JP2001268989A - Synchronous motor and motor vehicle comprising it and its controlling method - Google Patents

Synchronous motor and motor vehicle comprising it and its controlling method

Info

Publication number
JP2001268989A
JP2001268989A JP2000078755A JP2000078755A JP2001268989A JP 2001268989 A JP2001268989 A JP 2001268989A JP 2000078755 A JP2000078755 A JP 2000078755A JP 2000078755 A JP2000078755 A JP 2000078755A JP 2001268989 A JP2001268989 A JP 2001268989A
Authority
JP
Japan
Prior art keywords
temperature
synchronous motor
sensor
winding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078755A
Other languages
Japanese (ja)
Other versions
JP3668666B2 (en
Inventor
Toshisada Mitsui
利貞 三井
Atsushi Kunimi
篤史 國見
Shigeyuki Yoshihara
重之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000078755A priority Critical patent/JP3668666B2/en
Publication of JP2001268989A publication Critical patent/JP2001268989A/en
Application granted granted Critical
Publication of JP3668666B2 publication Critical patent/JP3668666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synchronous motor in which abnormal temperature rise is suppressed by predicting the temperature at a most overheated part of a winding through temperature measurement at one point, an electric vehicle comprising the synchronous motor and its controlling method. SOLUTION: The synchronous motor comprises a current sensor for detecting the AC current of two or more phases out of three-phase AC currents of the synchronous motor, a temperature sensor for detecting the temperature of the synchronous motor, and a temperature protective means for suppressing temperature rise of the synchronous motor wherein the temperature sensor comprises an operating unit for predicting the temperature of other windings based on the detected temperature located at a position for detecting the temperature of one of the windings for supplying the three-phase AC currents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な同期電動機
とそれを用いた電気車及びその制御方法に係り、好まし
くは電気車に搭載される同期電動機を駆動する制御装置
及び制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel synchronous motor, an electric vehicle using the same, and a control method thereof, and more particularly to a control device and a control method for driving a synchronous motor mounted on an electric vehicle.

【0002】[0002]

【従来の技術】産業用を初め、広い分野に普及している
電動機は温度センサが付設されているものが多く、温度
が異常に上昇した際は、通電量を制限したり冷却器を動
作させ、機器の破損を回避する構成をとるのが一般的で
ある。
2. Description of the Related Art Many electric motors widely used in various fields, including industrial use, are provided with a temperature sensor. When the temperature rises abnormally, the amount of electricity is limited or a cooler is operated. It is common to adopt a configuration to avoid damage to the equipment.

【0003】[0003]

【発明が解決しようとする課題】同期電動機は、特定の
回転数以下で通電すると各相毎に発熱量が大きく異なる
ため、巻線の各相間に温度差が生じる。このため、巻線
温度を所定値以下となるように温度保護を掛ける場合、
温度センサを各相毎に付設する必要がある。しかし、作
業性の制約から温度センサを各相毎に付設すること、そ
の位置も巻線の最過熱部に必ずしも設定できないという
問題がある。
When the synchronous motor is energized at a specific rotation speed or less, the amount of heat generated differs greatly for each phase, so that a temperature difference occurs between the phases of the windings. For this reason, when temperature protection is applied so that the winding temperature becomes a predetermined value or less,
A temperature sensor must be provided for each phase. However, there is a problem in that a temperature sensor is provided for each phase due to restrictions on workability, and the position of the temperature sensor cannot always be set at the superheated portion of the winding.

【0004】本発明の目的は、1個所の温度測定によっ
て巻線の最過熱部の温度を予測し、同期電動機の異常な
温度上昇を抑制した同期電動機とそれを用いた電気車及
びその制御方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synchronous motor in which the temperature of a superheated portion of a winding is predicted by measuring the temperature of one place to suppress an abnormal rise in temperature of the synchronous motor, an electric vehicle using the same, and a control method therefor. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は、同期電動機の
3相交流電流の2相以上の交流電流を検出する電流セン
サと、前記同期電動機の温度を検出する温度センサと、
前記同期電動機の温度上昇を抑制する温度保護手段とを
備えた同期電動機において、前記温度センサは前記3相
の交流電流を供給する巻線のうちの1つの巻線の温度を
検出する位置に設けられ、前記検出された温度に基づい
て他の巻線の温度を予測する演算装置を有し、前記温度
保護装置は前記予測された温度に基づいて前記同期電動
機へのトルク指令を算出して出力することにより前記温
度上昇を抑制するものであることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a current sensor for detecting two or more phases of a three-phase alternating current of a synchronous motor, a temperature sensor for detecting the temperature of the synchronous motor,
In a synchronous motor having a temperature protection unit for suppressing a rise in temperature of the synchronous motor, the temperature sensor is provided at a position for detecting a temperature of one of windings supplying the three-phase alternating current. And a calculating device for predicting the temperature of another winding based on the detected temperature, wherein the temperature protection device calculates and outputs a torque command to the synchronous motor based on the predicted temperature. By doing so, the temperature rise is suppressed.

