15, and moreover the duct 15 is constituted integrally with the boiler. Each equipment of a primary superheater 23, a first reheater 25, an economizer 12 and A/H (air preheater) 14 is disposed vertically in the duct 15. An opening 11 for pouring ammonia HN is made at a position just above the economizer 12 so that ammonia NH is mixed with the exhaust gas GS and agitated in the tube nest of the economizer 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石炭等の燃料を燃焼
させた排ガスの熱を熱回収すると共に排ガス中の窒素酸
化物を除去するようにしたボイラ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler apparatus for recovering heat of exhaust gas obtained by burning fuel such as coal and removing nitrogen oxides in the exhaust gas.

【0002】[0002]

【従来の技術】電力需要の増加に伴い、また、設備全体
の能力向上を計るために、近年はボイラの容量が大型化
してきている。しかし、大容量のボイラに見合った発電
所建設用地の確保は容易でないため、既存の老朽化した
設備を取り壊して、その跡地を利用して発電所を新設す
る場合が増えつつある。従って、大容量でありながら設
置空間を小さくしたコンパクトなボイラ装置が望まれて
いる。また、一方では、省エネの観点から、ボイラの運
転効率の向上、運転コストの削減が要求されており、さ
らに、現地での据付け工事期間が短く、設備費が安価な
ボイラ装置が求められている。
2. Description of the Related Art In recent years, the capacity of a boiler has been increasing with the increase in power demand and in order to improve the capacity of the entire equipment. However, since it is not easy to secure a power plant construction site suitable for a large-capacity boiler, there is an increasing number of cases in which existing aging equipment is demolished and a new power plant is built using the former site. Therefore, there is a demand for a compact boiler apparatus having a large capacity and a small installation space. On the other hand, from the viewpoint of energy saving, it is required to improve the operation efficiency of the boiler and to reduce the operation cost. Further, there is a need for a boiler device in which the installation work period on site is short and the equipment cost is low. .

【0003】図3は従来例に係るボイラ装置全体の系統
図である。ボイラ1から排出された排ガスGSにアンモ
ニアHNが散布される。その後、排ガスGSは脱硝装置
3に内蔵された脱硝触媒13を通過する間に排ガスGS
中の窒素酸化物(以下NOXと略記する)は水と窒素に
分解される。脱硝装置3を通過した後、排ガスGSは回
転式の空気予熱器(以下A/Hと略記する)4で熱回収
される。
FIG. 3 is a system diagram of an entire boiler apparatus according to a conventional example. Ammonia HN is sprayed on the exhaust gas GS discharged from the boiler 1. Thereafter, the exhaust gas GS passes through the denitration catalyst 13 built in the denitration device 3 while the exhaust gas GS is
Nitrogen oxides (hereinafter abbreviated as NOX) therein are decomposed into water and nitrogen. After passing through the denitration device 3, the exhaust gas GS is recovered by a rotary air preheater (hereinafter abbreviated as A / H) 4.

【0004】押込みファン(FDF)6で昇圧された空
気ARはA/H4で予熱された後、ボイラ1へ燃焼用の
空気ARとして供給される。A/H4で熱回収された排
ガスGSは電気集塵機(以下EPと略記する)5で除塵
され、ガスガスヒータ(GGH)7で冷却される。そし
て、排ガスGSは脱硫装置8で硫黄酸化物が除去され、
その後、白煙防止のために昇温され、煙突9から外気中
に排気される。
The air AR pressurized by the push-in fan (FDF) 6 is preheated by the A / H 4 and then supplied to the boiler 1 as combustion air AR. The exhaust gas GS recovered by heat in the A / H 4 is removed by an electric dust collector (hereinafter abbreviated as EP) 5 and cooled by a gas gas heater (GGH) 7. Then, the sulfur oxides of the exhaust gas GS are removed by the desulfurization device 8,
Thereafter, the temperature is raised to prevent white smoke, and exhausted from the chimney 9 to the outside air.