【0006】前記温度センサの付設位置が前記巻線の最
過熱部であり、前記温度センサによって検出された温度
と前記電流センサによって検出された電流値に基づいて
前記温度センサを付設していない巻線の温度を前記演算
装置にて算出すること、又前記温度センサは前記巻線の
1つに設けられ、前記温度センサによって検出された温
度と前記電流センサによって検出された電流値に基づい
て前記温度センサを付設していない巻線の最過熱部の温
度を前記演算装置にて算出することが好ましい。
The position where the temperature sensor is attached is the superheated portion of the winding, and the winding where the temperature sensor is not attached is based on the temperature detected by the temperature sensor and the current value detected by the current sensor. Calculating the temperature of the wire by the arithmetic unit; and the temperature sensor is provided on one of the windings, and based on a temperature detected by the temperature sensor and a current value detected by the current sensor. It is preferable that the temperature of the superheated portion of the winding not provided with the temperature sensor is calculated by the arithmetic device.

【0007】本発明は、バッテリから電力変換器を通し
て電力の供給受ける同期電動機を備えた電気車におい
て、前記同期電動機は前述の同期電動機のいずれかから
成ることを特徴とする。
According to the present invention, there is provided an electric vehicle provided with a synchronous motor which receives power from a battery through a power converter, wherein the synchronous motor comprises any of the above-mentioned synchronous motors.

【0008】本発明は、同期電動機の3相交流電流の2
相以上の交流電流を検出すると共に、前記同期電動機の
3相交流電流を供給する巻線の温度を検出し、該検出さ
れた温度に基づいて前記同期電動機の温度上昇を抑制す
る同期電動機の制御方法において、前記検出する温度は
前記3相の交流電流を供給する巻線のうちの1つの巻線
の温度を検出するものであり、前記検出された温度に基
づいて他の巻線の温度を予測し、該予測された温度に基
づいて前記同期電動機の温度上昇を抑制することを特徴
とする。
[0008] The present invention relates to two-phase AC current of a synchronous motor.
A control of the synchronous motor for detecting a temperature of a winding for supplying a three-phase alternating current of the synchronous motor while detecting an AC current of more than one phase, and suppressing a temperature rise of the synchronous motor based on the detected temperature. In the method, the temperature to be detected is to detect a temperature of one of the windings supplying the three-phase alternating current, and a temperature of another winding is determined based on the detected temperature. The temperature of the synchronous motor is suppressed based on the predicted temperature.

【0009】即ち、モータ交流電流検出値Iu,Iv,Iwと
モータ実温度検出値Tsより、特定の関係式に基づいてV
相W相の巻線温度の最過熱部温度を計算により求めるこ
とにより、取り付ける温度センサを1つにすることがで
きる。また、温度センサを巻線の最過熱部に付設しなく
ても、最過熱部と温度のセンシング位置の温度の相関が
既知であれば、温度センサの取付け位置を作業の容易な
位置にすることができ、高い生産性が得られる。
That is, the motor AC current detection values Iu, Iv, Iw and the motor actual temperature detection value Ts are used to calculate V
By calculating the maximum superheated portion temperature of the phase W phase winding temperature by calculation, one temperature sensor can be attached. Also, even if the temperature sensor is not attached to the hottest part of the winding, if the temperature correlation between the hottest part and the temperature sensing position is known, the temperature sensor mounting position should be an easily accessible position. And high productivity can be obtained.