【0005】図4は上述のボイラ装置の中、ボイラ1か
らEP5に至る各装置を側面から見た概略構成を示す模
式図である。ボイラ1の対流ブロックの最後流部に配置
された節炭器12の出口に接続される排ガスダクト15
は同図に示すように、直後は鉛直下方に降り、その後、
水平方向に折れた後、鉛直上方に折れて立ち上がり、上
方に延びた後、再び水平方向に折れて脱硝装置3に接続
され、この脱硝装置3を経て鉛直下方に下ってA/H4
に至るという複雑な経路を辿るようになっている。ボイ
ラ1から排出された排ガスGSは流速V1 (13〜15
m/s程度)で鉛直下方に降り、その後、下側曲部で反
転して流速V2 で上昇し、上側曲部の排ガスダクト15
中に開口する注入口11からアンモニアHNが散布され
る。
FIG. 4 is a schematic diagram showing a schematic configuration of each of the above-described boiler apparatuses from the boiler 1 to the EP5 as viewed from the side. Exhaust gas duct 15 connected to the outlet of economizer 12 arranged at the last stream of the convection block of boiler 1
Immediately descends vertically as shown in the figure,
After being folded in the horizontal direction, it is folded vertically upward and rises, and after extending upward, it is again folded in the horizontal direction and connected to the denitration device 3, and goes down vertically below the A / H4 through this denitration device 3.
It follows a complicated route of reaching to. The exhaust gas GS discharged from the boiler 1 has a flow velocity V 1 (13 to 15).
m / about s) in down vertically downward, then increased at a rate V 2 and inverted in the lower bent portion, the exhaust gas duct 15 of the upper curved part
Ammonia HN is sprayed from the inlet 11 opening inside.

【0006】脱硝触媒13の表面にダストが堆積する
と、反応促進効果が低下するので、脱硝触媒13の上流
部には脱硝触媒13の表面に堆積したダストを吹き飛ば
す煤吹き機20が配設されている。また、脱硝装置3を
通過する排ガスGSの流速V3は、石炭排ガスのように
ダストを含有するものの場合は4〜7m/s、石油排ガ
スのようにダストを含有しないものの場合は7〜10m
/s位に設定されている。なお、A/H4を通過する排
ガスGSの流速は圧力損失の制限により5〜10m/s
程度に設定されている。
[0006] If dust accumulates on the surface of the denitration catalyst 13, the effect of accelerating the reaction is reduced. Therefore, a soot blower 20 for blowing off the dust accumulated on the surface of the denitration catalyst 13 is provided upstream of the denitration catalyst 13. I have. Further, the flow velocity V 3 of the exhaust gas GS passing through the denitration apparatus 3, when although the case of those containing the dust as a coal exhaust gas 4~7m / s, containing no dust as oil exhaust gas 7~10m
/ S order. The flow rate of the exhaust gas GS passing through the A / H4 is 5 to 10 m / s due to the restriction of pressure loss.
Set to about.

【0007】上述のように、排ガスダクト15は複雑な
経路を辿るようになっているので、各曲部には排ガスG
Sの整流を行う案内翼16が、また、脱硝装置3の上部
には平行板型整流器17がそれぞれ配設されている。そ
して、下側曲部の底部には、そこに滞留したダストと共
に粒径が大きなスラグを収集するための漏斗部18と、
その下方に図示しないダスト搬送装置が設けられてい
る。排ガスダクト15は温度変化により水平方向および
鉛直方向に伸縮するので、熱伸縮による応力歪みを吸収
するために、要部の3箇所に伸縮吸収器19が介装され
ている。
As described above, since the exhaust gas duct 15 follows a complicated path, the exhaust gas G
A guide vane 16 for rectifying S is provided, and a parallel plate rectifier 17 is provided above the denitration device 3. And at the bottom of the lower curved portion, a funnel portion 18 for collecting slag having a large particle size together with the dust retained therein,
Below this, a dust transport device (not shown) is provided. Since the exhaust gas duct 15 expands and contracts in the horizontal and vertical directions due to a temperature change, expansion and contraction absorbers 19 are interposed at three main portions to absorb stress distortion caused by thermal expansion and contraction.

【0008】このように、排ガスダクト15が複雑な経
路を辿るような構成とする理由は、(1) 排ガスダクト1
5内に注入されたアンモニアHNが排ガスGSと十分混
じり合って反応し、本格的な脱硝装置に要求される50
〜90%程度の脱硝率を得るのに必要な所定の移動距離
を確保しなければならないこと、(2) A/H4の広い横
断面積を確保するための十分な空間が必要なこと、(3)
脱硝装置3とA/H4とを連結する絞りダクト26の長
さも所定長さのものが必要であること等の理由により、
脱硝装置3の高さは所定の高さ以上に低くすることはで
きなかった。従って、脱硝装置3とA/H4とを鉛直方
向にボイラ1と一体化して配設することが難しく、排ガ
スダクト15は上述の複雑な形状を採らざるを得なかっ
た。
The reason why the exhaust gas duct 15 is configured to follow a complicated path is as follows.
Ammonia HN injected into the exhaust gas 5 is sufficiently mixed with the exhaust gas GS and reacts with the exhaust gas GS.
That a predetermined moving distance necessary to obtain a denitration rate of about 90% must be secured; (2) a sufficient space for securing a wide cross-sectional area of A / H4 is required; )
The length of the throttle duct 26 connecting the denitration device 3 and the A / H 4 is also required to be a predetermined length.
The height of the denitration device 3 could not be made lower than a predetermined height. Therefore, it is difficult to arrange the denitration device 3 and the A / H 4 integrally with the boiler 1 in the vertical direction, and the exhaust gas duct 15 has to take the complicated shape described above.

【0009】[0009]

【発明が解決しようとする課題】このため、脱硝装置3
とA/H4とを支持する図示しない鉄骨はボイラ1を支
持する図示しない鉄骨とは独立した別体の構造としなけ
ればならず、上記鉄骨を含む脱硝装置3とA/H4とが
独自に占有する設置空間(図4中で間隔Sで示す)を省
くことができないため、ボイラ装置全体の設置空間の縮
小には限界があった。
Therefore, the denitration device 3
The steel frame (not shown) for supporting the boiler 1 and the steel frame (not shown) for supporting the boiler 1 must have a separate structure, and the denitration apparatus 3 including the steel frame and the A / H4 independently occupy the steel frame. Since the installation space (indicated by the interval S in FIG. 4) cannot be omitted, there is a limit in reducing the installation space of the entire boiler device.

【0010】また、排ガスダクト15は上述のように複
数箇所で屈曲した形状を成しているため、ガス流の乱れ
や圧力損失が発生するのを避けられず、そのため、運転
効率が低下したり運転コストが増大するといった問題点
があった。ガス流の乱れは脱硝装置3やA/H4の運転
効率の低下を招くばかりでなく、脱硝触媒13の表面に
ダストが堆積する一因となるため、上述のように、従来
は排ガスダクト15の各曲部に排ガスGSの整流を行う
案内翼16を配設したり、脱硝触媒13の表面に堆積し
たダストを吹き飛ばすための煤吹き機20を配設した
り、排ガスダクト15の下側曲部の底部に、そこに滞留
したダストを収集するための漏斗部18を配設する等の
対策を講じているが、そのために排ガスダクト15の内
部構造が益々複雑化するといった新たな問題点が発生す
る原因となっていた。
Further, since the exhaust gas duct 15 has a bent shape at a plurality of points as described above, it is inevitable that a gas flow is disturbed and a pressure loss is generated, thereby lowering the operation efficiency. There was a problem that the operating cost increased. The turbulence of the gas flow not only causes a decrease in the operating efficiency of the denitration device 3 and the A / H 4, but also causes dust to accumulate on the surface of the denitration catalyst 13. A guide vane 16 for rectifying the exhaust gas GS is provided in each curved portion, a soot blower 20 for blowing off dust accumulated on the surface of the denitration catalyst 13 is provided, and a lower curved portion of the exhaust gas duct 15 is provided. At the bottom of the tank, measures are taken such as disposing a funnel 18 for collecting dust accumulated there, but this causes a new problem that the internal structure of the exhaust gas duct 15 becomes more and more complicated. Was causing it.

【0011】本発明は従来技術におけるかかる問題点を
解消すべく為されたものであり、排ガスダクト内のガス
流に乱れや圧力損失が生じず、運転効率が高く、運転コ
ストを低減でき、設置空間を縮小できるボイラ装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems in the prior art, and does not cause turbulence or pressure loss in a gas flow in an exhaust gas duct, has high operation efficiency, can reduce operation cost, and can be installed. An object of the present invention is to provide a boiler device capable of reducing the space.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するために、鉛直方向に立設され、鉛直方向に垂直な断
面積がほぼ等しい排ガスダクト内に接して、過熱器、再
熱器、蒸発器および節炭器の中の少なくとも一つの伝熱
装置と、脱硝装置と、ボイラ等に送られる空気を予熱す
る空気予熱器とを鉛直方向に順次配設したものであり、
空気予熱器としてはチューブ式のものが、さらに、アン
モニアの注入口は脱硝装置の直上に配設された伝熱装置
の上流側の排ガスダクト内に開口させたものが好まし
い。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a superheater, a reheater and an exhaust gas duct which is erected in a vertical direction and has substantially the same cross-sectional area perpendicular to the vertical direction. , At least one heat transfer device in the evaporator and the economizer, a denitration device, and an air preheater for preheating air sent to a boiler or the like are sequentially arranged in the vertical direction,
It is preferable that the air preheater be a tube type, and that the ammonia inlet be opened in an exhaust gas duct on the upstream side of the heat transfer device disposed immediately above the denitration device.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を詳細に説明する。図1は本発明の実施形態に
係るボイラ装置の中、ボイラ1からEP5に至る各装置
を側面から見た概略構成を示す模式図である。同図にお
いて、14はチューブ式のA/H、21,22はそれぞ
れ二次過熱器および第2再熱器、23は一次過熱器、2
4は蒸発器、25は第1再熱器である。従来例と同一ま
たは同一と見做せる個所には同一の符号を付し、その重
複する説明を省略する。なお、ボイラ装置の図示しない
他の装置構成は従来例と同一である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a schematic configuration of each of the devices from the boiler 1 to the EP 5 in the boiler device according to the embodiment of the present invention, as viewed from the side. In the figure, 14 is a tube type A / H, 21 and 22 are a secondary superheater and a second reheater, respectively, 23 is a primary superheater, 2
4 is an evaporator, 25 is a 1st reheater. The same reference numerals are given to portions which are the same as or can be regarded as the same as those in the conventional example, and redundant description thereof will be omitted. The other configuration of the boiler device (not shown) is the same as that of the conventional example.