【0010】[0010]

【発明の実施の形態】図1は、本発明の制御装置を備え
た同期電動機を適用した電気車用駆動制御システムの構
成図である。同期電動機1は永久磁石型同期電動機であ
りバッテリ7を電源とし、電力変換器2を逆変換器すな
わちインバータをして電力の供給を受ける。永久磁石型
同期電動機1には、電力変換器2の直流入力側には、入
力電圧を平滑するコンデンサ5と、電力変換器2への直
流入力電圧を測定する直流入力電圧センサ6が接続さ
れ、直流入力電圧値を制御装置8に伝達する。また、電
力変換器2の交流電力出力側には、同期電動機1の交流
電流を計測する電流センサ9がU相,V相,W相にそれぞ
れ設置され、各相の交流電流値をモータ温度推定装置1
1に伝達する。また、永久磁石型同期電動機1にはモー
タ温度センサ4が巻線のU相に付設され、モータ温度セ
ンサ4の信号はモータ温度推定装置11に入力する。制
御装置8は、トルク指令Tref1を温度保護装置10より
得て、トルク指令Tref通りのトルクを出力するため、6
相PWM信号を電力変換器2に送り、電力変換器2を制御
する。温度保護装置10では、図示されない回路より基
準トルク指令Trefを受け、モータ温度推定装置11の出
力するモータ温度最大値に基づいてモータ温度上昇を抑
制するトルク指令Tref1を算出して出力する。
FIG. 1 is a block diagram of an electric vehicle drive control system to which a synchronous motor provided with a control device according to the present invention is applied. The synchronous motor 1 is a permanent magnet type synchronous motor, uses a battery 7 as a power source, and makes the power converter 2 an inverse converter, that is, an inverter, and receives power supply. In the permanent magnet type synchronous motor 1, a capacitor 5 for smoothing an input voltage and a DC input voltage sensor 6 for measuring a DC input voltage to the power converter 2 are connected to a DC input side of the power converter 2, The DC input voltage value is transmitted to the control device 8. On the AC power output side of the power converter 2, current sensors 9 for measuring the AC current of the synchronous motor 1 are installed in the U, V, and W phases, respectively. Apparatus 1
Transmit to 1. The permanent magnet type synchronous motor 1 has a motor temperature sensor 4 attached to the U phase of the winding, and a signal from the motor temperature sensor 4 is input to a motor temperature estimating device 11. The control device 8 obtains the torque command Tref1 from the temperature protection device 10 and outputs a torque according to the torque command Tref.
The phase PWM signal is sent to the power converter 2 to control the power converter 2. The temperature protection device 10 receives a reference torque command Tref from a circuit (not shown), and calculates and outputs a torque command Tref1 for suppressing an increase in motor temperature based on the motor temperature maximum value output from the motor temperature estimation device 11.

【0011】図2はモータ巻線の温度モデルを示す図で
ある。R,Cはそれぞれ熱抵抗と熱容量を現し、Wは発熱
量、Twは冷却水温度を現す。ステータ層とコイル層の
区別には、添え字“a”,“c”を付ける。簡略化のた
め、冷却水層は流路の有無による温度分布は無しとし冷
却水の温度分布は均一とする。熱源は巻線のロスのみと
し、鉄損及びシャフト等を介して伝わるエンジン系の熱
の出入りは無視する。また、コイルはマスとして扱う。
コイル層とステータ層間のスロットライナは、通常、熱
容量が極めて小さいので時定数を無視し、抵抗分はコイ
ル層とステータ層のどちらかに含めて扱う。温度センサ
は、U相巻線の最過熱部に付設することとする。
FIG. 2 is a diagram showing a temperature model of the motor winding. R and C respectively represent the thermal resistance and the thermal capacity, W represents the calorific value, and Tw represents the cooling water temperature. The suffixes “a” and “c” are added to distinguish between the stator layer and the coil layer. For simplicity, the cooling water layer has no temperature distribution depending on the presence or absence of the flow path, and the temperature distribution of the cooling water is uniform. The heat source is only the winding loss, and the heat loss of the engine system transmitted through the iron loss and the shaft is ignored. The coil is treated as a mass.
Since the slot liner between the coil layer and the stator layer usually has a very small heat capacity, the time constant is ignored, and the resistance component is included in either the coil layer or the stator layer. The temperature sensor is attached to the most heated portion of the U-phase winding.

【0012】このモータの巻線部の温度上昇は、特に低
速回転域において、通電による発熱が主たるもので、UV
W相の発熱量は、 発熱量Wu=r・Iu2, Wu=r・Iv2, Wu=r・Iw2 式(1) Wx:UVW相巻線の発熱量,r:巻線抵抗,Ix:UVW相巻
線の通電量 にて定式化できる。UVW相それぞれの巻線温度Tu,Tv,T
wを図2の物理モデルに従い、数理モデルに展開する
と、下記の式(2)〜(5)にて表現される。
The temperature rise in the winding of the motor is mainly caused by heat generated by energization, especially in a low-speed rotation range.
The calorific value of the W phase is: calorific value Wu = r · Iu 2 , Wu = r · Iv 2 , Wu = r · Iw 2 Formula (1) Wx: Calorific value of UVW phase winding, r: Winding resistance, Ix : Can be formulated by the amount of UVW phase winding current. Winding temperature Tu, Tv, T of each UVW phase
When w is developed into a mathematical model according to the physical model of FIG. 2, it is expressed by the following equations (2) to (5).