【0014】本実施形態では一次過熱器23からチュー
ブ式のA/H14に至る各機器を鉛直方向に吊り下げ状
態に配設すると共に、それらを通過する排ガスGSの流
路を形成する排ガスダクト15の径を全ての鉛直方向箇
所で同一になるようにし、さらに、アンモニアHNの注
入口11の鉛直方向位置を節炭器12の直上位置として
ある。かかる構成を採ると共に、脱硝触媒13を通過す
る排ガスGSの流速V 4 を従来(V3 )と同じかやや速
い5〜10m/s(ダストを含む排ガスGSの場合)ま
たは7〜12m/s(ダストを含まない排ガスGSの場
合)程度に設定することにより、効率の良い運転ができ
る。
In the present embodiment, the primary superheater 23
Each type of equipment leading to the A / H14 is suspended vertically.
And the flow of exhaust gas GS passing through them
The diameter of the exhaust gas duct 15 forming the
At the same location, and then add ammonia HN
The vertical position of the inlet 11 is the position directly above the economizer 12
is there. With this configuration, the gas passes through the denitration catalyst 13.
Exhaust gas GS flow rate V Four To the conventional (VThree Same or slightly faster
5 to 10 m / s (for exhaust gas GS containing dust)
Or 7 to 12 m / s (exhaust gas GS containing no dust)
Efficient operation can be achieved by setting
You.

【0015】このように、一次過熱器23からA/H1
4に至る各機器を鉛直方向に同一径の排ガスダクト15
中に配設することにより、当該部分の排ガスダクト15
は屈曲部や拡大・縮小部を有しない真っ直ぐな筒状体で
形成されているから、脱硝触媒13やA/H14のガス
導入部でのガス流の乱れが殆ど無く、圧力損失を低減で
きると共に、熱伸縮は一様であり、その影響はほぼ上下
方向のものに限られるから、本実施形態のように伸縮吸
収器を全く介装しないか、少なくとも水平方向の熱伸縮
を吸収するための伸縮吸収器を設ける必要がなく、従っ
て、排ガスダクト15の内部構造をそれだけ簡素なもの
にできる。
As described above, the A / H1
Exhaust gas duct 15 with the same diameter in the vertical direction
By disposing it inside, the exhaust gas duct 15
Is formed of a straight tubular body having no bent portion or enlarged / reduced portion, there is almost no turbulence in the gas flow at the gas introduction portion of the denitration catalyst 13 or the A / H 14, and the pressure loss can be reduced. Since the thermal expansion and contraction are uniform and the effect is substantially limited to those in the vertical direction, there is no expansion / contraction absorber as in this embodiment, or at least expansion and contraction for absorbing the horizontal thermal expansion and contraction. It is not necessary to provide an absorber, so that the internal structure of the exhaust gas duct 15 can be made simpler.