【0013】[0013]

【数1】 (Equation 1)

【0014】[0014]

【数2】 (Equation 2)

【0015】[0015]

【数3】 (Equation 3)

【0016】[0016]

【数4】 (Equation 4)

【0017】但し、ステータに流入する熱量は数理解 W={(Wu+Wv+Ww)−Cc・Ta・s}/{1+τc・s} 式(6) を使う代わりに、簡略化のため、下記の式(7)とし、簡略する。 W=(Wu+Wv+Ww) 式(7)However, the quantity of heat flowing into the stator is expressed by a number W = {(Wu + Wv + Ww) −Cc · Ta · s} / {1 + τc · s} Instead of using the equation (6), the following equation is used for simplification. 7) and will be simplified. W = (Wu + Wv + Ww) Equation (7)

【0018】温度センサはU相に付設されているとした
のでU相巻線温度Tuは直接観測できる。また、U相電流Iu
は電流センサから求まり巻線抵抗rと熱抵抗Rcと熱時定
数τaは予め既知であることから、式(2)を変更した
式(8)により、ステータ温度による巻線温度変化分T
fが求まる。
Since the temperature sensor is provided for the U phase, the U phase winding temperature Tu can be directly observed. Also, the U-phase current Iu
Is obtained from the current sensor, and since the winding resistance r, the thermal resistance Rc, and the thermal time constant τa are known in advance, the winding temperature change amount T due to the stator temperature is calculated by the equation (8) obtained by changing the equation (2).
f is obtained.

【0019】[0019]

【数5】 (Equation 5)

【0020】又、VW相電流IvIwも電流センサから求めら
れるため、式(1)(3)(4)(8)に基づけばVW相
巻線温度Tv,Twも計算により算出できる。
Since the VW-phase current IvIw is also obtained from the current sensor, the VW-phase winding temperatures Tv and Tw can be calculated by calculation based on the equations (1), (3), (4) and (8).

【0021】ここで、モータ温度推定装置11は、メモ
リROMに記録されたプログラムと、このプログラムを
読み出しプログラムの手順に沿って所定の処理を実行す
るCPUと、前記プログラムや、処理に必要な関数、定
数、データ等を記録するメモリRAMを含むコンピュー
タによって構成する。
Here, the motor temperature estimating device 11 includes a program recorded in a memory ROM, a CPU for reading out the program and executing a predetermined process in accordance with the procedure of the program, the program, and functions necessary for the process. , A computer including a memory RAM for recording constants, data, and the like.

【0022】図3は、図1のモータ温度推定装置用プロ
グラムの処理フローをフローチャートにより示したもの
である。このCPUは所定のインターバルでこのプログ
ラムを実行する。
FIG. 3 is a flowchart showing the processing flow of the program for the motor temperature estimating apparatus shown in FIG. This CPU executes this program at predetermined intervals.