【0016】また、排ガスダクト15内の排ガスGSの
流速は何の場所でも均一な流速V4となるから、脱硝触
媒13での反応促進効果が従来例に較べて数%向上する
と共に、A/H14での排ガスGSの伝熱効率も向上
し、脱硝触媒13の表面へのダストの堆積が減少するか
ら、煤吹き機の設置を省くことができる。そして、排ガ
スダクト15の径を諸条件の下で設定可能な最大値(従
来例に較べて1.3〜3倍)に設定することにより、一
次過熱器23からA/H14に至る排ガスダクト15の
長さを相対的に短くでき、従って、これらの機器を鉛直
方向に連設することができる。さらに、ボイラ1と脱硝
装置3およびA/H14を一体構成としたので、これら
を支持する鉄骨構造物は単一のもので済むから、これら
の機器および構造物が占める空間を大幅に縮小すること
ができる。なお、伝熱管部にひれを設けて伝熱管数を低
減するようにすれば、排ガスダクト15の長さをさらに
短縮することができる。
Further, since the flow rate of the exhaust gas GS in the exhaust gas duct 15 becomes a uniform flow velocity V 4 at any place, the effect of accelerating the reaction in the denitration catalyst 13 is improved by several% as compared with the conventional example, and A / A Since the heat transfer efficiency of the exhaust gas GS at H14 is also improved and the accumulation of dust on the surface of the denitration catalyst 13 is reduced, the installation of a soot blower can be omitted. By setting the diameter of the exhaust gas duct 15 to a maximum value that can be set under various conditions (1.3 to 3 times as compared with the conventional example), the exhaust gas duct 15 from the primary superheater 23 to the A / H 14 is set. Can be relatively shortened, so that these devices can be connected vertically. Furthermore, since the boiler 1, the denitration device 3 and the A / H14 are integrated, only one steel structure is required to support them, so that the space occupied by these devices and structures can be significantly reduced. Can be. Note that the length of the exhaust gas duct 15 can be further reduced by providing fins in the heat transfer tube portion to reduce the number of heat transfer tubes.

【0017】さらに、本実施形態ではアンモニアHNの
注入口11の鉛直方向位置を節炭器12の直上位置とし
たので、節炭器12の管群によるアンモニアHNの混合
効果を期待でき、アンモニアHNの注入位置から脱硝触
媒13までの鉛直方向距離を従来に較べて1/4程度に
短縮することができる。ボイラ1から排出された排ガス
GSは節炭器12の直上位置で注入されたアンモニアH
Nと節炭器12の管群で混合攪拌され、脱硝触媒13を
通過する時に排ガスGS中のNOX が分解され、その
後、下流側のA/H14に導かれる。脱硝触媒13とし
ては、改良により耐磨耗性が優れ、表面にダストが堆積
・閉塞し難い形状のもの、例えば、板状型のものが適し
ている。
Further, in this embodiment, since the vertical position of the ammonia HN inlet 11 is located immediately above the economizer 12, the effect of mixing ammonia HN by the tube group of the economizer 12 can be expected. The vertical distance from the injection position to the denitration catalyst 13 can be reduced to about 1/4 as compared with the related art. The exhaust gas GS discharged from the boiler 1 is ammonia H injected at a position immediately above the economizer 12.
N is mixed and stirred in the tube group of the economizer 12, NOX in the exhaust gas GS is decomposed when passing through the denitration catalyst 13, and then guided to the downstream A / H 14. As the denitration catalyst 13, a catalyst having a shape excellent in abrasion resistance due to improvement and in which dust is unlikely to accumulate and close on the surface, for example, a plate-shaped catalyst is suitable.

【0018】また、A/H14としては前述のようにチ
ューブ式のものを用いているが、さらに、非漏洩型のも
のが良い。このような形式のものを用いることにより、
ボイラ装置全体の運転効率を向上させることができるば
かりでなく、排ガスダクト15の径を小さくできるの
で、本発明の実施に好適である。具体的に述べると、第
一に、ガス漏洩に伴う熱損失を無くすることができる。
即ち、回転式のA/Hでは、回転するエレメント内に保
持されるガスが他方のガスダクト系に漏れ込むため、数
%のガス漏れは避けられない。これに対して、チューブ
式のA/Hはダクト内に配列された熱交換用のチューブ
内に空気を流す構造になっているため、ガス漏れについ
ては全く考慮する必要がなく、回転式のA/Hでは失わ
れていた熱量を回収することができるから、その分だけ
ボイラ装置全体の効率を向上させることができる。
As the A / H 14, a tube type is used as described above, but a non-leak type is also preferable. By using such a format,
Since the operation efficiency of the entire boiler device can be improved and the diameter of the exhaust gas duct 15 can be reduced, the present invention is suitable for implementing the present invention. Specifically, first, heat loss due to gas leakage can be eliminated.
That is, in the case of a rotary A / H, the gas held in the rotating element leaks into the other gas duct system, so that a gas leak of several percent is inevitable. On the other hand, the tube type A / H has a structure in which air flows through the tubes for heat exchange arranged in the duct, so there is no need to consider gas leakage at all, and the rotary type A / H does not need to be considered. Since / H can recover the lost heat, the efficiency of the entire boiler device can be improved accordingly.