【0023】プログラムフローは、図中のステップ
で、温度センサの出力する実温度データTsを入力し、更
に、交流電流センサ出力Iu,Iv,Iwを入力する。次に、図
中のステップで、回転数の大きさを判定し、回転数の
大きさが所定値以下の場合(図中のYES)、以下ステッ
プ以下を実行し、回転数の大きさが所定値より大きい
場合(図中のNO)は図中のステップ(10)を実行する。ス
テップでは、交流電流センサ出力Iu,Iv,Iwを使い前述
の式(1)に基づき各巻線の発熱量Wu,Wv,Wwを算出す
る。次にステップにて、TsをU相巻線の最過熱部温度
に換算する。例えば、実温度データTsとU相巻線の最過
熱部温度Tuの差が通電量の自乗に比例している場合、Tu
= Ts + K・Iu2 にて補正すればよい。次にステップ
では、式(8)により、ステータ温度影響分Tfを求め
る。次にステップで、IvとTfに基づき式(3)にてTv
を求める。次にステップで、IvとTfに基づき式(4)
にてTwを求める。ステップで、Tu,Tv,Twの内最大
温度を選択し、メモリ上に配置したバッファBufに出力
する。一方、ステップ(10)では、温度推定計算を停止し
前述のバッファBufには実温度データTsをそのまま出力
すると共に、ステップ〜で使用するフィルタ変数の
初期化を行う。ステップでは、最大温度の急激に変化
させない様に時間当たりの変化を制限する。
In the program flow, the actual temperature data Ts output from the temperature sensor is input, and further, the output Iu, Iv, Iw of the AC current sensor is input in the steps shown in the figure. Next, in the steps in the figure, the magnitude of the rotational speed is determined, and when the magnitude of the rotational speed is equal to or less than a predetermined value (YES in the figure), the steps below are executed, and the magnitude of the rotational speed is When it is larger than the value (NO in the figure), the step (10) in the figure is executed. In the step, calorific values Wu, Wv, Ww of the respective windings are calculated based on the above-mentioned equation (1) using the outputs Iu, Iv, Iw of the AC current sensor. Next, in step, Ts is converted to the temperature of the hottest part of the U-phase winding. For example, if the difference between the actual temperature data Ts and the temperature of the superheated portion Tu of the U-phase winding is proportional to the square of the energization amount, Tu
= Ts + K · Iu 2 . In the next step, the stator temperature influence component Tf is determined by equation (8). Next, in step, based on Iv and Tf,
Ask for. Next, in step, based on Iv and Tf, equation (4)
Find Tw at. In the step, the maximum temperature among Tu, Tv, Tw is selected and output to the buffer Buf arranged on the memory. On the other hand, in step (10), the temperature estimation calculation is stopped, the actual temperature data Ts is output as it is to the buffer Buf, and the filter variables used in steps (1) to (4) are initialized. In the step, the change per unit time is limited so that the maximum temperature is not suddenly changed.

【0024】図4は温度センサ出力の時間応答補正方法
を示す回路図である。ここまでは、温度センサ付設位置
をU相巻線の最過熱部としたが、作業の関係で最過熱部
に付設できない場合、別の位置に付設し、式(9)の様
に補正してTuを換算しても良い。また、温度センサの応
答がモータの温度の時定数より遅いときには、図4に示
すトラッキングループで実温度を補正する。1例とし
て、図4では温度センサの応答は1次遅れとした。 Tu=f(温度センサ検出値),f( ):温度センサの補正関数 式(9)
FIG. 4 is a circuit diagram showing a method for correcting the time response of the temperature sensor output. Up to this point, the position where the temperature sensor was attached was the hottest portion of the U-phase winding. However, if it could not be attached to the hottest portion due to work, it was attached to another position and corrected as in equation (9). Tu may be converted. When the response of the temperature sensor is slower than the time constant of the motor temperature, the actual temperature is corrected by the tracking loop shown in FIG. As an example, in FIG. 4, the response of the temperature sensor is a first-order lag. Tu = f (detected value of temperature sensor), f (): correction function of temperature sensor Expression (9)

【0025】従って、以上の実施例はモータ温度センサ
をU相付設としたが、V相及びW相のいずれかに付設して
も同様の計算にて機能を提供できることは明らかであ
る。
Therefore, in the above embodiment, the motor temperature sensor is provided in the U phase, but it is apparent that the function can be provided by the same calculation even if the motor temperature sensor is provided in either the V phase or the W phase.

【0026】[0026]

【発明の効果】本発明によれば、モータの巻線3相に各
々1つの温度センサを付設する必要がなく、温度センサ
を1つとすることができるため操作が容易にできる。
又、温度センサは必ずしも応答速度の早いものでなくて
も、高精度で所望のモータの温度データを得られるの
で、温度センサの付設位置は取り付け容易な位置で、
又、最過熱部でなくても良いので、モータ製造における
作業性が高い。
According to the present invention, it is not necessary to provide one temperature sensor for each of the three winding phases of the motor, and the number of temperature sensors can be reduced to one.
Also, even if the temperature sensor does not always have a fast response speed, the temperature data of the desired motor can be obtained with high accuracy.
In addition, the workability in manufacturing the motor is high because it does not have to be the hottest part.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の同期電動機制御装置を備えた電気車の
駆動制御システム構成図。
FIG. 1 is a drive control system configuration diagram of an electric vehicle including a synchronous motor control device of the present invention.

【図2】モータ巻線の温度モデル。FIG. 2 is a temperature model of a motor winding.