【0019】第二に、チューブ式のA/Hでは上述のよ
うに、ガス漏れを生じないから、触媒量の低減を図るこ
とができる。図2は要求される条件を同じにした場合
に、5%のガス漏れが有る回転式のA/Hと全くガス漏
れが無いチューブ式のA/Hとで、必要になる触媒量を
求めた結果を示す表図である。同表図から明らかなよう
に、チューブ式のA/Hでは回転式のA/Hに較べて触
媒量を14%低減することができる。
Second, in the case of the tube type A / H, as described above, gas leakage does not occur, so that the amount of catalyst can be reduced. FIG. 2 shows the required amount of catalyst for the rotary A / H with 5% gas leakage and the tube A / H with no gas leakage when the required conditions are the same. It is a table | surface figure which shows a result. As is clear from the table, the amount of catalyst can be reduced by 14% in the tube type A / H as compared with the rotary A / H.

【0020】第三に、大粒径の飛散ダストによるA/H
14の閉塞対策が不要になる。チューブ式のA/Hでは
チューブ間隔は通常は少なくとも100mm以上であるた
め、排ガスGS中に大粒径のスラグが含まれていても、
それがチューブ間に挟まってそこを閉塞することはな
く、容易に通過して下方に落下する。これに対して、回
転式のA/Hでは、回転する板状のエレメントの間隔は
3〜5mmと狭いため、時には10mm以上にも及ぶ大粒径
のスラグが飛散してきた場合には、エレメントの間隔を
通過できずにエレメント上に堆積したり、粉砕されて小
粒径となったスラグがエレメントの隙間に入り込んだり
して閉塞してしまう。この結果、A/Hの圧力損失が急
上昇して運転に支障を来すばかりでなく、未燃炭素粒等
の堆積によりエレメントの焼損事故を引き起こす虞があ
る。
Third, A / H due to large particle size scattering dust
It is not necessary to take measures against the blockage of 14. In the tube type A / H, since the tube interval is usually at least 100 mm or more, even if the exhaust gas GS contains slag having a large particle size,
It does not get caught between the tubes and does not block it, but easily passes and falls down. On the other hand, in the rotary type A / H, the interval between the rotating plate-shaped elements is as small as 3 to 5 mm. The slag which cannot be passed through the gap and accumulates on the element, or the slag which has been pulverized to have a small particle diameter enters the gap between the elements and is blocked. As a result, not only does the A / H pressure loss rise sharply and hinders operation, but also there is a risk that the accumulation of unburned carbon particles or the like may cause element burnout.

【0021】第四に、チューブ式のA/Hは排ガスダク
ト15内にチューブが貫通した単純な構造であるため、
A/H14の口径は従来の排ガスダクト15の最大径程
度のもので良く、回転式のA/Hに較べて幅方向の設置
空間が小さくて済む。これに対して、回転式のA/Hで
は、先ずエレメントを排ガスGSで過熱し、さらに、エ
レメントを回転させながらその熱を導入空気に伝達する
方式なので、導入空気用のダクトと排ガスダクト15と
を幅方向に並列配置しなければならない。このため、当
然に幅方向の設置空間が大きなものになってしまう。
Fourth, since the tube type A / H has a simple structure in which a tube passes through the exhaust gas duct 15,
The diameter of the A / H 14 may be about the maximum diameter of the conventional exhaust gas duct 15, and the installation space in the width direction may be smaller than that of the rotary A / H. On the other hand, in the rotary A / H, the element is first heated by the exhaust gas GS, and the heat is transmitted to the introduced air while rotating the element. Must be arranged side by side in the width direction. For this reason, the installation space in the width direction naturally becomes large.

【0022】本実施形態では脱硝触媒13の直上部に節
炭器12を配設した構成としているが、この節炭器12
の代わりに一次、二次過熱器23,21、第1、第2再
熱器25,22、蒸発器24を配設した構成としても良
い。チューブ式のA/H14の代わりに回転式のA/H
を配設しても良いが、上述のように、チューブ式のA/
H14を用いることの利点が多いので、チューブ式のA
/H14を用いることが好ましい。
In the present embodiment, the economizer 12 is provided immediately above the denitration catalyst 13.
Instead of this, a configuration in which the primary and secondary superheaters 23 and 21, the first and second reheaters 25 and 22, and the evaporator 24 may be provided. Rotating A / H instead of tube A / H14
May be arranged, but as described above, the tube type A /
Since there are many advantages of using H14, a tube type A
/ H14 is preferably used.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、鉛
直方向に立設され、鉛直方向に垂直な断面積がほぼ等し
い排ガスダクト内に接して、過熱器、再熱器、蒸発器お
よび節炭器の中の少なくとも一つの伝熱装置と、脱硝装
置と、空気予熱器とを鉛直方向に順次配設したので、ガ
ス流の乱れが殆ど無く、圧力損失を低減でき、排ガスダ
クトの熱伸縮が一様になり、ダストの堆積も減少するか
ら、運転効率が高く、運転コストを低減できると共に熱
伸縮やダストの堆積のための機器も削減でき、ボイラ装
置の設置空間を縮小することができる。
As described above, according to the present invention, the superheater, the reheater, the evaporator and the superheater, the reheater, and the evaporator come into contact with each other in the exhaust gas duct which is erected vertically and has substantially the same cross-sectional area perpendicular to the vertical direction. Since at least one heat transfer device in the economizer, the denitration device, and the air preheater are sequentially arranged in the vertical direction, there is almost no turbulence in the gas flow, the pressure loss can be reduced, and the heat in the exhaust gas duct can be reduced. Since expansion and contraction become uniform and dust accumulation is reduced, operation efficiency is high, operation costs can be reduced, equipment for thermal expansion and contraction and dust accumulation can be reduced, and the installation space for boiler equipment can be reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るボイラ装置の要部装置
を側面から見た概略構成を示す模式図である。
FIG. 1 is a schematic diagram illustrating a schematic configuration of a main part device of a boiler device according to an embodiment of the present invention as viewed from a side.