【図3】図1のモータ温度推定装置の処理フロー図。FIG. 3 is a processing flowchart of the motor temperature estimating apparatus of FIG. 1;

【図4】温度センサ出力の時間応答補正方法を示す回路
図。
FIG. 4 is a circuit diagram showing a method of correcting a time response of a temperature sensor output.

【符号の説明】[Explanation of symbols]

1…同期電動機、2…電力変換器、4…モータ温度セン
サ、5…平滑コンデンサ、7…バッテリ、8…電動機制
御装置、9…交流電流センサ、10…モータ温度保護装
置、11…モータ温度推定装置
DESCRIPTION OF SYMBOLS 1 ... Synchronous motor, 2 ... Power converter, 4 ... Motor temperature sensor, 5 ... Smoothing capacitor, 7 ... Battery, 8 ... Motor control device, 9 ... AC current sensor, 10 ... Motor temperature protection device, 11 ... Motor temperature estimation apparatus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 國見 篤史 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 (72)発明者 吉原 重之 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 Fターム(参考) 5H115 PG04 PI13 PU10 PV09 QN03 TO05 TO12 TR04 TU12 5H576 CC02 DD02 DD07 EE11 GG04 HB02 JJ03 JJ04 JJ17 JJ24 JJ25 JJ26 LL22 LL24 LL38 LL45 MM06 5H611 AA03 BB07 PP02 QQ04 UA02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Kunimi 2477 Takaba, Hitachinaka-shi, Ibaraki Prefecture Inside Hitachi Car Engineering Co., Ltd. (72) Inventor Shigeyuki Yoshihara 2477 Takaba, Hitachinaka-shi, Ibaraki Hitachi, Ltd. 5H115 PG04 PI13 PU10 PV09 QN03 TO05 TO12 TR04 TU12 5H576 CC02 DD02 DD07 EE11 GG04 HB02 JJ03 JJ04 JJ17 JJ24 JJ25 JJ26 LL22 LL24 LL38 LL45 MM06 5H611 AA03 BB07 Q02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】同期電動機の3相交流電流の2相以上の交
流電流を検出する電流センサと、前記同期電動機の温度
を検出する温度センサと、前記同期電動機の温度上昇を
抑制する温度保護装置とを備えた同期電動機において、
前記温度センサは前記3相の交流電流を供給する巻線の
うちの1つの巻線の温度を検出する位置に設けられ、前
記検出された温度に基づいて他の巻線の温度を予測する
演算装置を有し、前記温度保護装置は前記予測された温
度に基づいて前記同期電動機へのトルク指令を算出して
出力することにより前記温度上昇を抑制するものである
ことを特徴とする同期電動機。
1. A current sensor for detecting an AC current of two or more phases of a three-phase AC current of a synchronous motor, a temperature sensor for detecting a temperature of the synchronous motor, and a temperature protection device for suppressing a rise in temperature of the synchronous motor. In a synchronous motor having
The temperature sensor is provided at a position for detecting the temperature of one of the windings supplying the three-phase alternating current, and predicts the temperature of the other winding based on the detected temperature. A synchronous motor having a device, wherein the temperature protection device suppresses the temperature rise by calculating and outputting a torque command to the synchronous motor based on the predicted temperature.
【請求項2】請求項1において、前記温度センサの付設
位置が前記巻線の最過熱部であり、前記温度センサによ
って検出された温度と前記電流センサによって検出され
た電流値に基づいて前記温度センサを付設していない巻
線の温度を前記演算装置にて算出することを特徴とする
同期電動機。
2. The temperature sensor according to claim 1, wherein the position of the temperature sensor is a superheated portion of the winding, and the temperature is determined based on a temperature detected by the temperature sensor and a current value detected by the current sensor. A synchronous motor, wherein the temperature of a winding without a sensor is calculated by the arithmetic unit.
【請求項3】請求項1において、前記温度センサは前記
巻線の1つに設けられ、前記温度センサによって検出さ
れた温度と前記電流センサによって検出された電流値に
基づいて前記温度センサを付設していない巻線の最過熱
部の温度を前記演算装置にて算出することを特徴とする
同期電動機。
3. The temperature sensor according to claim 1, wherein the temperature sensor is provided on one of the windings, and the temperature sensor is provided based on a temperature detected by the temperature sensor and a current value detected by the current sensor. A synchronous motor, wherein a temperature of a superheated portion of a winding that is not performed is calculated by the arithmetic device.
【請求項4】バッテリから電力変換器を通して電力の供
給受ける同期電動機を備えた電気車において、前記同期
電動機は請求項1〜3のいずれかから成ることを特徴と
する電気車。
4. An electric vehicle provided with a synchronous motor receiving power supply from a battery through a power converter, wherein the synchronous motor comprises any one of claims 1 to 3.
【請求項5】同期電動機の3相交流電流の2相以上の交
流電流を検出すると共に、前記同期電動機の3相交流電
流を供給する巻線の温度を検出し、該検出された温度に
基づいて前記同期電動機の温度上昇を抑制する同期電動
機の制御方法において、前記検出する温度は前記3相の
交流電流を供給する巻線のうちの1つの巻線の温度を検
出するものであり、前記検出された温度に基づいて他の
巻線の温度を予測し、該予測された温度に基づいて前記
同期電動機の温度上昇を抑制することを特徴とする同期
電動機の制御方法。
5. A method for detecting two or more phases of three-phase alternating current of a synchronous motor, detecting a temperature of a winding for supplying three-phase alternating current of the synchronous motor, and detecting a temperature of the winding based on the detected temperature. The synchronous motor control method for suppressing the temperature rise of the synchronous motor, wherein the temperature to be detected is to detect a temperature of one of windings supplying the three-phase alternating current, A method for controlling a synchronous motor, comprising: predicting a temperature of another winding based on a detected temperature; and suppressing a rise in temperature of the synchronous motor based on the predicted temperature.
JP2000078755A 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof Expired - Lifetime JP3668666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078755A JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078755A JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Publications (2)