【図2】ガス漏れが有るものとガス漏れが無いものと
で、空気予熱器に必要になる触媒量を求めた結果を示す
表図である。
FIG. 2 is a table showing the results of determining the amount of catalyst required for an air preheater, with and without gas leakage.

【図3】従来例に係るボイラ装置全体の系統図である。FIG. 3 is a system diagram of an entire boiler device according to a conventional example.

【図4】従来例に係るボイラ装置の要部装置を側面から
見た概略構成を示す模式図である。
FIG. 4 is a schematic diagram showing a schematic configuration of a main part device of a boiler device according to a conventional example viewed from a side.

【符号の説明】[Explanation of symbols]

1 ボイラ 3 脱硝装置 4,14 空気予熱器(A/H) 5 電気集塵機(EP) 11 注入口 12 節炭器 13 脱硝触媒 15 排ガスダクト 23,21 一次、二次過熱器 24 蒸発器 25,22 第1、第2再熱器 DESCRIPTION OF SYMBOLS 1 Boiler 3 Denitrator 4, 14 Air preheater (A / H) 5 Electric precipitator (EP) 11 Injection port 12 Energy saving device 13 Denitration catalyst 15 Exhaust gas duct 23, 21 Primary and secondary superheater 24 Evaporator 25, 22 First and second reheaters

フロントページの続き (72)発明者 加来 宏行 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 篠塚 昇 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3K070 DA02 DA14 DA22 DA30 DA38Continued on the front page (72) Inventor Hiroyuki Kaku 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Co., Ltd. (72) Inventor Noboru Shinozuka 6-9 Takaramachi Kure City, Hiroshima Prefecture Babcock Hitachi Kure Business In-house F-term (reference) 3K070 DA02 DA14 DA22 DA30 DA38

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボイラで石炭等の燃料を燃焼させた排ガ
スを排ガスダクト内に導き、各種伝熱装置で熱回収する
と共に、前記排ガスダクト内に開口するアンモニアの注
入口と脱硝触媒とを具えた脱硝装置で排ガス中の窒素酸
化物を除去するようにしたボイラ装置において、鉛直方
向に立設され、鉛直方向に垂直な断面積がほぼ等しい前
記排ガスダクト内に接して、過熱器、再熱器、蒸発器お
よび節炭器の中の少なくとも一つの伝熱装置と、前記脱
硝装置と、前記ボイラ等に送られる空気を予熱する空気
予熱器とを鉛直方向に順次配設したことを特徴とするボ
イラ装置。
An exhaust gas produced by burning a fuel such as coal by a boiler is introduced into an exhaust gas duct, heat is recovered by various heat transfer devices, and an ammonia inlet opening into the exhaust gas duct and a denitration catalyst are provided. In a boiler device which removes nitrogen oxides in exhaust gas by a denitration device, the boiler device is vertically erected and comes into contact with the exhaust gas duct having substantially the same cross-sectional area perpendicular to the vertical direction. Vessel, at least one heat transfer device among the evaporator and the economizer, the denitration device, and an air preheater that preheats air sent to the boiler or the like are sequentially arranged in the vertical direction. Boiler equipment.
【請求項2】 請求項1の記載において、空気予熱器は
チューブ式であることを特徴とするボイラ装置。
2. The boiler device according to claim 1, wherein the air preheater is a tube type.
【請求項3】 請求項1,2の何れかの記載において、
アンモニアの注入口を脱硝装置の直上に配設された伝熱
装置の上流側の排ガスダクト内に開口させたことを特徴
とするボイラ装置。
3. The method according to claim 1, wherein
A boiler device wherein an ammonia inlet is opened in an exhaust gas duct on the upstream side of a heat transfer device disposed immediately above a denitration device.
JP2000091723A 2000-03-29 2000-03-29 Boiler equipment Pending JP2001272001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091723A JP2001272001A (en) 2000-03-29 2000-03-29 Boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091723A JP2001272001A (en) 2000-03-29 2000-03-29 Boiler equipment

Publications (1)

Publication Number Publication Date
JP2001272001A true JP2001272001A (en) 2001-10-05

Family

ID=18607152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091723A Pending JP2001272001A (en) 2000-03-29 2000-03-29 Boiler equipment

Country Status (1)

Country Link
JP (1) JP2001272001A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829462A (en) * 2012-09-14 2012-12-19 郑州学研锅炉有限公司 Micro-pressure multifunctional boiler with high-temperature steam
CN104832904A (en) * 2015-05-13 2015-08-12 湖南中冶长天节能环保技术有限公司 Gas boiler for heating saturated steam and superheated steam achieving method
CN105157002A (en) * 2015-08-31 2015-12-16 太仓英达锅炉设备有限公司 Novel boiler
WO2016133116A1 (en) * 2015-02-18 2016-08-25 三菱日立パワーシステムズ株式会社 Exhaust gas heat recovery system
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
CN107883368A (en) * 2017-10-11 2018-04-06 华中科技大学 A kind of more tangential boiler systems of supercritical carbon dioxide reheating coal fired power generation
CN108474549A (en) * 2016-01-28 2018-08-31 安德里兹公司 Recycle the device of the heat recovery surface of boiler
JP2018176079A (en) * 2017-04-14 2018-11-15 三菱日立パワーシステムズ株式会社 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829462A (en) * 2012-09-14 2012-12-19 郑州学研锅炉有限公司 Micro-pressure multifunctional boiler with high-temperature steam
CN102829462B (en) * 2012-09-14 2015-04-15 郑州学研锅炉有限公司 Micro-pressure multifunctional boiler with high-temperature steam
WO2016133116A1 (en) * 2015-02-18 2016-08-25 三菱日立パワーシステムズ株式会社 Exhaust gas heat recovery system
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
CN104832904A (en) * 2015-05-13 2015-08-12 湖南中冶长天节能环保技术有限公司 Gas boiler for heating saturated steam and superheated steam achieving method
CN104832904B (en) * 2015-05-13 2017-06-16 湖南中冶长天节能环保技术有限公司 A kind of gas boiler for heating saturated vapor and the method for obtaining superheated steam
CN105157002A (en) * 2015-08-31 2015-12-16 太仓英达锅炉设备有限公司 Novel boiler
CN108474549A (en) * 2016-01-28 2018-08-31 安德里兹公司 Recycle the device of the heat recovery surface of boiler
CN108474549B (en) * 2016-01-28 2021-02-02 安德里兹公司 Device for recovering heat recovery surface of boiler
JP2018176079A (en) * 2017-04-14 2018-11-15 三菱日立パワーシステムズ株式会社 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method of the same
JP7171164B2 (en) 2017-04-14 2022-11-15 三菱重工業株式会社 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof
CN107883368A (en) * 2017-10-11 2018-04-06 华中科技大学 A kind of more tangential boiler systems of supercritical carbon dioxide reheating coal fired power generation

Similar Documents

Publication Publication Date Title
US7021248B2 (en) Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US9400102B2 (en) Heat exchanger including flow regulating plates
US7507381B2 (en) Exhaust gas treating apparatus
US6050226A (en) Exhaust heat recovery boiler
US8959916B2 (en) Thermal power plant
CN102388268B (en) Circulating fluidized bed boiler
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CA2284854C (en) Circulating fluidized bed reactor with floored internal primary particle separator
JP2001272001A (en) Boiler equipment
JPH10165734A (en) Collecting device for ash particle
CN214299287U (en) Tail gas sulfur droplet recovery device for Claus device
US6494255B2 (en) Air heater gas inlet plenum
CN112005073B (en) Heat exchanger
CN214223822U (en) Cooler for tail gas sulfur droplet recovery device
CN218721609U (en) High-temperature bag type dust collector structure for waste incineration
JP3737186B2 (en) Waste heat recovery device
CN112624059A (en) Tail gas sulfur liquid drop recovery tank for Claus device
KR20060057275A (en) Duct disposition structure with thermal exchange function of desulfurization equipment
JPH0646101U (en) Mounting structure of heat transfer surface in combustion chamber of circulating fluidized bed apparatus