Publication Number Publication Date
JP2001268989A true JP2001268989A (en) 2001-09-28
JP3668666B2 JP3668666B2 (en) 2005-07-06

Family

ID=18596123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078755A Expired - Lifetime JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Country Status (1)

Country Link
JP (1) JP3668666B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322182A (en) * 2002-02-28 2003-11-14 Tokico Ltd Electric disc brake device
JP2008131714A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Control device of vehicle, control method of vehicle, program for making computer implement the control method, and computer-readable recording medium recorded with the program
JP2009136061A (en) * 2007-11-29 2009-06-18 Mitsuba Corp Control device of switched reluctance motor
US7911167B2 (en) 2003-09-16 2011-03-22 Aisin Aw Co., Ltd. Control device for a vehicle motor
JP2014082908A (en) * 2012-10-18 2014-05-08 Fanuc Ltd Temperature estimation device for estimating temperature of motor
CN104344910A (en) * 2013-08-09 2015-02-11 丰田自动车株式会社 Rotary-electric-machine temperature estimation system for vehicle
JP2016178798A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine
WO2016158486A1 (en) * 2015-04-01 2016-10-06 アイシン精機株式会社 Control system for vehicle driving motor
JP2016178797A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine
WO2016181898A1 (en) * 2015-05-14 2016-11-17 Ntn株式会社 Electric motor device and electric linear motion actuator
JP2017058131A (en) * 2015-09-14 2017-03-23 Ntn株式会社 Electric motor device, and electromotive direct acting actuator
TWI577126B (en) * 2015-03-30 2017-04-01 三菱電機股份有限公司 Protection device and servo motor
US9825578B2 (en) 2014-02-17 2017-11-21 Mitsubishi Electric Corporation Control device
JP2019075965A (en) * 2017-10-19 2019-05-16 日産自動車株式会社 Winding temperature estimation system and winding temperature estimation method
CN112697195A (en) * 2020-11-12 2021-04-23 珠海一多智能科技有限公司 High-voltage bushing load air pressure temperature on-line monitoring and diagnosis method
WO2022096194A1 (en) * 2020-11-05 2022-05-12 Robert Bosch Gmbh Method and device for operating an electric system
US20230361713A1 (en) * 2021-05-17 2023-11-09 Nissan Motor Co., Ltd. Method for controlling motor, device for controlling motor
US12021472B2 (en) * 2021-05-17 2024-06-25 Nissan Motor Co., Ltd. Method and device including estimating maximum winding temperature and control

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322182A (en) * 2002-02-28 2003-11-14 Tokico Ltd Electric disc brake device
US7911167B2 (en) 2003-09-16 2011-03-22 Aisin Aw Co., Ltd. Control device for a vehicle motor
JP2008131714A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Control device of vehicle, control method of vehicle, program for making computer implement the control method, and computer-readable recording medium recorded with the program
JP2009136061A (en) * 2007-11-29 2009-06-18 Mitsuba Corp Control device of switched reluctance motor
JP2014082908A (en) * 2012-10-18 2014-05-08 Fanuc Ltd Temperature estimation device for estimating temperature of motor
DE102013016911B4 (en) 2012-10-18 2019-03-28 Fanuc Corporation Temperature estimation apparatus for estimating the temperature of an engine
CN104344910A (en) * 2013-08-09 2015-02-11 丰田自动车株式会社 Rotary-electric-machine temperature estimation system for vehicle
JP2015033995A (en) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 Vehicular rotary electrical machinery temperature estimation system
US9825578B2 (en) 2014-02-17 2017-11-21 Mitsubishi Electric Corporation Control device
JP2016178798A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine
JP2016178797A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine
TWI577126B (en) * 2015-03-30 2017-04-01 三菱電機股份有限公司 Protection device and servo motor
WO2016158486A1 (en) * 2015-04-01 2016-10-06 アイシン精機株式会社 Control system for vehicle driving motor
JP2016195515A (en) * 2015-04-01 2016-11-17 アイシン精機株式会社 Control system of motor for driving vehicle
CN107406003B (en) * 2015-04-01 2020-02-21 爱信精机株式会社 Control system for vehicle drive motor
CN107406003A (en) * 2015-04-01 2017-11-28 爱信精机株式会社 The control system of vehicle traction motor
JP2016220270A (en) * 2015-05-14 2016-12-22 Ntn株式会社 Electric motor device and electric direct-acting actuator
WO2016181898A1 (en) * 2015-05-14 2016-11-17 Ntn株式会社 Electric motor device and electric linear motion actuator
JP2017058131A (en) * 2015-09-14 2017-03-23 Ntn株式会社 Electric motor device, and electromotive direct acting actuator
JP2019075965A (en) * 2017-10-19 2019-05-16 日産自動車株式会社 Winding temperature estimation system and winding temperature estimation method
WO2022096194A1 (en) * 2020-11-05 2022-05-12 Robert Bosch Gmbh Method and device for operating an electric system
CN112697195A (en) * 2020-11-12 2021-04-23 珠海一多智能科技有限公司 High-voltage bushing load air pressure temperature on-line monitoring and diagnosis method
CN112697195B (en) * 2020-11-12 2024-06-04 珠海一多智能科技有限公司 High-voltage sleeve load air pressure and temperature on-line monitoring and diagnosing method
US20230361713A1 (en) * 2021-05-17 2023-11-09 Nissan Motor Co., Ltd. Method for controlling motor, device for controlling motor
US12021472B2 (en) * 2021-05-17 2024-06-25 Nissan Motor Co., Ltd. Method and device including estimating maximum winding temperature and control

Also Published As

Publication number Publication date
JP3668666B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US9091600B2 (en) Temperature estimation apparatus for estimating temperature of motor
JP5408136B2 (en) Inverter device, inverter control system, motor control system, and control method for inverter device
JP3963175B2 (en) Temperature detection apparatus and temperature detection program
JP2001268989A (en) Synchronous motor and motor vehicle comprising it and its controlling method
US7839108B2 (en) Electric motor stator winding temperature estimation
KR101664643B1 (en) Motor drive device
JP5877860B2 (en) Temperature detector for motor mover and overheat protection device for motor
EP3537601B1 (en) Motor control method
CN101399501A (en) Power converter and its control method
JP6299368B2 (en) Semiconductor device temperature estimation device
JP2010124610A (en) Method of controlling pm motor
JP2009261078A (en) Motor controller and temperature estimation method
JP2007049837A (en) Controller for power converter
JPH0654572A (en) Heat protection apparatus for motor
JP2010200515A (en) Device for estimating magnet temperature of motor
JP2016082698A (en) Motor temperature estimation device and motor overheat protection method
JP4924066B2 (en) Motor control device and motor control method
JPH10225158A (en) Controller for induction machine
JP2002095155A (en) Cooling system maintenance method of static power converter
JP2005218226A (en) Method and apparatus for controlling motor
JP6129260B2 (en) Energizing device, electric motor control device, energizing method
WO2021075186A1 (en) Motor control device, magnet temperature estimator, and magnet temperature estimation method
US11063542B2 (en) Motor drive apparatus and electric power steering apparatus
JP7385628B2 (en) Electric motor control device
JP2009278692A (en) Controller of permanent magnet synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Ref document number: 3668666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

EXPY Cancellation because of completion of term